JPH05243100A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPH05243100A
JPH05243100A JP7839792A JP7839792A JPH05243100A JP H05243100 A JPH05243100 A JP H05243100A JP 7839792 A JP7839792 A JP 7839792A JP 7839792 A JP7839792 A JP 7839792A JP H05243100 A JPH05243100 A JP H05243100A
Authority
JP
Japan
Prior art keywords
metal frame
lead wire
anode lead
electrolytic capacitor
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7839792A
Other languages
Japanese (ja)
Other versions
JP3266205B2 (en
Inventor
Shinji Sano
真二 佐野
Kosuke Nakamura
浩介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP07839792A priority Critical patent/JP3266205B2/en
Publication of JPH05243100A publication Critical patent/JPH05243100A/en
Application granted granted Critical
Publication of JP3266205B2 publication Critical patent/JP3266205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enhance pressure resistance, reduce leakage current variability and improve reliability. CONSTITUTION:In a solid-state electrolytic capacitor which connects a capacitor element 1 having an anode lead wire 2 to a metal frame 3 and forms an armor, a solid-state electrolytic capacitor is manufactured under the following manufacturing process comprising a step for interconnecting the anode lead wire 2 and the metal frame 3 and bringing a soldering material into contact with at least either the anode lead wire 2 or the metal frame 3, and a step for heating, melting and solidifying the soldering material 4 without the application of pressure and then connecting the lead wire 2 to the metal frame 3. This solid-state electrolytic capacitor is manufactured by heating, melting and solidfying the metal frame 3 and connecting the metal frame to the anode wire 2 after having placed the anode lead wire 2 into mutual contact with the metal frame 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】タンタル等のチップ型固体電解コンデン
サは、例えば、次の通りに製造する。すなわち、先ず、
タンタル等の陽極リード線を引き出した、タンタル等の
微粉末からなる焼結体を形成する。次に、この焼結体を
陽極化成して酸化皮膜を形成し、さらに二酸化マンガン
層、陰極層を順次形成してコンデンサ素子とする。そし
て図4(イ)に示す通り、陽極リード線21を金属フレ
ーム22の平面上に載せる。その後、図4(ロ)に示す
通り、陽極リード線21を金属フレーム22に抵抗溶接
する。また、陰極層は導電性接着剤により金属フレーム
22に接続する。コンデンサ素子23を金属フレーム2
2に接続後、トランスファーモールドして外装を形成す
る。
2. Description of the Related Art A chip type solid electrolytic capacitor such as tantalum is manufactured, for example, as follows. That is, first,
A sintered body made of fine powder of tantalum or the like is formed by drawing out an anode lead wire of tantalum or the like. Next, this sintered body is anodized to form an oxide film, and then a manganese dioxide layer and a cathode layer are sequentially formed to form a capacitor element. Then, as shown in FIG. 4A, the anode lead wire 21 is placed on the plane of the metal frame 22. Thereafter, as shown in FIG. 4B, the anode lead wire 21 is resistance-welded to the metal frame 22. The cathode layer is connected to the metal frame 22 with a conductive adhesive. The capacitor element 23 is attached to the metal frame 2
After connecting to 2, transfer molding is performed to form an exterior.

【0003】[0003]

【発明が解決しようとする課題】しかし、抵抗溶接によ
り陽極リード線21を金属フレーム22に接続するに
は、陽極リード線21と金属フレーム22との接点に圧
力を加えなければならない。そのため、この圧力によ
り、陽極リード線21の焼結体中にある部分にストレス
が加わる。そしてこのストレスのため、酸化皮膜が劣化
したり破損したりする。その結果、コンデンサ素子23
の耐圧が低下したり、漏れ電流のばらつきが増大したり
して信頼性が低下する欠点がある。
However, in order to connect the anode lead wire 21 to the metal frame 22 by resistance welding, it is necessary to apply pressure to the contact point between the anode lead wire 21 and the metal frame 22. Therefore, this pressure applies stress to the portion of the anode lead wire 21 in the sintered body. And, due to this stress, the oxide film is deteriorated or damaged. As a result, the capacitor element 23
There is a drawback that the withstand voltage is lowered and the variation of the leakage current is increased to lower the reliability.

【0004】本発明の目的は、以上の欠点を改良し、耐
圧を向上し、漏れ電流のばらつきを減少し、信頼性の高
い固体電解コンデンサの製造方法を提供するものであ
る。
An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor which has improved reliability, improved breakdown voltage, reduced leakage current variation, and high reliability.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、上記
の目的を達成するために、陽極リード線を引き出したコ
ンデンサ素子を金属フレームに接続し、外装を形成する
固体電解コンデンサの製造方法において、陽極リード線
と金属フレームとを互いに接触するとともに、この陽極
リード線又は金属フレームの少なくともどちらか一方に
ろう材を接触する工程と、この工程後にこのろう材を加
圧しないで加熱溶融し凝固して前記陽極リード線と前記
金属フレームとを接続する工程とを行うことを特徴とす
る固体電解コンデンサの製造方法を提供するものであ
る。
In order to achieve the above-mentioned object, the invention of claim 1 is a method of manufacturing a solid electrolytic capacitor in which a capacitor element from which an anode lead wire is drawn out is connected to a metal frame to form an exterior. In the step of contacting the anode lead wire and the metal frame with each other, and contacting the brazing material with at least one of the anode lead wire and the metal frame, and heating and melting the brazing material without applying pressure after this step. The present invention provides a method for manufacturing a solid electrolytic capacitor, which comprises performing a step of solidifying and connecting the anode lead wire and the metal frame.

【0006】また、請求項2の発明は、陽極リード線と
金属フレームとを互いに接触する工程と、この工程後に
この金属フレームを加熱溶融し凝固して前記陽極リード
線と前記金属フレームとを接続する工程とを行うことを
特徴とする固体電解コンデンサの製造方法を提供するも
のである。
In the invention of claim 2, the step of contacting the anode lead wire and the metal frame with each other, and after this step, the metal frame is heated and melted and solidified to connect the anode lead wire and the metal frame. The present invention provides a method for manufacturing a solid electrolytic capacitor, characterized in that

【0007】ろう材や金属フレームを加熱溶融するには
レーザーやアーク放電法等を用いる。
A laser or an arc discharge method is used to heat and melt the brazing material and the metal frame.

【0008】[0008]

【作用】ろう材や金属フレームを加熱溶融し、凝固する
ことによって、陽極リード線を金属フレームに接続して
いるために、接続時に陽極リード線にストレスが掛から
ない。従って、陽極リード線によってコンデンサ素子の
酸化皮膜が劣化したり破損することがなくなる。
Since the anode lead wire is connected to the metal frame by heating, melting and solidifying the brazing material and the metal frame, stress is not applied to the anode lead wire at the time of connection. Therefore, the anode lead wire does not deteriorate or damage the oxide film of the capacitor element.

【0009】[0009]

【実施例】以下、本発明を実施例に基づいて説明する。 実施例1:先ず、0.24φのタンタルワイヤーからな
る陽極リード線を引き出して、タンタル微粉末からなる
焼結体を形成する。次に、この焼結体を陽極化成して酸
化皮膜を形成する。酸化皮膜を形成後、硝酸マンガン溶
液を含浸し、熱分解して二酸化マンガン層を形成する。
その後、コロイド状のカーボンを付着してカーボン層を
形成し、陰極を引き出すとともに、その表面に銀ペース
トを塗布して陰極層を形成する。陰極層を形成後、図1
(イ)に示す通り、コンデンサ素子1の陽極リード線2
を、金属フレーム3の平面部に載せて接触する。接触
後、図1(ロ)に示す通り、陽極リード線2と金属フレ
ーム3の上に、0.5mm×2.0mm角に切断した厚さ
0.05mmのAg−Ti系箔状のろう材4を載せて接触
する。次に、このろう材4に、YAGレーザーを18W
で1秒間照射し、加熱溶融する。そしてろう材4を凝固
して金属フレーム3に陽極リード線2を接続する。ま
た、コンデンサ素子1の陰極層は導電性接着剤により金
属フレーム3に接続する。接続後、エポキシ樹脂により
トランスファーモールドして外装を形成する。外装を形
成後、エージングし、端子を形成してチップ型タンタル
固体電解コンデンサにする。
EXAMPLES The present invention will be described below based on examples. Example 1: First, an anode lead wire made of a 0.24φ tantalum wire is pulled out to form a sintered body made of fine tantalum powder. Next, this sintered body is anodized to form an oxide film. After forming the oxide film, it is impregnated with a manganese nitrate solution and thermally decomposed to form a manganese dioxide layer.
Thereafter, colloidal carbon is attached to form a carbon layer, the cathode is pulled out, and silver paste is applied to the surface of the carbon layer to form a cathode layer. After forming the cathode layer,
As shown in (a), the anode lead wire 2 of the capacitor element 1
Are placed on the flat surface portion of the metal frame 3 and brought into contact therewith. After the contact, as shown in FIG. 1B, the Ag-Ti foil-like brazing material with a thickness of 0.05 mm cut into 0.5 mm × 2.0 mm squares on the anode lead wire 2 and the metal frame 3. Place 4 and make contact. Next, 18 W of YAG laser is applied to the brazing material 4.
Irradiate for 1 second and heat to melt. Then, the brazing material 4 is solidified and the anode lead wire 2 is connected to the metal frame 3. The cathode layer of the capacitor element 1 is connected to the metal frame 3 with a conductive adhesive. After connection, transfer molding is performed with an epoxy resin to form an exterior. After forming the outer package, aging is performed to form terminals to obtain a chip type tantalum solid electrolytic capacitor.

【0010】実施例2:実施例1において、陽極リード
線を次の通り金属フレームに接続する以外は同一の条件
で製造する。すなわち、図2(イ)に示す通り、金属フ
レーム5に屈曲部6を形成する。そしてこの屈曲部6の
端面にコンデンサ素子7の陽極リード線8を載せて接触
する。次に、陽極リード線8と屈曲部6の端面の上にろ
う材9を載せ接触する。そして、実施例1と同一条件で
YAGレーザーをろう材9に照射し、これを溶かし凝固
して、図2(ロ)に示す通り、陽極リード線8を金属フ
レーム5に接続する。
Example 2: The procedure of Example 1 was repeated except that the anode lead wire was connected to the metal frame as follows. That is, as shown in FIG. 2A, the bent portion 6 is formed on the metal frame 5. Then, the anode lead wire 8 of the capacitor element 7 is placed on the end face of the bent portion 6 and brought into contact therewith. Next, the brazing material 9 is placed on and contacted with the anode lead wire 8 and the end surface of the bent portion 6. Then, the brazing material 9 is irradiated with the YAG laser under the same conditions as in Example 1, and the brazing material 9 is melted and solidified, and the anode lead wire 8 is connected to the metal frame 5 as shown in FIG.

【0011】実施例3:実施例1において、陽極リード
線を次の通り金属フレームに接続する以外は同一条件で
製造する。すなわち、図3(イ)に示す通り、金属フレ
ーム10に凹部11を有する屈曲部12を形成する。そ
して凹部11にコンデンサ素子13の陽極リード線14
を載せ接触する。接触後、屈曲部12の上部に実施例1
と同一条件でYAGレーザーを照射して加熱溶融し凝固
して、図3(ロ)に示す通り、陽極リード線14を接続
する。
Example 3: The procedure of Example 1 is repeated except that the anode lead wire is connected to the metal frame as follows. That is, as shown in FIG. 3A, the bent portion 12 having the recess 11 is formed in the metal frame 10. Then, the anode lead wire 14 of the capacitor element 13 is formed in the recess 11.
Place and contact. After the contact, Example 1 is provided on the upper portion of the bent portion 12.
The YAG laser is irradiated under the same conditions as above to heat, melt, and solidify, and the anode lead wire 14 is connected as shown in FIG.

【0012】次に、上記実施例1〜実施例3と従来例と
について、耐圧不良及び初期漏れ電流のばらつきを測定
した。各試料は定格16V、2.2μFとする。
Next, with respect to Examples 1 to 3 and the conventional example, the breakdown voltage failure and the variation of the initial leakage current were measured. Each sample shall be rated at 16V and 2.2μF.

【0013】なお、従来例の製造条件は次の通りとす
る。 従来例:実施例1において、陽極リード線を次の通り金
属フレームに接続する以外は同一条件で製造する。すな
わち、図4(イ)に示す通り、コンデンサ素子23の陽
極リード線21を金属フレーム22の平面部に載せる。
そして、陽極リード線21に3kg/mm2 の圧力を加えて
抵抗溶接する。
The manufacturing conditions of the conventional example are as follows. Conventional example: In Example 1, the anode lead wire is manufactured under the same conditions except that it is connected to a metal frame as follows. That is, as shown in FIG. 4A, the anode lead wire 21 of the capacitor element 23 is placed on the flat surface portion of the metal frame 22.
Then, resistance welding is performed by applying a pressure of 3 kg / mm 2 to the anode lead wire 21.

【0014】耐圧不良は、試料に20Vの電圧を印加
し、短絡した個数で表わす。また、試料数は各々100
0ケとする。測定の結果、実施例1〜実施例3が0ケで
あるのに対し、従来例が2ケであった。
The withstand voltage defect is represented by the number of short-circuited by applying a voltage of 20 V to the sample. The number of samples is 100 each.
It is 0. As a result of the measurement, the number of Examples 1 to 3 was 0, whereas the number of Conventional Example was 2.

【0015】初期漏れ電流は、定格電圧を印加して1分
後の値とし、結果を図5に示した。この図5から明らか
な通り、実施例1〜実施例3はほぼ同程度のばらつきを
示した。しかし、従来例は最大値が0.1μA以上と、
1桁大きくなり、ばらつきが非常に大きかった。
The initial leakage current is a value one minute after the rated voltage is applied, and the results are shown in FIG. As is apparent from FIG. 5, Examples 1 to 3 showed almost the same variation. However, in the conventional example, the maximum value is 0.1 μA or more,
It increased by an order of magnitude and the variation was very large.

【0016】また、実施例3のコンデンサについて、接
続後に陽極リード線14を被覆している金属フレーム1
0の厚さtを変えた場合の tanδの変化を測定し、図6
に示した。厚さtは陽極リード線14の径に対する比率
で表している。そして tanδは周波数120Hzで測定
した。図6から明らかな通り、厚さtが陽極リード線1
4の径2/5以上になると、tanδ は、バラツキが少な
くなり、低い値で安定する。従って、金属フレーム10
の被覆厚さtは2/5以上が好ましいことがわかる。
Further, in the capacitor of Example 3, the metal frame 1 which covers the anode lead wire 14 after the connection.
The change in tan δ when the thickness t of 0 was changed was measured, and
It was shown to. The thickness t is expressed as a ratio to the diameter of the anode lead wire 14. Then, tan δ was measured at a frequency of 120 Hz. As is clear from FIG. 6, the thickness t is the anode lead wire 1.
When the diameter of 4 is 2/5 or more, tan δ has less variation and is stable at a low value. Therefore, the metal frame 10
It is understood that the coating thickness t of is preferably 2/5 or more.

【0017】[0017]

【発明の効果】以上の通り、請求項1の発明の製造方法
によれば、ろう材を加圧しないで加熱溶融し凝固するこ
とによって金属フレームに陽極リード線を接続している
ために、耐圧不良を低減でき、漏れ電流のばらつきを減
少できる信頼性の高い固体電解コンデンサが得られる。
また、請求項2の発明の製造方法によっても、金属フレ
ームを加熱溶融し凝固して陽極リード線を接続している
ために、同様な効果を有する固体電解コンデンサが得ら
れる。
As described above, according to the manufacturing method of the invention of claim 1, since the anode lead wire is connected to the metal frame by heating and melting and solidifying the brazing material without pressurizing, the pressure resistance is increased. A highly reliable solid electrolytic capacitor capable of reducing defects and reducing variations in leakage current can be obtained.
Also, according to the manufacturing method of the second aspect of the invention, since the metal frame is heated and melted and solidified to connect the anode lead wire, a solid electrolytic capacitor having the same effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の実施例のコンデンサ素子を金
属フレームに接続する前後の斜視図を示す。
FIG. 1 is a perspective view before and after connecting a capacitor element according to an embodiment of the present invention to a metal frame.

【図2】請求項1の発明の他の実施例のコンデンサ素子
を金属フレームに接続する前後の斜視図を示す。
FIG. 2 is a perspective view before and after connecting a capacitor element of another embodiment of the invention of claim 1 to a metal frame.

【図3】請求項2の発明の実施例のコンデンサ素子を金
属フレームに接続する前後の斜視図を示す。
FIG. 3 shows perspective views before and after connecting the capacitor element of the embodiment of the invention of claim 2 to a metal frame.

【図4】従来例のコンデンサ素子を金属フレームに接続
する前後の斜視図を示す。
FIG. 4 shows perspective views before and after a conventional capacitor element is connected to a metal frame.

【図5】漏れ電流のグラフを示す。FIG. 5 shows a graph of leakage current.

【図6】tanδ のグラフを示す。FIG. 6 shows a graph of tan δ.

【符号の説明】[Explanation of symbols]

1,7,13…コンデンサ素子、 2,8,14…陽極
リード線、3,5,10…金属フレーム、 4,9,3
…ろう材。
1, 7, 13 ... Capacitor element, 2, 8, 14 ... Anode lead wire, 3, 5, 10 ... Metal frame, 4, 9, 3
... wax material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極リード線を引き出したコンデンサ素
子を金属フレームに接続し、外装を形成する固体電解コ
ンデンサの製造方法において、陽極リード線と金属フレ
ームとを互いに接触するとともに、この陽極リード線及
び金属フレームの少なくともどちらか一方にろう材を接
触する工程と、この工程後にこのろう材を加圧しないで
加熱溶融し凝固して前記陽極リード線と前記金属フレー
ムとを接続する工程とを行うことを特徴とする固体電解
コンデンサの製造方法。
1. A method of manufacturing a solid electrolytic capacitor, wherein a capacitor element from which an anode lead wire is drawn out is connected to a metal frame to form an outer package, the anode lead wire and the metal frame are in contact with each other, and the anode lead wire and Performing a step of contacting at least one of the metal frames with a brazing material, and a step of connecting the anode lead wire and the metal frame after this step by heating, melting and solidifying the brazing material without applying pressure. And a method for manufacturing a solid electrolytic capacitor.
【請求項2】 陽極リード線を引き出したコンデンサ素
子を金属フレームに接続し、外装を形成する固体電解コ
ンデンサの製造方法において、陽極リード線と金属フレ
ームとを互いに接触する工程と、この工程後にこの金属
フレームを加熱溶融し凝固して前記陽極リード線を前記
金属フレームに接続する工程とを行うことを特徴とする
固体電解コンデンサの製造方法。
2. A method of manufacturing a solid electrolytic capacitor in which a capacitor element from which an anode lead wire is drawn out is connected to a metal frame to form an outer package, a step of bringing the anode lead wire and the metal frame into contact with each other, and after this step, And a step of connecting the anode lead wire to the metal frame by heating, melting and solidifying the metal frame.
JP07839792A 1992-02-28 1992-02-28 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3266205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07839792A JP3266205B2 (en) 1992-02-28 1992-02-28 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07839792A JP3266205B2 (en) 1992-02-28 1992-02-28 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH05243100A true JPH05243100A (en) 1993-09-21
JP3266205B2 JP3266205B2 (en) 2002-03-18

Family

ID=13660891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07839792A Expired - Fee Related JP3266205B2 (en) 1992-02-28 1992-02-28 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3266205B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140179A (en) * 2004-11-10 2006-06-01 Tdk Corp Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
US7072172B2 (en) * 2003-09-16 2006-07-04 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
US7869190B2 (en) * 2005-10-24 2011-01-11 Sanyo Electric Co., Ltd. Solid electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072172B2 (en) * 2003-09-16 2006-07-04 Sanyo Electric Co., Ltd. Solid electrolytic capacitor
JP2006140179A (en) * 2004-11-10 2006-06-01 Tdk Corp Solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
US7869190B2 (en) * 2005-10-24 2011-01-11 Sanyo Electric Co., Ltd. Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP3266205B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JPH06232014A (en) Chip type solid electrolytic capacitor with built-in fuse and its manufacture
JPH07320982A (en) Manufacture of capacitor element for tantalum solid electrolytic capacitor
JPH07211596A (en) Electronic component and its manufacture
US4483062A (en) Method for manufacturing solid electrolyte condensers
US6319292B1 (en) Method for making capacitor pellet and lead assembly
JP4392960B2 (en) Method for manufacturing tantalum electrolytic capacitor
JP3084895B2 (en) Method for manufacturing solid electrolytic capacitor
EP0986078B1 (en) Aluminum electrolytic capacitor and its manufacturing method
JPH05243100A (en) Manufacture of solid-state electrolytic capacitor
JP2814985B2 (en) Method for manufacturing solid electrolytic capacitor
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
US20040094321A1 (en) Capacitor element with thick cathode layer
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP3294362B2 (en) Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPS6032346B2 (en) Manufacturing method of electrolytic capacitor
JP4090021B2 (en) Capacitor element in solid electrolytic capacitor, method for manufacturing the capacitor element, and solid electrolytic capacitor using the capacitor element
JPS62569B2 (en)
JPS61278124A (en) Manufacture of solid electrolytic capacitor
JP2850819B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JPS61127116A (en) Manufacture of solid electrolytic capacitor
JP2003142339A (en) Solid electrolytic capacitor structure and manufacturing method therefor
JPH05335189A (en) Manufacture of solid electrolytic capacitor
JPH09102442A (en) Manufacture of nonpolar solid-state electrolytic capacitor
JPS6116681Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees