JP3266205B2 - Method for manufacturing solid electrolytic capacitor - Google Patents
Method for manufacturing solid electrolytic capacitorInfo
- Publication number
- JP3266205B2 JP3266205B2 JP07839792A JP7839792A JP3266205B2 JP 3266205 B2 JP3266205 B2 JP 3266205B2 JP 07839792 A JP07839792 A JP 07839792A JP 7839792 A JP7839792 A JP 7839792A JP 3266205 B2 JP3266205 B2 JP 3266205B2
- Authority
- JP
- Japan
- Prior art keywords
- metal frame
- lead wire
- anode lead
- solid electrolytic
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000007787 solid Substances 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 30
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor.
【0002】[0002]
【従来の技術】タンタル等のチップ型固体電解コンデン
サは、例えば、次の通りに製造する。すなわち、先ず、
タンタル等の陽極リード線を引き出した、タンタル等の
微粉末からなる焼結体を形成する。次に、この焼結体を
陽極化成して酸化皮膜を形成し、さらに二酸化マンガン
層、陰極層を順次形成してコンデンサ素子とする。そし
て図2(イ)に示す通り、陽極リード線21を金属フレ
ーム22の平面上に載せる。その後、図2(ロ)に示す
通り、陽極リード線21を金属フレーム22に抵抗溶接
する。また、陰極層は導電性接着剤により金属フレーム
22に接続する。コンデンサ素子13を金属フレーム2
2に接続後、トランスファーモールドして外装を形成す
る。2. Description of the Related Art A chip-type solid electrolytic capacitor such as tantalum is manufactured, for example, as follows. That is, first,
A sintered body made of fine powder of tantalum or the like from which an anode lead wire of tantalum or the like is drawn is formed. Next, the sintered body is anodized to form an oxide film, and a manganese dioxide layer and a cathode layer are sequentially formed to obtain a capacitor element. Then, as shown in FIG. 2A, the anode lead wire 21 is placed on the plane of the metal frame 22. Thereafter, the anode lead wire 21 is resistance-welded to the metal frame 22 as shown in FIG. The cathode layer is connected to the metal frame 22 by a conductive adhesive. Capacitor element 13 is connected to metal frame 2
After connecting to No. 2, transfer molding is performed to form an exterior.
【0003】[0003]
【発明が解決しようとする課題】しかし、抵抗溶接によ
り陽極リード線21を金属フレーム22に接続するに
は、陽極リード線21と金属フレーム22との接点に圧
力を加えなければならない。そのため、この圧力によ
り、陽極リード線21の焼結体中にある部分にストレス
が加わる。そしてこのストレスのため、酸化皮膜が劣化
したり破損したりする。その結果、コンデンサ素子13
の耐圧が低下したり、漏れ電流のばらつきが増大したり
して信頼性が低下する欠点がある。However, in order to connect the anode lead wire 21 to the metal frame 22 by resistance welding, it is necessary to apply pressure to the contact point between the anode lead wire 21 and the metal frame 22. For this reason, stress is applied to a portion of the anode lead wire 21 in the sintered body due to this pressure. And, due to this stress, the oxide film is deteriorated or broken. As a result, the capacitor element 13
However, there is a defect that the reliability is lowered due to a decrease in the withstand voltage or an increase in the variation of the leakage current.
【0004】本発明の目的は、以上の欠点を改良し、耐
圧を向上し、漏れ電流のばらつきを減少し、信頼性の高
い固体電解コンデンサの製造方法を提供するものであ
る。An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor which improves the above drawbacks, improves the withstand voltage, reduces the variation in leakage current, and has high reliability.
【0005】[0005]
【課題を解決するための手段】本発明は、上記目的を達
成するために、陽極リード線を引き出したコンデンサ素
子を金属フレームに接続し、外装を形成する固体電解コ
ンデンサの製造方法において、陽極リードを金属フレー
ムに設けた凹部に接触後、この金属フレームを加熱溶融
し凝固して接触するが、接続不足によるtanδの増加を
防ぐため、陽極リード線を被覆する金属フレームの厚さ
が、陽極リード線径に対して2/5以上の厚みとなるよ
うにすることを特徴とする固体電解コンデンサの製造方
法を提供するものである。In order to achieve the above object, the present invention relates to a method of manufacturing a solid electrolytic capacitor in which a capacitor element from which an anode lead wire is drawn is connected to a metal frame to form an exterior. After contacting the recess provided in the metal frame, the metal frame is heated and melted and solidified to make contact, but in order to prevent an increase in tan δ due to insufficient connection, the thickness of the metal frame covering the anode lead wire is It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor characterized by having a thickness of 2/5 or more with respect to a wire diameter.
【0006】金属フレームを加熱溶融するにはレーザー
やアーク放電法等を用いる。To heat and melt the metal frame, a laser or an arc discharge method is used.
【0007】[0007]
【作用】金属フレームを加熱溶融して接続するため、接
続時に陽極リード線にストレスが掛からず、コンデンサ
素子の酸化皮膜が劣化したり、破損することが無くなる
とともに、陽極リード線を被覆する金属フレームの厚さ
が、陽極リード線径対して 2/5以上であるため、tan
δのバラツキが少なくなり低い値で安定するので接続の
信頼性が向上する。[Function] Since the metal frame is connected by heating and melting, no stress is applied to the anode lead wire at the time of connection, the oxide film of the capacitor element is not deteriorated or damaged, and the metal frame covering the anode lead wire is prevented. Is 2 or more of the anode lead wire diameter,
Since the variation in δ is reduced and the value is stabilized at a low value, the reliability of connection is improved.
【0008】[0008]
【実施例】以下、本発明を実施例に基づいて説明する。 実施例: 先ず、0.24φのタンタルワイヤーからな
る陽極リード線を引き出して、タンタル微粉末からなる
焼結体を形成する。次に、この焼結体を陽極化成して酸
化皮膜を形成する。酸化皮膜を形成後、硝酸マンガン溶
液を含浸し、熱分解して二酸化マンガン層を形成する。
その後、コロイド状のカーボンを付着してカーボン層を
形成し、陰極を引き出すとともに、その表面に銀ペース
トを塗布して陰極層を形成する。陰極層を形成後、図1
(イ)に示す通り、金属フレーム3に凹部11を有する
屈曲部12を形成する。そして凹部11にコンデンサ素
子1の陽極リード線2を載せ接触する。接触後、図1
(ロ)に示すとおり、YAGレーザーを18Wで1秒間
照射し、加熱溶融する。そして金属フレーム3に陽極リ
ード線2を接続する。また、コンデンサ素子1の陰極層
は導電性接着剤により金属フレーム3に接続する。接続
後、エポキシ樹脂によりトランスファーモールドして外
装を形成する。外装を形成後、エージングし、端子を形
成してチップ型タンタル固体電解コンデンサにする。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Example: First, an anode lead wire made of a 0.24φ tantalum wire is drawn out to form a sintered body made of fine tantalum powder. Next, this sintered body is anodized to form an oxide film. After the oxide film is formed, it is impregnated with a manganese nitrate solution and thermally decomposed to form a manganese dioxide layer.
Thereafter, a carbon layer is formed by adhering colloidal carbon, a cathode is drawn out, and a silver paste is applied to the surface to form a cathode layer. After forming the cathode layer, FIG.
As shown in (a), a bent portion 12 having a concave portion 11 is formed in the metal frame 3. Then, the anode lead wire 2 of the capacitor element 1 is placed on the concave portion 11 and is brought into contact therewith. After contact, Figure 1
As shown in (b), the substrate is irradiated with a YAG laser at 18 W for 1 second, and is heated and melted. Then, the anode lead wire 2 is connected to the metal frame 3. Further, the cathode layer of the capacitor element 1 is connected to the metal frame 3 by a conductive adhesive. After the connection, the exterior is formed by transfer molding with epoxy resin. After forming the exterior, it is aged and the terminals are formed to obtain a chip type tantalum solid electrolytic capacitor.
【0009】次に、上記実施例と従来例とについて、耐
圧不良及び初期漏れ電流のばらつきを測定した。各試料
は定格16V、2.2μFとする。Next, with respect to the above embodiment and the conventional example, withstand voltage failure and variation in initial leakage current were measured. Each sample is rated at 16 V and 2.2 μF.
【0010】なお、従来例の製造条件は次の通りとす
る。 従来例: 実施例において、陽極リード線を次の通り金
属フレームに接続する以外は同一条件で製造する。すな
わち、図2(イ)に示す通り、コンデンサ素子13の陽
極リード線21を金属フレーム22の平面部に載せる。
そして、陽極リード線21に3kg/mm2の圧力を加えて
抵抗溶接する。The manufacturing conditions of the conventional example are as follows. Conventional Example: In the embodiment, the manufacturing is performed under the same conditions except that the anode lead wire is connected to the metal frame as follows. That is, as shown in FIG. 2A, the anode lead wire 21 of the capacitor element 13 is placed on the plane portion of the metal frame 22.
Then, a pressure of 3 kg / mm 2 is applied to the anode lead wire 21 to perform resistance welding.
【0011】耐圧不良は、試料に20Vの電圧を印加
し、短絡した個数で表わす。また、試料数は各々100
0ケとする。測定の結果、実施例が0ケであるのに対
し、従来例が2ケであった。The withstand voltage failure is represented by the number of short-circuits when a voltage of 20 V is applied to the sample. The number of samples is 100
It is assumed to be zero. As a result of the measurement, the number of Examples was 0, whereas the number of Conventional Examples was 2.
【0012】初期漏れ電流は、定格電圧を印加して1分
後の値とし、結果を図3に示した。この図3から明らか
な通り、実施例に比べて従来例は最大値が0.1μA以
上と、1桁大きくなり、ばらつきが非常に大きかった。The initial leakage current was set to a value one minute after the application of the rated voltage, and the results are shown in FIG. As is clear from FIG. 3, the maximum value of the conventional example is 0.1 μA or more, which is one digit larger than that of the embodiment, and the variation is extremely large.
【0013】また、接続後に陽極リード線2を被覆して
いる金属フレーム3の厚さtを変えた場合の tanδの変
化を測定し、図4に示した。厚さtは陽極リード線2の
径に対する比率で表している。そして tanδは周波数1
20Hzで測定した。図4から明らかな通り、厚さtが
陽極リード線2の径2/5以上になると、tanδ は、バ
ラツキが少なくなり、低い値で安定する。従って、金属
フレーム3の被覆厚さtは2/5以上が好ましいことが
わかる。Further, the change in tan δ when the thickness t of the metal frame 3 covering the anode lead wire 2 after the connection was changed was measured and is shown in FIG. The thickness t is expressed as a ratio to the diameter of the anode lead wire 2. And tanδ is frequency 1
Measured at 20 Hz. As is clear from FIG. 4, when the thickness t is equal to or more than 2/5 of the diameter of the anode lead wire 2, tan δ is less scattered and is stabilized at a low value. Therefore, it is understood that the coating thickness t of the metal frame 3 is preferably 2/5 or more.
【0014】[0014]
【発明の効果】以上の通り、本発明の製造方法によれ
ば、陽極リード線を金属フレームに設けた凹部に接触
後、この金属フレームを加熱溶融し凝固して前記陽極リ
ード線と前記金属フレームを接続するとともに、前記陽
極リード線を被覆する前記金属フレームの厚さが、前記
陽極リード線径に対して2/5以上であるために、耐圧
不良を低減でき、漏れ電流のばらつきを減少できる信頼
性の高い固体電解コンデンサが得られる。As described above, according to the manufacturing method of the present invention, after the anode lead wire is brought into contact with the concave portion provided on the metal frame, the metal frame is heated and melted and solidified to form the anode lead wire and the metal frame. In addition, since the thickness of the metal frame covering the anode lead wire is 2/5 or more with respect to the anode lead wire diameter, it is possible to reduce the withstand voltage failure and reduce the variation in leakage current. A highly reliable solid electrolytic capacitor can be obtained.
【図1】請求項1の発明の実施例のコンデンサ素子を金
属フレームに接続する前後の斜視図を示す。FIG. 1 shows perspective views before and after a capacitor element according to an embodiment of the present invention is connected to a metal frame.
【図2】従来例のコンデンサ素子を金属フレームに接続
する前後の斜視図を示す。FIG. 2 shows perspective views before and after connecting a conventional capacitor element to a metal frame.
【図3】漏れ電流のグラフを示す。FIG. 3 shows a graph of leakage current.
【図4】tanδ のグラフを示す。FIG. 4 shows a graph of tan δ.
1,13…コンデンサ素子、 2,21…陽極リード
線、3,22…金属フレーム、 4…ろう材。1,13: Capacitor element, 2,21: Anode lead wire, 3,22: Metal frame, 4: Brazing material.
Claims (1)
子を金属フレームに接続し、外装を形成する固体電解コ
ンデンサの製造方法において、陽極リード線と金属フレ
ームに設けた凹部とを互いに接触する工程と、この工程
後にこの金属フレームを加圧しないで加熱溶融し、前記
陽極リード線を被覆している前記金属フレームの厚さ
が、前記陽極リード線径に対して 2/5以上で凝固し
て前記陽極リード線と前記金属フレームを接続する工程
を行うことを特徴とする固体電解コンデンサの製造方
法。1. A method for manufacturing a solid electrolytic capacitor in which a capacitor element from which an anode lead wire is drawn out is connected to a metal frame to form an exterior, wherein the anode lead wire and a recess provided in the metal frame are brought into contact with each other; After this step, the metal frame is heated and melted without pressurization, and the thickness of the metal frame covering the anode lead wire is solidified by 2/5 or more with respect to the anode lead wire diameter. A method for manufacturing a solid electrolytic capacitor, comprising a step of connecting a lead wire and the metal frame.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07839792A JP3266205B2 (en) | 1992-02-28 | 1992-02-28 | Method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07839792A JP3266205B2 (en) | 1992-02-28 | 1992-02-28 | Method for manufacturing solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05243100A JPH05243100A (en) | 1993-09-21 |
JP3266205B2 true JP3266205B2 (en) | 2002-03-18 |
Family
ID=13660891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07839792A Expired - Fee Related JP3266205B2 (en) | 1992-02-28 | 1992-02-28 | Method for manufacturing solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3266205B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005093591A (en) * | 2003-09-16 | 2005-04-07 | Sanyo Electric Co Ltd | Solid electrolytic capacitor |
JP4609042B2 (en) * | 2004-11-10 | 2011-01-12 | Tdk株式会社 | Solid electrolytic capacitor and method for producing solid electrolytic capacitor |
CN101292311B (en) * | 2005-10-24 | 2012-08-22 | 三洋电机株式会社 | Solid electrolytic capacitor |
-
1992
- 1992-02-28 JP JP07839792A patent/JP3266205B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05243100A (en) | 1993-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5654869A (en) | Chip-formed solid electrolytic capacitor without an anode lead projecting from anode member | |
EP0306809A1 (en) | Fused solid electrolytic capacitor | |
JPH07320982A (en) | Manufacture of capacitor element for tantalum solid electrolytic capacitor | |
JPH07211596A (en) | Electronic component and its manufacture | |
JP3084895B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3266205B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2969692B2 (en) | Manufacturing method of multilayer solid electrolytic capacitor | |
JP2850823B2 (en) | Manufacturing method of chip type solid electrolytic capacitor | |
US6801423B2 (en) | Capacitor element with thick cathode layer | |
JP3080923B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH05326341A (en) | Manufacture of solid electrolytic capacitor | |
JPH0499308A (en) | Solid electrolytic capacitor | |
JPH04216608A (en) | Manufacture of solid electrolytic capacitor | |
JP2783932B2 (en) | Manufacturing method of organic semiconductor solid electrolytic capacitor | |
JP2850819B2 (en) | Manufacturing method of chip type solid electrolytic capacitor | |
JPS61278124A (en) | Manufacture of solid electrolytic capacitor | |
JPS62569B2 (en) | ||
JPS6116681Y2 (en) | ||
JPH05335189A (en) | Manufacture of solid electrolytic capacitor | |
JPH09293646A (en) | Tantalum solid electrolytic capacitor | |
JPH0555092A (en) | Manufacture of solid electrolytic capacitor | |
JPH06188154A (en) | Manufacture of solid electrolytic capacitor | |
JPS59138328A (en) | Method of producing solid electrolytic condenser | |
JPH1012496A (en) | Chip-type solid electrolytic capacitor | |
JPS6032970B2 (en) | Solid electrolytic capacitor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |