JP2850823B2 - Manufacturing method of chip type solid electrolytic capacitor - Google Patents

Manufacturing method of chip type solid electrolytic capacitor

Info

Publication number
JP2850823B2
JP2850823B2 JP34023795A JP34023795A JP2850823B2 JP 2850823 B2 JP2850823 B2 JP 2850823B2 JP 34023795 A JP34023795 A JP 34023795A JP 34023795 A JP34023795 A JP 34023795A JP 2850823 B2 JP2850823 B2 JP 2850823B2
Authority
JP
Japan
Prior art keywords
layer
anode lead
solid electrolytic
electrolytic capacitor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34023795A
Other languages
Japanese (ja)
Other versions
JPH09180964A (en
Inventor
義彦 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP34023795A priority Critical patent/JP2850823B2/en
Publication of JPH09180964A publication Critical patent/JPH09180964A/en
Application granted granted Critical
Publication of JP2850823B2 publication Critical patent/JP2850823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チップ型固体電解
コンデンサの製造方法に関し、特に外部陽,陰極端子の
形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a chip type solid electrolytic capacitor, and more particularly to a method for forming external positive and negative terminals.

【0002】[0002]

【従来の技術】従来のチップ型固体電解コンデンサは、
図3に示すように、誘電体皮膜層,固体電解質層,陰極
金属層を形成してなるコンデンサ素子11に外部陰極端
子13を銀ペーストからなる導電性接着剤15にて接続
するとともにコンデンサ素子11より導出した陽極リー
ド12を外部陽極端子14に抵抗溶接によって接続した
後、素子11と外部陽,陰極端子14,13の一部をエ
ポキシ系の外装樹脂材16にてモールド成型し、モール
ド樹脂材1から導出する外部陽,陰極端子14,13を
折り曲げ成型していた。
2. Description of the Related Art Conventional chip-type solid electrolytic capacitors are:
As shown in FIG. 3, an external cathode terminal 13 is connected to a capacitor element 11 having a dielectric film layer, a solid electrolyte layer and a cathode metal layer formed thereon with a conductive adhesive 15 made of silver paste. After connecting the anode lead 12 thus derived to the external anode terminal 14 by resistance welding, a part of the element 11 and the external positive and negative terminals 14 and 13 is molded with an epoxy-based exterior resin material 16 to form a molding resin material. The external positive and negative terminals 14, 13 derived from 1 were bent and formed.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記の従来
のチップ型固体電解コンデンサの製造方法では、コンデ
ンサ素子11をエポキシ系等の樹脂材16で外装するの
で、樹脂材16から全方向よりの応力を受け、コンデン
サの漏れ電流が増大するという問題があった。また、樹
脂厚の分だけ製品が厚くなり、薄型化の妨げとなってい
た。さらに、外部陰極端子13を高価な銀ペーストかな
る導電性接着剤15で接続するため、コスト高になった
り接続の信頼性に問題があった。
In the above-mentioned conventional method for manufacturing a chip-type solid electrolytic capacitor, since the capacitor element 11 is packaged with a resin material 16 such as an epoxy resin, stress from all directions from the resin material 16 is reduced. As a result, there is a problem that the leakage current of the capacitor increases. Also, the thickness of the product is increased by the thickness of the resin, which hinders a reduction in thickness. Furthermore, since the external cathode terminal 13 is connected with the conductive adhesive 15 made of expensive silver paste, the cost increases and there is a problem in connection reliability.

【0004】[0004]

【課題を解決するための手段】本発明のチップ型固体電
解コンデンサの製造方法は、弁作用金属からなる陽極体
に植立した弁作用金属からなる陽極リードに半田付け可
能な外部陽極リードフレームを接続する工程と、該外部
陽極リードフレーム接続部を含む陽極リード導出面にモ
ールド成型により絶縁部材を形成する工程と、陽極体の
周面に順次誘電体皮膜,固体電解質層,陰極金属層を形
成する工程と、外部陽極リードフレームを切断した後絶
縁部材に沿って折り曲げ成型することを特徴とする。
According to the present invention, there is provided a method for manufacturing a chip-type solid electrolytic capacitor, comprising: an external anode lead frame which can be soldered to an anode lead made of a valve metal implanted on an anode body made of a valve metal. Connecting, forming an insulating member by molding on an anode lead-out surface including the external anode lead frame connecting portion, and sequentially forming a dielectric film, a solid electrolyte layer, and a cathode metal layer on the peripheral surface of the anode body And cutting the external anode lead frame and then bending and molding it along the insulating member.

【0005】本発明は、陽極体に誘電体皮膜,固体電解
質層,陰極金属層を形成してなるコンデンサ素子全周面
上に、絶縁部となる外装樹脂を形成せずに陽極リード導
出面にのみモールド成型により絶縁部材を形成している
ので、コンデンサ素子が外装樹脂からの応力を受けず漏
れ電流の劣化を防止できる。また、コンデンサ素子の陰
極金属層が外部陰極単位の役割を果たすので、外部陰極
リードを高価な銀ペーストで取り付ける必要がなくな
り、接続の信頼性が向上する。さらに、従来のものに比
して外部陰極リードと外装樹脂の分だけ薄型化が可能に
なるという利点がある。
[0005] The present invention provides a method for forming a dielectric film, a solid electrolyte layer, and a cathode metal layer on an anode body, and forming an anode lead-out surface on the entire peripheral surface of the capacitor element without forming an exterior resin serving as an insulating portion. Since the insulating member is formed only by molding, the capacitor element is not subjected to stress from the exterior resin, so that deterioration of the leakage current can be prevented. Further, since the cathode metal layer of the capacitor element plays a role of an external cathode unit, it is not necessary to attach an external cathode lead with expensive silver paste, and the connection reliability is improved. Furthermore, there is an advantage that the thickness can be reduced by the amount corresponding to the external cathode lead and the exterior resin as compared with the conventional one.

【0006】[0006]

【発明の実施の形態】以下、本発明について、チップ型
タンタル固体電解コンデンサを例にとり説明する。図1
は、本発明の製造方法によって得られたチップ型タンタ
ル固体電解コンデンサの断面図である。図において1は
タンタル金属粒子の焼結体からなる陽極体、1はタンタ
ル金属線からなる陽極リード、3は半田めっきを施した
外部陽極リードフレーム、4はエポキシ樹脂からなる絶
縁部材、5は五酸化タンタル被膜からなる誘電体皮膜、
6はポリピロールからなる固体電解質層、7はグラファ
イト層と銀ペーストからなる導電金属層、8はニッケル
めっき層、9は半田、10は外部陰極端子を構成する陰
極金属層である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to a chip type tantalum solid electrolytic capacitor as an example. FIG.
FIG. 1 is a cross-sectional view of a chip-type tantalum solid electrolytic capacitor obtained by a manufacturing method of the present invention. In the drawing, 1 is an anode body made of a sintered body of tantalum metal particles, 1 is an anode lead made of tantalum metal wire, 3 is an external anode lead frame plated with solder, 4 is an insulating member made of epoxy resin, 5 is 5 A dielectric film consisting of a tantalum oxide film,
6 is a solid electrolyte layer made of polypyrrole, 7 is a conductive metal layer made of a graphite layer and a silver paste, 8 is a nickel plating layer, 9 is solder, and 10 is a cathode metal layer constituting an external cathode terminal.

【0007】以下、上記チップ型固体電解コンデンサの
製造方法について説明する。粒径が1ミクロンオーダー
のタンタル粉末をプレス成型した陽極体1に、タンタル
金属線からなる陽極リード2を植立させる。次に、15
00℃以上の温度に設定した真空炉内にて焼結させた
後、図2に示すように鉄とニッケルの合金からなるリー
ドフレームへ厚さ約5ミクロンの半田メッキを形成した
外部陽極リードフレーム3にタンタル金属線からなる陽
極リード2を抵抗溶接により接続する。次に、外部陽極
リードフレーム3に陽極リード2を固着した状態でモー
ルド成型により、外部陽極リードフレーム3と陽極リー
ド2との溶接点を含む陽極体1の陽極リード2導出面に
エポキシ樹脂からなる絶縁部材4を形成する。絶縁部材
4の厚みは、陽極体1の厚みとほぼ同一にし、陽極体1
と絶縁部材4がほぼ同一面上になることが望ましい。
Hereinafter, a method of manufacturing the above-mentioned chip type solid electrolytic capacitor will be described. An anode lead 2 made of a tantalum metal wire is planted on an anode body 1 obtained by press-molding a tantalum powder having a particle size of 1 micron order. Next, 15
An external anode lead frame formed by sintering in a vacuum furnace set to a temperature of 00 ° C. or more and then forming a solder plating having a thickness of about 5 μm on a lead frame made of an alloy of iron and nickel as shown in FIG. An anode lead 2 made of a tantalum metal wire is connected to 3 by resistance welding. Next, the anode lead 2 including the welding point between the external anode lead frame 3 and the anode lead 2 is formed of epoxy resin on the surface of the anode body 2 leading out including the welding point, with the anode lead 2 fixed to the external anode lead frame 3. An insulating member 4 is formed. The thickness of the insulating member 4 is substantially the same as the thickness of the anode body 1,
It is desirable that the insulating member 4 and the insulating member 4 be substantially on the same plane.

【0008】次に、外部陽極リードフレーム3に固着し
た陽極体1を0.1vol%の燐酸水溶液中に浸漬し、
1分間に1Vの昇圧速度にて陽極酸化を行い、厚さ約1
000オグストロームの五酸化タンタル皮膜からなる誘
電体被膜層5を形成する。次に、ドデシルベンゼンスル
ホン酸銅の20vol%メタノール溶液に、陽極体1を
浸漬し、陽極体1内部に含浸させた後、温度50℃のオ
ーブンにてメタノールを蒸発させる。次に、10%のピ
ロールモノマー溶液中に浸漬し、固体電解質層となるポ
リピロール層6を形成する。ドデシルベンゼンスルホン
酸銅とピロールモノマーの浸漬は陽極体1の内部に約
0.1〜0.5ミクロン、陽極体1外部に5〜20ミク
ロンのポリピロール層6が形成されるまで10〜20回
繰り返し行われる。次にポリピロール層6上にグラファ
イト層,銀ペースト層からなる導電金属層7と周知の方
法で形成した後、無電解ニッケルめっき浴に30分間浸
漬し、厚さ約5ミクロンのニッケルめっき層8を温度2
20℃の共晶半田浴に陽極体1をディッピングしてニッ
ケルめっき層8上に、半田層9を形成する。このように
して、グラファイト層、ニッケルめっき層、半田層の3
層からなる陰極金属層10を形成する。次に、絶縁部材
4から導出している外部陽極リードフレーム3を切断し
た後絶縁部材4に沿ってL字形に折り曲げてチップ型固
体電解コンデンサを作製した。
Next, the anode body 1 fixed to the external anode lead frame 3 is immersed in a 0.1 vol% phosphoric acid aqueous solution,
Perform anodic oxidation at a rate of 1 V / min.
A dielectric film layer 5 made of a tantalum pentoxide film of 2,000 Å is formed. Next, the anode body 1 is immersed in a 20 vol% methanol solution of copper dodecylbenzenesulfonate, impregnated inside the anode body 1, and then methanol is evaporated in an oven at a temperature of 50 ° C. Next, it is immersed in a 10% pyrrole monomer solution to form a polypyrrole layer 6 to be a solid electrolyte layer. The immersion of the copper dodecylbenzenesulfonate and the pyrrole monomer is repeated 10 to 20 times until a polypyrrole layer 6 of about 0.1 to 0.5 μm is formed inside the anode body 1 and 5 to 20 μm outside the anode body 1. Done. Next, a conductive metal layer 7 composed of a graphite layer and a silver paste layer is formed on the polypyrrole layer 6 by a known method, and then immersed in an electroless nickel plating bath for 30 minutes to form a nickel plating layer 8 having a thickness of about 5 microns. Temperature 2
The anode body 1 is dipped in a eutectic solder bath at 20 ° C. to form a solder layer 9 on the nickel plating layer 8. Thus, the graphite layer, the nickel plating layer, and the solder layer 3
A cathode metal layer 10 composed of a layer is formed. Next, the external anode lead frame 3 derived from the insulating member 4 was cut, and then bent along the insulating member 4 into an L-shape to produce a chip-type solid electrolytic capacitor.

【0009】上記の方法にて作製した定格電圧16V、
静電容量10μFのチップ型タンタル固体電解コンデン
サ100個に電圧16Vを印加し、1分経過後の漏れ電
流不良発生結果を表1に示す。但し、漏れ電流が1μA
を超えるものを不良とした。また、比較のため、従来技
術にて作製したコンデンサについても漏れ電流を測定し
た。本発明により保たれたコンデンサは、従来品に較べ
漏れ電流不良が明らかに減少していることがわかる。
The rated voltage of 16 V produced by the above method,
A voltage of 16 V is applied to 100 chip-shaped tantalum solid electrolytic capacitors having a capacitance of 10 μF, and the leakage current failure results after 1 minute are shown in Table 1. However, the leakage current is 1 μA
The ones exceeding the above were regarded as defective. For comparison, the leakage current was measured for a capacitor manufactured by the conventional technique. It can be seen that the capacitor maintained according to the present invention has clearly reduced leakage current defects as compared with the conventional product.

【0010】[0010]

【表1】 [Table 1]

【0011】ここで、銀ペースト層上にニッケルめっき
層を形成する理由は、銀ペーストが半田に拡散するいわ
ゆる銀喰われ現象防止の為である。本発明の製造方法で
は、コンデンサ素子の陰極金属層をそのままの状態で外
部陽極端子として用いるので、陰極金属層の耐熱性を上
げるためにニッケルめっき層を用いる必要がある。ま
た、銀ペースト層は無電解ニッケルめっき層を形成する
ための触媒として用いるので、銅ペーストがパラジウム
ペースト及びそれらの混合物を用いても良い。さらに、
ニッケルめっきの他に、銅,金等のめっきを用いてもよ
い。
The reason why the nickel plating layer is formed on the silver paste layer is to prevent the so-called silver erosion phenomenon in which the silver paste is diffused into the solder. In the manufacturing method of the present invention, since the cathode metal layer of the capacitor element is used as it is as the external anode terminal, it is necessary to use a nickel plating layer to increase the heat resistance of the cathode metal layer. Also, since the silver paste layer is used as a catalyst for forming the electroless nickel plating layer, the copper paste may be a palladium paste or a mixture thereof. further,
In addition to nickel plating, plating of copper, gold, or the like may be used.

【0012】本発明の他の実施例として、固体電解質6
として、ポリピロールの代わりに、導電性高分子材の一
種であるポリアニリンを形成した。ポリアニリンの形成
は、パラトルエンスルホン酸とアニリンモノマーを同モ
ル混合した溶液を水にて40%に希釈した水溶液に陽極
体1を浸漬した後、重クロム酸アンモニウム5%の水溶
液に浸漬して、酸化重合してポリアニリン膜を形成し
た。固体電解質層6として、ポリアニリンを使用する
と、ポリピロールより耐熱性および材料コストを低減で
きるメリットがある。固体電解質層6にポリピロールや
ポリチオフィンを用いると、従来の硝酸マンガンの熱分
解により生成された二酸化マンガンに較べ、室温で固体
電解質層6を形成できるので、固体電解質層6の形成前
に半田めっきを施した外部陽極リードフレーム3を接続
できるという利点が生まれる。このため、従来の二酸化
マンガンお固体電解質6とするコンデンサの製造方法に
較べ工程を簡略化できるメリットがある。
As another embodiment of the present invention, the solid electrolyte 6
Instead of polypyrrole, polyaniline, which is a kind of conductive polymer material, was formed. Polyaniline is formed by immersing anode body 1 in an aqueous solution obtained by diluting a solution obtained by mixing para-toluenesulfonic acid and aniline monomer in the same molar amount to 40% with water, and then immersing in an aqueous solution of 5% ammonium bichromate. The polyaniline film was formed by oxidative polymerization. When polyaniline is used for the solid electrolyte layer 6, there is an advantage that heat resistance and material cost can be reduced as compared with polypyrrole. If polypyrrole or polythiofin is used for the solid electrolyte layer 6, the solid electrolyte layer 6 can be formed at room temperature as compared with conventional manganese dioxide generated by thermal decomposition of manganese nitrate. There is an advantage that the applied external anode lead frame 3 can be connected. Therefore, there is an advantage that the process can be simplified as compared with the conventional method of manufacturing a capacitor using manganese dioxide and solid electrolyte 6.

【0013】なお、本発明実施例では、チップ型タンタ
ル固体電解コンデンサを例にとり説明したが、チップ型
アルミ固体電解コンデンサ等にも適用できることは持ち
論である。
In the embodiment of the present invention, a chip type tantalum solid electrolytic capacitor has been described as an example, but it is a matter of course that the present invention can be applied to a chip type aluminum solid electrolytic capacitor and the like.

【0014】[0014]

【発明の効果】以上説明したように、本発明は、陽極リ
ードに外部陽極リードフレームを接続した後陽極リード
導出面にのみモールド成型により絶縁部材を設け、順
次、陽極体の周面に誘電体皮膜層,固体電解質層,陰極
金属層を形成したことにより、下記にのべる効果があ
る。 コンデンサ素子を樹脂外装しないで、チップ型コン
デンサが得られるので、樹脂から受ける応力がなくなり
漏れ電流の劣化が防止できる。 外装樹脂厚の分だけ薄型化が可能となる。 外部陰極端子とそれを取り付ける高価な導電性接着
剤が不要になるので、コスト削減が可能になるだけでな
く接続の信頼性が向上する。 製造工程が簡略化できるので、製造コストの低減が
できる。
As described above, according to the present invention, after an external anode lead frame is connected to an anode lead, an insulating member is provided by molding only on the lead-out surface of the anode lead, and a dielectric material is sequentially provided on the peripheral surface of the anode body. The following effects are obtained by forming the coating layer, the solid electrolyte layer, and the cathode metal layer. Since the chip type capacitor can be obtained without covering the capacitor element with the resin, the stress received from the resin is eliminated and the deterioration of the leakage current can be prevented. The thickness can be reduced by the thickness of the exterior resin. Since the external cathode terminal and the expensive conductive adhesive for attaching the external cathode terminal are not required, the cost can be reduced and the connection reliability can be improved. Since the manufacturing process can be simplified, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明実施例の製造方法によって作製された
チップ型固体電解コンデンサの縦断面図
FIG. 1 is a longitudinal sectional view of a chip type solid electrolytic capacitor manufactured by a manufacturing method according to an embodiment of the present invention.

【図2】 同製造方法途中のコンデンサ素子を外部陽極
リードフレームに固着した状態を示す断面図
FIG. 2 is a cross-sectional view showing a state in which the capacitor element during the manufacturing method is fixed to an external anode lead frame.

【図3】 従来の製造方法によって作製されたチップ型
固体電解コンデンサの縦断面図
FIG. 3 is a longitudinal sectional view of a chip-type solid electrolytic capacitor manufactured by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極リード 3 外部陽極リードフレーム 4 絶縁部材 5 誘電体皮膜層 6 固体電解質層(ポリピロール) 7 導電金属層(グラファイト,銀ペースト) 8 めっき層(ニッケルめっき層) 9 半田層 10 陰極金属層(外部陰極端子) Reference Signs List 1 anode body 2 anode lead 3 external anode lead frame 4 insulating member 5 dielectric coating layer 6 solid electrolyte layer (polypyrrole) 7 conductive metal layer (graphite, silver paste) 8 plating layer (nickel plating layer) 9 solder layer 10 cathode metal Layer (external cathode terminal)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弁作用金属からなる陽極体に植立した弁作
用金属からなる陽極リードに半田付け可能な外部陽極リ
ードフレームを接続する工程と、該外部陽極リードフレ
ーム接続部を含む陽極リード導出面にモールド成型によ
り絶縁部材を形成する工程と、陽極体の周面に順次誘電
体皮膜層,固体電解質層,陰極金属層を形成する工程
と、外部陽極リードフレームを切断した後絶縁部材に沿
って折り曲げ成型する工程とを含むことを特徴とするチ
ップ型固体電解コンデンサの製造方法。
1. A step of connecting a solderable external anode lead frame to an anode lead made of a valve metal implanted on an anode body made of a valve metal, and deriving an anode lead including the external anode lead frame connection portion. Forming an insulating member by molding on the surface; forming a dielectric film layer, a solid electrolyte layer, and a cathode metal layer on the peripheral surface of the anode body in order; And forming the chip-type solid electrolytic capacitor.
【請求項2】前記固体電解質層が、ポリピロール,ポリ
チオフェン,ポリアニリンのいずれかからなることを特
徴とする請求項1記載のチップ型固体電解コンデンサの
製造方法。
2. The method according to claim 1, wherein said solid electrolyte layer is made of any one of polypyrrole, polythiophene, and polyaniline.
【請求項3】前記陰極金属層が、導電金属層,めっき
層,半田層の積層体からなることを特徴とする請求項1
〜2記載のチップ型固体電解コンデンサの製造方法。
3. The cathode metal layer according to claim 1, wherein said cathode metal layer comprises a laminate of a conductive metal layer, a plating layer, and a solder layer.
3. The method for manufacturing a chip-type solid electrolytic capacitor according to any one of claims 1 to 2.
JP34023795A 1995-12-27 1995-12-27 Manufacturing method of chip type solid electrolytic capacitor Expired - Lifetime JP2850823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34023795A JP2850823B2 (en) 1995-12-27 1995-12-27 Manufacturing method of chip type solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34023795A JP2850823B2 (en) 1995-12-27 1995-12-27 Manufacturing method of chip type solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH09180964A JPH09180964A (en) 1997-07-11
JP2850823B2 true JP2850823B2 (en) 1999-01-27

Family

ID=18335021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34023795A Expired - Lifetime JP2850823B2 (en) 1995-12-27 1995-12-27 Manufacturing method of chip type solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2850823B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1290977B1 (en) * 1997-03-14 1998-12-14 Acciai Speciali Terni Spa PROCEDURE FOR CHECKING THE INHIBITION IN THE PRODUCTION OF GRAIN ORIENTED MAGNETIC SHEET
DE10057488B4 (en) 2000-11-20 2006-05-24 Epcos Ag capacitor
US7061772B2 (en) 2002-08-05 2006-06-13 Nec Tokin Corporation Electronic circuit with transmission line type noise filter
US8062385B2 (en) * 2008-02-12 2011-11-22 Kemet Electronics Corporation Solid electrolytic capacitor with improved volumetric efficiency method of making
CN114273552B (en) * 2022-01-14 2022-09-23 湖州新江浩电子有限公司 Capacitor lead bending and flattening device and using method thereof

Also Published As

Publication number Publication date
JPH09180964A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
US5621608A (en) Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
JP4534184B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20090237865A1 (en) Solid electrolytic capacitor and method for manufacturing same
JPWO2014034076A1 (en) Solid electrolytic capacitor
US6865070B2 (en) Solid electrolytic capacitor
JP4953090B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2850823B2 (en) Manufacturing method of chip type solid electrolytic capacitor
EP3767654A1 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JPH04216608A (en) Manufacture of solid electrolytic capacitor
JPH0499308A (en) Solid electrolytic capacitor
JP3433478B2 (en) Solid electrolytic capacitors
JP2850819B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JP3266205B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05326341A (en) Manufacture of solid electrolytic capacitor
JP3168584B2 (en) Solid electrolytic capacitors
JP2833341B2 (en) Chip-shaped solid electrolytic capacitor
JP3433479B2 (en) Method for manufacturing solid electrolytic capacitor
JP2976518B2 (en) Chip type capacitor with fuse function
JPS5879715A (en) Chip type electrolytic condenser and method of producing same
JPH04360508A (en) Manufacture of solid-state electrolytic capacitor
JPH0442520A (en) Solid electrolytic capacitor made of tantalum
JPH09293646A (en) Tantalum solid electrolytic capacitor
JPH0269922A (en) Solid electrolytic capacitor
JPH04354318A (en) Production of chip-shaped solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981013