JP5011740B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5011740B2
JP5011740B2 JP2006026189A JP2006026189A JP5011740B2 JP 5011740 B2 JP5011740 B2 JP 5011740B2 JP 2006026189 A JP2006026189 A JP 2006026189A JP 2006026189 A JP2006026189 A JP 2006026189A JP 5011740 B2 JP5011740 B2 JP 5011740B2
Authority
JP
Japan
Prior art keywords
thickness
wafer
etching
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006026189A
Other languages
English (en)
Other versions
JP2007208074A (ja
Inventor
啓 爲則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006026189A priority Critical patent/JP5011740B2/ja
Publication of JP2007208074A publication Critical patent/JP2007208074A/ja
Application granted granted Critical
Publication of JP5011740B2 publication Critical patent/JP5011740B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)

Description

この発明は、半導体装置の製造方法に関し、特に薄型で裏面に不純物拡散層を有するパワー半導体装置の製造方法に関する。
IGBT(絶縁ゲート型バイポーラトランジスタ)やMOSFET(MOS型電界効果トランジスタ)などのパワー半導体装置は、そのオン特性などを改善するために適切な厚さに半導体基板を薄く加工することが行われている。例えば、600V耐圧のIGBTの場合、従来は700μm程度の厚さの高価なエピタキシャルウェハ(FZウェハ上やCZウェハ上にエピタキシャル成長層を形成したウェハのことでEpiウェハと呼ばれている)を用いて各種拡散層(p型ベース層やn型エミッタ層など)を形成し、表面電極(エミッタ電極やゲートパッドなど)を形成した後、ウェハの裏面を研削して200〜300μm程度のウェハ厚さにしていたが、コスト面・特性面をさらに改善するために、FZウェハを用いた極薄ウェハが主流となりつつある。600V耐圧では、空乏層の広がりを考慮したほぼ限界の厚さとするには、FZ(フローティングゾーン)ウェハを用いたIGBTの場合、60〜70μm程度まで半導体基板を薄型化する必要がある。
一般に、ウェハの薄型加工には、バックグラインド、ポリッシュ(ドライ及びウェット)およびエッチング(ドライ及びウェット)などの加工技術が適用される。しかし、パワー半導体装置において、60μm程度の薄型デバイスを実現するために、裏面バックグラインドなどの薄型化工程の後に、裏面からのイオン注入および裏面熱処理等が必要になるため、薄型化に伴うウェハの反りや割れが発生する。
図22は、FZウェハを用いたFS(フィールドストップ)−IGBTと呼ばれる半導体装置の要部断面図である。この図は1/2セルについて示した。
このFS−IGBTは、薄いFZ−N基板(n層)であるn型半導体基板1の表面側に配置されるp型ベース層2と、このp型ベース層2の表面に接して配置されるn型エミッタ層3と、n層(n型半導体基板1)とn型エミッタ層3に挟まれたp型ベース層2上およびn層上とn型エミッタ層3の一部上にゲート酸化膜4を介して配置されるゲート電極5と、これらの上を被覆する層間絶縁膜6と、n型エミッタ層3とp型ベース層2に接して層間絶縁膜6上に配置されるエミッタ電極8と、n型半導体基板1の裏面側に配置されるn型バッファ層9と、このn型バッファ層9に接して配置される薄いp型コレクタ層10と、このp型コレクタ層10に接して配置されるコレクタ電極11とで構成される。
図23は、図22の半導体装置の製造方法を示す工程図であり、同図(a)〜同図(f)は工程順に示した要部製造工程断面図である。(1)から(3)の工程を図22を用いて説明する。
(1)FZ−N基板(n型半導体基板1)の表面側にゲート酸化膜4(ここでは、SiO)とゲート電極5となる多結晶シリコン(ここでは、Poly)を堆積、加工して、絶縁ゲート構造31を形成する。
(2)n型半導体基板1の表面層にp型ベース層2(p)を形成した後、このp型ベース層2の表面層にn型エミッタ層3を形成する。
(3)表面に層間絶縁膜6(ここでは、BPSG:ボロン・リンガラス)を堆積し、コンタクトホール7を形成する。n型エミッタ層3とp型ベース層2にコンタクトホール7を介して接するようにアルミ・シリコン膜からなる表面電極(エミッタ電極8)を層間絶縁膜6上に形成する。アルミ・シリコン膜は、安定した接合性・低抵抗配線を実現するために、その後、400〜500℃程度の低温で熱処理される。このように形成された表面電極側30のみを示す(同図(a))。
[ここまで、表面電極側のプロセスが完了]
(裏面製造プロセスは、表面電極側30が完成されたものとして示す。)
(4)裏面21側より、所望の厚さまでn型半導体基板1(ウェハともいう)をバックグラインドやエッチング等を用いて薄ウエハ化する(同図(b))。
(5)次に、n型バッファ層9および高濃度p型コレクタ層10(p層)を形成するために、裏面22aよりイオン注入を行う。本例では、n型バッファ層9にはリン、p型コレクタ層10にはボロンをイオン注入する。
(6)電気炉、或いはレーザーにより熱処理(アニール)を行い、n型バッファ層9および高濃度p型コレクタ層10(p層)を形成する(同図(c))。
(7)表面電極側30に図示しないポリイミド保護膜を形成し、その後、p型コレクタ層10(p層)面に、アルミニウム層、チタン層、ニッケル層および金層などの金属膜の組合せで裏面電極(コレクタ電極11)を形成する(同図(d))。
(8)n型半導体基板1を粘着シートに接着してチップ状にダイシングラインに沿って切断する(同図(f))。
(9)最後に、粘着シートからチップを剥離し、表面電極側の表面には、アルミニウムワイヤをエミッタ電極やゲートパッドに超音波ワイヤーボンディング装置により固着し、もう一方の裏面電極側は、はんだ層でp型コレクタ層を支持部材に固着する(図22)。
また、特許文献1において、半導体基板をエッチングして薄くする場合、半導体基板の一方の面とは反対側から研削加工し、所定の厚さにした後、半導体基板の外周部を残して所定の深さまでエッチングして薄くし、半導体基板の外周部を凹部の底面部より厚く残すことで強度を持たせ、半導体基板の割れや曲がりを防止することができる。従って、半導体装置、例えば、電力用半導体装置などの基板部を薄くすることができて、オン抵抗を大幅に低減できることが記載されている。
特許第3620528号公報
図23の(4)の工程後、熱処理やフォト工程があるため、支持基板なしでn型半導体基板1(以下、ウェハともいう)を薄いまま搬送・加工・処理する必要がある。しかし、n型半導体基板1が、図24に示すように、ウェハ径がφ6インチでウェハ厚さが60μmの場合、表面の膜の構成次第では反り量が9mmを超えてしまうようなことも起こり得る。この場合、以下の問題が発生する。
(1)ウェハの反り量が大きく、後工程の装置で搬送などが不可能となる。
(2)ウェハの外周は割れの起点となる部位であり、強度不足により割れ不良が増える。特にウェハの厚さを200μm未満とすると反り量が顕著に現れる(図24)。
このような大きな反り量に対応できるように後工程の各装置を改造すると、コストアップやタクトアップ(処理能力の低下)を招く。
また、特許文献1ではエッチングはアルカリエッチング法を用いており、エッチングしながら厚さの検知は1箇所で行っている。アルカリエッチングでは研削で生じた加工ひずみにより半導体基板の裏面に形成されるエッチピットの深さは10μm程度と深くなってしまい、裏面のp型コレクタ層を数μm程度の厚さで形成するFS−IGBTの場合などでは、良好なp型コレクタ層を形成することが困難となる。また、厚さの検知を1箇所にした場合、検知個所から離れた場所のウェハの厚さと検知個所のウェハの厚さでばらつきが生じ、ウェハ全域の厚さのばらつきを小さく抑制することが困難となる。
この発明の目的は、前記の課題を解決して、極薄ウェハの反り量を小さく抑制し、厚さのばらつきを低減できて、エッチング後のウェハ面に形成されるエッチピットの深さを極めて小さくできる半導体装置の製造方法を提供することにある。
前記の目的を達成するために、一方の表面に絶縁ゲート構造が形成された半導体装置の製造方法において、前記半導体基板の一方の面とは反対側の面から研削加工して、前記半導体基板を所定の厚さにする研削加工工程と、
前記研削加工工程を実行した後、前記反対側の面に対し前記半導体基板の外周部を残して所定の厚さまでドライエッチングして薄くする第1エッチング工程と
前記第1エッチング工程を実行した後に、前記外周部も含めて前記半導体基板の反対側全域をスピンウェットエッチングで厚みを測定しながら薄くする第2エッチング工程と
前記第2エッチング工程を実行した後に、前記第2エッチングが施された前記半導体基板の反対側の面に、前記半導体基板の濃度よりも高い濃度の高濃度層を形成する高濃度層形成工程とを備えた製造方法とする。
また、前記第2エッチング工程で用いられるエッチング液が混酸であるとよい。
また、前記混酸がフッ酸と硝酸と燐酸および硫酸の混合液であるとよい。
また、前記第2エッチング工程で薄くなった前記半導体基板の厚さを100μm以下とするとよい。
また、前記外周部が残った個所(外枠)の幅を1mm〜10mmとするとよい。
また、前記外周部が残った個所(外枠)の厚さを150μm〜500μmとするとよい。
この発明によれば、ウェハ外周に厚い外枠を残すことで、ウェハ反り量を抑え、ウェハ強度の向上を図る。
また、厚さの検知を複数箇所で行うことで、所定の厚さに仕上げ、ロット内(ウェハ間)の厚さバラつきを低減し、面内の厚さ均一性を高めることができる。
ウェハ面内の厚さ均一性を高めることで良品率が向上し、またウェハ外周の厚枠によりウェハ強度を高めることで、割れによる不良率を小さくすることができる。
また、アルカリエッチングを混酸でエッチングすることで、エッチピットの深さを浅くできて、薄い裏面の高濃度の拡散層を良好に形成することができる。
発明の実施するための最良の形態を以下の実施例で説明する。
図1〜図9および図22は、この発明の第1実施例の半導体装置の製造方法を示す工程図であり、工程順に示した要部製造工程断面図である。ここでは、600VクラスのFS−IGBTでn型半導体基板の厚さが60μmの場合を例に挙げて説明する。尚、図23と同一部位には同一符号を付した。また、図1〜図8は、図23とは上下が逆である。
下記の(1)〜(3)の工程は図22を用いて説明する。
(1)FZ−N基板(n型半導体基板1)の表面側にゲート酸化膜4(ここでは、SiO)とゲート電極5となる多結晶シリコン(ここでは、Poly)を堆積、加工して、絶縁ゲート構造31を形成する。
(2)n型半導体基板1の表面層にp型ベース層2(p)を形成した後、このp型ベース層2の表面層にn型エミッタ層3を形成する。
(3)表面に層間絶縁膜6(ここでは、BPSG:ボロン・リンガラス)を堆積し、コンタクトホール7を形成する。n型エミッタ層3とp型ベース層2にコンタクトホールを介して接するようにアルミ・シリコン膜からなる表面電極(エミッタ電極8)を層間絶縁膜6上に形成する。アルミ・シリコン膜は、安定した接合性・低抵抗配線を実現するために、その後、400〜500℃程度の低温で熱処理される。
[ここまで、表面電極側30のプロセスが完了]
下記の(4)から(9)の裏面製造プロセスは、(1)から(3)の表面電極側30のプロセスが終了した後に行う。裏面製造プロセスを図1〜図9を用いて説明する。尚、図1〜図9において上記(1)〜(3)のプロセスで形成した絶縁ゲート構造31を含む部分を表面電極側30と略記する。
(4)次に、裏面21側(図1では上側の面)より、所望の厚さまでn型半導体基板1(ウェハ:ウェハにもn型半導体基板と同一の符号の1を付す)の裏面21をバックグラインドを用いて240μmまで裏面研削加工して薄ウェハ化する。薄ウェハ化後は裏面22となる。このとき、狙いの厚さは外枠26の厚さTとほぼ等しくする(図2)。
続いて、研削した裏面22の外周に最終の外枠26の幅Wになるように、幅Lのレジスト23を、例えば、スクリーン印刷で20μm厚さに塗布する。尚、最終のウェハ厚みQが60μm〜100μmの範囲で、この幅Wを1mm未満とすると外枠26の強度が弱まり、ウェハ1の反りが大きくなり、10mmを超えても外周の枠の強度は変化せず、チップとして利用できる有効面積が減少するというデメリットの方が大きくなるため、レジスト23の幅Lは外枠26の幅W(枠幅)が1mm〜10mmの範囲になるように決めるとよい。従って、レジスト23の幅Lは外枠26の所望の幅Wにサイドエッチ量を加えた大きさにする(図3)。
続いて、最終厚さQよりも40μm厚いところ(100μm)まで、ICP(Inductive Coupling Plasma)などのドライエッチングにてウェハの薄加工を実施する(図4)。
続いて、レジスト23を除去する(図5)。
続いて、図20に示すスピンエッチング装置を用い、回転するウェハの厚さを矢印で示した箇所で検知しながら(in−situ:インプロセスでセンシングすること)スピンウェットエッチングして、さらに裏面24を裏面25まで40μm追加加工して高精度に厚さQを60μmに揃える。このときのエッチング液はフッ酸と硝酸と燐酸と硫酸を混合した混酸を用いる。また検知は赤外線レーザを用いたセンサで行う。回転するウェハ1を矢印で示した1箇所に設置したセンサでその円周上の厚さを検知し、その円周上の厚さデータを平均化処理して、そのデータをフィードバックして所定の設定した厚さまでエッチングする。また、ウェハ1が大きくなった場合やさらに高精度化を狙う場合には、センサの設置個所を増やすとよい。その場合は、センサはウェハ1の中心から半径方向の距離が異なる箇所に設置するとよい。このときの外枠厚さをTとする(図6)。
(5)次に、n型バッファ層9および高濃度のp型コレクタ層10(p層)を形成するために、裏面25よりイオン注入を行う。本例では、n型バッファ層9はリン、p型コレクタ層10はボロンをイオン注入する。続いて、電気炉、或いはレーザーにより熱処理(アニール)を行いn型バッファ層9の深さを10μm程度、p型コレクタ層10の深さを2μm程度で形成する(図7)。
(6)次に、表面電極側30に図示しないポリイミド保護膜を形成し、その後、p型コレクタ層面(裏面25)に、アルミニウム層、チタン層、ニッケル層および金層などの金属膜の組合せで裏面電極(コレクタ電極11)を形成する(図8)。
(7)次に、ウェハ1を粘着シート12に接着して支持台32に載せ、外枠26を切り落としたあと、ダイシングライン13に沿って切断してチップ14にする。このチップ14にする別の方法として、外枠14の凸部を研削して除去した後、ダイシングライン13に沿って切断してチップ14にしてもよい(図9)。
(8)最後に、表面電極側30の表面には、図示しないアルミニウムワイヤをエミッタ電極やゲートパッドに超音波ワイヤーボンディング装置により固着し、もう一方のコレクタ電極側は、図示しないはんだ層でp型コレクタ電極11を支持部材に固着する(図22)。
図10は、裏面加工終了後のウェハの模式図であり、同図(a)は平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。Wは外枠の幅であり、Tは外枠の厚さであり、Qは最終のウェハ厚さである。尚、図中の27はチップ化領域である。
図11〜図16は、外枠を付けた場合のウェハ反り量を示す図である。外枠の幅W(枠幅)と最終のウェハ厚さQ(仕上厚)をパラメータとした。横軸が外枠26の厚さT(外枠厚さ)で、縦軸はウェハ1の反り量で計算値である。図11はウェハ径が6インチ、ウェハ厚さQが60μmの場合、図12はウェハ径が6インチで、ウェハ厚さQが80μmの場合、図13はウェハ径が6インチ、ウェハ厚さQが100μmの場合、図14はウェハ径が8インチで、ウェハ厚さQが80μmの場合、図15はウェハ径が8インチで、ウェハ厚さQが80μmの場合、図16はウェハ径が8インチ、ウェハ厚さQが100μmの場合である。 尚、図11〜図16の最左端の点は外枠なしの場合であり、6インチおよび8インチでQが60μmの場合、ウェハ反り量は9mmおよび16mmを超える。6インチで80μmの場合でも5mmおよび9mmを超える反り量となる。
計算は反り量が最も大きくなるモデルで行った。第1のモデルとして、エミッタ電極8なし、つまり層間絶縁膜6を形成したところで、裏面の研削、エッチングで薄膜化する(5)の工程に移り、その(5)の工程が終了した段階の構造(第1のモデル)である。また、第2のモデルとしてエミッタ電極8が有りでコレクタ電極11を形成した後、つまり、(6)の工程が終了した段階の構造(第2のモデル)の場合で、第1のモデルと同じ反り量を示す。これは、エミッタ電極8を付けると層間絶縁膜6での反り量が相殺され小さくなるが、コレクタ電極11を形成することでまた反り量が増加するためである。
つまり、エミッタ電極8とコレクタ電極11で相殺され層間絶縁膜6での反りが現れるためであり、その結果、第1のモデルの反り量と第2のモデルの反り量がほぼ同じになると考えられる。また、この計算値を検証するために、第1のモデルの試作品を形成して反り量を実測したデータも示した。図示しないが第2のモデルの実測値もほぼ同じ反り量を示した。
ウェハの反り量は2mm以下に抑制する必要があることから、反り量が2mmとなる外枠の厚さ(外枠厚さ)と外枠の幅(枠幅)の関係を図11〜図16を用いて算出したものを図17および図18にそれぞれ示す。図17は6インチ、図18は8インチのデータである。どちらの図も横軸が外枠の厚さ(外枠厚さ)(μm)で縦軸が外枠の幅(外枠幅)(mm)である。このそれぞれの折れ線(ライン)から右側の領域が反り量が2mm以下となる範囲である。ただし、外枠の厚さの上限は500μmである。
これらのデータをまとめると、ウェハ径が6インチ〜8インチで、最終のウェハ厚さQが60μm〜100μmの場合、外枠の幅を1mm〜10mmの範囲で、外枠の厚さを150μm〜500μmの範囲にすると、反り量を2mm以下とすることができる。
外枠の幅を1mm未満および外枠の厚さを150μm未満とすると、反り量が2mmを超えてしまう。また、外枠の幅を10mm超とするとチップの取れ数が減少し過ぎるためよくない。また外枠の厚さを500μm超としても反り量の減少量が小さく、一方、ウェハ厚さを減らすのに時間がかかり過ぎて製造コストが増大する。
前記のように反り量を2mm以下することで、所謂『倍ピッチカセット』と呼ばれる13枚収納タイプのカセットに収納することができる。
また、各種製造装置に関しても反り量が2mmを超えるような場合には、一般的なロボットハンドでの搬送は困難であるが、反り量が2mm以下であるならば、多少の改造によってハンドリング可能となる。従って製造装置の改造費を削減できる。
図19は、エッチング後のウェハの面内厚さ分布を示す図である。Aはドライエッチング後の形状、Bはスピンウェットエッチングを追加した後の形状である。ウェハ厚さQの平均値を78μmとした場合、ウェハ厚さQのバラツキ幅(peak to peak)は8μm(75μm〜83μm)になり±5%となる。パワー半導体の場合、耐圧やスイッチングロスなどの特性は最終のウェハ厚さQに支配されるので、非常に厳密に制御されなければならない。ウェハ間の厚さばらつきも、面内の厚さ均一性もどちらも非常に重要となる。しかし、1段だけのドライエッチングでは、この両方を満足することはできない。このような製品を研削加工とドライエッチングだけで行い、そのドライエッチングで100μmを超えるような多量エッチングを実施した場合、
(1)バックグラインドにおいて面内及びウェハ間の厚さのバラツキ幅で10μm程度となる。
(2)ドライエッチングの面内均一性は前記したように±5%程度なので、100μm×(±0.05)=±5μm程度でありのバラツキ幅は10μmにもなる。
これらの合計の厚さバラツキを修正し、ウェハ厚さQのバラツキを±2μm程度の均一な厚さに仕上げるためには、(4)の工程(図6)で示したように、図20のような枚葉式のスピンウェットエッチング装置を用いて、しかもウェハ厚さをセンサ43で常時計測しながら、設定した所定の厚さでエッチングをストップさせる機能をもつ装置で処理する必要がある。スピンウェットエッチングの結果も図19のBとして併記した。ここで面内均一性は±2μmを満足し、平均値も狙いの60μmに対して誤差は1μm以下となっている。バックグラインドとドライエッチングの双方の厚さ精度不良をキャンセルさせることが可能となる。尚、図20において、41は薬液供給ノズル、42はエッチング液、43は固定したセンサ、44は赤外線レーザである。
もしも、ドライエッチングを実施せず、ウェットエッチングのみで100μm以上のエッチングを実施した場合、これは別の不具合が発生する。外枠26を形成するときのマスクであるレジスト22の近傍に図21のC部に示すような深いエッチング溝46(オーバーハング現象)が形成され、最悪の場合はこれがウェハ1の最終残し厚さよりも深くなることがある。つまりウェハに穴があいてしまう。これでは後工程を流すことはできない。
従って、深くエッチングをして外枠26を形成する機能をドライエッチングに特化させ、最後にスピンウェットエッチングで加工することが、最も効率よく高精度な薄ウェハを実現する手段である。
また外周のレジストを印刷用レジスト特有のシリコン粒子が含まれているレジストとした場合、図5のレジスト除去工程後に、ウェハ外周に残渣としてシリコン粒子が残る。しかし、スピンウェットエッチングの際にこのシリコン粒子も溶けてしまい、別途スポンジなどでこのシリコン粒子を除去する工程は不要となる。
また、前記したように、エッチングはドライとウェットの2回に分けて実施し、1回目の深いエッチングはICPなどのドライエッチングを適用し、2回目のエッチングとしては枚葉式のスピンウェットエッチングを適用し、このエッチング中に厚さ測定を常時実施することで、最終厚さ精度の向上と、面内厚さ精度の向上も図ることが可能となる。
また、最終エッチングを混酸を用いているため、エッチピットの深さは1μm以下に抑制することができる。
この発明の第1実施例の半導体装置の要部製造工程断面図 図1に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図2に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図3に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図4に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図5に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図6に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図7に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 図8に続く、この発明の第1実施例の半導体装置の要部製造工程断面図 裏面加工終了後のウェハの模式図であり、(a)は平面図、(b)は(a)のX−X線で切断した要部断面図 外枠を付けた場合のウェハ反り量を示す図 外枠を付けた場合のウェハ反り量を示す図 外枠を付けた場合のウェハ反り量を示す図 外枠を付けた場合のウェハ反り量を示す図 外枠を付けた場合のウェハ反り量を示す図 外枠を付けた場合のウェハ反り量を示す図 反り量が2mmとなる外枠幅と外枠厚さの関係図 反り量が2mmとなる外枠幅と外枠厚さの関係図 エッチング後のウェハの形状 スピンウェットエッチング装置の構成図 ウェットエッチングで形成される深いエッチング溝を示す図 FZウェハを用いたFS(フィールドストップ)−IGBTと呼ばれる半導体装置の要部断面図 図22の半導体装置の製造方法を示す工程図であり、(a)〜(f)は工程順に示した要部製造工程断面図 6インチウェハの反り量とウェハ厚さの関係を示す図
符号の説明
1 n型半導体基板(ウェハ、n層)
2 p型ベース層
3 n型エミッタ層
4 ゲート酸化膜
5 ゲート電極
6 層間絶縁膜
7 コンタクトホール
8 エミッタ電極
9 n型バッファ層
10 p型コレクタ層
11 コレクタ電極
21、22、24、25 裏面
23 レジスト
26 外枠
27 チップ化領域
30 表面電極側
31 絶縁ゲート構造
32 支持台
T 外枠の厚さ
W 外枠の幅
Q 最終のウェハ厚さ(チップ化領域内)

Claims (6)

  1. 一方の表面に絶縁ゲート構造が形成された半導体装置の製造方法において、前記半導体基板の一方の面とは反対側の面から研削加工して、前記半導体基板を所定の厚さにする研削加工工程と、
    前記研削加工工程を実行した後、前記反対側の面に対し前記半導体基板の外周部を残して所定の厚さまでドライエッチングして薄くする第1エッチング工程と
    前記第1エッチング工程を実行した後に、前記外周部も含めて前記半導体基板の反対側全域をスピンウェットエッチングで厚みを測定しながら薄くする第2エッチング工程と
    前記第2エッチング工程を実行した後に、前記第2エッチングが施された前記半導体基板の反対側の面に、前記半導体基板の濃度よりも高い濃度の高濃度層を形成する高濃度層形成工程とを備えたことを特徴とする半導体装置の製造方法。
  2. 前記第2エッチング工程で用いられるエッチング液が混酸であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記混酸がフッ酸と硝酸と燐酸および硫酸の混合液であることを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記第2エッチング工程で薄くなった前記半導体基板の厚さを100μm以下とすることを特徴とする請求項1〜3のいずれか一項に記載の半導体装置の製造方法。
  5. 前記外周部が残った個所(外枠)の幅を1mm〜10mmとすることを特徴とする請求項1〜4のいずれか一項に記載の半導体装置の製造方法。
  6. 前記外周部が残った個所(外枠)の厚さを150μm〜500μmとすることを特徴とする請求項1〜5のいずれか一項に記載の半導体装置の製造方法。





JP2006026189A 2006-02-02 2006-02-02 半導体装置の製造方法 Active JP5011740B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026189A JP5011740B2 (ja) 2006-02-02 2006-02-02 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026189A JP5011740B2 (ja) 2006-02-02 2006-02-02 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2007208074A JP2007208074A (ja) 2007-08-16
JP5011740B2 true JP5011740B2 (ja) 2012-08-29

Family

ID=38487257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026189A Active JP5011740B2 (ja) 2006-02-02 2006-02-02 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5011740B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816278B2 (ja) * 2006-06-15 2011-11-16 富士電機株式会社 半導体装置の製造方法
JP5012632B2 (ja) * 2008-04-15 2012-08-29 富士電機株式会社 半導体装置の製造方法
JP5428216B2 (ja) * 2008-06-20 2014-02-26 富士電機株式会社 シリコンウェハ、半導体装置、シリコンウェハの製造方法および半導体装置の製造方法
JP2010205761A (ja) * 2009-02-27 2010-09-16 Sanyo Electric Co Ltd 半導体装置およびその製造方法
US11342189B2 (en) 2015-09-17 2022-05-24 Semiconductor Components Industries, Llc Semiconductor packages with die including cavities and related methods
US9893058B2 (en) 2015-09-17 2018-02-13 Semiconductor Components Industries, Llc Method of manufacturing a semiconductor device having reduced on-state resistance and structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260670A (ja) * 1999-03-05 2000-09-22 Mitsubishi Materials Corp シリコンウェーハ及びその製造方法
JP3620528B2 (ja) * 2001-12-12 2005-02-16 株式会社デンソー 半導体装置の製造方法
JP2003303966A (ja) * 2002-04-11 2003-10-24 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2004253527A (ja) * 2003-02-19 2004-09-09 Seiko Epson Corp 半導体装置の製造方法及び半導体装置

Also Published As

Publication number Publication date
JP2007208074A (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
US6803294B2 (en) Semiconductor wafer and manufacturing method of semiconductor device
JP5599342B2 (ja) 半導体装置の製造方法
JP5011740B2 (ja) 半導体装置の製造方法
US8716067B2 (en) Power device manufacture on the recessed side of a thinned wafer
US7737531B2 (en) Wafer including a reinforcing flange formed upright at a periphery and method for manufacturing the same
US9870938B2 (en) Semiconductor element producing method by flattening protective tape
US8435417B2 (en) Method of manufacturing semiconductor device
JP2006196710A (ja) 半導体素子の製造方法
US8987923B2 (en) Semiconductor seal ring
US20140315352A1 (en) Semiconductor device fabricating method
JP4665429B2 (ja) 半導体素子の製造方法
JP2007242699A (ja) 半導体素子の製造方法及び半導体基板
CN105765701B (zh) 半导体装置的制造方法
JP6245376B2 (ja) 半導体装置の製造方法
JP2006229135A (ja) 半導体装置の製造方法
JP6028325B2 (ja) 半導体装置の製造方法
JP4724729B2 (ja) 半導体装置の製造方法
JP6762396B2 (ja) 半導体装置の製造方法
JP2007266347A (ja) 半導体装置の製造方法
JP2009253000A (ja) 型半導体装置の製造方法
JP2006032598A (ja) 半導体装置の製造方法および半導体装置
JP2012248572A (ja) 半導体装置および半導体装置の製造方法
JP2007227459A (ja) Soi基板の製造方法
JP2015103705A (ja) 半導体装置の製造方法および半導体装置ならびに半導体製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5011740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250