JP4983938B2 - 同期電動機の駆動装置 - Google Patents

同期電動機の駆動装置 Download PDF

Info

Publication number
JP4983938B2
JP4983938B2 JP2010034646A JP2010034646A JP4983938B2 JP 4983938 B2 JP4983938 B2 JP 4983938B2 JP 2010034646 A JP2010034646 A JP 2010034646A JP 2010034646 A JP2010034646 A JP 2010034646A JP 4983938 B2 JP4983938 B2 JP 4983938B2
Authority
JP
Japan
Prior art keywords
capacitor
switching elements
bus
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010034646A
Other languages
English (en)
Other versions
JP2010110214A (ja
Inventor
剛志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010034646A priority Critical patent/JP4983938B2/ja
Publication of JP2010110214A publication Critical patent/JP2010110214A/ja
Application granted granted Critical
Publication of JP4983938B2 publication Critical patent/JP4983938B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ステータコイルがスター結線されている同期電動機を制御する同期電動機の駆動装置に関するものである。
従来、この種の駆動装置では、例えば、特許文献1に示すように、6個のトランジスタと6個のダイオードから構成されるインバータ回路と、このインバータ回路を制御する制御回路とを備えるものがある。
具体的には、インバータ回路は、直列接続された一対のトランジスタが3組、正極側母線と負極側母線との間に並列接続されて構成されており、さらに1つのトランジスタ毎にこのトランジスタに対してダイオードが1つずつ並列接続されている。
ステータコイルの中性点とインバータ回路の負極側母線との間には、直流電源が接続されている。ステータコイルの中性点とインバータ回路の正極側母線との間には、コンデンサが接続されている。このため、正極側母線と負極側母線との間には、直流電源から発生する電源電圧とコンデンサから発生する電圧とを合わせた電圧差が生じる。
制御回路は、6個のトランジスタをスイッチング動作させることにより、正極側母線と負極側母線との間の電圧差に基づいて三相交流同期電動機に三相交流電流を出力する。したがって、直流電源から発生する電源電圧よりも大きな電圧により、三相交流同期電動機を運転することができる。
ここで、6個のトランジスタのうち負極側母線のトランジスタがオンしたときには、ステータコイルに電流が流れるため、ステータコイルには、電流に基づいて磁気エネルギーが蓄えられる。
負極側母線のトランジスタがオフしたときには、前記磁気エネルギーに基づいた電流が、ステータコイルから正極側母線側のダイオードおよび正極側母線を通してコンデンサに電流が流れる。したがって、6個のトランジスタをスイッチング動作させることにより、ステータコイルに三相交流電流を流しつつ、コンデンサに電荷を蓄えることになる。
特開2002−10654号公報
上述の駆動装置では、コンデンサに電荷が蓄えられていない状態で、インバータ回路の制御を開始する場合に、負極側母線のトランジスタがオンからオフに移行すると、ステータコイルから正極側母線側のダイオードおよび正極側母線を通してコンデンサに大きな突入電流が流れる。これに伴い、コンデンサの出力電圧が大きく変動する。
したがって、インバータ回路から三相交流同期電動機に出力される交流電流が不安定になり、三相交流同期電動機に振動を生じる可能性がある。
本発明は上記点に鑑みて、同期電動機の運転に先だって、コンデンサの充電状態を制御する同期電動機の駆動装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、スター結線されたステータコイルから発生する回転磁界によりロータを回転させる同期電動機の駆動装置であって、
直列接続された一対のスイッチング素子を多数組有し、正極側母線と負極側母線との間に前記一対のスイッチング素子が多数組、並列接続されているインバータ回路と、
コンデンサと、
前記インバータ回路を構成する複数の前記スイッチング素子をスイッチング動作させることにより、電源装置の出力電圧と前記コンデンサの出力電圧とに基づいて交流電流を前記ステータコイルに出力して前記ステータコイルから前記回転磁界を発生させる通常運転制御手段と、
前記通常運転制御手段の実行開始に先立って、前記複数のスイッチング素子をスイッチング動作させることにより、前記ステータコイルから発生させる回転磁界に前記ロータを同期させて、かつ前記コンデンサの充電状態を制御する初期状態同期制御手段と、を備えることを特徴とする。
これにより、通常運転制御手段の実行開始に先立って、コンデンサの充電状態を制御することができる。
請求項2に記載の発明では、前記複数のスイッチング素子のそれぞれにはダイオードが逆並列に配置されており、
前記複数のスイッチング素子は、前記正極側母線に接続された正極側母線側のスイッチング素子と、前記負極側母線側に接続された負極側母線側のスイッチング素子とから構成されており、
前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子のオフに伴って、残りの母線側のスイッチング素子に逆並列に配置された前記ダイオードを通して前記ステータコイルと前記コンデンサとの間に流れる電流に基づいて前記コンデンサの充電状態を制御することを特徴とする。
請求項3に記載の発明では、前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記残りの母線側のスイッチング素子をオフした状態で、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子をスイッチング動作させることにより、前記インバータ回路から出力される交流電流に基づいて前記ステータコイルからの回転磁界を発生させることを特徴とする。
請求項4に記載の発明では、前記インバータ回路において、前記一対のスイッチング素子は3組、並列接続されており、
前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側の3つのスイッチング素子において、オンさせる2つのスイッチング素子を順に変更することによって、ステータコイルから回転磁界を発生させることをことを特徴とする。
請求項5に記載の発明では、前記初期状態同期制御手段は、オンさせる2つのスイッチング素子を所定オン時間オンさせる第1の手段と、前記2つのスイッチング素子を所定オフ時間オフさせる第2の手段と、を備え、前記第1の手段により前記2つのスイッチング素子を所定オン時間オンさせ、この後、前記第2の手段により前記2つのスイッチング素子を所定オフ時間オフさせることを、繰り返すことによって前記コンデンサの充電を行うことを特徴とする。
請求項6に記載の発明では、前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子をオンさせているときに前記ステータコイルに流れる電流を制限電流以下にすることを特徴とする。
請求項7に記載の発明では、前記初期状態同期制御手段は、前記コンデンサの出力電圧が一定電圧に到達したと判定されるまで前記充電状態の制御を実施することを特徴とする。
請求項8に記載の発明では、前記初期状態同期制御手段は、前記コンデンサの出力電圧が一定電圧に到達し、かつ前記コンデンサの温度が所定以上であると判定するまで前記充電状態の制御を実施することを特徴とする。
請求項9に記載の発明では、前記コンデンサのプラス電極は、前記正極側母線に接続され、前記コンデンサのマイナス電極は、前記負極側母線と前記ステータコイルの中性点とのうちいずれか一方に接続されており、
前記電源装置のプラス電極は、前記中性点に接続され、前記電源装置のマイナス電極は、前記負極側母線に接続されていることを特徴とする。
請求項10に記載の発明では、前記コンデンサのプラス電極は、前記正極側母線と前記ステータコイルの中性点とのうちいずれか一方に接続され、前記コンデンサのマイナス電極は、前記負極側母線に接続されており、
前記電源装置のプラス電極は、前記正極側母線に接続され、前記電源装置のマイナス電極は、前記中性点に接続されていることを特徴とする。
請求項11に記載の発明では、前記通常運転制御手段の実行開始前で、かつ前記初期状態同期制御手段の実行終了後に、前記ロータの回転速度を一定速度まで上昇させる電流を前記インバータ回路から前記ステータコイルに出力させるように前記インバータ回路を構成する前記複数のスイッチング素子をスイッチング動作させる強制転流制御手段を備えることを特徴とする。
請求項12に記載の発明では、前記インバータ回路から前記ステータコイルに流れる電流を検出する電流センサを備え、
前記通常運転制御手段は、前記電流センサにより検出された電流に基づいて前記ロータの回転数を推定するとともに、この推定された回転数に基づいて前記ロータの回転数を目標回転数に近づけるように前記複数のスイッチング素子をスイッチング動作させることを特徴とする。
本発明の第1実施形態における三相交流同期電動機の駆動装置の構成を示す図である。 第1実施形態におけるコンデンサの出力電圧の変化およびU相電流の変化を示すタイミングチャートである。 図1の駆動装置の制御判定部の制御処理を示すフローチャートである。 図1の制御判定部の制御処理を示すフローチャートである。 図1の同期制御部の制御処理を示すフローチャートである。 第1実施形態の変形例における同期制御部の制御処理を示すフローチャートである。 本発明の第1実施形態の変形例における三相交流同期電動機の駆動装置の構成を示す図である。 本発明の第1実施形態の変形例における三相交流同期電動機の駆動装置の構成を示す図である。 本発明の第1実施形態の変形例における三相交流同期電動機の駆動装置の構成を示す図である。 本発明の第2実施形態における三相交流同期電動機の駆動装置の構成を示す図である。 第2実施形態における位置決め制御部の制御処理を示すフローチャートである。 本発明の第3実施形態における三相交流同期電動機の駆動装置の構成を示す図である。 第3実施形態におけるコンデンサの出力電圧の変化およびU相電流の変化を示すタイミングチャートである。 第3実施形態における初期状態位置決め制御部の制御処理を示すフローチャートである。 本発明の第4実施形態における三相交流同期電動機の駆動装置の構成を示す図である。
以下、本発明を図に示す実施形態について説明する。なお、以下に示す実施形態のうち第4実施形態が特許請求の範囲に記載した発明の実施形態であり、それ以外の実施形態は参考例を示すものである。
(第1実施形態)
図1に本発明に係る三相交流同期電動機の駆動装置の第1実施形態を示す。図1は駆動装置の回路構成と三相交流同期電動機の一部の構成とを示す。
駆動装置10は、直流電圧に基づいて三相交流電流を三相交流同期電動機に出力して三相交流同期電動機を駆動する。三相交流同期電動機の回転軸には、例えば圧縮機構等の負荷が接続されている。
三相交流同期電動機は、例えば永久磁石が埋め込まれたロータ(図示省略)と、ロータに回転磁界を与えるステータコイル1を備える。ステータコイル1は、U相コイル1a、V相コイル1b、およびW相コイル1cがスター結線されて中性点1xを有するものである。
本実施形態では、三相交流同期電動機は、ロータの位置情報を検出するセンサが取り付けられていない構成になっている。
高電圧バッテリ3は、ステータコイル1の中性点1xとグランドとの間に配置されている電源装置である。高電圧バッテリ3とグランドとの間には、電源スイッチ5のスイッチ素子5aが配置されている。電源スイッチ5は、低電圧バッテリ4の正極端子と電子制御装置7との間を開閉するスイッチ素子5bを備える。スイッチ素子5a、5bは、使用者の操作により互いに連動して開閉する。低電圧バッテリ4の出力電圧は、高電圧バッテリ3の出力電圧より低く設定されている。
駆動装置10は、インバータ回路20、コンデンサ30、電流センサ40、および制御回路50を備える。インバータ回路20は、高電圧バッテリ3の出力電圧とコンデンサ30のプラス電極とマイナス電極との間の電圧差とに基づいて三相交流電流をステータコイル1に出力する。
具体的には、インバータ回路20は、スイッチング素子SW1、SW2、SW3、SW4、SW5、SW6、およびダイオードD1、D2、D3、D4、D5、D6から構成されている。
スイッチング素子SW1、SW4は負極側母線21と正極側母線22との間に直列接続され、スイッチング素子SW2、SW5は負極側母線21と正極側母線22との間で直列接続され、スイッチング素子SW3、SW6は負極側母線21と正極側母線22との間で直列接続されている。負極側母線21は、グランドに接続されている。
スイッチング素子SW1、SW4の共通接続点はW相コイル1cに接続され、スイッチング素子SW2、SW5の共通接続点はV相コイル1bに接続され、スイッチング素子SW3、SW6の共通接続点はU相コイル1aに接続されている。
なお、スイッチング素子SW1、SW2…SW6としては、例えば、絶縁ゲートバイポーラトランジスタや電界効果型トランジスタ等の半導体スイッチング素子が用いられている。
ダイオードD1、D2、D3、D4、D5、D6は、スイッチング素子SW1、SW2、SW3、SW4、SW5、SW6のうち対応するスイッチング素子に逆並列になるように配置されている。例えば、ダイオードD1は、スイッチング素子SW1に逆並列になるように配置されている。ダイオードD1、D2…D6は、それぞれ対応するスイッチング素子をバイパスして電流を流す。
コンデンサ30は、高電圧バッテリ3とともに出力電圧をインバータ回路20に与える。コンデンサ30のプラス電極は、インバータ回路20の正極側母線22に接続されている。コンデンサ30のマイナス電極は、ステータコイル1の中性点1xに接続されている。
電流センサ40は、U相電流iu、V相コイルiv、およびW相電流iwをそれぞれ検出する。U相電流iuは、スイッチング素子SW3、SW6の共通接続点からU相コイル1aに流れる電流である。
V相電流ivは、スイッチング素子SW2、SW5の共通接続点からV相コイル1bに流れる電流である。W相電流iwは、スイッチング素子SW1、SW4の共通接続点からW相コイル1cに流れる電流である。
なお、図中電流iu、iv、iwの電流の流れる方向は、それぞれ各矢印の方向を正とする。
制御回路50は、制御入出力部51、制御判定部52、初期状態制御部53、同期制御部54、強制転流制御部55、および通常運転制御部56を備える。
制御入出力部51は、制御部53、54、55、56から出力される出力信号をインバータ回路20に出力する。制御入出力部51は、電流センサ40の検出信号を制御部53、54、55、56のそれぞれに出力する。
制御判定部52は、初期状態制御部53、同期制御部54、強制転流制御部55、および通常運転制御部56をそれぞれ実行させる。
次に、本実施形態の作動について図2を参照して説明する。
図2(a)はコンデンサ30の出力電圧の変化を示すタイミングチャート、図2(b)はU相電流iuの変化を示すタイミングチャートである。
まず、電源スイッチ5が使用者により操作されて電源オン(図2中電源ONと記す)されると、スイッチ素子5aが高電圧バッテリ3とグランドとの間を接続し、さらにスイッチ素子5bが低電圧バッテリ4と電子制御装置7との間を接続する。
すると、電子制御装置7は、スイッチ素子5bの閉成後一定期間待機してから駆動装置10に対して制御開始を指令する。駆動装置10の制御判定部52は、電子制御装置7から制御開始の指令を受けると、図3のフローチャートにしたがって、コンピュータプログラムの実行を開始する。
まず、制御判定部52は、ステップS100で初期状態制御部53に対して制御を実行させる。その後、ステップS110で同期制御部54に対して制御を実行させる。
その後、ステップS120で強制転流制御部55に対して制御を実行させた後、ステップS130で通常運転制御部56に対して制御を実行させる。
以下、初期状態制御部53、同期制御部54、強制転流制御部55、および通常運転制御部56のそれぞれの制御処理について別々に説明する。
(初期状態制御部53)
初期状態制御部53は、図4のフローチャートにしたがって、制御処理を実行する。
まず、ステップS200においてスイッチング素子SW4、SW5、SW6をオンさせる。
これに伴い、高電圧バッテリ3のプラス電極側から電流がU相コイル1aおよびスイッチング素子SW6を通してグランド側に流れる。このため、U相コイル1aには、電流に基づいて磁気エネルギーが蓄積される。
なお、本実施形態では、スイッチング素子SW4、SW5、SW6が、特許請求の範囲に記載の「電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子」に相当する。
また、高電圧バッテリ3のプラス電極側から電流がV相コイル1bおよびスイッチング素子SW5を通してグランド側に流れる。さらに、高電圧バッテリ3のプラス電極側から電流がW相コイル1cおよびスイッチング素子SW4を通してグランド側に流れる。
このため、U相コイル1a場合と同様に、V相コイル1bおよびW相コイル1cには、それぞれ、磁気エネルギーが蓄積される。
次のステップS210で、電流センサ40で検出される相電流iu、iv、iwに基づいて、相電流iu、iv、iwのそれぞれの絶対値|iu|、|iv|、|iw|が制限電流A以下であるか否かを判定する。ここで、制限電流Aは、三相交流同期電動機に流すことが可能な最大電流より所定値だけ小さい電流である。最大電流は、三相交流同期電動機に発火が生じない程度でステータコイル1に流すことができる電流の最大値である。
そして、ステップS210において、絶対値|iu|、|iv|、|iw|のそれぞれが制限電流A以下であるときには、YESと判定する。
この場合、ステップS220において、スイッチング素子SW4、SW5、SW6をそれぞれオンしてから所定時間(以下、所定オン時間という)以上経過したか否かを判定する。所定オン時間(図4中所定ON時間と記す)は、予め決められた時間である。
このとき、スイッチング素子SW4、SW5、SW6をオンしてから経過した時間が所定オン時間よりも短いときには、ステップS220でNOと判定して、ステップS210、S220の判定処理を繰り返す。
その後、スイッチング素子SW4、SW5、SW6をオンしてから所定オン時間以上経過すると、ステップS220でYESと判定してステップS230に進む。
また、上述のステップS210において、絶対値|iu|、|iv|、|iw|のうちいずれか1つが制限電流Aより大きいときには、NOと判定してステップS230に進む。
このようにステップS230に進むと、スイッチング素子SW1、SW2、SW3がオフしている状態で、スイッチング素子SW4、SW5、SW6をオフさせる。
このとき、スイッチング素子SW4のオフに伴って、磁気エネルギーに基づく電流がW相コイル1cからダイオードD1、および正極側母線22を通してコンデンサ30に流れる。すなわち、W相コイル1c側から電流がスイッチング素子SW1をバイパスしてコンデンサ30側に流れる。
スイッチング素子SW5のオフに伴って、磁気エネルギーに基づく電流がV相コイル1bからダイオードD2、および正極側母線22を通してコンデンサ30に流れる。すなわち、V相コイル1b側から電流がスイッチング素子SW2をバイパスしてコンデンサ30側に流れる。
スイッチング素子SW6のオフに伴って、磁気エネルギーに基づく電流がU相コイル1aからダイオードD3、および正極側母線22を通してコンデンサ30に流れる。すなわち,U相コイル1а側から電流がスイッチング素子SW3をバイパスしてコンデンサ30側に流れる。
このようにコイル1a、1b、1c側からコンデンサ30に電流が流れ、この電流によりコンデンサ30に電荷が蓄積される。すなわち、スイッチング素子SW4、SW5、SW6のスイッチング動作によりコンデンサ30が充電されることになる。
なお、本実施形態ではスイッチング素子SW1、SW2、SW3が、特許請求の範囲に記載の「残りの母線側のスイッチング素子」に相当する。ダイオードD1、D2、D3が特許請求の範囲に記載の「残りの母線側のスイッチング素子に逆並列に配置された前記ダイオード」に相当する。
次に、ステップS240において、スイッチング素子SW4、SW5、SW6をオフしてから所定時間(以下、所定オフ時間という)以上経過したか否かを判定する。所定オフ時間(図4中所定OFF時間と記す)は、予め決められた時間である。
このとき、スイッチング素子SW4、SW5、SW6をオフしてから経過した時間が所定オフ時間よりも短いときには、ステップS240でNOと判定して、ステップS240の判定処理を繰り返す。その後、スイッチング素子SW4、SW5、SW6をオフしてから所定オフ時間以上経過すると、ステップS240でYESと判定する。
次に、ステップS250で、コンデンサ30の出力電圧が目標電圧値以上であるか否かを判定する。具体的には、初期状態制御部53の制御の実行を開始後一定時間以上経過したか否かを判定する。
初期状態制御部53の制御の実行を開始後経過した時間が一定時間より短いときには、コンデンサ30の出力電圧が目標電圧値未満であるとしてステップS250でNOと判定して、ステップS200に戻る。
このため、初期状態制御部53の制御の実行を開始後一定時間以上経過するまで、ステップS210、S220、S230、S240の各処理を繰り返す。このため、スイッチング素子SW4、SW5、SW6のスイッチング動作によりコンデンサ30が充電される。このため、コンデンサ30の出力電圧は、図2(a)に示すように、徐々に上昇する。
その後、初期状態制御部53の制御の実行を開始後一定時間以上経過すると、ステップS250において、コンデンサ30の出力電圧が目標電圧値以上であるとしてYESと判定する。すなわち、コンデンサ30の充電状態の制御が完了したとして、初期状態制御部53の制御が終了する。
(同期制御部54)
同期制御部54は、図5のフローチャートにしたがって、制御処理を実行する。
まず、ステップS300において、周知の三角波比較PWM方式によって、三相交流電流をステータコイル1に出力させるようにスイッチング素子SW1、SW2、SW3、SW4、SW5、SW6のスイッチング出力を設定する。
すなわち、三相交流電流をステータコイル1に出力させるようにスイッチング素子SW1、SW2…SW6に対してそれぞれオン、或いはオフを設定することになる。
ここで、前記三相交流電流は、その波高値が初期値から半周期(電気角180deg)毎に所定値大きくなる電流である。波高値の初期値としては、回転磁界に基づいてロータに生じる回転トルクが三相交流同期電動機の負荷側に生じるトルクよりも十分に小さくなる値に設定されている。
次に、ステップS310で三相交流電流の実効値を求め、この三相交流電流の実効値が一定値以上であるか否かを判定する。このとき、三相交流電流の実効値が一定値未満であるときには、ステップS310においてNOと判定してステップS310に戻る。
その後、三相交流電流の実効値が一定値以上になるまでステップS300、S310の処理を繰り返す。これに伴い、正極側母線22側のスイッチング素子SW1、SW2、SW3と負極側母線21側のスイッチング素子SW4、SW5、SW6とをスイッチング動作させる。
このため、スイッチング素子SW1、SW4の共通接続点とスイッチング素子SW2、SW5の共通接続点とスイッチング素子SW3、SW6の共通接続点とから、コンデンサ30の出力電圧と高電圧バッテリ3の出力電圧とに基づいて三相交流電流がステータコイル1に出力される。
これに伴い、ステータコイル1から回転磁界が発生する。したがって、ロータが回転磁界に同期して回転することになる。
ここで、負極側母線21側のスイッチング素子SW4、SW5、SW6のオフに伴って、初期状態制御部53の制御の場合と同様に、コンデンサ30に電荷が蓄積される。
本実施形態では、一定時間における正極側母線22側のスイッチング素子SW1、SW2、SW3のオン時間とオフ時間の比率(以下、正極側比率H1という)と、一定時間における負極側母線21側のスイッチング素子SW4、SW5、SW6のオン時間とオフ時間の比率(負極側比率H2という)は、後述するように、コンデンサ30の出力電圧が目標電圧値を維持するように設定されている。
その後、三相交流電流の実効値が一定値以上になるとステップS310でYESと判定してステップS320に移行する。このステップS320では、最初にステップS300でスイッチング素子SW1、SW2…SW6のスイッチング出力を設定してから電気角720deg以上、三相交流電流をステータコイル1に出力したか否かを判定する。
ここで、ステータコイル1に出力した三相交流電流が電気角720deg未満であるときには、ステップS320でNOと判定してステップS300に戻る。このため、ステップS320でNOと判定される限り、ステップS300の処理とステップS310のYES判定処理を繰り返す。
したがって、図2(b)に示すように、波高値が半周期毎に大きくなる三相交流電流がステータコイル1に出力されることになる。なお、図2ではU相電流だけを示す。
その後、最初にステップS300でスイッチング素子SW1、SW2…SW6のスイッチング出力を設定してからステータコイル1に出力した三相交流電流が電気角720deg以上になると、ステップS320でYESと判定すると、同期制御部54の制御が終了する。
次に、本実施形態の正極側比率H1、負極側比率H2について説明する。
正極側母線22側のスイッチング素子SW1、SW2、SW3がオンしているとき、コンデンサ30からスイッチング素子SW1、SW2、SW3に電流が流れる。したがって、コンデンサ30に蓄積された電荷が減ることになる。
負極側母線21側のスイッチング素子SW4、SW5、SW6がオンしているときにコイル1a、1b、1cの磁気エネルギーが蓄積される。そして、スイッチング素子SW1、SW2、SW3、SW4、SW5、SW6がオフしているとき、コイル1a、1b、1cの磁気エネルギーに基づいてコンデンサ30に電荷が蓄積される。
したがって、スイッチング素子SW1、SW2…SW6のスイッチング動作に伴って、コンデンサ30に対する電荷の蓄積と放電が繰り返されることになる。
ここで、コンデンサ30から放電される電荷量は、正極側母線22側のスイッチング素子SW1、SW2、SW3のオン時間により決まる。
コンデンサ30に蓄積される電荷量は、負極側母線21側のスイッチング素子SW4、SW5、SW6のオン時間、およびスイッチング素子SW1、SW2、SW3、SW4、SW5、SW6のオフ時間によって決まる。
そこで、本実施形態の正極側比率H1および負極側比率H2は、一定時間において、コンデンサ30から放電される電荷量と、コンデンサ30に蓄積される電荷量とが同等になるように設定されている。
これにより、同期制御部54は、スイッチング素子SW1、SW2…SW6をスイッチング動作させることにより、コンデンサ30の出力電圧が目標電圧値を維持することができる。
(強制転流制御部55)
強制転流制御部55は、回転磁界の角速度ωを一定角速度ωdまで速くする制御を実施する。
具体的には、強制転流制御部55は、三相交流電流をステータコイル1に出力させるように、正極側母線22側のスイッチング素子SW1、SW2、SW3と負極側母線21側のスイッチング素子SW4、SW5、SW6とをスイッチング動作させる。
このとき、強制転流制御部55は、スイッチング素子SW1、SW2…SW6のそれぞれをスイッチング動作させることにより、三相交流電流の角速度ωを同期制御部54の場合より徐々に速くする。具体的には、三相交流電流の角速度ωを一定の角速度ωdまで半周期毎に速くさせる。
これに伴い、ロータがステータコイル1から発生した回転磁界に同期して回転する。このとき、ステータコイル1から発生した回転磁界は徐々に速くなる。したがって、ロータの回転速度が一定速度Sdまで徐々に速くなる。
ここで、負極側母線21側のスイッチング素子SW4、SW5、SW6がスイッチング動作する際に、負極側母線21側のスイッチング素子SW4、SW5、SW6のオフに伴って、初期状態制御部53の制御の場合と同様に、コンデンサ30に電荷が蓄積される。
(通常運転制御部56)
通常運転制御部56は、インバータ回路20のスイッチング素子SW1、SW2…SW6のそれぞれをスイッチング動作させて三相交流電流をステータコイル1に出力する。
通常運転制御部56は、三相交流電流の角速度ωが一定角速度ωd以上である状態を維持して、電子制御装置から指令される目標角速度に三相交流電流の角速度ωzを近づけるように正極側母線22側のスイッチング素子SW1、SW2、SW3と負極側母線21側のスイッチング素子SW4、SW5、SW6とをスイッチング動作させる。
具体的には、通常運転制御部56は、電流センサ40の検出電流iu、iv、iwが、それぞれ零になるタイミングを求め、このタイミングに基づいてロータの位置を推定して、この推定されたロータの位置に基づいてロータの角速度ωsを推定する。
さらに、通常運転制御部56は、電子制御装置から指令される目標角速度ωmに、推定角速度ωsを近づけるようにスイッチング素子SW1、SW2、SW3…SW6のそれぞれをスイッチング動作させる。
これにより、ステータコイル1から発生する回転磁界の角速度ωが目標角速度ωmに近づく。このため、ロータの角速度が目標角速度ωmに近づくことになる。以上により、三相交流同期電動機のロータの速度を制御することができる。
ここで、負極側母線21側のスイッチング素子SW4、SW5、SW6がオフしたときには、初期状態制御部53の制御の場合と同様に、コンデンサ30に電荷が蓄積される。
以上説明した本実施形態によれば、通常運転制御部56の実行に先立って、初期状態制御部53がコンデンサ30に電荷を蓄積してコンデンサ30の充電状態を制御することができる。このため、通常運転制御部56の実行開始直後にコンデンサに大電流が流れることが抑制される。これに伴い、三相交流同期電動機の動作状態が不安定になることなく、コンデンサ30の出力電圧が安定した状態で通常運転制御部56の実行を開始することができる。このため、三相交流同期電動機の速度制御を精度良く行うことができる。
初期状態制御部53は、ステップS210において、|iu|、|iv|、|iw|のうちいずれか1つが制限電流Aより大きいときには、スイッチング素子SW4、SW5、SW6をオフさせる。このため、コンデンサ30に大電流が流れることを抑制できる。したがって、コンデンサの出力電圧を安定した状態に維持できる。
本実施形態では、電子制御装置7は、スイッチ素子5bの閉成後一定期間待機してから駆動装置10に対して制御開始を指令する。このため、スイッチ素子5bの閉成に伴ってコンデンサ30の出力電圧が変動するものの、その電圧変動が収まって電圧が安定した後に駆動装置10の初期状態制御部53の制御を開始することができる。
同期制御部54は、ステータコイル1から発生させる回転磁界にロータを同期して回転させる際に、負極側母線21側のスイッチング素子SW4、SW5、SW6をスイッチング動作させるため、上述の如く、コンデンサ30に電荷を蓄積させることができる。
ここで、同期制御部54は、ステータコイル1から発生させる回転磁界にロータを同期して回転させる際に、初期値から波高値が半周期毎に所定値大きくなる三相交流電流をステータコイル1に出力する。このため、ステータコイル1から発生する回転磁界に基づく回転トルクは、三相交流電流の波高値の上昇に伴って、徐々に大きくなる。このため、ロータに振動を起こすことなくロータを回転させることができる。
ここで、三相交流電流の波高値の初期値として、上述の如く、回転磁界に基づいてロータに生じる回転トルクが三相交流同期電動機の負荷側に生じるトルクよりも十分に小さくなる値に設定されている。このため、ロータに振動が生じ難くなる。
次に、強制転流制御部55が回転磁界の角速度ωを一定角速度ωdまで速くする理由について説明する。
通常運転制御部56は、ロータの角速度ωsを推定するために、電流センサ40の検出電流が零になる毎にそのタイミングT(1)、T(2)、…T(n)、T(n+1)、…T(m)を求める。
このため、例えば、n回目のタイミングT(n)と(n+1)回目のタイミングT(n+1)との間の時間が長いと、ロータの角速度ωを制御する際に遅延が生じる。したがって、三相交流同期電動機のロータの速度を良好に制御することができない。
したがって、通常運転制御部56は、回転磁界の角速度ωが一定角速度ωd以上である状態を維持してロータの回転数の制御することにより、ロータの速度制御の精度を確保することができる。
上述の第1実施形態では、同期制御部54は、インバータ回路20から三相交流電流を720deg以上ステータコイル1に出力させた例を示したが、これに限らず、電気角90deg以上であれば、どのような電気角分の三相交流電流をステータコイル1に出力させるようにしてもよい。
ここで、インバータ回路20から三相交流電流は、電気角360degの整数倍分、ステータコイル1に出力させることが好ましい。これは、コンデンサ30が目標電圧からずれた状態で同期制御部54の制御が終了することを避けるためである。
上述の第1実施形態では、同期制御部54は、波高値が徐々に所定値大きく三相交流電流をステータコイル1に出力させる例を示したが、これに限らず、同期制御部54は、波高値が一定である三相交流電流をステータコイル1に出力させてもよい。
上述の第1実施形態では、同期制御部54は、正極側母線22側のスイッチング素子SW1、SW2、SW3と負極側母線21側のスイッチング素子SW4、SW5、SW6をスイッチング動作させて交流電流をステータコイル1に出力させる例を示したが、これに限らず、同期制御部54は、正極側母線22側のスイッチング素子SW1、SW2、SW3をオフした状態で負極側母線21側のスイッチング素子SW4、SW5、SW6をスイッチング動作させて交流電流をステータコイル1に出力させてもよい。
この場合、まず、図6(a)に示すように、スイッチング素子SW4、SW5をそれぞれオンさせる。このため、高電圧バッテリ3からV相コイル1b、およびW相コイル1cにそれぞれ電流が流れる。このとき、V相コイル1bに発生する磁界とW相コイル1cに発生する磁界との合成磁界が生じる。
次に、スイッチング素子SW4をオフして、図6(b)に示すように、スイッチング素子SW5、SW6をそれぞれオンさせる。このため、高電圧バッテリ3からV相コイル1b、およびU相コイル1aにそれぞれ電流が流れる。このとき、V相コイル1bに発生する磁界とU相コイル1aに発生する磁界との合成磁界が生じる。
その後、スイッチング素子SW5をオフして、図6(c)に示すように、スイッチング素子SW4、SW6をそれぞれオンさせる。このため、高電圧バッテリ3からW相コイル1c、およびU相コイル1aにそれぞれ電流が流れる。このとき、W相コイル1cに発生する磁界とU相コイル1aに発生する磁界との合成磁界が生じる。
その後、図6(a)に示すように、スイッチング素子SW4、SW5をそれぞれオンさせる。
このようにオンさせる2つのスイッチング素子が、スイッチング素子SW4、SW5→スイッチング素子SW5、SW6→スイッチング素子SW4、SW6→スイッチング素子SW4、SW5の順に変更されることになる。
ここで、オンさせる2つのスイッチング素子の変更に伴って、合成磁界が時計回りに回転することになる。これに伴い、ロータが合成磁界に同期して時計回りに回転することになる。
上述の第1実施形態では、初期状態制御部53がコンデンサ30の出力電圧が目標電圧値に到達したと判定するまで制御を実施した例を示したが、これに代えて、コンデンサ30の出力電圧が目標電圧値に到達し、かつコンデンサ30の温度を検出する温度センサを用いてコンデンサ30の温度が所定以上であると判定するまで初期状態制御部53がその制御を実施してもよい。
例えば、コンデンサ30として電解コンデンサを用いた場合において、コンデンサ30の温度が極めて低いときには、コンデンサ30の内部抵抗が極めて小さくなる。このため、コンデンサ30の温度が極めて低い状態で、通常運転制御部56の制御を実施すると、コンデンサ30に大電流が流れる可能性がある。
これに対し、初期状態制御部53が、上述の如く、コンデンサ30の出力電圧が一定電圧に到達し、かつコンデンサ30の温度が所定以上であると判定するまで初期状態制御部53がその制御を実施すれば、コンデンサ30として電解コンデンサを用いた場合でも、通常運転制御部56の制御を実施する際にコンデンサ30に大電流が流れることを抑制できる。
ここで、温度センサを用いないで、初期状態制御部53の制御を実施した時間等を用いてコンデンサ30の温度を推定してもよい。
上述の第1実施形態では、コンデンサ30のプラス電極が正極側母線22に接続されて、コンデンサ30のマイナス電極がステータコイル1の中性点1xに接続された例を示したが、これに限らず、図7に示すように、コンデンサ30のプラス電極を正極側母線22に接続し、コンデンサ30のマイナス電極を負極側母線21に接続してもよい。
上述の第1実施形態では、高電圧バッテリ3のプラス電極がステータコイル1の中性点1xに接続され、高電圧バッテリ3のマイナス電極が負極側母線21に接続された例を示したが、これに代えて、図8、図9に示すように、高電圧バッテリ3のプラス電極を正極側母線22に接続して、かつ高電圧バッテリ3のマイナス電極をステータコイル1の中性点1xに接続してもよい。
この場合、図8に示すように、コンデンサ30のプラス電極を正極側母線22に接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。あるいは、図9に示すように、コンデンサ30のプラス電極をステータコイル1の中性点1xに接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。
このように、高電圧バッテリ3を正極側母線22とステータコイル1の中性点1xとの間に接続した駆動装置10では、コンデンサ30を充電するためにスイッチング素子SW1、SW2…SW6を制御する処理が上述の第1実施形態とは異なるものの、当該処理を除いた制御部53、54、55、56の各処理は、上述の第1実施形態と実質的に同様である。
以下、高電圧バッテリ3を正極側母線22とステータコイル1の中性点1xとの間に接続した駆動装置10においてコンデンサ30を充電するための処理について説明する。
この場合、負極側母線21側のスイッチング素子に代えて、正極側母線22側のスイッチング素子をスイッチング動作させる。
例えば、負極側母線21側のスイッチング素子SW4、SW5、SW6をオフにした状態で、正極側母線22側のスイッチング素子SW1、SW2、SW3のうち例えばスイッチング素子SW1をオンすると、高電圧バッテリ3のプラス電極側から電流がW相コイル1cを通して高電圧バッテリ3のマイナス電極に流れる。これにより、W相コイル1cには磁気エネルギーが蓄積される。
その後、スイッチング素子SW1をオフすると、W相コイル1cに蓄積された磁気エネルギーに基づく電流がコンデンサ30のマイナス電極からダイオードD4を通してW相コイル1cに流れる。すなわち、スイッチング素子SW1のオフに伴って、コンデンサ30のマイナス電極からスイッチング素子SW4をバイパスしてW相コイル1cに流れる電流により、コンデンサ30に電荷が蓄積されることになる。
以上のように、正極側母線22側のスイッチング素子SW1をスイッチング動作させることにより、W相コイル1cに蓄積された磁気エネルギーに基づいてコンデンサ30に電荷を蓄積してコンデンサ30を充電することができる。
なお、高電圧バッテリ3を正極側母線22とステータコイル1の中性点1xとの間に接続した駆動装置10の場合には、スイッチング素子SW1、SW2、SW3が、特許請求の範囲に記載の「電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子」に相当し、スイッチング素子SW4、SW5、SW6が、特許請求の範囲に記載の「残りの母線側のスイッチング素子」に相当する。
(第2実施形態)
上述の第1実施形態では、強制転流制御部の制御に先立って、同期制御部によりステータコイルから発生させる回転磁界にロータを同期させる例を示したが、これに代えて、強制転流制御部の制御に先立って、ステータコイルから発生させる磁界によりロータの位置決め行う本第2実施形態を示す。
図10に本実施形態の駆動装置の回路構成を示す。図10において、図1と同一符号は、同一のものを示し、その説明を省略する。
本実施形態の駆動装置では、図1の同期制御部54に代えて、位置決め制御部54Aが用いられている。
以下、位置決め制御部54Aの制御処理について図11を参照して説明する。
位置決め制御部54Aは、図11のフローチャートにしたがって、制御処理を実行する。
まず、ステップS300Aにおいて、ステータコイル1のV相コイル1bとW相コイル1cに電流を出力させるようにスイッチング素子SW4、SW5のスイッチング出力を設定する。すなわち、電流をステータコイル1に出力させるようにスイッチング素子SW4、SW5をそれぞれオン、或いはオフをさせることになる。
当該電流は、高圧電源3のプラス電極→中性点1x→V相コイル1b→スイッチング素子SW5の順に流れ、さらに中性点1xからW相コイル1cを経由してスイッチング素子SW4側に流れる電流である。
さらに、電流は、その波高値が初期値から半周期(電気角180deg)毎に所定値大きくなる電流である。波高値の初期値としては、磁界に基づいてロータに生じる回転トルクが三相交流同期電動機の負荷側に生じるトルクよりも十分に小さくなる値に設定されている。
次に、ステップS310で電流の実効値が一定値以上であるか否かを判定する。このとき、交流電流の実効値が一定値未満であるときには、ステップS310においてNOと判定してステップS300Aに戻る。
その後、交流電流の実効値が一定値以上になるまでステップS300Aの処理を繰り返す。これに伴い、スイッチング素子SW4、SW5をスイッチング動作させる。
このため、ステータコイル1のV相コイル1bとW相コイル1cに電流が流れる。これに伴い、ステータコイル1のV相コイル1bとW相コイル1cから磁界が発生する。したがって、ロータがV相コイル1bとW相コイル1cから発生する磁界に引き合う。これにより、ロータの位置が決まる。
ここで、負極側母線21側のスイッチング素子SW4、SW5のオフに伴って、初期状態制御部53の制御の場合と同様に、コンデンサ30に電荷が蓄積される。
本実施形態では、一定時間における正極側母線22側のスイッチング素子SW3の正極側比率H1と、一定時間における負極側母線21側のスイッチング素子SW4、SW5の負極側比率H2は、上述の第1実施形態と同様に、コンデンサ30の出力電圧が目標電圧値を維持するように設定されている。
その後、交流電流の実効値が一定値以上になるとステップS310でYESと判定して、位置決め制御部54Aの制御が終了する。
以上説明した本実施形態によれば、位置決め制御部54Aは、ステータコイル1のV相コイル1bとW相コイル1cから発生させる磁界によりロータの位置を決める際に、負極側母線21側のスイッチング素子SW4、SW5をスイッチング動作させるため、上述の如く、コンデンサ30に電荷を蓄積させることができる。
本実施形態の位置決め制御部54Aは、ステータコイル1のV相コイル1bとW相コイル1cから磁界を発生させる際に、波高値が徐々に大きくなる電流をV相コイル1cとW相コイル1cに出力する。このため、ロータを磁界が発生する方向に引き合わせるためのトルクが徐々に大きくなる。これに加えて、波高値の初期値としては、磁界に基づいてロータに生じる回転トルクが三相交流同期電動機の負荷側に生じるトルクよりも十分に小さくなる値に設定されている。したがって、ロータに振動を起こすことなくロータの位置を決めることができる。
上述の第2実施形態では、V相コイル1bとW相コイル1cに電流を流すことにより発生する磁界にロータを引き合わせてロータの位置決めを行う例を示したが、これに限らず、その他の相に電流を流してロータの位置決めを行ってもよい。
上述の第2実施形態では、コンデンサ30のプラス電極が正極側母線22に接続されて、コンデンサ30のマイナス電極がステータコイル1の中性点1xに接続された例を示したが、これに限らず、コンデンサ30のプラス電極を正極側母線22に接続し、コンデンサ30のマイナス電極を負極側母線21に接続してもよい。
上述の第2実施形態では、高電圧バッテリ3のプラス電極がステータコイル1の中性点1xに接続され、高電圧バッテリ3のマイナス電極が負極側母線21に接続された例を示したが、これに代えて、高電圧バッテリ3のプラス電極を正極側母線22に接続して、かつ高電圧バッテリ3のマイナス電極をステータコイル1の中性点1xに接続してもよい。
この場合、コンデンサ30のプラス電極を正極側母線22に接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。あるいは、コンデンサ30のプラス電極をステータコイル1の中性点1xに接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。
このように、高電圧バッテリ3を正極側母線22とステータコイル1の中性点1xとの間に接続した駆動装置10では、コンデンサ30を充電するためにスイッチング素子SW1、SW2…SW6を制御する処理が上述の第2実施形態とは異なるものの、当該処理を除いた制御部53、54A、55、56の各処理は、上述の第2実施形態と実質的に同様である。
(第3実施形態)
上述の第2実施形態では、強制転流制御部に先だって、コンデンサの充電状態を制御する初期状態制御部とロータの位置決めを行う位置決め制御部とを実行させる例を示したが、これに代えて、コンデンサの充電状態を制御しつつロータの位置決めを行う初期状態位置決め制御部を実行させる本第3実施形態を示す。
図12に本実施形態の駆動装置の回路構成を示す。図12において、図10と同一符号は、同一のものを示し、その説明を省略する。
本実施形態の駆動装置では、図7の初期状態制御部53と位置決め制御部54Aに代えて、初期状態位置決め制御部53Aが用いられている。
以下、初期状態位置決め制御部53Aの制御処理について図13、図14を参照して説明する。図13(a)はコンデンサ30の出力電圧の変化を示すタイミングチャート、図13(b)はU相電流iuの変化を示すタイミングチャートである。
初期状態位置決め制御部53Aは、図14のフローチャートにしたがって、制御処理を実行する。
まず、ステップS200Aにおいてスイッチング素子SW4、SW5をそれぞれオンさせる。これに伴い、高電圧バッテリ3のプラス電極側から電流がV相コイル1bおよびW相コイル1cを通してグランド側に流れる。このため、V相コイル1bとW相コイル1cには、電流に基づいて磁気エネルギーが蓄積される。
次のステップS210Aで、電流センサ40で検出される相電流iu、iv、iwに基づいて、相電流iu、iv、iwのそれぞれの絶対値|iu|、|iv|、|iw|が制限電流A以下であるか否かを判定する。制限電流Aは、上述の第1実施形態で示した制限電流Aと同一値が用いられている。
そして、ステップS210Aにおいて、絶対値|iu|、|iv|、|iw|のそれぞれが制限電流A以下であるときには、YESと判定する。
この場合、ステップS220Aにおいて、スイッチング素子SW4、SW5をそれぞれオンしてから所定時間(以下、所定オン時間という)以上経過したか否かを判定する。所定オン時間(図14中所定ON時間と記す)は、予め決められた時間である。
このとき、スイッチング素子SW4、SW5をオンしてから経過した時間が所定オン時間よりも短いときには、ステップS220AでNOと判定して、ステップS220Aの判定処理を繰り返す。
その後、スイッチング素子SW4、SW5をオンしてから所定オン時間以上経過すると、ステップS220AでYESと判定してステップS230Aに進む。
また、上述のステップS210Aにおいて、絶対値|iu|、|iv|、|iw|のうちいずれか1つが制限電流Aより大きいときには、NOと判定してステップS230aに進む。
このようにステップS230Aに進むと、スイッチング素子SW1、SW2、SW3がオフしている状態で、スイッチング素子SW4、SW5をオフさせる。
このとき、スイッチング素子SW4のオフに伴って、磁気エネルギーに基づく電流がW相コイル1cからダイオードD1、および正極側母線22を通してコンデンサ30に流れる。
スイッチング素子SW5のオフに伴って、磁気エネルギーに基づく電流がV相コイル1bからダイオードD2、および正極側母線22を通してコンデンサ30に流れる。
このようにコイル1b、1c側からスイッチング素子SW4、SW5をバイパスして流れる電流によりコンデンサ30に電荷が蓄積される。
次に、ステップS240Aにおいて、スイッチング素子SW4、SW5をオフしてから所定時間(以下、所定オフ時間という)以上経過したか否かを判定する。所定オフ時間(図14中所定OFF時間と記す)は、予め決められた時間である。
このとき、スイッチング素子SW4、SW5をオフしてから経過した時間が所定オフ時間よりも短いときには、ステップS240AでNOと判定して、ステップS240Aの判定処理を繰り返す。その後、スイッチング素子SW4、SW5をオフしてから所定オフ時間以上経過すると、ステップS240AでYESと判定する。
次に、ステップS250Aで、コンデンサ30の出力電圧が目標電圧値以上であるか否かを判定する。具体的には、初期状態位置決め制御部53Aの制御の実行を開始後一定時間以上経過したか否かを判定する。
初期状態位置決め制御部53Aの制御の実行を開始後経過した時間が一定時間より短いときには、コンデンサ30の出力電圧が目標電圧値未満であるとしてステップS250AでNOと判定して、ステップS200Aに戻る。
このため、初期状態位置決め制御部53Aの制御の実行を開始後一定時間以上経過するまで、ステップS200A、S210A、S220A、S230A、S240Aの各処理を繰り返す。このため、スイッチング素子SW4、SW5のスイッチング動作によりコンデンサ30が充電される。このため、コンデンサ30の出力電圧は、図13(a)に示すように、徐々に上昇する。
これに加えて、スイッチング素子SW4、SW5のそれぞれのスイッチング動作に伴って、上述の如く、高電圧バッテリ3の正極側からV相コイル1b側に電流が流れる。このため、V相コイル1bに磁界が発生する。さらに、高電圧バッテリ3の正極側からW相コイル1c側に電流が流れる。このため、W相コイル1cに磁界が発生する。
したがって、W相コイル1cに生じた磁界とV相コイル1bに生じた磁界との合成磁界に対してロータが引き合うことになる。すなわち、前記合成磁界によりロータの位置が決まることになる。
その後、初期状態位置決め制御部53Aの制御の実行を開始後一定時間以上経過すると、ステップS250Aにおいて、コンデンサ30の出力電圧が目標電圧値以上であるとしてYESと判定する。これにより、コンデンサ30の充電状態の制御とロータの位置決めとそれぞれが完了したと判定して、初期状態位置決め制御部53Aの制御が終了する。
上述の第3実施形態では、初期状態位置決め制御部53Aがコンデンサ30の出力電圧が目標電圧値に到達したと判定するまで制御を実施した例を示したが、これに代えて、コンデンサ30の出力電圧が目標電圧値に到達し、かつコンデンサ30の温度を検出する温度センサを用いてコンデンサ30の温度が所定以上であると判定するまで初期状態位置決め制御部53Aがその制御を実施してもよい。これにより、上述の如く、コンデンサ30に大電流が流れることを抑制できる。
上述の第3実施形態では、コンデンサ30のプラス電極が正極側母線22に接続されて、コンデンサ30のマイナス電極がステータコイル1の中性点1xに接続された例を示したが、これに限らず、コンデンサ30のプラス電極を正極側母線22に接続し、コンデンサ30のマイナス電極を負極側母線21に接続してもよい。
上述の第3実施形態では、高電圧バッテリ3のプラス電極がステータコイル1の中性点1xに接続され、高電圧バッテリ3のマイナス電極が負極側母線21に接続された例を示したが、これに代えて、高電圧バッテリ3のプラス電極を正極側母線22に接続して、かつ高電圧バッテリ3のマイナス電極をステータコイル1の中性点1xに接続してもよい。
この場合、コンデンサ30のプラス電極を正極側母線22に接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。あるいは、コンデンサ30のプラス電極をステータコイル1の中性点1xに接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。
このように、高電圧バッテリ3を正極側母線22とステータコイル1の中性点1xとの間に接続した駆動装置10では、コンデンサ30を充電するためにスイッチング素子SW1、SW2…SW6を制御する処理が上述の第3実施形態とは異なるものの、当該処理を除いた制御部53A、55、56の各処理は、上述の第3実施形態と実質的に同様である。
(第4実施形態)
上述の第3実施形態では、強制転流制御部の実行に先立って、コンデンサの充電状態を制御しつつロータの位置決めを行う初期状態位置決め制御部を実行させる例を示したが、これに代えて、コンデンサの充電状態を制御しつつロータを回転させる初期状態同期制御部を実行させる本第4実施形態を示す。
図15に本実施形態の駆動装置の回路構成を示す。図15において、図12と同一符号は、同一のものを示し、その説明を省略する。
本実施形態の駆動装置では、図12の初期状態位置決め制御部53Aに代えて、初期状態同期制御部53Bが用いられている。初期状態同期制御部53Bは、スイッチング動作させるスイッチング素子が異なるだけで、図12の初期状態位置決め制御部53Aと実質的に同様の制御を行う。
初期状態同期制御部53Bは、図6(a)、(b)、(c)に示すように、スイッチング素子SW4、SW5、SW6をスイッチング動作させる。図6(a)、(b)、(c)に示す制御処理は上述しているので、以下、初期状態同期制御部53Bの制御処理の概略について説明する。
初期状態同期制御部53Bは、オンさせる2つのスイッチング素子を、スイッチング素子SW4、SW5→スイッチング素子SW5、SW6→スイッチング素子SW4、SW6→スイッチング素子SW4、SW5の順に変更させる。
ここで、オンさせる2つのスイッチング素子の変更に伴って、上述の如く、ステータコイル1に発生する合成磁界が回転することになる。これに伴い、ロータが合成磁界に同期して時計回りに回転することになる。
また、負極側母線21側のスイッチング素子SW4、SW5、SW6のオフに伴って、上述の初期状態位置決め制御の場合と同様に、コンデンサ30に電荷が蓄積される。そして、初期状態同期制御部53Bは、コンデンサ30の出力電圧が目標電圧値に到達すると判定されるまで制御を実施する。
以上説明した本実施形態によれば、初期状態同期制御部53Bは、スイッチング素子SW4、SW5、SW6をスイッチング動作させることにより、コンデンサ30に電荷を蓄積してコンデンサの充電状態を制御しつつ、ロータを回転磁界に同期させて回転させることができる。
上述の第4実施形態では、初期状態同期制御部53Bがコンデンサ30の出力電圧が目標電圧値に到達したと判定するまで制御を実施した例を示したが、これに代えて、コンデンサ30の出力電圧が目標電圧値に到達し、かつコンデンサ30の温度を検出する温度センサを用いてコンデンサ30の温度が所定以上であると判定するまで初期状態同期制御部53Bがその制御を実施してもよい。これにより、上述の如く、コンデンサ30に大電流が流れることを抑制できる。
上述の第4実施形態では、コンデンサ30のプラス電極が正極側母線22に接続されて、コンデンサ30のマイナス電極がステータコイル1の中性点1xに接続された例を示したが、これに限らず、コンデンサ30のプラス電極を正極側母線22に接続し、コンデンサ30のマイナス電極を負極側母線21に接続してもよい。
上述の第4実施形態では、高電圧バッテリ3のプラス電極がステータコイル1の中性点1xに接続され、高電圧バッテリ3のマイナス電極が負極側母線21に接続された例を示したが、これに代えて、高電圧バッテリ3のプラス電極を正極側母線22に接続して、かつ高電圧バッテリ3のマイナス電極をステータコイル1の中性点1xに接続してもよい。
この場合、コンデンサ30のプラス電極を正極側母線22に接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。あるいは、コンデンサ30のプラス電極をステータコイル1の中性点1xに接続し、かつコンデンサ30のマイナス電極を負極側母線21に接続してもよい。
このように、高電圧バッテリ3を正極側母線22とステータコイル1の中性点1xとの間に接続した駆動装置10では、コンデンサ30を充電するためにスイッチング素子SW1、SW2…SW6を制御する処理が上述の第4実施形態とは異なるものの、当該処理を除いた制御部53B、55、56の各処理は、上述の第4実施形態と実質的に同様である。
上述の各実施形態では、同期電動機として三相交流同期電動機を用いた例を示したが、これに限らず、同期電動機として、4相以上の多相交流同期電動機を用いても良い。
1 ステータコイル
1a U相コイル
1b V相コイル
1c W相コイル
1x 中性点
3 高電圧バッテリ
5 電源スイッチ
10 駆動装置
20 インバータ回路
21 負極側母線
22 正極側母線
30 コンデンサ
40 電流センサ
50 制御回路
51 制御入出力部
52 制御判定部
53 初期状態制御部
54 同期制御部
55 強制転流制御部
56 通常運転制御部
SW1 スイッチング素子
D1 ダイオード

Claims (12)

  1. スター結線されたステータコイルから発生する回転磁界によりロータを回転させる同期電動機の駆動装置であって、
    直列接続された一対のスイッチング素子を多数組有し、正極側母線と負極側母線との間に前記一対のスイッチング素子が多数組、並列接続されているインバータ回路と、
    コンデンサと、
    前記インバータ回路を構成する複数の前記スイッチング素子をスイッチング動作させることにより、電源装置の出力電圧と前記コンデンサの出力電圧とに基づいて交流電流を前記ステータコイルに出力して前記ステータコイルから前記回転磁界を発生させる通常運転制御手段と、
    前記通常運転制御手段の実行開始に先立って、前記複数のスイッチング素子をスイッチング動作させることにより、前記ステータコイルから発生させる回転磁界に前記ロータを同期させて、かつ前記コンデンサの充電状態を制御する初期状態同期制御手段と、
    を備えることを特徴とする同期電動機の駆動装置。
  2. 前記複数のスイッチング素子のそれぞれにはダイオードが逆並列に配置されており、
    前記複数のスイッチング素子は、前記正極側母線に接続された正極側母線側のスイッチング素子と、前記負極側母線側に接続された負極側母線側のスイッチング素子とから構成されており、
    前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子のオフに伴って、残りの母線側のスイッチング素子に逆並列に配置された前記ダイオードを通して前記ステータコイルと前記コンデンサとの間に流れる電流に基づいて前記コンデンサの充電状態を制御することを特徴とする請求項1に記載の同期電動機の駆動装置。
  3. 前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記残りの母線側のスイッチング素子をオフした状態で、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子をスイッチング動作させることにより、前記インバータ回路から出力される交流電流に基づいて前記ステータコイルからの回転磁界を発生させることを特徴とする請求項2に記載の同期電動機の駆動装置。
  4. 前記インバータ回路において、前記一対のスイッチング素子は3組、並列接続されており、
    前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側の3つのスイッチング素子において、オンさせる2つのスイッチング素子を順に変更することによって、ステータコイルから回転磁界を発生させることをことを特徴とする請求項3に記載の同期電動機の駆動装置。
  5. 前記初期状態同期制御手段は、オンさせる2つのスイッチング素子を所定オン時間オンさせる第1の手段と、前記2つのスイッチング素子を所定オフ時間オフさせる第2の手段と、を備え、前記第1の手段により前記2つのスイッチング素子を所定オン時間オンさせ、この後、前記第2の手段により前記2つのスイッチング素子を所定オフ時間オフさせることを、繰り返すことによって前記コンデンサの充電を行うことを特徴とする請求項4に記載の同期電動機の駆動装置。
  6. 前記初期状態同期制御手段は、前記正極側母線側のスイッチング素子と前記負極側母線側のスイッチング素子とのうち、前記電源装置のプラス電極およびマイナス電極のうちいずれか一方が接続された母線側のスイッチング素子をオンさせているときに前記ステータコイルに流れる電流を制限電流以下にすることを特徴とする請求項2ないし4のいずれか1つに記載の同期電動機の駆動装置。
  7. 前記初期状態同期制御手段は、前記コンデンサの出力電圧が一定電圧に到達したと判定されるまで前記充電状態の制御を実施することを特徴とする請求項1ないし6のいずれか1つに記載の同期電動機の駆動装置。
  8. 前記初期状態同期制御手段は、前記コンデンサの出力電圧が一定電圧に到達し、かつ前記コンデンサの温度が所定以上であると判定するまで前記充電状態の制御を実施することを特徴とする請求項1ないし6のいずれか1つに記載の同期電動機の駆動装置。
  9. 前記コンデンサのプラス電極は、前記正極側母線に接続され、前記コンデンサのマイナス電極は、前記負極側母線と前記ステータコイルの中性点とのうちいずれか一方に接続されており、
    前記電源装置のプラス電極は、前記中性点に接続され、前記電源装置のマイナス電極は、前記負極側母線に接続されていることを特徴とする請求項1ないし8のいずれか1つに記載の同期電動機の駆動装置。
  10. 前記コンデンサのプラス電極は、前記正極側母線と前記ステータコイルの中性点とのうちいずれか一方に接続され、前記コンデンサのマイナス電極は、前記負極側母線に接続されており、
    前記電源装置のプラス電極は、前記正極側母線に接続され、前記電源装置のマイナス電極は、前記中性点に接続されていることを特徴とする請求項1ないし8のいずれか1つに記載の同期電動機の駆動装置。
  11. 前記通常運転制御手段の実行開始前で、かつ前記初期状態同期制御手段の実行終了後に、前記ロータの回転速度を一定速度まで上昇させる電流を前記インバータ回路から前記ステータコイルに出力させるように前記インバータ回路を構成する前記複数のスイッチング素子をスイッチング動作させる強制転流制御手段を備えることを特徴とする請求項1ないし10のいずれか1つに記載の同期電動機の駆動装置。
  12. 前記インバータ回路から前記ステータコイルに流れる電流を検出する電流センサを備え、
    前記通常運転制御手段は、前記電流センサにより検出された電流に基づいて前記ロータの回転数を推定するとともに、この推定された回転数に基づいて前記ロータの回転数を目標回転数に近づけるように前記複数のスイッチング素子をスイッチング動作させることを特徴とする請求項1ないし11のいずれか1つに記載の同期電動機の駆動装置。
JP2010034646A 2008-03-18 2010-02-19 同期電動機の駆動装置 Expired - Fee Related JP4983938B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010034646A JP4983938B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008069465 2008-03-18
JP2008069465 2008-03-18
JP2010034646A JP4983938B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009008488A Division JP4708483B2 (ja) 2008-03-18 2009-01-19 同期電動機の駆動装置

Publications (2)

Publication Number Publication Date
JP2010110214A JP2010110214A (ja) 2010-05-13
JP4983938B2 true JP4983938B2 (ja) 2012-07-25

Family

ID=42299075

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010034646A Expired - Fee Related JP4983938B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置
JP2010034645A Expired - Fee Related JP5168299B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置
JP2010034647A Expired - Fee Related JP4983939B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2010034645A Expired - Fee Related JP5168299B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置
JP2010034647A Expired - Fee Related JP4983939B2 (ja) 2008-03-18 2010-02-19 同期電動機の駆動装置

Country Status (1)

Country Link
JP (3) JP4983938B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175046A1 (ja) 2013-04-22 2014-10-30 富士電機株式会社 電力変換装置及びその制御方法
JP5991279B2 (ja) * 2013-07-18 2016-09-14 トヨタ車体株式会社 モータ駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0937587A (ja) * 1995-07-24 1997-02-07 Toshiba Corp 空気調和機の駆動装置
JP4639429B2 (ja) * 2000-04-20 2011-02-23 パナソニック株式会社 インバータ装置
JP4365010B2 (ja) * 2000-06-30 2009-11-18 トヨタ自動車株式会社 動力出力装置
JP3776102B2 (ja) * 2003-11-05 2006-05-17 松下冷機株式会社 ブラシレスモータ制御装置
JP2005184947A (ja) * 2003-12-18 2005-07-07 Nissan Motor Co Ltd インバーター制御装置
JP4661535B2 (ja) * 2005-11-08 2011-03-30 株式会社明電舎 同期電動機の再始動方式
JP4807058B2 (ja) * 2005-11-10 2011-11-02 パナソニック株式会社 車両用電源装置
JP4906369B2 (ja) * 2006-02-28 2012-03-28 株式会社日立製作所 同期モータの制御方法および装置
JP4925181B2 (ja) * 2006-03-09 2012-04-25 国立大学法人長岡技術科学大学 電力システム

Also Published As

Publication number Publication date
JP2010110214A (ja) 2010-05-13
JP2010142112A (ja) 2010-06-24
JP4983939B2 (ja) 2012-07-25
JP2010110215A (ja) 2010-05-13
JP5168299B2 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP4708483B2 (ja) 同期電動機の駆動装置
JP6285256B2 (ja) 電力変換装置
US6787931B2 (en) Starter generator for internal combustion engine
JP5967299B2 (ja) 電力変換装置及びその制御方法
JP4561865B2 (ja) 同期電動機の駆動装置
JP4483911B2 (ja) 車両用回転電機
US20120206076A1 (en) Motor-driving apparatus for variable-speed motor
US20150091481A1 (en) Power converting device and power converting system
US9762156B2 (en) Control apparatus for rotating electric machine
EP3651353B1 (en) Inverter control device
JP6693319B2 (ja) 回転電機の制御装置
JP5784553B2 (ja) 電力変換装置
JP4983938B2 (ja) 同期電動機の駆動装置
JP2002291256A (ja) 動力出力装置
JP6392464B2 (ja) 車両用駆動装置、車両用駆動システム、および、車両用駆動装置の制御方法
JP6547672B2 (ja) 電動機装置
TWI425762B (zh) Power generation control method
JP2021065074A (ja) モータ制御装置
JP2003209999A (ja) モータ制御装置
JP7329487B2 (ja) 電力変換装置
WO2016163458A1 (ja) 電動発電機装置
US20220278621A1 (en) Power conversion apparatus
JP6541844B1 (ja) 回転電機の制御装置
JP6091571B1 (ja) 回転電機、及び回転電機の制御方法
JP2023123084A (ja) 回転電機の制御装置、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R151 Written notification of patent or utility model registration

Ref document number: 4983938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees