JP4964764B2 - ナノスケール製造のためのボディの動きを制御する方法およびシステム - Google Patents

ナノスケール製造のためのボディの動きを制御する方法およびシステム Download PDF

Info

Publication number
JP4964764B2
JP4964764B2 JP2007515426A JP2007515426A JP4964764B2 JP 4964764 B2 JP4964764 B2 JP 4964764B2 JP 2007515426 A JP2007515426 A JP 2007515426A JP 2007515426 A JP2007515426 A JP 2007515426A JP 4964764 B2 JP4964764 B2 JP 4964764B2
Authority
JP
Japan
Prior art keywords
template
axes
inner frame
movement
outer frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007515426A
Other languages
English (en)
Other versions
JP2008501245A (ja
Inventor
チョイ,ビュン−ジン
スリニーヴァッサン,シトルガタ・ヴイ
Original Assignee
モレキュラー・インプリンツ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モレキュラー・インプリンツ・インコーポレーテッド filed Critical モレキュラー・インプリンツ・インコーポレーテッド
Publication of JP2008501245A publication Critical patent/JP2008501245A/ja
Application granted granted Critical
Publication of JP4964764B2 publication Critical patent/JP4964764B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/585Measuring, controlling or regulating detecting defects, e.g. foreign matter between the moulds, inaccurate position, breakage
    • B29C2043/5858Measuring, controlling or regulating detecting defects, e.g. foreign matter between the moulds, inaccurate position, breakage for preventing tilting of movable mould plate during closing or clamping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20341Power elements as controlling elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20341Power elements as controlling elements
    • Y10T74/20348Planar surface with orthogonal movement and rotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20341Power elements as controlling elements
    • Y10T74/20354Planar surface with orthogonal movement only

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Transmission Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

本発明の分野は一般にオリエンテーション・デバイスに関する。より詳細には、本発明は、インプリント・リソグラフィにおける使用に適したオリエンテーション・ステージおよびオリエンテーション・ステージを利用する方法を対象としている。
微細加工には、たとえばマイクロメートル以下の程度のフィーチャを有する極めて微小な構造の加工が必要である。微細加工が大きな影響を及ぼした分野の1つは、集積回路の処理分野である。半導体処理産業では、製造歩留りをより大きくし、かつ、基板に形成される単位面積当たりの回路を増すための努力が継続しているため、微細加工は、ますます重要になっている。微細加工によって、より優れたプロセス制御が提供され、かつ、形成される構造の最小フィーチャ寸法がさらに縮小される。微細加工が使用されている開発の他の分野には、生物工学、光学技術、機械システムなどがある。
例示的な微細加工技法は、一般にインプリント・リソグラフィと呼ばれており、「METHOD AND A MOLD TO ARRANGE FEATURES ON A SUBSTRATE TO REPLICATE FEATURES HAVING MINIMAL DIMENSIONAL VARIABILITY」という名称の米国特許出願公開第2004/0065976号、「METHOD OF FORMING A LAYER ON A SUBSTRATE TO FACILITATE FABRICATION OF METROLOGY STANDARDS」という名称の米国特許出願公開第2004/0065252号、「METHOD AND A MOLD TO ARRANGE FEATURES ON A SUBSTRATE TO REPLICATE FEATURES HAVING MINIMAL DIMENSIONAL VARIABILITY」という名称の米国特許出願公開第2004/0046271号などの多くの刊行物に詳細に記載されている。これらはすべて本発明の譲受人に譲渡されたものである。上述の特許出願公開の各々に示されている例示的なインプリント・リソグラフィ技法には、重合が可能な層へのレリーフ・パターンの形成や、下を覆っている基板へのレリーフ・パターンの転写、基板へのレリーフ画像の形成が含まれている。そのために、テンプレートを使用して、基板の上に存在している成形可能な液体に接触させている。この液体が凝固して、テンプレートの表面の形状と一致するパターンが記録された凝固層が形成される。次に、基板と凝固層に転写処理が施され、凝固層のパターンに対応するレリーフ画像が基板に転写される。
基板とテンプレートの間の適切な配向を得るためには、テンプレートと基板を適切に整列させることが望ましい。そのために、オリエンテーション・ステージは、通常、インプリント・リソグラフィ・システムと共に使用されている。Baileyらに対する米国特許第6,696,220号に、例示的なオリエンテーション・デバイスが示されている。このオリエンテーション・ステージは、インプリントされるべき基板の周りのテンプレートの較正と配向を容易にしている。オリエンテーション・ステージは、案内シャフトを備えた頂部フレームと中央フレームを備えており、それらの間にスライダが配置されている。ベース・プレートを有するハウジングが中央フレームに結合されており、案内シャフトの周りをスライダが移動して、ハウジングに結合されたテンプレートの垂直方向の並進を提供している。ベース・プレートとたわみリングの間に複数のアクチュエータが結合されている。これらのアクチュエータは、たわみリングの動きが得られるように制御することができ、したがってたわみリングの垂直方向の動きによって、テンプレートと基板の間に形成されるギャップを制御することができる。
したがって、改良型オリエンテーション・ステージおよび改良型オリエンテーション・ステージを利用する方法が提供されることが望ましい。
本発明は、間隔を隔てた2つの軸に対する角度的な動きを駆動システムに与えることによって延びる平面内におけるボディの並進動きを特徴とする、駆動システムに結合されたボディの動きを制御する方法およびシステムを対象としている。詳細には、一方の平面がボディが並進する平面に平行に延びる、間隔を隔てた2つの平面内における回転動きが生成される。したがって、ボディから間隔を隔てた表面に対するボディの適切な配向が容易になる。以下、これらおよび他の実施形態について、より詳細に説明する。
図1を参照すると、オリエンテーション・ステージ10は、外側フレーム14の近傍に配置された内側フレーム12、たわみリング16、コンプライアント・デバイス18を有している。コンプライアント・デバイス18については、以下でより詳細に説明する。オリエンテーション・ステージ10のコンポーネントは、適切な任意の材料、たとえばアルミニウム、ステンレス鋼などから形成することができ、ねじが切られたファスナ(図示せず)などの適切な任意の手段を使用して1つに結合させることができる。テンプレート・チャック20は、図2により明確に示されているオリエンテーション・ステージ10に結合されている。詳細には、テンプレート・チャック20は、コンプライアント・デバイス18に結合されている。テンプレート・チャック20は、図1に示すテンプレート22を支持するように構成されている。参照により本明細書に組み込まれている、本発明の譲受人に譲渡された、「Chuck System for Modulating Shapes of Substrate」という名称の米国特許公告第2004/0090611号に、例示的なテンプレート・チャックが開示されている。テンプレート・チャック20は、テンプレート・チャック20の四隅をテンプレート・チャック20の近傍に位置しているコンプライアント・デバイス18の四隅に結合され、ねじが切られたファスナ(図示せず)などの適切な任意の手段を使用してコンプライアント・デバイス18に結合されている。
図1、2を参照すると、内側フレーム12は、面25によって取り囲まれた中央通路24を有しており、外側フレーム14は、中央通路24と重畳している中央開口26を有している。たわみリング16の形状は環状であり、たとえば円形または楕円形である。たわみリング16は、内側フレーム12と外側フレーム14に結合されており、中央通路24と中央開口26の両方の外側に位置している。詳細には、たわみリング16は、領域28、30、32で内側フレーム12に結合され、領域34、36、38で外側フレーム14に結合されている。領域34は、領域28、30の間に、それらから等距離で配置されている。領域36は、領域30、32の間に、それらから等距離で配置されている。また、領域38は、領域28、32の間に、それらから等距離で配置されている。この方法によれば、たわみリング16は、コンプライアント・デバイス18、テンプレート・チャック20、テンプレート22を取り囲み、かつ、内側フレーム12を外側フレーム14に固定して取り付けることができる。コンプライアント・デバイス18の四隅27は、ねじが切られたファスナ(図示せず)を使用して面25に取り付けられている。
オリエンテーション・ステージ10は、テンプレート22の動きを制御し、かつ、基準面(図示せず)に対する所望の空間関係でテンプレート22を配置するように構成されている。そのために、複数のアクチュエータ40、42、44が、外側フレーム14と内側フレーム12の間に、オリエンテーション・ステージ10の周りに間隔を隔てて接続されている。アクチュエータ40、42、44は、それぞれ第1の端部46と第2の端部48を有している。アクチュエータ40の第1の端部46は外側フレーム14と対向し、第2の端部48は内側フレーム12と対向している。アクチュエータ40、42、44は、3つの軸Z1、Z2、Z3に沿った内側フレーム12の並進動きを容易にすることによって内側フレーム12を外側フレーム14に対して傾斜させている。オリエンテーション・ステージ10は、軸Z1、Z2、Z3の周りの約±1.2mmの動き範囲を提供することができる。この方法によれば、アクチュエータ40、42、44は、内側フレーム12に、コンプライアント・デバイス18、延いてはテンプレート22とテンプレート・チャック20の両方に、複数の軸T1、T2、T3のうちの1つまたは複数の周りの角度的な動きをさせることができる。詳細には、軸Z2、Z3に沿った内側フレーム12と外側フレーム14の間の距離を短くし、かつ、軸Z1に沿ったそれらの間の距離を長くすることにより、傾斜軸T2の周りの第1の方向の角度的な動きが生じる。軸Z2、Z3に沿った内側フレーム12と外側フレーム14の間の距離を長くし、かつ、軸Z1に沿ったそれらの間の距離を短くすることにより、傾斜軸T2の周りの、第1の方向とは逆の第2の方向の角度的な動きが生じる。同様の方法で、内側フレーム12が、軸Z3に沿って逆方向に、軸Z1、Z2に沿った移動の2倍の距離を移動している間に、内側フレーム12を軸Z1、Z2に沿って同じ方向に、同じ大きさで移動させることによって内側フレーム12と外側フレーム14の間の距離を変更することにより、軸T1の周りの角度的な動きが生じる。同様に、内側フレーム12が、軸Z2に沿って逆方向に、軸Z1、Z3に沿った移動の2倍の距離を移動している間に、内側フレーム12を軸Z1、Z3に沿って同じ方向に、同じ大きさで移動させることによって内側フレーム12と外側フレーム14の間の距離を変更することにより、軸T3の周りの角度的な動きが生じる。アクチュエータ40、42、44は、±200Nの最大動作力を有することができる。オリエンテーション・ステージ10は、軸T1、T2、T3の周りの約±0.15°の動き範囲を提供することができる。
アクチュエータ40、42、44は、機械部品が最少になり、したがって不均一な機械コンプライアンスと微粒子の原因による摩擦が最小化されるよう選択される。アクチュエータ40、42、44の例には、ボイス・コイル・アクチュエータ、圧電アクチュエータ、リニア・アクチュエータがある。アクチュエータ40、42、44の例示的実施形態は、California州Sylmar在所のBEI TechnologiesからLA24−20−000Aの商品名で入手することができる。また、アクチュエータ40、42、44は、内側フレーム12と外側フレーム14の間に、それらの周りに対称になるように結合されており、中央通路24と中央開口26の外側に位置している。このような構成により、外側フレーム14からコンプライアント・デバイス18まで、障害物のない通路が構成される。また、構造が対称であるため、動的振動や不均一な熱ドリフトが最小化され、それにより内側フレーム12の微小動き修正が提供される。
内側フレーム12、外側フレーム14、たわみリング16、アクチュエータ40、42、44の組合せによってコンプライアント・デバイス18の角度的な動きが提供され、延いては傾斜軸T1、T2、T3の周りのテンプレート・チャック20、テンプレート22の角度的な動きが提供される。しかしながら、テンプレート22には、完全に直角ではないとしても、軸Z1、Z2、Z3に対して横方向に延びている平面に存在している軸に沿った並進動きが付与されることが望ましい。これは、テンプレート、テンプレート・チャック、コンプライアント・デバイスを組み立てる際にテンプレートの面に存在する、傾斜軸T1、T2、T3とは間隔を隔てた、図のC1、C2で示す複数のコンプライアンス軸のうちの1つまたは複数の軸の周りの角度的な動きをテンプレート22に付与する機能をコンプライアント・デバイス18に提供することによって達成される。
図3、4を参照すると、コンプライアント・デバイス18は、サポート・ボディ50、複数のたわみアーム54、56、58、60、向かい合ってサポート・ボディ50に結合されたフローティング・ボディ52を備えている。テンプレート・チャック20は、従来の締付け手段を介してフローティング・ボディ52に取り付けるように意図されており、テンプレート22は、従来の方法を使用したチャックによって保持されている。
たわみアーム54、56、58、60は、それぞれ第1のセットと第2のセットのたわみ継手62、64、66、68を備えている。説明を分かり易くするために、たわみアーム56に関連して第1のセットと第2のセットのたわみ継手62、64、66、68について説明するが、この説明は、たわみアーム56、58、60と結合しているたわみ継手のセットについても等しく適用される。必ずしもその必要はないが、コンプライアント・デバイス18は、ソリッド・ボディ、たとえばステンレス鋼から形成されている。したがって、サポート・ボディ50とフローティング・ボディ52、たわみアーム54、56、58、60は一体形成されており、第1のセットと第2のセットのたわみ継手62、64、66、68と向かい合って、一体として回転結合されている。サポート・ボディ50は、中央に配置された通路70を備えている。フローティング・ボディは、中央に配置された、通路70と重畳している開口72を備えている。たわみアーム54、56、58、60は、それぞれその両端に端部74、76を備えている。個々のたわみアーム54、56、58、60の端部74は、たわみ継手66、68を介してサポート・ボディ50に接続されている。端部74は、通路70の外側に位置している。個々のたわみアーム54、56、58、60の端部76は、たわみ継手62、64を介してフローティング・ボディ52に接続されている。端部76は、開口72の外側に位置している。
図4、5を参照すると、たわみ継手62、64、66、68は、それぞれ、端部74、76の近傍、つまりサポート・ボディ50またはフローティング・ボディ52のいずれか一方と、たわみアーム54、56、58、60のうちの1つとの界面に、デバイス18から変形させた材料によって形成されている。そのために、たわみ継手62、64、66、68は、デバイス18を機械加工し、レーザ切断し、あるいは他の適切な処理を施すことによって形成されている。詳細には、継手64、66は、対向する2つの面80、82を有するたわみ部材78から形成されている。面80、82の各々は、それぞれ隙間84、86を備えている。隙間84は、隙間86とは反対の方向に向いて配置されており、また、隙間86は、隙間84とは反対の方向に向いている。面80から遠ざかる方向に隙間86から延びているギャップ88は、たわみアーム56の周囲の開口の中で終端している。継手62、68も、対向する2つの面92、94を有するたわみ部材90から形成されている。面92、94の各々は、それぞれ隙間96、98を備えている。隙間98は、面92に向かって配置されており、隙間98は、面94とは反対の方向に向いている。ギャップ100は、面92から遠ざかる方向に隙間98から延びており、ギャップ102は、隙間98から延びている。ギャップ88、100、102の間隔S1、S2、S3は、サポート・ボディ50とフローティング・ボディ52のいずれかの間で相対動きが生じることになる動き範囲をそれぞれ決めている。
図3、5を参照すると、たわみアーム56、58のたわみ継手62と結合しているたわみ部材90は、軸104の周りの回転を容易にしており、また、たわみアーム56、58の継手66と結合しているたわみ部材78は、軸106の周りの回転を容易にしている。たわみアーム54、60のたわみ継手62と結合しているたわみ部材90は、軸108の周りの回転を容易にしており、また、たわみアーム54、60のたわみ継手66と結合しているたわみ部材78は、軸110の周りの回転を容易にしている。たわみアーム54、56のたわみ継手64と結合しているたわみ部材78は、軸112の周りの回転を容易にしており、また、たわみアーム54、56のたわみ継手68と結合しているたわみ部材90は、軸114の周りの回転を容易にしている。たわみアーム58、60の継手64と結合しているたわみ部材78は、軸116の周りの回転を容易にしており、また、たわみアーム58、60のたわみ継手68と結合しているたわみ部材90は、軸118の周りの回転を容易にしている。
したがって、たわみアーム54、56、58、60は、それぞれ、回転軸のグループがオーバラップする前記デバイス18の領域に配置されている。たとえば、たわみアーム54の端部74は、軸110、114がオーバラップする領域に配置されており、端部76は、軸108、112がオーバラップする領域に配置されている。たわみアーム56の端部74は、軸106、114がオーバラップする領域に配置されており、端部76は、軸110、112がオーバラップする領域に配置されている。たわみアーム58の端部74は、軸106、118がオーバラップする領域に配置されており、端部76は、軸104、116がオーバラップする領域に配置されている。同様に、たわみアーム60の端部74は、軸110、118がオーバラップする領域に配置されており、端部76は、軸108、116がオーバラップする領域に配置されている。
この構成の結果として、たわみアーム54、56、58、60は、それぞれ、サポート・ボディ50とフローティング・ボディ52に対して、軸がオーバラップしている2つのグループ(第1のグループがもう1つのグループに対して横方向に延びている)の周りの相対回転動きを提供するように結合されている。したがって、たわみアーム54、56、58、60の各々に、直交する軸の2つのグループの周りの動きが提供され、かつ、これらのたわみアームのフットプリントが最小化される。デバイス18は、上記軸の上方に、約±0.04°の傾斜動き範囲、約±0.02°のアクティブ傾斜動き範囲、約±0.0005°のアクティブ・シータ動き範囲を提供することができる。さらに、たわみアーム54、56、58、60の個々のフットプリントが小さくなるため、たわみアーム54、56、58、60によって妨害されない空隙120を通路70と開口72の間に残すことができる。したがってデバイス18は、インプリント・リソグラフィ・システムとの使用に適している。これについては、以下でより詳細に説明する。
3、4、6、7を参照すると、サポート・ボディ50とフローティング・ボディ52に対するたわみアーム54、56、58、60のこの構成は、デバイス18の荷重の平行伝達を容易にしている。たとえば、サポート・ボディ50に荷重力が付与されると、個々のたわみアーム54、56、58、60は、実質的に同じ大きさの力F1 をフローティング・ボディ52に付与する。これは、とりわけ、力F1 またはF2 のいずれかが付与された場合の、デバイス18を使用した所望の構造剛性の達成を容易にしている。そのために、たわみ継手62、64、66、68は回転継手であり、たわみとサポート・ボディ50またはフローティング・ボディ52のいずれかとの間の、回転動きを除くあらゆる方向の動きが最小化される。詳細には、たわみ継手62、64、66、68は、たわみアーム54、56、58、60、サポート・ボディ50、フローティング・ボディ52の間の並進動きを最小化し、かつ、軸104、106、108、110、112、114、116、118の周りの回転動きを容易にしている。
3、4、5、6、7を参照すると、軸104、106、108、110の相対位置は、フローティング・ボディ52から間隔を隔てたフローティング・ボディ52の開口72の中心下方に、軸104、108からと軸106、110とから等距離に位置している位置122に、第1のリモート・センタ・コンプライアンス(RCC)を提供している。同様に、軸112、116からと軸114、118とから等距離の位置には、前記フローティング・ボディ52の、位置122の実質的に近くに第2のRCCを提供している。この第2のRCCは、位置122に位置していることが望ましい。軸112、114間と、軸116、118間とは、それぞれ等距離に位置している。軸104、106、108、110のグループの軸は、それぞれ、そのグループの残りの軸104、106、108、110に対して平行に延びている。同様に、軸112、114、116、118のグループの軸は、それぞれ、そのグループの残りの軸112、114、116、118に対して平行に延び、かつ前記軸104、106、108、110の各々に対して直角に延びている。軸110は、第1の方向に沿って、軸108からd1 の距離だけ間隔を隔てており、また、直交する第2の方向に沿って、軸108からd2 の距離だけ間隔を隔てている。軸104は、第1の方向に沿って、軸106からd3 の距離だけ間隔を隔てており、また、第2の方向に沿って、軸106からd4 の距離だけ間隔を隔てている。軸112は、第1と第2の両方の方向に直交している第3の方向に沿って、軸114からd5 の距離だけ間隔を隔てており、また、第2の方向に沿って、軸114からd6 の距離だけ間隔を隔てている。軸116は、第2の方向に沿って、軸118からd 7 の距離だけ間隔を隔てており、また、第3の方向に沿って、軸118からd8 の距離だけ間隔を隔てている。距離d1 、d4 、d6 7 は、実質的に同じ距離である。距離d2 、d3 、d5 、d8 は、実質的に同じ距離である。
横方向に延びている複数の軸の2つのセットは、それらの交点にRCC122が位置していると見なすことができるよう、距離d1 〜d8 を適切に確立することによって実質的に極めて近くに配置することができる。4つの軸が含まれている第1のセットは、124、126、128、130で示されている。たわみアーム54のたわみ継手62、66は、軸124に沿って位置しており、たわみアーム56のたわみ継手62、66は、軸126に沿って位置している。たわみアーム58のたわみ継手62、66は、軸128に沿って位置しており、たわみアーム60のたわみ継手62、66は、軸130に沿って位置している。4つの軸の第2のセットは、132、134、136、138で示されている。たわみアーム56のたわみ継手64、68は、軸132に沿って位置しており、たわみアーム58のたわみ継手64、68は、軸134に沿って位置している。たわみアーム60のたわみ継手64、68は、軸136に沿って位置しており、たわみアーム54のたわみ継手64、68は、軸138に沿って位置している。この構成により、RCC122に対する、軸124、126、128、130、132、134、136、138のセットのうちの任意の1つの周りのフローティング・ボディ52の動きが、残りの軸124、126、128、130、132、134、136、138の周りの動きから結合解除される。したがって、RCC122に対するフローティング・ボディ52のジンバル様の動きが提供され、この構造の剛性によって、完全には防止することはできないとしても、軸124、126、128、130、132、134、136、138に対するフローティング・ボディの並進動きが抑制される。
図4、10を参照すると、本発明の代替実施形態によれば、デバイス18は、デバイス18と共に示されている能動コンプライアンス機能を備えることができる。そのために、複数のレバー・アーム140、142、146、148がフローティング・ボディ52に結合されている。これらのレバー・アームは、サポート・ボディ50に向かって延び、アクチュエータのピストンの近傍で終端している。図に示すように、レバー・アーム140の一方の端部は、アクチュエータ150のピストンの近傍に配置され、レバー・アーム142の一方の端部は、アクチュエータ152のピストンの近傍に配置され、レバー・アーム146の一方の端部は、アクチュエータ154のピストンの近傍に配置され、また、アクチュエータ・アーム148の一方の端部は、アクチュエータ・アーム118に結合されたアクチュエータ156のピストンの近傍に配置されている。アクチュエータ150、152、154、156の適切なセットを起動することにより、サポート・ボディ50に対するフローティング・ボディ52の相対位置の角位置決めを達成することができる。アクチュエータ150、152、154、156の例示的実施形態は、California州Sylmar在所のBEI TechnologiesからLA10−12−027Aの商品名で入手することができる。
アクチュエータ150、152、154、156を起動することにより、サポート・ボディ50に対するフローティング・ボディ52の回転動きを提供することができる。たとえば、アクチュエータ150を起動することにより、レバー・アーム140をF1の方向に沿って移動させることができ、また、アクチュエータ154を操作することにより、レバー・アーム146をレバー・アーム140が移動する方向とは逆の方向に移動させることができる。同様に、アクチュエータ152、156のうちの少なくともいずれか一方を起動することにより、それぞれレバー・アーム142、148を移動させることができる。アクチュエータ152、156の両方を起動すると、レバー・アーム140、142、146、148の各々が、たわみアーム54、56、58、60のうちの1つに向かって移動する(レバー・アーム140、142、146、148は、それぞれ異なるたわみアーム54、56、58、60に向かって移動する)。たとえば、レバー・アーム140はたわみアーム54に向かって移動し、レバー・アーム142はたわみアーム56に向かって移動し、レバー・アーム146はたわみアーム58に向かって移動し、レバー・アーム142はたわみアーム60に向かって移動する。この移動により、F3の方向の周りの回転動きが付与される。しかしながら、レバー・アーム140、142、146、148は、それぞれ逆の方向に移動させることも可能であることを理解されたい。F3の方向の周りの回転動きを付与している間、F3の方向に沿った、サポート・ボディ50とフローティング・ボディ52の間の並進変位を防止することが望ましい場合、レバー・アーム140、142、146、148をそれぞれ同じ大きさで移動させることができる。しかしながら、F1方向とF2方向の周りのフローティング・ボディ52の回転動きを付与することが望ましい場合、様々な方法で達成することができる。
フローティング・ボディ52の回転動きは、第1と第2のRCCによって案内されるため、F3方向に沿った並進によって、サポート・ボディに対するフローティング・ボディ52の独立した2つの角度構成を能動的に調整することができる。たとえば、レバー・アーム140、142、146、148の各々をそれぞれアクチュエータ150、152、154、156を使用して移動させることにより、F3方向の周りに角変位させている間、F3方向に沿ったフローティング・ボディ52の並進に異なる量を与えることができる。また、レバー・アーム140、142、146、148のうちの3つだけを移動させることにより、F3方向の周りに角変位させている間、F3方向の周りの並進動きを与えることができる。サポート・ボディ50とフローティング・ボディ52の間に、それらの間に回転動きを付与することなく並進動きを提供することが望ましい場合、アクチュエータ150、152、154、156のうちの2つを起動して、レバー・アーム140、142、146、148のうちの2つを移動させることができる。一例として、対向する2つのレバー・アーム、たとえば140と146または142と148を同じ方向に、同じ大きさで移動させることができる。レバー・アーム140、146をそれぞれ1つの方向、たとえばたわみアーム60、58に向かって移動させることにより、フローティング・ボディ52の面全体がたわみアーム58、60の間を延び、それによりフローティング・ボディ52の面と重畳しているサポート・ボディ50の面からの距離が長くなり、事実上、フローティング・ボディ16のF2方向の周りの回転動きが生成される。たわみアーム56、54の間を延びているフローティング・ボディ52の面と、フローティング・ボディ52の面と重畳しているサポート・ボディ50の面との間の距離は短くなる。一方、レバー・アーム140、146を逆方向、たとえばたわみアーム54、56に向かって移動させることにより、フローティング・ボディ52の面全体がたわみアーム58と60の間を延び、それによりサポート・ボディ50の面からの距離が短くなる。たわみアーム58と60の間を延びているフローティング・ボディ52の面と、フローティング・ボディ52の面と重畳しているサポート・ボディ50の面との間の距離は長くなる。同様に、フローティング・ボディ52のF1方向の周りの回転動きは、レバー・アーム140、146の移動に関連して上で説明したように、レバー・アーム142、148をそれぞれアクチュエータ152、156を使用して移動させることによって達成することができる。所望の動きを達成するために、上記レバー・アームの移動を任意に線形結合することができることを理解されたい。
以上の説明から、フローティング・ボディ52のF1、F2、F3方向の周りの回転動きは、互いに直交していることが分かる。アクチュエータ150、152、154、156の個々の駆動力の大きさまたはアクチュエータの位置を調整することにより、たわみアーム54、56、58、60とフローティング・ボディ52とサポート・ボディ50の構造的な剛直性によって、F1、F2、F3方向の周りのあらゆる結合すなわち回転動きが制限される。
図1、11、12を参照すると、オリエンテーション・ステージ10は、その動作の点で、通常、インプリント・リソグラフィ・システム(図示せず)と共に使用される。例示的なリソグラフィ・システムは、Texas78758、Austin、Suite100、Braker Lane1807−Cに事業所を構えているMolecular Imprints社から、IMPRIO(商標)250の商品名で入手することができる。IMPRIO 100(商標)のシステムの説明については、参照により本明細書に組み込まれているwww.molecularimprints.comを参照されたい。したがって、オリエンテーション・ステージ10を使用することにより、テンプレート22と、テンプレート22に重畳している面、たとえば基板158の面を容易に整列させることができる。したがって基板158の面は、基板158が形成される材料、たとえば天然酸化物が存在しているケイ素からなっていても、あるいはたとえば導電材料、誘電材料などのパターン化層または非パターン化層からなっていてもよい。
図に示すテンプレート22と基板158は、一定の距離で間隔を隔てており、それらの間にギャップ160を形成している。ギャップ160と結合している体積は、基板と対向しているテンプレート22の面や、テンプレート22と対向している基板158の面のトポグラフィ、さらに基板158の中立軸Bに対する基板の中立軸Aの角度関係を始めとする多くの要因によって決まる。また、上記両方の面のトポグラフィがパターン化される場合、ギャップ160と結合している体積は、さらに、テンプレート22と基板158の間の軸Zの周りの角度関係によって決まる。インプリント・リソグラフィ技法を使用した望ましいパターニングが、適切な体積をギャップ160に提供することに大きく依存していることを考慮すると、テンプレート22と基板158を正確に整列させることが望ましい。そのために、テンプレート22は、テンプレート・アラインメント・マークを備えており(図に示す162は、そのうちの1つである)、基板158は、基板アラインメント・マークを備えている(図に示す164は、そのうちの1つである)。
この例では、テンプレート・アラインメント・マーク162と基板アラインメント・マーク164が重畳すると、テンプレート22と基板158の間の所望の整列が得られることが仮定されている。図に示すように、2つのマークが距離Oだけオフセットしている場合、テンプレート22と基板158の間の所望の整列は得られない。また、オフセットOは、1つの方向の線形オフセットとして示されているが、オフセットは、O1、O2で示す2つの方向に沿って直線的に存在することを理解されたい。また、テンプレート22と基板158の間のオフセットは、1つまたは2つの方向の上記線形オフセット以外に、あるいは上記線形オフセットの代わりに、図13に角度θで示す角度オフセットからなっている場合もある。
図2、10、14を参照すると、1つまたは複数の軸T1、T2、T3、F1、F2、F3の周りの回転動きを組み合せることによって、テンプレート22と基板158の間の所望の整列が得られる。詳細には、線形オフセットを小さくするために、コンプライアント・デバイス18、テンプレート・チャック20、テンプレート22の1つまたは複数の軸T1、T2、T3の周りの動きが、1つのユニットの動きとして試行される。通常、この試行によって、中立軸AとBの間に斜角Φが生成される。次に、角度Φを補償するために軸F1、F2のうちのいずれか一方または両方の周りのテンプレート22の角度的な動きが試行され、それにより中立軸Aが中立軸Bに平行に延びることが保証される。さらに、軸T1、T2、T3、F1、F2の周りの角度的な動きを組み合せることにより、中立軸Bに平行に延び、かつ、完全には直角ではないにしても、軸Z1、Z2、Z3に対して横方向に延びている平面内におけるテンプレート22の動きを実現するためのテンプレート22の揺動動きが得られる。この方法によれば、図15に示すように、中立軸Bに平行に延びている平面に位置している直線軸に沿って、テンプレート22を基板158に対して適切に整列させることができる。完全には除去することはできないとしても、角度オフセットを小さくすることが望ましい場合、所望の整列を提供するために、アクチュエータ150、152、154、156を使用して軸F3の周りにテンプレート22を回転させることができる。
所望の整列が得られると、アクチュエータ40、42、44が起動され、テンプレート22が移動して基板の近傍の面に接触する。この例では、面は、基板158の上に配置された重合可能なインプリント可能材料166からなっている。アクチュエータ40、42、44は、所望の整列が一度得られると、中立軸AとBの間に形成される角度の変化を最小化するように動作することに留意されたい。しかしながら、たわみ継手62、64、66、68およびたわみアーム54、56、58、60によって決まる角度の平行からの逸脱が、コンプライアント・デバイス18のコンプライアンス許容誤差範囲内である限り、中立軸AとBは、必ずしも互いに正確に平行に延びている必要はないことを知っておかれたい。この方法によれば、重合可能材料中へのパターン形成の解像度を最小化するために、可能な限り平行になるように中立軸AとBを配向することができる。したがって、第1と第2のRCCが位置している位置122は、テンプレート22と材料の界面に配置されることが望ましい。
図1、16、17を参照すると、上で説明したように、上記システム10は、インプリント・リソグラフィ技法を使用した、基板158などの基板のパターニングに有用である。そのために、テンプレート22は、通常、型172を形成しているパターンがその面に記録されたメサ170を備えている。参照により本明細書に組み込まれている米国特許第6,696,220号に、例示的なテンプレート22が示されている。型172のパターンは、図に示すように、間隔を隔てた複数の凹所174と突起176によって形成された複数のフィーチャの滑らかな面からなっていてもよい。突起176は幅W1 を有しており、凹所174は幅W2 を有している。これらの複数のフィーチャは、基板158に転写されるパターンの基礎を形成する原始パターンを形成している。
図16、17を参照すると、材料166に記録されるパターンは、部分的には材料166と型172および図に示すように転写層178などの既存の層を備えることができる基板158との機械的な接触によって生成される。転写層178の例示的な実施形態は、Missouri州Rolla在所のBrewer Science社から、DUV30J−6の商品名で入手することができる。材料166、転写層178は、ドロップ・ディスペンス技法および回転塗布技法を始めとする知られている任意の技法を使用して付着させることができることを理解されたい。
材料166の、突起176と重畳している部分180は、材料166と接触する際に、t1 の厚さを維持していることが望ましく、また、サブ部分182は、t2 の厚さを維持していることが望ましい。厚さt1 は残留厚さと呼ばれている。厚さ「t1 」と「t2 」は、アプリケーションに応じて所望の任意の厚さにすることができる。厚さt1 とt2 は、10nmから10μmの範囲の値を持たせることができる。材料166を含有している総体積は、基板158の、型172と重畳していない領域を超えて延びる材料166の量を最小化するか、あるいは回避することができ、かつ、所望の厚さt1 、t2 を得ることができる体積にすることができる。そのために、メサ170は、凹所174の深さhr より実質的に高い高さhm を備えている。この方法によれば、t1 とt2 が所望の厚さに到達した場合に、基板158と型172との材料166の毛管力によって、基板158の、型172と重畳していない領域を超えて延びる材料166の移動が制限される。
システム10によって提供される利点は、厚さt1とt2の正確な制御が容易になることである。詳細には、厚さt1には、それぞれ実質的に同じ厚さを持たせ、また、厚さt2にも、それぞれ実質的に同じ厚さを持たせることが望ましい。図16に示すように、厚さt1は一様ではなく、また、厚さt2も一様ではない。これは、基板158に対する型172の望ましくない配向である。本発明によるシステム10を使用することにより、図17に示すように、一様な厚さt1とt2を得ることができる。したがって、極めて望ましいことに、厚さt1とt2を正確に制御することができる。本発明によれば、システム10によって、たとえば約50nm以下の最小フィーチャ・サイズを有する3シグマの整列精度が提供される。
本発明の実施形態についての以上の説明は、例示的なものにすぎない。したがって、上で説明した開示には、本発明の範囲を維持しつつ多くの変更や修正を加えることができる。したがって本発明の範囲は、上記の説明には一切制限されず、特許請求の範囲およびそれらの等価物のすべての範囲を参照して決定されるものとする。
本発明によるテンプレート・チャックとテンプレートを示すオリエンテーション・ステージの分解斜視図である。 図1に示すオリエンテーション・ステージの斜視図である。 本発明の第1の実施形態によるテンプレート・ホルダとテンプレートと共に図1に示すオリエンテーション・ステージに含まれている受動コンプライアント・デバイスの分解斜視図である。 図3に示す受動コンプライアント・デバイスの詳細斜視図である。 中に含まれているたわみ継手を詳細に示す、図4に示す受動コンプライアント・デバイスの側面図である。 図4に示す受動コンプライアント・デバイスの側面図である。 図6に示す、90度回転した受動コンプライアント・デバイスの側面図である。 図6に示す、180度回転した受動コンプライアント・デバイスの側面図である。 図6に示す、270度回転した受動コンプライアント・デバイスの側面図である。 本発明の代替実施形態によるコンプライアント・デバイスの斜視図である。 1つの方向に沿った不整列を示す、図1に示す、基板と重畳したテンプレートの簡易正面図である。 2つの横方向に沿った不整列を示す、図11に示すテンプレートと基板の上から見た図である。 角不整列を示す、図11に示すテンプレートと基板の上から見た図である。 角不整列を示す、図1に示す、基板と重畳したテンプレートの簡易正面図である。 図11、12、13、14に示すテンプレートと基板の間の所望の整列を示す簡易正面図である。 図1、3、11、12、13、14、15に示す、基板と重畳したテンプレートの一実施形態の詳細図である。 基板に対する所望の空間配置を示す、図16に示すテンプレートの詳細図である。

Claims (15)

  1. インプリント・リソグラフィにおける使用のためのテンプレートの動きを制御するシステムであって:
    前記テンプレート(22)と結合されたオリエンテーション・ステージ(10)であって:
    内側フレーム(12)、
    外側フレーム(14)
    コンプライアント・デバイス(18)を含み、前記内側フレームが前記外側フレームと前記コンプライアント・デバイスの間に結合されるオリエンテーション・ステージ、および
    前記コンプライアント・デバイス(18)と結合され、かつテンプレート(22)を支持するべく構成されたテンプレート・チャック(20)を包含し、
    前記オリエンテーション・ステージが、さらに前記外側フレームと内側フレームの間において、動きの軸(Z1,Z2,Z3)に沿って内側フレームと外側のフレームの間の距離を変更し、外側フレームに関して内側フレームを傾斜させて、内側フレーム(12)に複数の傾斜軸(T1,T2,T3)のうちの1つまたは複数の軸周りの角度的な動きをコンプライアント・デバイス(18)へ付与させるように接続された複数のアクチュエータ(40,42,44)を包含すること、および
    前記コンプライアント・デバイス(18)が、前記傾斜軸(T1,T2,T3)から間隔が隔てられた複数のコンプライアンス軸(C1,C2)のうちの1つまたは複数の軸周りの角度的な動きをテンプレート(22)へ付与するように、コンプライアント・デバイス(18)は、サポート・ボディ(50)と、フローティング・ボディ(52)と、前記フローティング・ボディを前記サポート・ボディ(50)に結合する複数のたわみアーム(54,56,58,60)とを含み、
    前記たわみアーム(54,56,58,60)のそれぞれは、両端の端部(74,76)と、第1および第2のセットのたわみ継手(62,64,66,68)とを含み;それにおいて各たわみアーム(54,56,58,60)の端部(74)は、2つのたわみ継手(66,68)を通じてサポート・ボディ(50)と接続され、かつ各たわみアーム(54,56,58,60)の反対側の端部(76)は、第1のグループ(104,106,108,110)が残りのグループ(112,114,116,118)に対して横方向に延びるオーバーラップしている2つの軸グループ周りの相対的な回転動きをサポート・ボディ(50)とフローティング・ボディ(52)の間に与えるように、2つのたわみ継手(62,64)を通じてフローティング・ボディ(52)と接続されていることを特徴とするシステム。
  2. 前記アクチュエータ(40,42,44)は、前記内側フレーム(12)と前記外側のフレーム(14)の間に結合され、前記内側フレームの周囲の近傍に位置する2またはそれを超える数の並進軸(Z1,Z2,Z3)に沿った並進動きを変更して前記複数の傾斜軸(T1,T2,T3)のうちの1つの軸周りの前記角度的な動きを付与する請求項1に記載のシステム。
  3. 前記内側フレーム(12)は通路(24)を有し、前記外側フレーム(14)は開口(26)を有し、前記複数のアクチュエータ(40,42,44)が前記内側フレームと前記外側フレームの間に結合されて、前記開口(26)が前記通路(24)と重畳し、前記複数のアクチュエータが前記通路の外側に配置される請求項1に記載のシステム。
  4. 前記アクチュエータ(40,42,44)は、前記内側フレーム(12)と前記外側のフレーム(14)の間に結合されて、前記内側フレーム(12)の周囲の近傍に位置する2またはそれを超える数の並進軸(Z1,Z2,Z3)に沿った並進動きを変更して前記傾斜軸(T1,T2,T3)のうちの1つの軸周りの前記角度的な動きを付与し、前記コンプライアント・デバイス(18)が、前記コンプライアンス軸(C1,C2)のうちの1つの軸周りの前記角度的な動きを提供し、それにおいて前記コンプライアンス軸のうちの前記1つの軸周りの前記角度的な動きは、前記傾斜軸のうちの前記1つの軸の前記角度的な動きとは独立である請求項1に記載のシステム。
  5. 前記複数のアクチュエータ(40,42,44)は、オリエンテーション・ステージ(10)の周りに間隔が隔てられるように外側フレーム(14)と内側フレーム(12)の間に接続され、前記アクチュエータのそれぞれは、外側フレーム(14)と対向する第1の端部(46)および内側フレーム(12)と対向する第2の端部(48)を有し、前記アクチュエータ(40,42,44)は、コンプライアント・デバイス(18)と、したがってテンプレート(22)ならびにテンプレート・チャック(20)の両方に、前記複数の傾斜軸(T1,T2,T3)のうちの前記1つまたは複数の軸周りの角度的な動きを与える3つの軸(Z1、Z2、Z3)に沿った外側フレームに関する内側フレーム(12)の並進動きを容易にすることによって外側フレーム(14)に関して内側フレーム(12)を傾斜させるために動作可能である請求項1に記載のシステム。
  6. 前記アクチュエータ(40,42,44)は、それらに関して対称に配置され、かつ中央通路(24)および中央開口(26)の外側に位置するように内側フレーム(12)と外側フレーム(14)の間に結合されている請求項3に記載のシステム。
  7. 前記コンプライアント・デバイス(18)は:
    サポート・ボディ(50)、
    フローティング・ボディ(52)、および
    前記フローティング・ボディを前記サポート・ボディ(50)に結合する複数のたわみアーム(54,56,58,60)を含み、それにおいて前記フローティング・ボディに前記テンプレート・チャック(20)が取付けられ、テンプレート(22)がチャックによって保持されている請求項1に記載のシステム。
  8. 前記オリエンテーション・ステージ(10)は、サポート・ボディ(50)に関する前記フローティング・ボディ(52)の相対的な角度位置決めを達成ために動作可能なアクチュエータ(150,152,154,156)を包含する請求項7に記載のシステム。
  9. 前記オリエンテーション・ステージ(10)は、複数のレバー・アーム(140,142,146,148)を包含し、各レバー・アームがフローティング・ボディ(52)と結合され、かつサポート・ボディ(50)に向って延び、それに結合される前記各アクチュエータ(150,152,154,156)のピストンの近傍で終端している請求項に記載のシステム。
  10. 前記アクチュエータのそれぞれは、それぞれの前記レバー・アームの端部と前記たわみアーム(54,56,58,60)のそれぞれの1つの間に介挿されている請求項9に記載のシステム。
  11. 前記請求項1〜に記載のシステムのいずれか1つを使用するインプリント・リソグラフィにおいて前記テンプレートと基板(158)の間の整列を達成するためにテンプレート(22)の空間位置を制御する方法であって:
    前記コンプライアント・デバイス(18)、テンプレート・チャック(20)およびテンプレート(22)をユニットとして前記1つまたは複数の傾斜軸(T1,T2,T3)のうちの第1の軸に関する第1の角度的な動きをそれに付与して、前記基板(158)の中立軸(B)と前記テンプレート(22)の中立軸(A)の間に傾斜角を作り出すステップ;および
    前記1つまたは複数のコンプライアンス軸(C1,C2)のうちの第2の軸に関する前記テンプレート(22)の第2の角度的な動きを生成して、前記第1の角度を補償し、前記テンプレート中立軸(A)が前記基板中立軸(B)と平行に延びることを保証するステップを包含し、そこにおいて前記第1および第2の角度的な動きの組合せが、前記基板中立軸(B)と平行に延びかつ動きの軸(Z1,Z2,Z3)に対して横行する動き平面に沿った前記基板の相対的な並進動きを結果としてもたらす方法。
  12. 前記第1および第2の軸は、互いに間隔が隔てられ、かつ互いに平行に延びる請求項11に記載の方法。
  13. 前記第1および第2の軸は、互いに間隔が隔てられ、かつ互いに交叉して延びる請求項11に記載の方法。
  14. 付与するステップは、さらに前記アクチュエータ(40,42,44)を用いて、前記内側フレームの周囲の近傍に位置する2またはそれを超える数の複数の並進軸(Z1,Z2,Z3)に沿った前記並進動きを変更して、前記内側フレーム(12)を傾斜させ、かつ前記第1の角度的な動きを付与するステップを含む請求項11に記載の方法。
  15. 前記生成するステップは、さらに前記コンプライアント・デバイス(18)上に作用して前記複数のコンプライアンス軸(C1,C2)のうちの1つまたは複数の軸周りの前記テンプレートの傾斜を容易にし、前記第2の角度的な動きを付与するステップを含む請求項11または14に記載の方法。
JP2007515426A 2004-06-01 2005-05-27 ナノスケール製造のためのボディの動きを制御する方法およびシステム Active JP4964764B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/858,100 2004-06-01
US10/858,100 US20050274219A1 (en) 2004-06-01 2004-06-01 Method and system to control movement of a body for nano-scale manufacturing
PCT/US2005/018862 WO2005119395A2 (en) 2004-06-01 2005-05-27 Method and system to control movement of a body for nano-scale manufacturing

Publications (2)

Publication Number Publication Date
JP2008501245A JP2008501245A (ja) 2008-01-17
JP4964764B2 true JP4964764B2 (ja) 2012-07-04

Family

ID=35459131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007515426A Active JP4964764B2 (ja) 2004-06-01 2005-05-27 ナノスケール製造のためのボディの動きを制御する方法およびシステム

Country Status (7)

Country Link
US (2) US20050274219A1 (ja)
EP (1) EP1754122B1 (ja)
JP (1) JP4964764B2 (ja)
KR (1) KR20070027617A (ja)
CN (1) CN1997491A (ja)
TW (1) TWI296965B (ja)
WO (1) WO2005119395A2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US7768624B2 (en) * 2004-06-03 2010-08-03 Board Of Regents, The University Of Texas System Method for obtaining force combinations for template deformation using nullspace and methods optimization techniques
JP4573873B2 (ja) * 2004-06-03 2010-11-04 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム マイクロリソグラフィにおけるアラインメントとオーバーレイを改善するシステムおよび方法
US7785526B2 (en) * 2004-07-20 2010-08-31 Molecular Imprints, Inc. Imprint alignment method, system, and template
CN104317161A (zh) 2005-12-08 2015-01-28 分子制模股份有限公司 用于衬底双面图案形成的方法和系统
US7670530B2 (en) 2006-01-20 2010-03-02 Molecular Imprints, Inc. Patterning substrates employing multiple chucks
US7802978B2 (en) * 2006-04-03 2010-09-28 Molecular Imprints, Inc. Imprinting of partial fields at the edge of the wafer
JP5027468B2 (ja) * 2006-09-15 2012-09-19 日本ミクロコーティング株式会社 プローブクリーニング用又はプローブ加工用シート、及びプローブ加工方法
US7837907B2 (en) * 2007-07-20 2010-11-23 Molecular Imprints, Inc. Alignment system and method for a substrate in a nano-imprint process
US8945444B2 (en) * 2007-12-04 2015-02-03 Canon Nanotechnologies, Inc. High throughput imprint based on contact line motion tracking control
US9164375B2 (en) * 2009-06-19 2015-10-20 Canon Nanotechnologies, Inc. Dual zone template chuck
JP5296641B2 (ja) * 2009-09-02 2013-09-25 東京エレクトロン株式会社 インプリント方法、プログラム、コンピュータ記憶媒体及びインプリント装置
DE102010007970A1 (de) * 2010-02-15 2011-08-18 Suss MicroTec Lithography GmbH, 85748 Verfahren und Vorrichtung zum aktiven Keilfehlerausgleich zwischen zwei im wesentlichen zueinander parallel positionierbaren Gegenständen
CN102059576B (zh) * 2010-11-25 2012-02-08 西安理工大学 双轴直线移动微驱动装置
JP6116937B2 (ja) * 2013-02-28 2017-04-19 公立大学法人大阪府立大学 パターン形成装置およびそれを用いたパターン形成方法
JP6553926B2 (ja) * 2015-04-09 2019-07-31 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
KR20180023102A (ko) 2016-08-23 2018-03-07 삼성디스플레이 주식회사 와이어 그리드 패턴 및 이의 제조방법
CN110546734B (zh) 2017-03-08 2024-04-02 佳能株式会社 固化物图案的制造方法和光学部件、电路板和石英模具复制品的制造方法以及用于压印预处理的涂覆材料及其固化物
KR102256347B1 (ko) 2017-03-08 2021-05-27 캐논 가부시끼가이샤 패턴 형성 방법, 및 가공 기판, 광학 부품 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅 재료 및 그와 임프린트 레지스트와의 세트
US10996560B2 (en) 2017-07-31 2021-05-04 Canon Kabushiki Kaisha Real-time correction of template deformation in nanoimprint lithography
US10866510B2 (en) 2017-07-31 2020-12-15 Canon Kabushiki Kaisha Overlay improvement in nanoimprint lithography
US10409178B2 (en) * 2017-12-18 2019-09-10 Canon Kabushiki Kaisha Alignment control in nanoimprint lithography based on real-time system identification
US10996561B2 (en) 2017-12-26 2021-05-04 Canon Kabushiki Kaisha Nanoimprint lithography with a six degrees-of-freedom imprint head module
US10444624B1 (en) 2018-11-30 2019-10-15 Canon Kabushiki Kaisha Active metrology frame and thermal frame temperature control in imprint lithography
US11815811B2 (en) 2021-03-23 2023-11-14 Canon Kabushiki Kaisha Magnification ramp scheme to mitigate template slippage
WO2023001802A1 (en) * 2021-07-21 2023-01-26 Koninklijke Philips N.V. Imprinting apparatus
EP4123375A1 (en) * 2021-07-21 2023-01-25 Koninklijke Philips N.V. Imprinting apparatus

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783520A (en) * 1970-09-28 1974-01-08 Bell Telephone Labor Inc High accuracy alignment procedure utilizing moire patterns
US3807027A (en) * 1972-03-31 1974-04-30 Johns Manville Method of forming the bell end of a bell and spigot joint
US3807029A (en) * 1972-09-05 1974-04-30 Bendix Corp Method of making a flexural pivot
US3811665A (en) * 1972-09-05 1974-05-21 Bendix Corp Flexural pivot with diaphragm means
FR2325018A1 (fr) * 1975-06-23 1977-04-15 Ibm Dispositif de mesure d'intervalle pour definir la distance entre deux faces ou plus
US4155169A (en) * 1978-03-16 1979-05-22 The Charles Stark Draper Laboratory, Inc. Compliant assembly system device
US4201800A (en) * 1978-04-28 1980-05-06 International Business Machines Corp. Hardened photoresist master image mask process
JPS6053675B2 (ja) * 1978-09-20 1985-11-27 富士写真フイルム株式会社 スピンコ−テイング方法
US4202107A (en) * 1978-10-23 1980-05-13 Watson Paul C Remote axis admittance system
US4326805A (en) * 1980-04-11 1982-04-27 Bell Telephone Laboratories, Incorporated Method and apparatus for aligning mask and wafer members
EP0091651B1 (en) * 1982-04-12 1988-08-03 Nippon Telegraph And Telephone Corporation Method for forming micropattern
US4440804A (en) * 1982-08-02 1984-04-03 Fairchild Camera & Instrument Corporation Lift-off process for fabricating self-aligned contacts
US4451507A (en) * 1982-10-29 1984-05-29 Rca Corporation Automatic liquid dispensing apparatus for spinning surface of uniform thickness
US4498038A (en) * 1983-02-15 1985-02-05 Malueg Richard M Stabilization system for soft-mounted platform
US4507331A (en) * 1983-12-12 1985-03-26 International Business Machines Corporation Dry process for forming positive tone micro patterns
US4512848A (en) * 1984-02-06 1985-04-23 Exxon Research And Engineering Co. Procedure for fabrication of microstructures over large areas using physical replication
US4908298A (en) * 1985-03-19 1990-03-13 International Business Machines Corporation Method of creating patterned multilayer films for use in production of semiconductor circuits and systems
US4657845A (en) * 1986-01-14 1987-04-14 International Business Machines Corporation Positive tone oxygen plasma developable photoresist
US4724222A (en) * 1986-04-28 1988-02-09 American Telephone And Telegraph Company, At&T Bell Laboratories Wafer chuck comprising a curved reference surface
US4737425A (en) * 1986-06-10 1988-04-12 International Business Machines Corporation Patterned resist and process
US4929083A (en) * 1986-06-19 1990-05-29 Xerox Corporation Focus and overlay characterization and optimization for photolithographic exposure
EP0255303B1 (en) * 1986-07-25 1989-10-11 Oki Electric Industry Company, Limited Negative resist material, method for its manufacture and method for using it
EP0264147B1 (en) * 1986-09-09 1994-01-12 Hitachi Construction Machinery Co., Ltd. Fine positioning device and displacement controller therefor
US5736424A (en) * 1987-02-27 1998-04-07 Lucent Technologies Inc. Device fabrication involving planarization
US4731155A (en) * 1987-04-15 1988-03-15 General Electric Company Process for forming a lithographic mask
US4808511A (en) * 1987-05-19 1989-02-28 International Business Machines Corporation Vapor phase photoresist silylation process
US4891303A (en) * 1988-05-26 1990-01-02 Texas Instruments Incorporated Trilayer microlithographic process using a silicon-based resist as the middle layer
US5108875A (en) * 1988-07-29 1992-04-28 Shipley Company Inc. Photoresist pattern fabrication employing chemically amplified metalized material
US4921778A (en) * 1988-07-29 1990-05-01 Shipley Company Inc. Photoresist pattern fabrication employing chemically amplified metalized material
US5876550A (en) * 1988-10-05 1999-03-02 Helisys, Inc. Laminated object manufacturing apparatus and method
US4999280A (en) * 1989-03-17 1991-03-12 International Business Machines Corporation Spray silylation of photoresist images
US5110514A (en) * 1989-05-01 1992-05-05 Soane Technologies, Inc. Controlled casting of a shrinkable material
US4919748A (en) * 1989-06-30 1990-04-24 At&T Bell Laboratories Method for tapered etching
JP3197010B2 (ja) * 1990-03-05 2001-08-13 株式会社東芝 間隔設定方法及び間隔設定装置
JP2586692B2 (ja) * 1990-05-24 1997-03-05 松下電器産業株式会社 パターン形成材料およびパターン形成方法
US5314772A (en) * 1990-10-09 1994-05-24 Arizona Board Of Regents High resolution, multi-layer resist for microlithography and method therefor
US5212147A (en) * 1991-05-15 1993-05-18 Hewlett-Packard Company Method of forming a patterned in-situ high Tc superconductive film
US5206983A (en) * 1991-06-24 1993-05-04 Wisconsin Alumni Research Foundation Method of manufacturing micromechanical devices
US5317386A (en) * 1991-09-06 1994-05-31 Eastman Kodak Company Optical monitor for measuring a gap between two rollers
US5277749A (en) * 1991-10-17 1994-01-11 International Business Machines Corporation Methods and apparatus for relieving stress and resisting stencil delamination when performing lift-off processes that utilize high stress metals and/or multiple evaporation steps
JP3074579B2 (ja) * 1992-01-31 2000-08-07 キヤノン株式会社 位置ずれ補正方法
US5204739A (en) * 1992-02-07 1993-04-20 Karl Suss America, Inc. Proximity mask alignment using a stored video image
US5601641A (en) * 1992-07-21 1997-02-11 Tse Industries, Inc. Mold release composition with polybutadiene and method of coating a mold core
JPH06183561A (ja) * 1992-12-18 1994-07-05 Canon Inc 移動ステージ装置
US5380474A (en) * 1993-05-20 1995-01-10 Sandia Corporation Methods for patterned deposition on a substrate
US5414514A (en) * 1993-06-01 1995-05-09 Massachusetts Institute Of Technology On-axis interferometric alignment of plates using the spatial phase of interference patterns
JP2837063B2 (ja) * 1993-06-04 1998-12-14 シャープ株式会社 レジストパターンの形成方法
US6180239B1 (en) * 1993-10-04 2001-01-30 President And Fellows Of Harvard College Microcontact printing on surfaces and derivative articles
US5512131A (en) * 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US5813287A (en) * 1994-03-02 1998-09-29 Renishaw Plc Coordinate positioning machine
US5534101A (en) * 1994-03-02 1996-07-09 Telecommunication Research Laboratories Method and apparatus for making optical components by direct dispensing of curable liquid
KR0157279B1 (ko) * 1994-03-15 1999-05-01 모리시타 요이찌 노광방법
US5417802A (en) * 1994-03-18 1995-05-23 At&T Corp. Integrated circuit manufacturing
US5670415A (en) * 1994-05-24 1997-09-23 Depositech, Inc. Method and apparatus for vacuum deposition of highly ionized media in an electromagnetic controlled environment
US5515167A (en) * 1994-09-13 1996-05-07 Hughes Aircraft Company Transparent optical chuck incorporating optical monitoring
US5740699A (en) * 1995-04-06 1998-04-21 Spar Aerospace Limited Wrist joint which is longitudinally extendible
US5743998A (en) * 1995-04-19 1998-04-28 Park Scientific Instruments Process for transferring microminiature patterns using spin-on glass resist media
JP3624476B2 (ja) * 1995-07-17 2005-03-02 セイコーエプソン株式会社 半導体レーザ装置の製造方法
AU6774996A (en) * 1995-08-18 1997-03-12 President And Fellows Of Harvard College Self-assembled monolayer directed patterning of surfaces
US6518189B1 (en) * 1995-11-15 2003-02-11 Regents Of The University Of Minnesota Method and apparatus for high density nanostructures
US6309580B1 (en) * 1995-11-15 2001-10-30 Regents Of The University Of Minnesota Release surfaces, particularly for use in nanoimprint lithography
US20040036201A1 (en) * 2000-07-18 2004-02-26 Princeton University Methods and apparatus of field-induced pressure imprint lithography
JP2842362B2 (ja) * 1996-02-29 1999-01-06 日本電気株式会社 重ね合わせ測定方法
US5725788A (en) * 1996-03-04 1998-03-10 Motorola Apparatus and method for patterning a surface
US6355198B1 (en) * 1996-03-15 2002-03-12 President And Fellows Of Harvard College Method of forming articles including waveguides via capillary micromolding and microtransfer molding
US5942443A (en) * 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US5888650A (en) * 1996-06-03 1999-03-30 Minnesota Mining And Manufacturing Company Temperature-responsive adhesive article
US6039897A (en) * 1996-08-28 2000-03-21 University Of Washington Multiple patterned structures on a single substrate fabricated by elastomeric micro-molding techniques
JP3234872B2 (ja) * 1996-10-08 2001-12-04 セイコーインスツルメンツ株式会社 アクチュエータおよびその駆動方法、および、その駆動方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体、並びに、そのアクチュエータを用いた小型工作機械
US5895263A (en) * 1996-12-19 1999-04-20 International Business Machines Corporation Process for manufacture of integrated circuit device
US6049373A (en) * 1997-02-28 2000-04-11 Sumitomo Heavy Industries, Ltd. Position detection technique applied to proximity exposure
DE19710420C2 (de) * 1997-03-13 2001-07-12 Helmut Fischer Gmbh & Co Verfahren und Vorrichtung zum Messen der Dicken dünner Schichten mittels Röntgenfluoreszenz
US6033977A (en) * 1997-06-30 2000-03-07 Siemens Aktiengesellschaft Dual damascene structure
US5877861A (en) * 1997-11-14 1999-03-02 International Business Machines Corporation Method for overlay control system
TW352421B (en) * 1998-04-27 1999-02-11 United Microelectronics Corp Method and process of phase shifting mask
US6713238B1 (en) * 1998-10-09 2004-03-30 Stephen Y. Chou Microscale patterning and articles formed thereby
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6204922B1 (en) * 1998-12-11 2001-03-20 Filmetrics, Inc. Rapid and accurate thin film measurement of individual layers in a multi-layered or patterned sample
US6168845B1 (en) * 1999-01-19 2001-01-02 International Business Machines Corporation Patterned magnetic media and method of making the same using selective oxidation
US6334960B1 (en) * 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6522411B1 (en) * 1999-05-25 2003-02-18 Massachusetts Institute Of Technology Optical gap measuring apparatus and method having two-dimensional grating mark with chirp in one direction
US6188150B1 (en) * 1999-06-16 2001-02-13 Euv, Llc Light weight high-stiffness stage platen
US6255022B1 (en) * 1999-06-17 2001-07-03 Taiwan Semiconductor Manufacturing Company Dry development process for a bi-layer resist system utilized to reduce microloading
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
KR100334902B1 (ko) * 1999-12-06 2002-05-04 윤덕용 정밀작업용 6자유도 병렬기구
DE19958966A1 (de) * 1999-12-07 2001-06-13 Infineon Technologies Ag Erzeugung von Resiststrukturen
CN1092092C (zh) * 2000-04-21 2002-10-09 清华大学 两维移动一维转动空间三轴并联机床结构
US7211214B2 (en) * 2000-07-18 2007-05-01 Princeton University Laser assisted direct imprint lithography
US20050274219A1 (en) * 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US20060005657A1 (en) * 2004-06-01 2006-01-12 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
AU2001297642A1 (en) * 2000-10-12 2002-09-04 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro- and nano-imprint lithography
US6541360B1 (en) * 2001-04-30 2003-04-01 Advanced Micro Devices, Inc. Bi-layer trim etch process to form integrated circuit gate structures
US6534418B1 (en) * 2001-04-30 2003-03-18 Advanced Micro Devices, Inc. Use of silicon containing imaging layer to define sub-resolution gate structures
US6716767B2 (en) * 2001-10-31 2004-04-06 Brewer Science, Inc. Contact planarization materials that generate no volatile byproducts or residue during curing
US7455955B2 (en) * 2002-02-27 2008-11-25 Brewer Science Inc. Planarization method for multi-layer lithography processing
US6997866B2 (en) * 2002-04-15 2006-02-14 Simon Fraser University Devices for positioning implements about fixed points
JP4799861B2 (ja) * 2002-04-16 2011-10-26 プリンストン ユニバーシティ マイクロ流体とナノ流体間のインターフェース用勾配構造と、その製造方法および使用方法
US6926929B2 (en) * 2002-07-09 2005-08-09 Molecular Imprints, Inc. System and method for dispensing liquids
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6908861B2 (en) * 2002-07-11 2005-06-21 Molecular Imprints, Inc. Method for imprint lithography using an electric field
US6932934B2 (en) * 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US7019819B2 (en) 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US7027156B2 (en) * 2002-08-01 2006-04-11 Molecular Imprints, Inc. Scatterometry alignment for imprint lithography
US7070405B2 (en) * 2002-08-01 2006-07-04 Molecular Imprints, Inc. Alignment systems for imprint lithography
US6916584B2 (en) * 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US6936194B2 (en) 2002-09-05 2005-08-30 Molecular Imprints, Inc. Functional patterning material for imprint lithography processes
US20040065252A1 (en) 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method of forming a layer on a substrate to facilitate fabrication of metrology standards
US8349241B2 (en) 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US6808344B2 (en) * 2002-12-27 2004-10-26 Jeng-Shyong Chen Multi-axis cartesian guided parallel kinematic machine

Also Published As

Publication number Publication date
TW200606010A (en) 2006-02-16
CN1997491A (zh) 2007-07-11
EP1754122B1 (en) 2012-10-31
WO2005119395A3 (en) 2007-03-08
EP1754122A4 (en) 2009-06-24
JP2008501245A (ja) 2008-01-17
WO2005119395A2 (en) 2005-12-15
EP1754122A2 (en) 2007-02-21
TWI296965B (en) 2008-05-21
KR20070027617A (ko) 2007-03-09
US8387482B2 (en) 2013-03-05
US20110048160A1 (en) 2011-03-03
US20050274219A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4964764B2 (ja) ナノスケール製造のためのボディの動きを制御する方法およびシステム
JP4688871B2 (ja) ナノスケール製造のためのコンプライアント・デバイス
US7387508B2 (en) Compliant device for nano-scale manufacturing
US20090037004A1 (en) Method and System to Control Movement of a Body for Nano-Scale Manufacturing
JP4688872B2 (ja) ナノスケール加工中に基板の寸法を変更する装置、システムおよび方法
KR100621957B1 (ko) 미세 구조물용 제조 시스템
JP5236484B2 (ja) 固化したインプリンティング材料からモールドを分離する方法
US6891601B2 (en) High resolution, dynamic positioning mechanism for specimen inspection and processing
KR102355144B1 (ko) 6 자유도의 임프린트 헤드 모듈을 갖는 나노임프린트 리소그래피
WO2010008508A1 (en) Inner cavity system for nano-imprint lithography
JP2004528190A (ja) 超高精度供給装置
KR20210013415A (ko) 임프린팅용 헤드 및 이를 포함하는 임프린팅 장치
JP4606956B2 (ja) ステージ装置
US20070074635A1 (en) System to couple a body and a docking plate
US20070064384A1 (en) Method to transfer a template transfer body between a motion stage and a docking plate
JPH0527034Y2 (ja)
JPH0543439Y2 (ja)
JPH0413532A (ja) 回転並進ステージ
JPH01193133A (ja) 微動ステージ
JPH03257914A (ja) ステージ装置
JPS63137307A (ja) 微細位置決め装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250