JP4943559B2 - 方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
JP4943559B2
JP4943559B2 JP2011523633A JP2011523633A JP4943559B2 JP 4943559 B2 JP4943559 B2 JP 4943559B2 JP 2011523633 A JP2011523633 A JP 2011523633A JP 2011523633 A JP2011523633 A JP 2011523633A JP 4943559 B2 JP4943559 B2 JP 4943559B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
grain
content
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011523633A
Other languages
English (en)
Other versions
JPWO2011102456A1 (ja
Inventor
健一 村上
義行 牛神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011523633A priority Critical patent/JP4943559B2/ja
Application granted granted Critical
Publication of JP4943559B2 publication Critical patent/JP4943559B2/ja
Publication of JPWO2011102456A1 publication Critical patent/JPWO2011102456A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、磁気特性のばらつきの抑制を図った方向性電磁鋼板の製造方法に関する。
方向性電磁鋼板は、Siを含有し、結晶粒の方位が{110}<001>方位に高度に集積した鋼板であり、変圧器等の静止誘導器の巻き鉄心等の材料として利用されている。結晶粒の方位の制御は、二次再結晶とよばれる異常粒成長現象を利用して行われている。
二次再結晶を制御する方法として次の二つの方法が挙げられる。一方では、鋼片を1280℃以上の温度で加熱してインヒビターとよばれる微細析出物をほぼ完全に固溶させた後に、熱間圧延、冷間圧延、及び焼鈍等を行い、熱間圧延及び焼鈍の際に微細析出物を析出させる。他方では、鋼片を1280℃未満の温度で加熱した後に、熱間圧延、冷間圧延、脱炭焼鈍、窒化処理、及び仕上焼鈍等を行い、窒化処理の際にインヒビターとしてAlN、(Al,Si)N等を析出させる。
ところで、近年のCO排出削減の観点から、方向性電磁鋼板の製造過程における脱炭焼鈍にかける時間を短縮することが要請されている。このため、C含有量が低いスラブを用いることについて検討が行われている。
しかしながら、スラブのC含有量の低下に伴って、コイル状に巻き取られた状態で行われる仕上焼鈍後に部位による磁気特性のばらつき(磁気特性偏差)が顕著になってきた。
特開平3−122227号公報 特開平11−323437号公報 特開平6−256847号公報 特表2001−515540号公報 特開2000−199015号公報 特開2007−254829号公報
本発明は、磁気特性のばらつきを抑制することができる方向性電磁鋼板の製造方法を提供することを目的とする。
上述のような仕上焼鈍後の磁気特性のばらつきは、C含有量が0.06質量%以下、更には0.048質量%以下の場合に特に顕著であることが判明した。仕上焼鈍後の磁気特性のばらつきが生じる原因は定かではないが、仕上焼鈍前には結晶粒が均一に見えている場合でも、仕上焼鈍中に結晶粒が均一に成長しないことがあるためであると考えられる。また、結晶粒が均一に成長しない原因としては、C含有量が低いために、熱間圧延中の相変態が十分に行われず、オーステナイト変態量が少なく、熱間圧延組織が不安定になっていることが考えられる。つまり、熱間圧延組織が不均一となった部分において十分な二次再結晶が生じずに、十分な磁気特性が得られていないと考えられる。
本発明者らは、このような知見に基づき、仕上焼鈍中の結晶粒成長を均一化するために、有効な析出物を形成することで十分に二次再結晶を生じさせることができるではないかと考えた。そして、本発明者らは、スラブに種々の元素を添加して得られた方向性電磁鋼板の磁気特性を測定する実験を繰り返し行った。この結果、本発明者らは、二次再結晶を均一化するには、Ti及びCuの添加が有効であることを見出した。
本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。
(1) Si:2.5質量%〜4.0質量%、C:0.01質量%〜0.060質量%、Mn:0.05質量%〜0.20質量%、酸可溶性Al:0.020質量%〜0.040質量%、N:0.002質量%〜0.012質量%、S:0.001質量%〜0.010質量%、及びP:0.01質量%〜0.08質量%を含有し、更に、Ti:0.002質量%〜0.010質量%及びCu:0.010質量%〜0.50質量%を含有し、残部がFe及び不可避的不純物からなる鋼の熱間圧延を行って熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板の焼鈍を行って焼鈍鋼板を得る工程と、
前記焼鈍鋼板の冷間圧延を行って冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板の脱炭焼鈍を800℃〜950℃の温度で行って脱炭焼鈍鋼板を得る工程と、
次いで、前記脱炭焼鈍鋼板の窒化処理を700℃〜850℃で行って窒化処理鋼板を得る工程と、
前記窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、窒化処理鋼板をコイル状に巻き取り、バッチ式の仕上焼鈍を行う工程と、
を有することを特徴とする方向性電磁鋼板の製造方法。
(2) 前記鋼の熱間圧延を、前記鋼を1250℃以下の温度に加熱してから行うことを特徴とする(1)に記載の方向性電磁鋼板の製造方法。
(3) 前記鋼は、更に、Cr:0.010質量%〜0.20質量%、Sn:0.010質量%〜0.20質量%、Sb:0.010質量%〜0.20質量%、Ni:0.010質量%〜0.20質量%、Se:0.005質量%〜0.02質量%、Bi:0.005質量%〜0.02質量%、Pb:0.005質量%〜0.02質量%、B:0.005質量%〜0.02質量%、V:0.005質量%〜0.02質量%、Mo:0.005質量%〜0.02質量%、及びAs:0.005質量%〜0.02質量%からなる群から選択された少なくとも一種を含有することを特徴とする(1)又は(2)に記載の方向性電磁鋼板の製造方法。
(4) 前記鋼は、更に、Cr:0.20質量%以下、Sn:0.20質量%以下、Sb:0.010質量%〜0.20質量%、Ni:0.010質量%〜0.20質量%、Se:0.005質量%〜0.02質量%、Bi:0.005質量%〜0.02質量%、Pb:0.005質量%〜0.02質量%、B:0.005質量%〜0.02質量%、V:0.005質量%〜0.02質量%、Mo:0.005質量%〜0.02質量%、及びAs:0.005質量%〜0.02質量%からなる群から選択された少なくとも一種を含有することを特徴とする(1)又は(2)に記載の方向性電磁鋼板の製造方法。
(5) 前記鋼は、更に、Cr:0.010質量%〜0.20質量%及びSn:0.010質量%〜0.20質量%からなる群から選択された少なくとも一種を含有することを特徴とする(1)又は(2)に記載の方向性電磁鋼板の製造方法。
(6) 前記鋼は、更に、Cr:0.20質量%以下及びSn:0.20質量%以下からなる群から選択された少なくとも一種を含有することを特徴とする(1)又は(2)に記載の方向性電磁鋼板の製造方法。
(7) 前記鋼のTi含有量は0.002質量%〜0.0080質量%であり、
前記鋼のCu含有量は0.01質量%〜0.10質量%であり、
前記鋼のTi含有量(質量%)を[Ti]、Cu含有量(質量%)を[Cu]と表したとき、「20×[Ti]+[Cu]≦0.18」の関係が成り立つことを特徴とする(1)〜(6)のいずれかに記載の方向性電磁鋼板の製造方法。
) 「10×[Ti]+[Cu]≦0.07」の関係が成り立つことを特徴とする()に記載の方向性電磁鋼板の製造方法。
本発明によれば、適切な量のTi及び/又はCuが鋼に含まれており、適切な温度で脱炭焼鈍及び窒化処理が行われるため、磁気特性のばらつきを抑制することができる。
図1は、Ti含有量及びCu含有量と、磁束密度及びそのばらつきの評価との関係を示す図である。 図2は、本発明の実施形態に係る方向性電磁鋼板の製造方法を示すフローチャートである。
上述のように、本発明者らは、スラブに種々の元素を添加して得られた方向性電磁鋼板の磁気特性を測定する実験を繰り返し行い、二次再結晶を均一化するには、Ti及びCuの添加が有効であることを見出した。
この実験では、例えば、低温スラブ加熱法による方向性電磁鋼板の製造に用いられる組成で、C含有量が0.06質量%以下の珪素鋼を用いた。そして、この炭素鋼に、Ti及びCuを種々の割合で含有させ、種々の組成の鋼塊を作製した。また、鋼塊を1250℃以下の温度で加熱して熱間圧延を行い、その後に冷間圧延を行った。更に、冷間圧延後に脱炭焼鈍を行い、その後に窒化処理及び仕上焼鈍を行った。そして、得られた方向性電磁鋼板の磁束密度B8を測定して、仕上焼鈍後のコイル内の磁束密度B8のばらつきを調べた。磁束密度B8は、50Hzにて800A/mの磁場が印加されたときに、方向性電磁鋼板に発生する磁束密度である。
この結果、鋼塊に、0.0020質量%〜0.010質量%のTi、及び/又は0.010質量%〜0.50質量%のCuが含有されている場合に、仕上焼鈍後のコイル内の磁束密度B8のばらつきが著しく低減されることが見出された。
上記の実験により得られた結果の一例を図1に示す。実験の詳細は後述するが、図1中の○印は、5枚の単板試料の磁束密度B8の平均値が1.90T以上であり、かつ磁束密度B8の最大値と最低値との差が0.030T以下であったことを示す。また、図1中の●は、少なくとも、5枚の単板試料の磁束密度B8の平均値が1.90T未満であったか、磁束密度B8の最大値と最低値との差が0.030Tを超えていたことを示す。図1から、0.0020質量%〜0.010質量%のTi、及び/又は0.010質量%〜0.50質量%のCuが鋼塊に含有されている場合、磁束密度B8の平均値が高く、磁束密度B8のばらつきが小さいことが明らかである。
次に、本発明の実施形態に係る方向性電磁鋼板の製造方法について説明する。図2は、本発明の実施形態に係る方向性電磁鋼板の製造方法を示すフローチャートである。
本実施形態では、先ず、所定の組成の方向性電磁鋼板用の溶鋼の鋳造を行ってスラブを作製する(ステップS1)。鋳造方法は特に限定されない。溶鋼は、例えば、Si:2.5質量%〜4.0質量%、C:0.01質量%〜0.060質量%、Mn:0.05質量%〜0.20質量%、酸可溶性Al:0.020質量%〜0.040質量%、N:0.002質量%〜0.012質量%、S:0.001質量%〜0.010質量%、P:0.01質量%〜0.08質量%を含有する。溶鋼は、更に、Ti:0.0020質量%〜0.010質量%及びCu:0.010質量%〜0.50質量%からなる群から選択された少なくとも1種を含有する。つまり、溶鋼は、Ti及びCuの一方又は両方を、Ti:0.010質量%以下及びCu:0.50質量%以下の範囲で、少なくともTi:0.0020質量%以上又はCu:0.010質量%以上の一方を満たすように含有する。溶鋼の残部は残部Fe及び不可避的不純物からなる。なお、不可避不純物には、方向性電磁鋼板の製造工程でインヒビターを形成し、高温焼鈍による純化の後に方向性電磁鋼板中に残存している元素も含まれる。
ここで、上記の溶鋼の組成の数値限定理由について説明する。
Siは、方向性電磁鋼板の電気抵抗を高めて、鉄損の一部を構成する渦電流損失を低減するのに極めて有効な元素である。Si含有量が2.5質量%未満であると、渦電流損失を十分に抑制することができない。一方、Si含有量が4.0質量%を超えていると、加工性が低下する。従って、Si含有量は2.5質量%〜4.0質量%とする。
Cは、一次再結晶により得られる組織(一次再結晶組織)を制御する上で有効な元素である。C含有量が0.01質量%未満であると、この効果が十分に得られない。一方、C含有量が0.06質量%を超えていると、脱炭焼鈍に要する時間が長くなり、COの排出量が多くなる。なお、脱炭焼鈍が不十分であると、良好な磁気特性の方向性電磁鋼板を得にくい。従って、C含有量は0.01質量%〜0.06質量%とする。また、上述のように、従来の技術では、C含有量が0.048質量%以下の場合に仕上焼鈍後の磁気特性のばらつきが特に顕著であるため、本実施形態は、C含有量が0.048質量%以下の場合に特に有効である。
Mnは、方向性電磁鋼板の比抵抗を高めて鉄損を低減させる。Mnは、熱間圧延における割れの発生を防止する作用も呈する。Mn含有量が0.05質量%未満であると、これらの効果が十分に得られない。一方、Mn含有量が0.20質量%を超えていると、方向性電磁鋼板の磁束密度が低下する。従って、Mn含有量は0.05質量%〜0.20質量%とする。
酸可溶性Alは、インヒビターとして作用するAlNを形成する重要な元素である。酸可溶性Alの含有量が0.020質量%未満であると、十分な量のAlNを形成することができず、インヒビター強度が不足する。一方、酸可溶性Alの含有量が0.040質量%を超えていると、AlNが粗大化し、インヒビター強度が低下する。従って、酸可溶性Alの含有量は0.020質量%〜0.040質量%とする。
Nは、酸可溶性Alと反応してAlNを形成する重要な元素である。後述のように、冷間圧延後に窒化処理が行われるため、方向性電磁鋼板用鋼に多量のNが含まれている必要はないが、N含有量を0.002質量%未満とするには、製鋼時に大きな負荷が必要とされることがある。一方、N含有量が0.012質量%を超えていると、冷間圧延時に鋼板中にブリスターとよばれる空孔を生じてしまう。従って、N含有量は0.002質量%〜0.012質量%とする。ブリスターの更なる低減のために、N含有量は0.010質量%以下であることが好ましい。
Sは、Mnと反応してMnS析出物を形成する重要な元素である。MnS析出物は主に一次再結晶に影響を与え、熱間圧延に起因してもたらされる一次再結晶の粒成長の場所的な変動を抑える作用を呈する。Mn含有量が0.001質量%未満であると、この効果が十分に得られない。一方、Mn含有量が0.010質量%を超えていると、磁気特性が低下しやすい。従って、Mn含有量は0.001質量%〜0.010質量%とする。磁気特性の更なる向上のために、Mn含有量は0.009質量%以下であることが好ましい。
Pは、方向性電磁鋼板の比抵抗を高めて鉄損を低減させる。P含有量が0.01質量%未満であると、この効果が十分に得られない。一方、P含有量が0.08質量%を超えていると、冷間圧延が困難になることがある。従って、P含有量は0.01質量%〜0.08質量%とする。
TiはNと反応してTiN析出物を形成する。また、CuはSと反応してCuS析出物を形成する。そして、これら析出物は、仕上焼鈍における結晶粒の成長をコイルの部位によらず均一化し、方向性電磁鋼板の磁気特性のばらつきを抑制する作用を呈する。特に、TiN析出物は仕上焼鈍の高温域での粒成長のばらつきを抑制し、方向性電磁鋼板の磁気特性の偏差を小さくすると考えられる。また、CuS析出物は脱炭焼鈍又は仕上焼鈍の低温域における粒成長のばらつきを抑制し方向性電磁鋼板の磁気特性の偏差を小さくすると考えられる。Ti含有量が0.0020質量%未満、かつCu含有量が0.010質量%未満であると、これらの効果が十分に得られない。一方、Ti含有量が0.010質量%を超えていると、TiN析出物が過剰に形成され、仕上焼鈍後にも残存してしまう。同様に、Cu含有量が0.50質量%を超えていると、CuS析出物が過剰に形成され、仕上焼鈍後にも残存してしまう。そして、これら析出物が方向性電磁鋼板に残存していると、高い磁気特性を得ることが困難となる。従って、溶鋼は、Ti及びCuの一方又は両方を、Ti:0.010質量%以下及びCu:0.50質量%以下の範囲で、少なくともTi:0.0020質量%以上又はCu:0.010質量%以上の一方を満たすように含有する。つまり、溶鋼は、Ti:0.0020質量%〜0.010質量%及びCu:0.010質量%〜0.50質量%からなる群から選択された少なくとも1種を含有する。
なお、Ti含有量の下限は0.0020質量%であることが好ましく、Ti含有量の上限は0.0080質量%であることが好ましい。また、Cu含有量の下限は0.01質量%であることが好ましく、Cu含有量の上限は0.10質量%であることが好ましい。また、Ti含有量(質量%)を[Ti]、Cu含有量(質量%)を[Cu]と表したとき、「20×[Ti]+[Cu]≦0.18」の関係が成り立つことがより好ましく、「10×[Ti]+[Cu]≦0.07」の関係が成り立つことが好ましい。
なお、以下の種々の元素の少なくとも一種が溶鋼に含まれていてもよい。
Cr及びSnは、脱炭焼鈍時に形成される酸化層の性質を良好なものとし、仕上焼鈍時にこの酸化層を用いて形成されるグラス皮膜の性質も良好なものとする。つまり、Cr及びSnは、酸化層及びグラス皮膜の形成の安定化を通して、磁気特性を向上し、磁気特性のばらつきを抑制する。但し、Cr含有量が0.20質量%を超えていると、グラス皮膜の形成が不安定になる場合がある。また、Sn含有量が0.20質量%を超えていると、鋼板の表面が酸化されにくくなってグラス皮膜の形成が不十分となる場合がある。従って、Cr含有量及びSn含有量は、いずれも0.20質量%以下であることが好ましい。また、上記の効果を十分に得るために、Cr含有量及びSn含有量は、いずれも0.01質量%以上であることが好ましい。なお、Snは粒界偏析元素であり、二次再結晶を安定化ならしめる効果もある。
また、Sb:0.010質量%〜0.20質量%、Ni:0.010質量%〜0.20質量%、Se:0.005質量%〜0.02質量%、Bi:0.005質量%〜0.02質量%、Pb:0.005質量%〜0.02質量%、B:0.005質量%〜0.02質量%、V:0.005質量%〜0.02質量%、Mo:0.005質量%〜0.02質量%、及び/又はAs:0.005質量%〜0.02質量%が溶鋼に含有されていてもよい。これらの元素はいずれもインヒビター強化元素である。
本実施形態では、このような組成の溶鋼からスラブを作製した後、スラブを加熱する(ステップS2)。この加熱の温度は、省エネルギの観点から1250℃以下とすることが好ましい。
次いで、スラブの熱間圧延を行うことにより、熱間圧延鋼板を得る(ステップS3)。熱間圧延鋼板の厚さは特に限定されず、例えば、1.8mm〜3.5mmとする。
その後、熱間圧延鋼板の焼鈍を行うことにより、焼鈍鋼板を得る(ステップS4)。焼鈍の条件は特に限定されず、例えば、750℃〜1200℃の温度で30秒間〜10分間行う。この焼鈍により磁気特性が向上する。
続いて、焼鈍鋼板の冷間圧延を行うことにより、冷間圧延鋼板を得る(ステップS5)。冷間圧延は1回のみ行ってもよく、複数回の冷間圧延を、間に中間焼鈍を行いながら行ってもよい。中間焼鈍は、例えば750℃〜1200℃の温度で30秒間〜10分間行うことが好ましい。
なお、上記のような中間焼鈍を行わずに冷間圧延を行うと、均一な特性を得にくくなることがある。また、中間焼鈍を間に行いつつ複数回の冷間圧延を行うと、均一な特性を得やすくなるが、磁束密度が低くなることがある。従って、冷間圧延の回数及び中間焼鈍の有無は、最終的に得られる方向性電磁鋼板に要求される特性及びコストに応じて決定することが好ましい。
また、いずれの場合であっても、最終冷間圧延の圧下率は80%〜95%とすることが好ましい。
冷間圧延後、冷間圧延鋼板に、800℃〜950℃の水素及び窒素を含有する湿潤雰囲気中で脱炭焼鈍を行うことにより、脱炭焼鈍鋼板を得る(ステップS6)。脱炭焼鈍により鋼板中の炭素が除去され、一次再結晶が生じる。脱炭焼鈍の温度が800℃未満であると、一次再結晶により得られる結晶粒(一次再結晶粒)が小さすぎて、後の二次再結晶が十分に発現しない。一方、脱炭焼鈍の温度が950℃を超えていると、一次再結晶粒が大きすぎて、後の二次再結晶が十分に発現しない。
次いで、脱炭焼鈍鋼板に、700℃〜850℃の水素、窒素及びアンモニア等の窒化能を有するガスを含有する雰囲気中で窒化処理を行うことにより、窒化処理鋼板を得る(ステップS7)。窒化処理により、鋼板中の窒素含有量が増加する。窒化処理の温度が700℃未満であるか、850℃を超えていると、鋼板の内部まで窒素が拡散しにくく、後の二次再結晶が十分に発現しない。
その後、窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、窒化処理鋼板をコイル状に巻き取る。そして、コイル状の窒化処理鋼板にバッチ式の仕上焼鈍を行うことにより、コイル状の仕上焼鈍鋼板を得る(ステップS8)。仕上焼鈍により、二次再結晶が生じる。
その後、コイル状の仕上焼鈍鋼板の巻き解き、及び焼鈍分離剤の除去を行う。続いて、仕上げ焼鈍鋼板の表面にリン酸アルミニウム及びコロイダルシリカを主成分とした被覆液を塗布し、この焼付けを行って絶縁被膜を形成する(ステップS9)。
このようにして方向性電磁鋼板を製造することができる。
なお、熱間圧延の対象とする鋼は、溶鋼の鋳造により得られるスラブに限定されず、所謂薄スラブを用いてもよい。また、薄スラブを用いる場合、必ずしも1250℃以下のスラブ加熱を行わなくてもよい。
次に、本発明者らが行った実験について説明する。これらの実験における条件等は、本発明の実施可能性及び効果を確認するために採用した例であり、本発明は、これらの例に限定されるものではない。
(第1の実験)
先ず、Si:3.2質量%、C:0.055質量%、Mn:0.10質量%、酸可溶性Al:0.028質量%、N:0.003質量%、S:0.0060質量%、及びP:0.030質量%を含有し、更に、表1に示す量のTi及びCuを含有し、残部がFe及び不可避的不純物からなる15種類の鋼塊を、真空溶解炉を用いて作製した。次いで、1150℃で鋼塊の焼鈍を1時間行い、その後、熱間圧延を行って厚さが2.3mmの熱間圧延鋼板を得た。
続いて、1100℃で熱間圧延鋼板の焼鈍を120秒間行って焼鈍鋼板を得た。次いで、焼鈍鋼板の酸洗いを行い、その後、焼鈍鋼板の冷間圧延を行って厚さが0.23mmの冷間圧延鋼板を得た。続いて、860℃で水蒸気、水素、及び窒素を含有するガス雰囲気中で冷間圧延鋼板の脱炭焼鈍を100秒間行って脱炭焼鈍鋼板を得た。次いで、770℃で水素、窒素、及びアンモニアを含有するガス雰囲気中で脱炭焼鈍鋼板の窒化処理を20秒間行って窒化処理鋼板を得た。
その後、窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布した。そして、1200℃で20時間の仕上焼鈍を行って仕上焼鈍鋼板を得た。続いて、仕上焼鈍鋼板を水洗し、その後、幅が60mm、長さが300mmの単板磁気測定用サイズに剪断した。次いで、仕上焼鈍鋼板の表面にリン酸アルミニウム及びコロイダルシリカを主成分とする被覆液を塗布し、この焼付けを行って絶縁被膜を形成した。このようにして、方向性電磁鋼板の試料を得た。
そして、各方向性電磁鋼板の磁束密度B8を測定した。磁束密度B8は、上述のように、50Hzにて800A/mの磁場が印加されたときに、方向性電磁鋼板に発生する磁束密度である。なお、試料毎に、5枚の測定用の単板試料の磁束密度B8を測定した。そして、試料毎に、平均値「平均B8」、最高値「B8max」、及び最低値「B8min」を求めた。更に、最高値「B8max」と最低値「B8min」との差「ΔB8」も求めた。差「ΔB8」は、磁気特性の変動幅を示す指標である。これらの結果をTi含有量及びCu含有量と共に表1示す。また、平均値「平均B8」及び差「ΔB8」に基づく評価結果を図1に示す。上述のように、図1中の○印は、平均値「平均B8」が1.90T以上であり、かつ差「ΔB8」が0.030T以下であったことを示す。また、図1中の●は、平均値「平均B8」が1.90T未満であったか、差「ΔB8」が0.030Tを超えていたことを示す。
Figure 0004943559
表1及び図1に示すように、Ti含有量及びCu含有量が本発明範囲内にある試料No.11〜No.15では、平均値「平均B8」が1.90T以上と大きく、差「ΔB8」が0.030T以下と小さかった。つまり、高い磁気特性が得られ、磁気特性のばらつきが小さかった。
特に、Ti含有量(質量%)を[Ti]、Cu含有量(質量%)を[Cu]と表したとき、「20×[Ti]+[Cu]≦0.18」の関係が成り立つ試料No.11、No.13、及びNo.15において、平均値「平均B8」及び差「ΔB8」のバランスが良好であった。その中でも、「10×[Ti]+[Cu]≦0.07」の関係が成り立つ試料No.15において、平均値「平均B8」及び差「ΔB8」のバランスが極めて良好であった。
一方、Ti含有量が0.0020質量%未満、かつCu含有量が0.010質量%未満の試料No.1では、差「ΔB8」が0.030T超と大きかった。つまり、磁気特性のばらつきが大きかった。また、Ti含有量が0.010質量%を超える試料No.5、及びCu含有量が0.50質量%を超える試料No.10では、析出物が多量に含まれ、仕上焼鈍に影響を及ぼした結果、平均値「平均B8」が1.90T未満と小さかった。つまり、十分に高い磁気特性が得られなかった。
(第2の実験)
先ず、Si:3.2質量%、C:0.051質量%、Mn:0.09質量%、酸可溶性Al:0.026質量%、N:0.004質量%、S:0.0053質量%、P:0.027質量%、Ti:0.0024質量%、及びCu:0.029質量%を含有し、残部がFe及び不可避的不純物からなる鋼塊を、真空溶解炉を用いて作製した。次いで、1150℃で鋼塊の焼鈍を1時間行い、その後、熱間圧延を行って厚さが2.4mmの熱間圧延鋼板を得た。
続いて、1090℃で熱間圧延鋼板の焼鈍を120秒間行って焼鈍鋼板を得た。次いで、焼鈍鋼板の酸洗いを行い、その後、焼鈍鋼板の冷間圧延を行って厚さが0.23mmの冷間圧延鋼板を得た。続いて、冷間圧延鋼板から8枚の焼鈍用の鋼板を切り出し、表2に示す790℃〜960℃の温度T1で水蒸気、水素、及び窒素を含有するガス雰囲気中で鋼板の脱炭焼鈍を80秒間行って脱炭焼鈍鋼板を得た。次いで、表2に示す680℃〜880℃の温度T2で水蒸気、水素、窒素、及びアンモニアを含有するガス雰囲気中で脱炭焼鈍鋼板の窒化処理を20秒間行って窒化処理鋼板を得た。
その後、窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布した。そして、1200℃で20時間の仕上焼鈍を行って仕上焼鈍鋼板を得た。続いて、第1の実験と同様にして、水洗から絶縁被膜の形成までの処理を行い、方向性電磁鋼板の試料を得た。
そして、第1の実験と同様にして、試料毎に、平均値「平均B8」、最高値「B8max」、最低値「B8min」、及び差「ΔB8」を求めた。これらの結果を温度T1及び温度T2と共に表2に示す。
Figure 0004943559
表2に示すように、脱炭焼鈍の温度T1及び窒化処理の温度T2が本発明範囲内にある試料No.22〜No.24、及びNo.27では、平均値「平均B8」が1.90T以上と大きく、差「ΔB8」が0.030T以下と小さかった。つまり、高い磁気特性が得られ、磁気特性のばらつきが小さかった。
一方、脱炭焼鈍の温度T1が800℃未満の試料No.21では、平均値「平均B8」が1.90T未満と小さかった。脱炭焼鈍の温度T1が950℃超の試料No.25では、差「ΔB8」が0.030T超と大きく、平均値「平均B8」が1.90T未満と小さかった。また、窒化処理の温度T2が700℃未満の試料No.26では、平均値「平均B8」が1.90T未満と小さかった。窒化処理の温度T2が850℃超の試料No.28では、差「ΔB8」が0.030T超と大きく、平均値「平均B8」が1.90T未満と小さかった。
(第3の実験)
先ず、Si:3.2質量%、Mn:0.09質量%、酸可溶性Al:0.026質量%、N:0.004質量%、S:0.0053質量%、及びP:0.027質量%を含有し、更に、表3に示す量のC、Ti及びCuを含有し、残部がFe及び不可避的不純物からなる20種類の鋼塊を、真空溶解炉を用いて作製した。次いで、1150℃で鋼塊の焼鈍を1時間行い、その後、熱間圧延を行って厚さが2.4mmの熱間圧延鋼板を得た。
続いて、1090℃で熱間圧延鋼板の焼鈍を120秒間行って焼鈍鋼板を得た。次いで、焼鈍鋼板の酸洗いを行い、その後、焼鈍鋼板の冷間圧延を行って厚さが0.23mmの冷間圧延鋼板を得た。続いて、冷間圧延鋼板から焼鈍用の鋼板を切り出し、860℃で水蒸気、水素、及び窒素を含有するガス雰囲気中で鋼板の脱炭焼鈍を80秒間行って脱炭焼鈍鋼板を得た。次いで、760℃で水蒸気、水素、窒素、及びアンモニアを含有するガス雰囲気中で脱炭焼鈍鋼板の窒化処理を20秒間行って窒化処理鋼板を得た。
その後、窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布した。そして、1200℃で20時間の仕上焼鈍を行って仕上焼鈍鋼板を得た。続いて、第1の実験と同様にして、水洗から絶縁被膜の形成までの処理を行い、方向性電磁鋼板の試料を得た。
そして、第1の実験と同様にして、試料毎に、平均値「平均B8」、最高値「B8max」、最低値「B8min」、及び差「ΔB8」を求めた。これらの結果をC含有量、Ti含有量及びCu含有量と共に表3に示す。
Figure 0004943559
表3に示すように、C含有量、Ti含有量及びCu含有量が本発明範囲内にある試料No.3〜No.34、No.3〜No.39、No.4〜No.44、及びNo.4〜No.49では、平均値「平均B8」が1.90T以上と大きく、差「ΔB8」が0.025T以下と小さかった。つまり、高い磁気特性が得られ、磁気特性のばらつきが小さかった。特に、C含有量が少ない場合に、良好な結果が得られた。
更に、Ti含有量が0.002質量〜0.080質量%、Cu含有量が0.010質量〜0.10質量%であり、「20×[Ti]+[Cu]≦0.18」の関係が成り立つ試料No.33、No.38、No.43、及びNo.48において、平均値「平均B8」及び差「ΔB8」のバランスが良好であった。その中でも、「10×[Ti]+[Cu]≦0.07」の関係が成り立つ試料No.32、No.37、No.42、及びNo.47において、平均値「平均B8」及び差「ΔB8」のバランスが極めて良好であった。
一方、Ti含有量が0.010質量%未満、かつCu含有量が0.50質量%未満の試料No.31、No.36、No.41、及びNo.46では、差「ΔB8」が0.030T超と大きかった。その中でも、C含有量が低い試料No.31、No.36では、更に、平均値「平均B8」が1.90T未満と小さかった。また、Ti含有量が0.010質量%を超え、Cu含有量が0.50質量%を超える試料No.35、No.40、No.45、及びNo.50では、平均値「平均B8」が1.90T未満と小さかった。
(第4の実験)
先ず、Si:3.2質量%、C:0.048質量%、Mn:0.08質量%、酸可溶性Al:0.028質量%、N:0.004質量%、S:0.0061質量%、P:0.033質量%、Ti:0.0024質量%、及びCu:0.029質量%を含有し、更に、表4に示す量のCr及びSnを含有し、残部がFe及び不可避的不純物からなる10種類の鋼塊を、真空溶解炉を用いて作製した。次いで、1100℃で鋼塊の焼鈍を1時間行い、その後、熱間圧延を行って厚さが2.3mmの熱間圧延鋼板を得た。
続いて、1080℃で熱間圧延鋼板の焼鈍を120秒間行って焼鈍鋼板を得た。次いで、焼鈍鋼板の酸洗いを行い、その後、焼鈍鋼板の冷間圧延を行って厚さが0.23mmの冷間圧延鋼板を得た。続いて、870℃で水蒸気、水素、及び窒素を含有するガス雰囲気中で冷間圧延鋼板の脱炭焼鈍を90秒間行って脱炭焼鈍鋼板を得た。次いで、760℃で水素、窒素、及びアンモニアを含有するガス雰囲気中で脱炭焼鈍鋼板の窒化処理を20秒間行って窒化処理鋼板を得た。
その後、窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布した。そして、1200℃で20時間の仕上焼鈍を行って仕上焼鈍鋼板を得た。続いて、第1の実験と同様にして、水洗から絶縁被膜の形成までの処理を行い、方向性電磁鋼板の試料を得た。
そして、第1の実験と同様にして、試料毎に、平均値「平均B8」、最高値「B8max」、最低値「B8min」、及び差「ΔB8」を求めた。これらの結果をCr含有量及びSn含有量と共に表4に示す。
Figure 0004943559
表4に示すように、試料No.51〜No.53、No.55〜No.56、及びNo.58〜No.60のいずれにおいても、平均値「平均B8」が1.90T以上と大きく、差「ΔB8」が0.030T以下と小さかった。つまり、高い磁気特性が得られ、磁気特性のばらつきが小さかった。その中でも、0.010質量%〜0.20質量%のCr、及び/又は、0.010質量%〜0.20質量%のSnを含有する試料No.52、No.53、No.55、No.56、No.58〜No.60では、平均値「平均B8」が1.91T以上と特に大きく、差「ΔB8」が0.025T以下と特に小さかった。
本発明は、例えば、電磁鋼板製造産業及び電磁鋼板利用産業において利用することができる。

Claims (8)

  1. Si:2.5質量%〜4.0質量%、C:0.01質量%〜0.060質量%、Mn:0.05質量%〜0.20質量%、酸可溶性Al:0.020質量%〜0.040質量%、N:0.002質量%〜0.012質量%、S:0.001質量%〜0.010質量%、及びP:0.01質量%〜0.08質量%を含有し、更に、Ti:0.002質量%〜0.010質量%及びCu:0.010質量%〜0.50質量%を含有し、残部がFe及び不可避的不純物からなる鋼の熱間圧延を行って熱間圧延鋼板を得る工程と、
    前記熱間圧延鋼板の焼鈍を行って焼鈍鋼板を得る工程と、
    前記焼鈍鋼板の冷間圧延を行って冷間圧延鋼板を得る工程と、
    前記冷間圧延鋼板の脱炭焼鈍を800℃〜950℃の温度で行って脱炭焼鈍鋼板を得る工程と、
    次いで、前記脱炭焼鈍鋼板の窒化処理を700℃〜850℃で行って窒化処理鋼板を得る工程と、
    前記窒化処理鋼板の表面にMgOを主成分とする焼鈍分離剤を水スラリーにて塗布し、窒化処理鋼板をコイル状に巻き取り、バッチ式の仕上焼鈍を行う工程と、
    を有することを特徴とする方向性電磁鋼板の製造方法。
  2. 前記鋼の熱間圧延を、前記鋼を1250℃以下の温度に加熱してから行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
  3. 前記鋼は、更に、Cr:0.010質量%〜0.20質量%、Sn:0.010質量%〜0.20質量%、Sb:0.010質量%〜0.20質量%、Ni:0.010質量%〜0.20質量%、Se:0.005質量%〜0.02質量%、Bi:0.005質量%〜0.02質量%、Pb:0.005質量%〜0.02質量%、B:0.005質量%〜0.02質量%、V:0.005質量%〜0.02質量%、Mo:0.005質量%〜0.02質量%、及びAs:0.005質量%〜0.02質量%からなる群から選択された少なくとも一種を含有することを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。
  4. 前記鋼は、更に、Cr:0.20質量%以下、Sn:0.20質量%以下、Sb:0.010質量%〜0.20質量%、Ni:0.010質量%〜0.20質量%、Se:0.005質量%〜0.02質量%、Bi:0.005質量%〜0.02質量%、Pb:0.005質量%〜0.02質量%、B:0.005質量%〜0.02質量%、V:0.005質量%〜0.02質量%、Mo:0.005質量%〜0.02質量%、及びAs:0.005質量%〜0.02質量%からなる群から選択された少なくとも一種を含有することを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。
  5. 前記鋼は、更に、Cr:0.010質量%〜0.20質量%及びSn:0.010質量%〜0.20質量%からなる群から選択された少なくとも一種を含有することを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。
  6. 前記鋼は、更に、Cr:0.20質量%以下及びSn:0.20質量%以下からなる群から選択された少なくとも一種を含有することを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。
  7. 前記鋼のTi含有量は0.002質量%〜0.0080質量%であり、
    前記鋼のCu含有量は0.01質量%〜0.10質量%であり、
    前記鋼のTi含有量(質量%)を[Ti]、Cu含有量(質量%)を[Cu]と表したとき、「20×[Ti]+[Cu]≦0.18」の関係が成り立つことを特徴とする請求項1乃至6のいずれか1項に記載の方向性電磁鋼板の製造方法。
  8. 「10×[Ti]+[Cu]≦0.07」の関係が成り立つことを特徴とする請求項7に記載の方向性電磁鋼板の製造方法。
JP2011523633A 2010-02-18 2011-02-18 方向性電磁鋼板の製造方法 Active JP4943559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011523633A JP4943559B2 (ja) 2010-02-18 2011-02-18 方向性電磁鋼板の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010033921 2010-02-18
JP2010033921 2010-02-18
JP2011523633A JP4943559B2 (ja) 2010-02-18 2011-02-18 方向性電磁鋼板の製造方法
PCT/JP2011/053491 WO2011102456A1 (ja) 2010-02-18 2011-02-18 方向性電磁鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP4943559B2 true JP4943559B2 (ja) 2012-05-30
JPWO2011102456A1 JPWO2011102456A1 (ja) 2013-06-17

Family

ID=44483041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011523633A Active JP4943559B2 (ja) 2010-02-18 2011-02-18 方向性電磁鋼板の製造方法

Country Status (8)

Country Link
US (1) US20120312423A1 (ja)
EP (1) EP2537947B1 (ja)
JP (1) JP4943559B2 (ja)
KR (2) KR20120118504A (ja)
CN (1) CN102762752B (ja)
BR (1) BR112012020741B1 (ja)
PL (1) PL2537947T3 (ja)
WO (1) WO2011102456A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741031B (zh) * 2013-12-27 2016-01-20 钢铁研究总院 薄板坯连铸连轧含钒普通取向硅钢及其制造方法
US10900113B2 (en) 2014-09-04 2021-01-26 Jfe Steel Corporation Method for manufacturing grain-oriented electrical steel sheet, and nitriding apparatus
WO2017057487A1 (ja) * 2015-09-28 2017-04-06 新日鐵住金株式会社 方向性電磁鋼板及び方向性電磁鋼板用の熱延鋼板
KR101676630B1 (ko) * 2015-11-10 2016-11-16 주식회사 포스코 방향성 전기강판 및 그 제조방법
RU2727435C1 (ru) * 2017-07-13 2020-07-21 Ниппон Стил Корпорейшн Лист анизотропной электротехнической стали
WO2019013348A1 (ja) * 2017-07-13 2019-01-17 新日鐵住金株式会社 方向性電磁鋼板
JP6946847B2 (ja) * 2017-08-17 2021-10-13 日本製鉄株式会社 方向性電磁鋼板の製造方法
JP6946846B2 (ja) * 2017-08-17 2021-10-13 日本製鉄株式会社 方向性電磁鋼板の製造方法
KR102099866B1 (ko) * 2017-12-26 2020-04-10 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301820A (ja) * 1988-02-03 1989-12-06 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
JPH02200733A (ja) * 1989-01-31 1990-08-09 Nippon Steel Corp 高磁束密度方向性電磁鋼板の製造方法
JPH06228646A (ja) * 1992-12-08 1994-08-16 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の安定製造方法
JPH08279408A (ja) * 1995-04-07 1996-10-22 Nippon Steel Corp 磁気特性が優れた一方向性電磁鋼板の製造方法
JP2005226111A (ja) * 2004-02-12 2005-08-25 Nippon Steel Corp 磁気特性に優れた一方向性電磁鋼板の製造方法
JP2007254829A (ja) * 2006-03-23 2007-10-04 Nippon Steel Corp 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
JP2009256713A (ja) * 2008-04-15 2009-11-05 Nippon Steel Corp 方向性電磁鋼板の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276923A (en) * 1961-04-17 1966-10-04 Gen Electric Reduction in magnetic losses in electrical induction apparatus
GB1261945A (en) * 1968-04-24 1972-01-26 Kobe Steel Ltd A method for producing a mono-directional silicon steel sheet
US4202711A (en) * 1978-10-18 1980-05-13 Armco, Incl. Process for producing oriented silicon iron from strand cast slabs
JPS5956522A (ja) * 1982-09-24 1984-04-02 Nippon Steel Corp 鉄損の良い一方向性電磁鋼板の製造方法
JPS6240315A (ja) * 1985-08-15 1987-02-21 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
DE68916980T2 (de) * 1988-02-03 1994-11-17 Nippon Steel Corp Verfahren zum Herstellen kornorientierter Elektrostahlbleche mit hoher Flussdichte.
US5759293A (en) * 1989-01-07 1998-06-02 Nippon Steel Corporation Decarburization-annealed steel strip as an intermediate material for grain-oriented electrical steel strip
US5186762A (en) * 1989-03-30 1993-02-16 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having high magnetic flux density
JPH0774388B2 (ja) * 1989-09-28 1995-08-09 新日本製鐵株式会社 磁束密度の高い一方向性珪素鋼板の製造方法
JPH03122227A (ja) 1989-10-05 1991-05-24 Nippon Steel Corp 方向性電磁鋼板の脱炭連続焼鈍炉
JPH07122096B2 (ja) * 1990-11-07 1995-12-25 新日本製鐵株式会社 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法
JP2620438B2 (ja) * 1991-10-28 1997-06-11 新日本製鐵株式会社 磁束密度の高い一方向性電磁鋼板の製造方法
US5288736A (en) * 1992-11-12 1994-02-22 Armco Inc. Method for producing regular grain oriented electrical steel using a single stage cold reduction
JPH06256847A (ja) 1993-03-03 1994-09-13 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JP2951852B2 (ja) * 1994-09-30 1999-09-20 川崎製鉄株式会社 磁気特性に優れる一方向性珪素鋼板の製造方法
IT1290977B1 (it) 1997-03-14 1998-12-14 Acciai Speciali Terni Spa Procedimento per il controllo dell'inibizione nella produzione di lamierino magnetico a grano orientato
JP3481491B2 (ja) 1998-03-30 2003-12-22 新日本製鐵株式会社 磁気特性に優れた一方向性電磁鋼板の製造方法
JP4261633B2 (ja) 1998-05-11 2009-04-30 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
EP1162280B1 (en) * 2000-06-05 2013-08-07 Nippon Steel & Sumitomo Metal Corporation Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
KR100953755B1 (ko) * 2005-06-10 2010-04-19 신닛뽄세이테쯔 카부시키카이샤 자기 특성이 극히 우수한 방향성 전자강판의 제조 방법
JP4916847B2 (ja) * 2006-11-21 2012-04-18 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
CN101775547B (zh) * 2009-12-31 2012-11-21 武汉钢铁(集团)公司 高磁感取向硅钢带的生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301820A (ja) * 1988-02-03 1989-12-06 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
JPH02200733A (ja) * 1989-01-31 1990-08-09 Nippon Steel Corp 高磁束密度方向性電磁鋼板の製造方法
JPH06228646A (ja) * 1992-12-08 1994-08-16 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の安定製造方法
JPH08279408A (ja) * 1995-04-07 1996-10-22 Nippon Steel Corp 磁気特性が優れた一方向性電磁鋼板の製造方法
JP2005226111A (ja) * 2004-02-12 2005-08-25 Nippon Steel Corp 磁気特性に優れた一方向性電磁鋼板の製造方法
JP2007254829A (ja) * 2006-03-23 2007-10-04 Nippon Steel Corp 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
JP2009256713A (ja) * 2008-04-15 2009-11-05 Nippon Steel Corp 方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
EP2537947A4 (en) 2017-07-26
JPWO2011102456A1 (ja) 2013-06-17
CN102762752A (zh) 2012-10-31
EP2537947A1 (en) 2012-12-26
KR101389248B1 (ko) 2014-04-24
BR112012020741B1 (pt) 2022-07-19
US20120312423A1 (en) 2012-12-13
EP2537947B1 (en) 2018-12-19
WO2011102456A1 (ja) 2011-08-25
PL2537947T3 (pl) 2019-05-31
CN102762752B (zh) 2016-04-13
BR112012020741A2 (pt) 2016-08-23
KR20120118504A (ko) 2012-10-26
KR20130119516A (ko) 2013-10-31

Similar Documents

Publication Publication Date Title
JP4943559B2 (ja) 方向性電磁鋼板の製造方法
JP4943560B2 (ja) 方向性電磁鋼板の製造方法
JP5439866B2 (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP5423909B1 (ja) 方向性電磁鋼板の製造方法
JP5031934B2 (ja) 方向性電磁鋼板の製造方法
US9953752B2 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP5757693B2 (ja) 低鉄損一方向性電磁鋼板の製造方法
JP4608562B2 (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP4608514B2 (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
JP6079580B2 (ja) 方向性電磁鋼板の製造方法
JP5862582B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
JP6690244B2 (ja) 二方向性電磁鋼板および二方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R151 Written notification of patent or utility model registration

Ref document number: 4943559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350