JP4939974B2 - 走査型プローブ顕微鏡 - Google Patents

走査型プローブ顕微鏡 Download PDF

Info

Publication number
JP4939974B2
JP4939974B2 JP2007043654A JP2007043654A JP4939974B2 JP 4939974 B2 JP4939974 B2 JP 4939974B2 JP 2007043654 A JP2007043654 A JP 2007043654A JP 2007043654 A JP2007043654 A JP 2007043654A JP 4939974 B2 JP4939974 B2 JP 4939974B2
Authority
JP
Japan
Prior art keywords
cantilever
light
solution
incident
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007043654A
Other languages
English (en)
Other versions
JP2008209127A (ja
Inventor
誠人 伊與木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007043654A priority Critical patent/JP4939974B2/ja
Publication of JP2008209127A publication Critical patent/JP2008209127A/ja
Application granted granted Critical
Publication of JP4939974B2 publication Critical patent/JP4939974B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、大気中や液体中において先端に探針を有するカンチレバーとサンプル表面に働く相互作用を検出して距離制御を行いながら、サンプルと探針を微動機構により相対的にスキャンし、サンプルの表面の凹凸や物理特性の測定やサンプル表面の加工、あるいは、探針によりサンプル表面の物質の移動などを行うための走査型プローブ顕微鏡に関する。
従来の走査型プローブ顕微鏡は、先端に探針を有するカンチレバーの末端に設けられた基部をカンチレバーホルダに固定し、サンプルは円筒型圧電素子などにより構成される3軸(XYZ軸)微動機構上に載置された構成である。
走査型プローブ顕微鏡の測定を行う場合には、サンプルをステッピングモータなどによる粗動機構により探針に近接させた後、さらに3軸微動機構により探針とサンプル間を充分に接近させていく。そうするとサンプルと探針間には、原子間力などの物理的な力が作用し、探針は始め引力を受け、さらに近接させていくと探針は斥力を受ける。これらの引力や斥力によりカンチレバーにたわみが生ずる。このときのたわみは、通常、光てこ方式と呼ばれる変位検出機構により検出される。
光てこ方式とは、半導体レーザなどからなる光源からレーザ光(入射光)をカンチレバーの背面に照射する。この入射光は、カンチレバーの背面で反射し、反射光がカンチレバー半導体検出器からなる光検出器に当る。この光検出器は受光面が上下に2分割、または上下左右に4分割され、この分割された受光面の光量から反射光の入射位置を検出して、カンチレバーのたわみ量を測定することできるものである。
この原子間力などの物理的な力は、探針とサンプル間の距離に依存し、探針とサンプルを原子間力が作用する領域内に近接させて、3軸微動機構により2次元平面内で走査させながら、カンチレバーのたわみ量が常に一定になるように、サンプルと探針間の距離を制御することにより、サンプル表面の凹凸像が画像化される。このような距離制御方式はコンタクト方式の原子間力顕微鏡と呼ばれている。また、このとき探針先端とサンプル表面での物理的な作用を検出することにより、電気的物性や光学的物性などの物理特性の測定も可能である。
また、前述のコンタクト方式の原子間力顕微鏡の他に、振動方式の原子間力顕微鏡も普及している。この方式は、カンチレバーホルダに圧電素子などの加振手段を設け、加振手段によりカンチレバーを共振周波数近傍の周波数で振動させ、そのときの振幅や位相を光てこ法などの変位検出手段で計測する。探針とサンプル間を充分に接近させると、サンプルと探針間には、原子間力などの物理的な力が作用し、さらに近接していくとサンプルと探針がカンチレバーの振動に対応して間欠的に接触し、両者に接触力が作用する。この原子間力や接触力により、カンチレバーの振幅や位相が変化する。これらの力は、探針とサンプル間の距離に依存するため、カンチレバーの振幅や位相の変化量が常に一定になるように、サンプルと探針間の距離を制御することにより距離制御が行われる。振動方式の原子間力顕微鏡はコンタクト方式の原子間力顕微鏡に比べて、探針やサンプルに与えるダメージが少ないというメリットがある。
多くの走査型プローブ顕微鏡の測定は大気中で行われるが、例えば高分子や細胞、染色体、DNA、たんぱく質などの有機系やバイオ系サンプルの場合には、大気下にさらすとサンプルが変質してしまうため、培養液などの溶液中にサンプルとカンチレバーを浸して測定を行う場合もあり、生体サンプルや有機高分子サンプルなどのin situ観察や、溶液中での電気化学反応を組み合わせた測定などに応用されている。
ここで、図7の従来の液中測定用の走査型プローブ顕微鏡の概観図を参照し、原理を説明する(例えば、特許文献1参照)。
この従来技術は、先端に探針を有するカンチレバー101によってサンプルSの観察を行うコンタクト方式の原子間力顕微鏡であり、カンチレバー101を支持するカンチレバー支持部102と、光てこ方式によりカンチレバー101の変位を測定する変位検出機構(103,104,105,106)と、サンプルSを溶液110内に保持する溶液セル111と、サンプルSをカンチレバー101に対して移動させて走査を行う3軸微動機構107を備える。
溶液セル111は、試料Sを支持する底面118と、底面118の周囲を囲む側壁119を備え、内部に溶液110を保持可能としている。溶液セル111内に溶液110を注入し、カンチレバー101及び試料Sを液体中に浸した状態とする。
変位検出機構は、レーザ光を照射するレーザ光源103と、照射されたレーザ光をカンチレバー101方向に向けるビームスプリッタ104と、カンチレバー101で反射されたレーザ光の方向を調節するミラー105と、反射レーザ光を検出するフォトダイオード106を備える。
ここで、カンチレバー支持部102は透過性の材料で構成されており、カンチレバーが支持される側が溶液内に浸された状態に配置される。カンチレバー101に対する入射レーザ光及び反射レーザ光は、大気中から透過性の材料で構成されたカンチレバー支持部102を透過し、溶液110内を通り、溶液内に配置されたカンチレバー101で反射し、溶液110から再びカンチレバー支持部102に入射し、大気中に抜けミラー105を経由してフォトダイオード106に至る光学経路を形成する。もし、大気中からそのまま溶液中にレーザ光が入射された場合には、溶液の表面の揺れによる乱反射や光路の変化で変位検出の精度が大きく低下してしまう。しかしながら、この従来技術ではカンチレバー支持部102と溶液の界面は連続的につながっており、カンチレバー支持部102が液面保持部も兼ねた構成となっているため、溶液の界面の揺れが防止されてレーザの入射光がそのまま溶液中に進行でき、溶液中でも精度よくカンチレバー101の変位を測定することが可能である。
この状態で、3軸微動機構を用いて、カンチレバー101の変位が一定となるようにカンチレバー101とサンプルS間の距離をフィードバック制御しながら、サンプル面内でサンプルをスキャンすることで、サンプルSの形状像を測定することができる。
特開平11−142418号公報
しかしながら、従来の液中測定用の走査型プローブ顕微鏡におけるカンチレバーホルダでは、透過性の材料からなるカンチレバー支持部や溶液中をレーザ光が進行するため、結像系の光路を用いている場合には、大気中を進行する場合に対して焦点ずれが発生する。また、大気中を進行する場合に対して、光が屈折してしまうため、フォトダイオードへの入射位置がずれてしまうという問題があった。
一般的な走査型プローブ顕微鏡では、カンチレバーは数10μmの幅であり、狭い領域に光を照射するため、光源からの光をレンズによりカンチレバー背面に結像させる光学系が用いられる。
また、溶液中での測定だけではなく、汎用性向上のため大気中測定と溶液中測定の兼用が可能となっている場合が多く、コストを抑えるため、変位検出器機構は大気用と溶液用で兼用する場合がほとんどである。
焦点ずれに対しては、カンチレバーホルダに取り付けられる液面保持部(従来技術のカンチレバー保持部に相当)の厚さを調整し、溶液中でもカンチレバー背面に集光するようにホルダが設計されるが、入射光と反射光を同じ厚さの液面保持部を通した場合には、屈折によりフォトダイオードへの入射位置が大きくずれてしまうことになる。
このため、変位検出機構のミラーを大きくしてあおり調整機構をつけたり、あるいはフォトダイオードに大気で必要とされる場合以上の移動量を持つ位置決め機構を取り入れる必要があった。この場合、装置の大型化や稼動部の増加により剛性が低下し測定精度が悪くなってしまう。さらに部品数多くなりコストが増加するといった問題が生じていた。
また、走査型プローブ顕微鏡では測定目的に合わせ、さまざまな形状のカンチレバーが選択され、さらに、溶液もさまざまな屈折率のものが用いられているため、場合によってはフォトダイオードへ入射する反射光が変位検出機構の調整範囲を超えてしまい、測定ができない場合もあった。
また、従来の走査型プローブ顕微鏡用のカンチレバーは、温度やカンチレバーに設けられる金属コートの内部応力などにより反りが発生し、光てこ法による変位検出を行う場合に光検出器への反射光がずれてしまうことがあった。
本発明の目的は、大気中や溶液中を問わず、カンチレバーや溶液の違いやカンチレバーの反りなどによる、変位検出機構の光軸ずれを補正することが可能な走査型プローブ顕微鏡を提供することである。
本発明は、前記課題を解決するために以下の手段を提供する。
本発明の液中測定用の走査型プローブ顕微鏡は、先端に探針を有し末端に基部を有するカンチレバーと、前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、光源部と光検出部から構成されて、光源部からの光をカンチレバー背面に照射し、カンチレバーからの反射光を光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、前記カンチレバーの基部を固定するためのカンチレバー固定部と、前記カンチレバーの上方に配置され、前記光源部の光に対して透過性の材料からなる液面保持部を有するカンチレバーホルダで構成される。
前記サンプルと前記カンチレバーは任意の溶液内に配置され、前記変位検出機構は大気中に配置され、前記液面保持部のカンチレバー上方の面は溶液に接し、前記光源からカンチレバーに至る入射光は、大気中、液面保持部、溶液中の順番で通過し、カンチレバーで反射した後の反射光が、液中、液面保持部、大気中の順番の光路を経由して光検出部に至り、カンチレバーの変位検出が行われる。
以上のように構成された液中測定用の走査型プローブ顕微鏡において、本発明では、液面保持部の入射光の入射面に対して垂直方向の入射光通過部の厚さと、反射光の出射面に対して反射光が通過する垂直方向の部材全体の厚さが光検出部側に厚くなるように構成した。
また、本発明の液中測定用の走査型プローブ顕微鏡では、前記液面保持部において、液面保持部の入射光の入射面に対して垂直方向の入射光通過部の厚さよりも、反射光の出射面に対して垂直方向の反射光通過部の厚さを厚くした。
さらに、本発明の走査型プローブ顕微鏡では、前記液面保持部において、溶液と接する面の少なくとも入射光と反射光が通過する部分は同一平面上に配置され、大気と接する面の入射光と反射光が通過する面は同一平面上にないように構成した。
また、本発明の液中測定用の走査型プローブ顕微鏡では、大気中の反射光側の光路中に、前記光源部の光に対して透過性の基板を挿入するように構成した。
さらに、本発明の走査型プローブ顕微鏡では、変位検出機構は共通のものを用いて大気中での測定と溶液中での測定を兼用できるようにした。
また、本発明の走査型プローブ顕微鏡では、先端に探針を有し末端に基部を有するカンチレバーと、前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、光源部と光検出部から構成されて、光源部からの光をカンチレバー背面に照射し、カンチレバーからの反射光を光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、前記カンチレバーの基部を固定するためのカンチレバー固定部を有するカンチレバーホルダから構成し、前記、反射光側の光路中に、前記光源部の光に対して透過性の基板を挿入するように構成した。
本発明によれば、以下の効果を奏する。
本発明に係る走査型プローブ顕微鏡によれば、液面保持部や溶液中で変位検出機構の光路が屈折し、光検出部への入射位置がずれた場合でも反射光通過部の厚みを調整することで、光検出部への入射位置を任意に調整することが可能となる。
したがって、変位検出機構の光源部や光検出部の位置決め機構を必要以上に大きくしたり、光検出部への入射位置調整用のあおりミラーなどを設けたりする必要がなくなり、剛性低下による測定精度の悪化を防ぐことが可能となった。また、部品数も削減できコストも抑制することができる。
さらに、測定目的に合わせ、カンチレバーや溶液の種類が変わった場合でも、光検出部へ入射する反射光が変位検出機構の調整範囲から外れてしまい測定不可能になることが防止される。
さらに、大気中用の変位検出機構をそのままの構成で溶液中でも兼用することが可能となる。
さらに、本発明の走査型プローブ顕微鏡では、反射光側の光路中に、光源部の光に対して透過性の基板を挿入するように構成することで、周囲の温度やカンチレバーへのコート材の内部応力の影響でカンチレバーに反りが発生した場合でも、基板の厚さを調整することで光軸ずれを補正することが可能となる。
以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明する。
図1〜図3により、本発明に係る第1実施例を説明する。
図1は本発明の第1実施例の大気中で用いられる走査型プローブ顕微鏡の概観図である。
本発明で用いられるカンチレバー1はシリコンを材料とした短冊形の形状で、先端に三角錐状の探針2を有し末端に基部3を有する構造である。カンチレバーホルダ4は、ステンレスを材料とするベースブロック5にセラミックスの絶縁基板6を介して、カンチレバー加振用の平板型の圧電素子7に取り付けられ、さらに、圧電素子7にはカンチレバー1を保持するカンチレバー保持部8が接着固定されている。振動方式で測定を行う場合には圧電素子7に電圧が印加され圧電素子7に取り付けられたカンチレバー保持部8を介してカンチレバー1がカンチレバーの共振周波数近傍の周波数で加振される。コンタクト方式で測定を行う場合には、圧電素子7には電圧は印加されず圧電素子7の各電極が短絡された状態で使用される。このように構成されたカンチレバーホルダ4のベースブロック5は走査型プローブ顕微鏡の本体ベース部9に固定される。
カンチレバー1の変位検出に用いられる変位検出機構10は、一般に光てこ法と呼ばれる検出方式によりカンチレバー1の変位検出が行われる。本発明の変位検出機構は、光源部11と、光路を曲げるビームスプリッター12と、光検出部13から構成され、これらの部材は筐体内14に配置され、筐体14は走査型プローブ顕微鏡の本体ベース部9に固定される。
光源部11は、波長670nmの半導体レーザから構成される光源と半導体レーザの光を集めカンチレバー背面に集光させるための集光レンズが内蔵されている(半導体レーザと集光レンズは図示せず)。また、光検出部13は表面を4分割されたシリコン製のフォトダイオードが用いられる。光源部11から照射された光は、ビームスプリッター12で曲げられて、直上からカンチレバー1の背面に集光される。カンチレバー1で反射した光は、光検出部13に導かれる。
ここで、カンチレバー1にたわみが生じた場合には、フォトダイオード13上のスポットが動き、4分割された各受光面の強度差を検出することで、カンチレバー1の変位の検出が行われる。
ここで、光源部11には図1の紙面に対して垂直方向と上下方向に移動可能な2軸ステージ15が設けられており、ビームスプリッター12の上側に配置された光学顕微鏡像17によりカンチレバー1の像とサンプル18面で反射したレーザのスポットの像を確認しながら、2軸ステージ15によりカンチレバー1の背面へのレーザ光の位置決めが行われる。
また、光検出部13にも図1の紙面に対して左右方向と垂直な方向に移動可能な2軸ステージ16が設けられており、フォトダイオード13の出力を確認しながらフォトダイオード13の中心に反射光のスポットの位置決めが行われる。
一方、探針2に対向する側にはサンプル18がサンプルステージ19上に置かれており、サンプルステージ19は、円筒型の圧電素子より構成される3軸微動機構20に固定されている。3軸微動機構20は、送りねじとステッピングモータにより探針2とサンプル18を接近させるための粗動機構21に固定されている。
本実施例では、振動方式の原子間力顕微鏡測定が行われ、探針2とサンプル18をあらかじめ設定した振幅が減衰するところまで粗動機構21で近接させて、3軸微動機構20によりサンプル18の面内でラスタースキャンを行いながら、振幅の減衰量が一定となるように探針2とサンプル18間の距離を制御することで、サンプル18の表面の凹凸像を測定することが可能となる。
次に、図2に液中で測定する場合の走査型プローブ顕微鏡の概観図を示す。
ここで、図1の大気中での構成と、図2の溶液中での構成の違いはカンチレバーホルダ部30と、サンプルを溶液中に浸すための溶液セル35のみであり、変位検出機構10と3軸微動機構20および粗動機構21、本体ベース部9については図1の大気中とまったく同一の構成である。そのため重複する部材には同じ番号を付し詳細な説明は省略する。
液中測定用のカンチレバーホルダ30は、石英ガラスから構成される液面保持部31と、液面保持部31に取り付けられているカンチレバー加振用の平板型の圧電素子32、圧電素子32に取り付けられているカンチレバー保持部33、液面保持部31が固定されカンチレバーホルダ30を走査型プローブ顕微鏡のベース部9に固定するためのステンレス材料から作られるベースブロック34から構成される。なお、圧電素子32は溶液中で使用するために防水処置が施されている。
液面保持部31はカンチレバーが取り付けられている側の面31aと、変位検出機構の光が入射する入射面31bが平行に構成されている。
サンプルは溶液セル35内に配置され、溶液セル35はサンプルホルダー19に載置される。溶液セル35内には溶液(蒸留水)36が入れられており、溶液36は、液面保持部31のカンチレバー1が設置される側の面31aに表面張力で接している。溶液内36にはカンチレバー1とサンプル18が配置されている。
ここで、変位検出機構10の光源部11から照射される入射光37は、液面保持部31の入射面31bに対して入射角0°で入射する。液面保持部31の構成材料である石英ガラスはレーザ光の波長670nmに対して約94%の透過率を有するので、入射光37は液面保持部31を透過して、更に溶液36内を通過して、カンチレバー1の背面に照射される。カンチレバー1は水平面に対して取付角度13°で取り付けられており、反射角26°で反射する。反射光38は溶液36中を通過し、液面保持部31の石英ガラスを通過して大気中に出て、光検出部13に到達する。
ここで、光源部11からカンチレバー1に入射する入射光37の光路を図3により説明する。なお図3では、ビームスプリッター12は省略し、光源部11からカンチレバー1まで直線状に記載している。
光源部11からの光は、大気中では4.3°の開き角でカンチレバー背面に集光される。図1に示したように大気中を通る場合には、光源部11からf1の距離でカンチレバー1の背面に結像するように構成されている。本実施例ではf1は53mmである。ここで、光路上に大気の屈折率1よりも大きい、石英ガラス(屈折率1.46)と蒸留水(屈折率1.33)が入った場合には光源部11から結像点までの距離がf2に伸びる。本実施例では、石英ガラス部分の厚さT1を24mmとし、f2が61mmとなるようにした。なお、このとき液面保持部31の液面と接する面31aからカンチレバー1までの距離は約2mmである。この距離と液面保持部31の液面と接する面31aの面積が測定に必要な溶液の量に寄与し、距離が短く面積が小さいほど少ない溶液での測定が可能となる。
ここで、走査型プローブ顕微鏡の本体ベース部9に対するカンチレバーの取付部分の高さは、大気中と溶液中で異なるが、粗動機構21によりサンプル18の高さを調整できるため双方のカンチレバーホルダ4、30の設置は問題なく行うことが可能である。
次に、カンチレバー反射後の反射光の光路を、図1、図2により説明する。大気中では光源部11からの入射光22に対して反射角26°で反射した後、反射光23はそのまま大気中を直進し、光検出部13の受光面に到達する。
一方、液中測定の場合ではそれぞれの媒質で屈折率が異なるため、反射光は界面で屈折する。カンチレバーで入射光に対して反射角26°で反射し、溶液中を進行した反射光38aは溶液36と石英ガラスからなる液面保持部31の界面31aで屈折角23.5°で屈折する。その後、液面保持部31を進行した反射光38bは液面保持部31と空気の界面31cで屈折角35.7°で屈折し、その後反射光38cは大気中を進行し光検出部方向に到達する。このとき従来の液中用のホルダでは、液面保持部31に入射光が入射する面と31bと反射光38bが出射する面が同一平面上にあり、入射光37の入射面31bに垂直な方向の液面保持部31を通過する部分の厚さと、反射光38bの出射面に垂直な方向の液面保持部31を通過する部分の厚さが等しくなり、反射光38bは入射面31bで屈折し38dのような光路を通り、光検出部13への照射位置が図1で示した大気中での反射光の位置に比べて大幅にずれ、光検出部のフォトダイオード13の検出エリアから外れてしまう。光検出部13には2軸ステージ16が設けられており、このずれ量をある程度は補正できる構成となっているが、液中測定時のずれ分までを補正しようとした場合には移動量が大きな2軸ステージ16を搭載する必要があり、配置スペースがなく配置が困難であったり、配置できた場合にも装置の剛性が低下したり、コストが上昇するという問題が発生する。
本実施例の場合には、入射光38の入射面31bと同じ面で反射光38bが出射した場合、大気中の場合に比べて、約7.3mmフォトダイオード13での位置がずれてしまう。この他にもカンチレバー1の取付位置の誤差や、カンチレバー製造時に生じてしまう反りなどによりさらにずれが生じてしまう場合もある。
そこで本実施例では液中用のカンチレバーホルダの反射光が通過する部分にのみ厚さ10mmの石英ガラス41を取り付け、反射光通過部の液面保持部31の石英ガラスの厚みを入射光通過部分よりも厚くして入射光の入射面31bと反射光38bの出射面31cが同一平面上とならないように液面保持部31を構成した。この結果、液面保持部31を通過した反射光38bは出射面31cで屈折角35.7°で屈折し、38cに示した光路を通るようにした。この結果、光検出部13でのずれ量は、両者の厚さが等しい場合よりも小さくなり、大気中の場合に比べて4.5mmのずれ量に抑えることができた。光検出部の2軸ステージ16には移動量が各軸±5mmのステージをつけているのでこのずれ量は2軸ステージ16で補正することが可能である。
なお、今回、液面保持部31は3つの部品39,40,41から構成されて、円盤形状の中間部分40に液面保持用の突起部分39と厚さ10mmの補正用の石英ガラス部分41をそれぞれ融着することで作製した。なお、補正用の石英ガラス部分41は屈折率の等しいマッチングオイルで2部品を光学的に密着させるようにしてもよい。
この結果、装置の剛性を落としたり、コストを増加させることなしに、カンチレバーホルダと溶液セルのみの交換で大気と液中測定が兼用可能なの走査型プローブ顕微鏡を構成することができた。
図4(a)は本発明の第2実施例の液中で用いられる液中測定用の走査型プローブ顕微鏡の概観図、図4(b)は図4(a)のカンチレバーホルダ部分の平面図である。
本実施例では液中測定用のカンチレバーホルダ50以外は、実施例1と同じ構成の装置であり、変位検出機構10や走査型プローブ顕微鏡の本体ベース部9、3軸微動機構20、溶液セル35は実施例1と同じものである。また大気で用いる場合には図1と同じ構成で用いられる。そのため重複する部材には同じ番号を付し詳細な説明は省略し液中測定用のカンチレバーホルダ50の構成の異なる部分のみ説明する。
本実施例の液中測定用のカンチレバーホルダ50の液面保持部51は石英ガラスを材料としており、円柱形状のベース部分52とその先端に融着される液面と接する突起部分53から構成される。さらに円柱形状のベース部分52は入射光が入射する側の面を削り、穴53を開けることにより液面保持部51が作製される。入射光55の入射面51aは入射光55の散乱光が測定に影響を与えない程度まで研磨される。
入射光55は加工された穴53の中に侵入し、液面保持部51を通過する。液面保持部51の入射面51aから溶液と接する面51bまでの厚さは入射光55が液面保持部51を構成する石英ガラスと溶液(蒸留水)36中を進行したときにカンチレバー1の背面に集光するような厚さに加工され、実施例1の図3の光路図と同じ光路長となっている。一方、カンチレバー1で反射された反射光56は円柱部位分の穴の開いていない部分54を通過する。このとき、入射光55の入射面51a、溶液との界面51b、液面保持部51を進行した反射光56bの出射面51cはそれぞれ平行に加工されている。
このように製造された液面保持部をベースブロック57に固定して液中測定用のカンチレバーホルダ50を構成することで、液面保持部51に入射光55が入射する面51aと液面保持部51を進行した反射光56bが出射する面51cが同一平面上になく、入射光55の入射面51aに垂直な方向の石英ガラスを通過する部分の厚さよりも反射光56bの出射面に垂直な方向の石英ガラスを通過する部分の厚さを厚くすることができる。このように構成することで、カンチレバー1からの反射光56は溶液と石英ガラスの界面51bと石英ガラスと大気の界面51cで屈折し、図4(a)に1点鎖線で記載した光路56cで光検出部13に到達する。これにより、実施例1と同様に反射光56の出射面を入射光55の入射面51aと同一平面上に設けた場合の光路である図4(a)に2点鎖線で記載した光路56dよりも光検出部13へのずれ量を小さく抑えることが可能となる。
図5は本発明の第3実施例の液中測定用の走査型プローブ顕微鏡の概観図である。
本実施例では液中用カンチレバーホルダ60と反射光の光路中に配置される平行平面基板70以外は、実施例1と同じ構成の装置であり、変位検出機構10や走査型プローブ顕微鏡の本体ベース部9、3軸微動機構20、溶液セル35は実施例1と同じものである。また大気で用いる場合には図1と同じ構成で用いられる。そのため重複する部材には同じ番号を付し詳細な説明は省略し、液中用カンチレバーホルダ60と平行平面基板70の構成の異なる部分のみ説明する。
本実施例で用いられる液中用のカンチレバーホルダ60は液面保持部61が石英ガラスを材料とし、円盤状の部材62に突起部63を融着することで作製される。入射光64の入射面61aと液面保持部61を進行した反射光65bの出射面61aは同一平面上になるように形成され、入射光64の入射面61aと溶液と接する面61bは平行となっている。また、入射光64が入射面61aに入射角0°で入射ように配置されている。入射光64の光路図は実施例1の図3と同一の寸法である。
一方、反射光65の光路中には、カンチレバーホルダ60とは分離した形で、光路補正用のBK7を材料とする平行平面基板70が挿入される。この平行平面基板70は変位検出機構10に取り外し可能な形で固定され、液面保持部61の入射光64の入射面61aと平行に配置される。
反射角26°でカンチレバー1を反射した反射光65aは溶液中を進行し、屈折角23.5°で液面保持部61に入射して反射光65bは石英ガラス中を進行し、屈折角35.7°でいったん大気中に出て、反射光65cは空気中を進行する。この後、再びBK7を材料とする平行平面基板70を通過し、さらに大気中に出て光検出部13に到達する。
ここでBK7は変位検出機構10の光源11の波長である670nmに対して約92%の透過率を有し、屈折率1.51で液面保持部61に使用した石英ガラスの屈折率である1.46よりも大きな屈折率を有する。
したがって空気中を進行した反射光65cは屈折角22.7°で平行平面基板70に入射し、反射光65d(図の1点鎖線)はBK7内を進行し、屈折角35.7°で再び大気に出て光検出部13に到達する。もし、平行平面基板70を入れない場合には反射光65bが液面保持部61の空気との界面61aを出た後は屈折角35.7°で図5の2点鎖線65fの光路をたどり、光検出部13の位置でのずれ量が大きくなってしまう。
本実施例では平行平面基板70を入れることにより、約3mmずれ量を小さくすることができた。また、平行平面基板70を石英ガラスよりも大きな屈折率を有するBK7を使用したことで石英ガラスよりも補正量を大きくすることができた。
図6は本発明の第4実施例の大気中で測定するための走査型プローブ顕微鏡の概観図である。
本実施例は、反射光の光路中に平行平面基板80,81を挿入している以外は、図1の実施例とまったく同じ構成であるため、重複する部材には同じ番号を付し詳細な説明は省略する。
本実施例では、使用するカンチレバー1が周囲の温度の影響や、コートされる金属の内部応力などの影響で反りが生じた場合の光路補正を行うための装置である。
まず、カンチレバー1が取付角13°でまったく反りが生じていない場合には、カンチレバー1からの反射光84の光路中に厚さ3mmのBK7を材料とする平行平面基板80を取り外し可能に挿入しておく。
このとき反射角26°で反射した反射光84は空気中を進行し平行平面基板80で屈折角16.9°で屈折し、さらに屈折角26°で平行平面基板80から再び空気中に進行し、光検出器13に到達する。
ここで、もし、カンチレバー1がサンプル18側に3°の角度で反った場合には反射角32°で反射し、反射光84はもともと挿入されている厚さ3mmの平行平面基板80に屈折角20.5°で入射し、再び屈折角32°で大気中を通り、2点鎖線84bの光路で光検出器13の方向に進行する。このとき、反りがない場合に比べて光検出器13の到達位置が大きくずれてしまう。そこで本発明では、もともと反射光82の光路中に挿入していた厚さ3mmの平行平面基板80を取り外し、厚さが3mmよりも厚い平行平面基板81を挿入するようにした。この基板81通過後は1点鎖線の光路84aを通り、ずれ量は厚さ3mmの平行平面基板80を通る場合よりも中心寄りに補正される。
また、カンチレバー1がサンプル18とは逆側に3°反ってしまった場合を考えると、反射角20°で反射され、反射光83はもともと挿入されている厚さ3mmの平行平面基板80に屈折角13.1°で入射し、再び屈折角20°で大気中を通り、2点鎖線83bの光路で光検出器13の方向に進行する。この場合も反りがない場合に比べて光検出器13の到達位置が大きくずれてしまう。そこで本発明ではもともと反射光82の光路中に挿入していた厚さ3mmの平行平面基板80を取り外し、平行平面基板なしとした。これにより、反射光は反射角20°を保ったまま1点鎖線83aの光路を通り、ずれ量は平行平面基板80が挿入されていた場合よりも中心寄りに補正される。
このように構成することでカンチレバーに反りが発生した場合でも、平行平面基板によりずれ量を補正することが可能となった。
以上、本発明の実施例を説明したが、本発明はこれらの実施例に限定されるものではない。
例えば、前記カンチレバーの代わりに、光ファイバーを先鋭化し、先端以外に金属コートを施して長軸に対して先端を曲げたプローブを用いる近接場顕微鏡にも本実施例を適用できる。
また、入射光は液面保持部の入射面に対して入射角0°としたが、斜めから入射させる方式でもよい。
また液面保持部や補正用の基板は光の入射面と出射面が必ずしも平行平面でなくてもよい。
また、液面保持部や補正用の基板は石英ガラスや、BK7に限定されず、変位検出機構の光源の波長に対して透過性を有するものであれば任意の媒質が使用可能であり、屈折率が大きいほど補正の効果は大きくなる。
また、液面保持部や補正用の基板は複数の材料を光学的に連続になるように積層したり、固体の媒質の間に液体の媒質を挟んだ構成や補正用の基板を複数枚使用する構成、さらには入射光の入射面に対して垂直方向の入射光通過部の厚さと、反射光の出射面に対して垂直方向の反射光通過部の厚さが異なる液面保持部と補正用の基板を組み合わせた構成なども本発明に含まれる。
また光てこの光路中には光路切り替え用のミラーや結像や集光を行うためのレンズが入っていてもよい。
さらに、溶液の種類も蒸留水に限定されず任意の溶液が使用可能である。
本発明の第一実施例の大気中測定用の走査型プローブ顕微鏡の概観図である。 本発明の第一実施例の液中測定用の走査型プローブ顕微鏡の概観図である。 本発明の第一実施例に用いられる変位検出機構のカンチレバーへの入射光の光路図である。 (a)本発明の第二実施例の液中測定用の走査型プローブ顕微鏡の概観図であり、(b)は、(a)に用いられるカンチレバーホルダの平面図である。 本発明の第三実施例に用いられる液中測定用の走査型プローブ顕微鏡の概観図である。 本発明の第四実施例に用いられる大気測定用の走査型プローブ顕微鏡の概観図である。 従来の液中測定用の査型プローブ顕微鏡の概観図である。
符号の説明
1,101 カンチレバー
2 探針
4 大気測定用カンチレバーホルダ
9 本体ベース部
10 変位検出機構
11 光源部
13 光検出部
17 光学顕微鏡部
18 サンプル
19 サンプルホルダ
20、107 3軸微動機構
21 粗動機構
30、50、60 液中測定用カンチレバーホルダ
31、51、61、102 液面保持部
35、111 溶液セル
36、110 溶液(蒸留水)
37、55、64 入射光
38、56、65、82、83、84 反射光
70、80、81 平行平面基板

Claims (4)

  1. 先端に探針を有し末端に基部を有するカンチレバーと、
    前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、
    光源部と光検出部とを有し、当該光源部からの光学的な集光を前記カンチレバーの背面に結像させるように照射し、当該カンチレバーからの反射光を前記光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、
    前記カンチレバーの基部を固定するためのカンチレバー固定部と、前記カンチレバーの上方に配置され、前記光源部の光に対して透過性の材料からなる液面保持部とを有するカンチレバーホルダと、
    任意の溶液を入れる溶液セルと、から構成され、
    前記サンプルと前記カンチレバーは前記溶液内に配置され、前記変位検出機構は大気中に配置され、前記液面保持部のカンチレバーが設置される側の面は溶液に接し、前記光源から前記カンチレバーに至る入射光は、大気中、液面保持部、溶液中の順番で通過し、カンチレバーで反射した後の反射光が、溶液中、液面保持部、大気中の順に経由して前記光検出部に至る光路をとり、前記液面保持部の前記入射光の入射面と溶液側の面は平行であり、かつ当該溶液側の面の少なくとも入射光と反射光が通過する部分は同一平面上に配置され、前記液面保持部の入射光の入射面に対して入射光が通過する部材の垂直方向の厚さよりも、反射光の出射面に対して反射光が通過する垂直方向の部材全体の厚さが前記光検出部側に厚くなるように構成されることを特徴とする走査型プローブ顕微鏡。
  2. 前記反射光の通過部において、前記入射光の通過部の厚さを超える厚みの部分が、前記大気中の反射光側の光路中に挿入した前記光源部の光に対して透過性を有する基板である請求項1に記載の走査型プローブ顕微鏡。
  3. 前記反射光の通過部において、前記入射光の通過部の厚さを超える厚みの部分が、前記液面保持部の一部の厚さを変えたものである請求項1に記載の走査型プローブ顕微鏡。
  4. 前記変位検出機構は、大気中での測定と溶液中での測定を兼用する共通のものである請求項1〜3のいずれかに記載の走査型プローブ顕微鏡。
JP2007043654A 2007-02-23 2007-02-23 走査型プローブ顕微鏡 Expired - Fee Related JP4939974B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043654A JP4939974B2 (ja) 2007-02-23 2007-02-23 走査型プローブ顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043654A JP4939974B2 (ja) 2007-02-23 2007-02-23 走査型プローブ顕微鏡

Publications (2)

Publication Number Publication Date
JP2008209127A JP2008209127A (ja) 2008-09-11
JP4939974B2 true JP4939974B2 (ja) 2012-05-30

Family

ID=39785568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043654A Expired - Fee Related JP4939974B2 (ja) 2007-02-23 2007-02-23 走査型プローブ顕微鏡

Country Status (1)

Country Link
JP (1) JP4939974B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939686B2 (ja) * 2018-04-16 2021-09-22 株式会社島津製作所 走査型プローブ顕微鏡及びカンチレバー移動方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262244A (ja) * 1991-02-15 1992-09-17 Daikin Ind Ltd 光学的測定装置
JPH06180227A (ja) * 1992-12-14 1994-06-28 Olympus Optical Co Ltd 走査型プローブ顕微鏡装置
JP2936311B2 (ja) * 1994-09-09 1999-08-23 セイコーインスツルメンツ株式会社 液中観察機能付き走査型近視野原子間力顕微鏡
JPH09119939A (ja) * 1995-10-25 1997-05-06 Olympus Optical Co Ltd 液浸走査型プローブ顕微鏡装置
JPH11118813A (ja) * 1997-10-21 1999-04-30 Shimadzu Corp 溶液セル付き原子間力顕微鏡
WO2006090593A1 (ja) * 2005-02-24 2006-08-31 Sii Nanotechnology Inc. 走査型プローブ顕微鏡用変位検出機構およびこれを用いた走査型プローブ顕微鏡

Also Published As

Publication number Publication date
JP2008209127A (ja) 2008-09-11

Similar Documents

Publication Publication Date Title
US7022985B2 (en) Apparatus and method for a scanning probe microscope
US7170054B2 (en) Scanning probe microscopy cantilever holder and scanning probe microscope using the cantilever holder
JP2005517911A (ja) 走査型プローブ顕微鏡
US20060272398A1 (en) Beam tracking system for scanning-probe type atomic force microscope
JP4987284B2 (ja) 液中用カンチレバーホルダ及び走査型プローブ顕微鏡
EP1760455A1 (en) Measuring apparatus
US20110279893A1 (en) Laser scanning microscope
US20100207039A1 (en) Probe Microscopy and Probe Position Monitoring Apparatus
JP5305650B2 (ja) 走査型プローブ顕微鏡用変位検出機構およびこれを用いた走査型プローブ顕微鏡
RU2321084C2 (ru) Зонд для зондового микроскопа с использованием прозрачной подложки, способ изготовления зонда и устройство зондового микроскопа
JP5929818B2 (ja) 走査型プローブ顕微鏡
JP4939974B2 (ja) 走査型プローブ顕微鏡
US10564181B2 (en) Atomic force microscope with optical guiding mechanism
JP3910309B2 (ja) 走査型近接場顕微鏡
WO2024101416A1 (ja) 走査方法、走査システム及び位置情報取得方法
JP4914580B2 (ja) 走査型プローブ顕微鏡
JP2004101425A (ja) 散乱型近接場顕微鏡および散乱型近接場分光システム
WO2023021867A1 (ja) 走査プローブ顕微鏡とそれに使用される試料
JPH09105865A (ja) 走査型近接場光学顕微鏡
JP4162508B2 (ja) 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡
JP2007316006A (ja) 蛍光検出装置
JP2008102151A (ja) 走査型プローブ顕微鏡用の走査機構及び走査型プローブ顕微鏡
JPH0961441A (ja) スキャニングプローブ
JPH0972924A (ja) 走査型プローブ顕微鏡
JP2023055301A (ja) 原子間力顕微鏡、及び試料の測定方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees