JP4911805B2 - 光半導体装置用封止剤及びそれを用いた光半導体装置 - Google Patents

光半導体装置用封止剤及びそれを用いた光半導体装置 Download PDF

Info

Publication number
JP4911805B2
JP4911805B2 JP2011527131A JP2011527131A JP4911805B2 JP 4911805 B2 JP4911805 B2 JP 4911805B2 JP 2011527131 A JP2011527131 A JP 2011527131A JP 2011527131 A JP2011527131 A JP 2011527131A JP 4911805 B2 JP4911805 B2 JP 4911805B2
Authority
JP
Japan
Prior art keywords
group
formula
organopolysiloxane
optical semiconductor
structural unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011527131A
Other languages
English (en)
Other versions
JPWO2011162294A1 (ja
Inventor
満 谷川
貴志 渡邉
慎太郎 森口
靖 乾
良隆 国広
亮介 山▲崎▼
阿由子 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011527131A priority Critical patent/JP4911805B2/ja
Application granted granted Critical
Publication of JP4911805B2 publication Critical patent/JP4911805B2/ja
Publication of JPWO2011162294A1 publication Critical patent/JPWO2011162294A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Description

本発明は、光半導体装置において光半導体素子を封止するために用いられる光半導体装置用封止剤、並びに該光半導体装置用封止剤を用いた光半導体装置に関する。
発光ダイオード(LED)装置などの光半導体装置の消費電力は低く、かつ寿命は長い。また、光半導体装置は、過酷な環境下でも使用され得る。従って、光半導体装置は、携帯電話用バックライト、液晶テレビ用バックライト、自動車用ランプ、照明器具及び看板などの幅広い用途で使用されている。
光半導体装置に用いられている発光素子である光半導体素子(例えばLED)が大気と直接触れると、大気中の水分又は浮遊するごみ等により、光半導体素子の発光特性が急速に低下する。このため、上記光半導体素子は、通常、光半導体装置用封止剤により封止されている。
下記の特許文献1には、光半導体装置用封止剤として、水素添加ビスフェノールAグリシジルエーテルと、脂環式エポキシモノマーと、潜在性触媒とを含むエポキシ樹脂材料が開示されている。このエポキシ樹脂材料は、熱カチオン重合により硬化する。
特開2003−73452号公報
特許文献1に記載のような従来の光半導体装置用封止剤を用いた光半導体装置が、高温高湿下での過酷な環境で通電した状態で使用されると、徐々に光度(明るさ)が低下するという問題がある。
さらに、従来の光半導体装置用封止剤が、高温高湿下での過酷な環境で通電した状態で使用されると、封止剤自体が変色するという問題もある。
本発明は、光半導体装置に用いられる封止剤であって、高温高湿下での過酷な環境で通電した状態で使用されても光度が低下し難く、高温高湿下での過酷な環境で通電した状態で使用されても封止剤の変色が生じ難い光半導体装置用封止剤、並びに該光半導体装置用封止剤を用いた光半導体装置を提供することを目的とする。
本発明の広い局面によれば、光半導体装置に用いられる封止剤であって、珪素原子に結合した水素原子を有さず、かつ珪素原子に結合したアルケニル基及び珪素原子に結合したアリール基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子及び珪素原子に結合したアリール基を有する第2のオルガノポリシロキサンと、白金のアルケニル錯体とを含み、上記白金のアルケニル錯体が、塩化白金酸6水和物と、6当量以上の2官能以上であるアルケニル化合物とを反応させることにより得られる白金のアルケニル錯体であり、封止剤中における上記オルガノポリシロキサンの珪素原子に結合したアルケニル基の数の封止剤中における上記オルガノポリシロキサンの珪素原子に結合した水素原子の数に対する比(珪素原子に結合したアルケニル基の数/珪素原子に結合した水素原子の数)が、1.0以上、2.5以下であり、上記第1のオルガノポリシロキサンが、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位を含み、上記第1のオルガノポリシロキサンの全シロキサン構造単位100モル%中、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位の割合が30モル%以上である、光半導体装置用封止剤が提供される。
本発明に係る光半導体装置用封止剤のある特定の局面では、上記第1のオルガノポリシロキサンが、下記式(1A)又は下記式(1B)で表される第1のオルガノポリシロキサンであり、上記第2のオルガノポリシロキサンが、下記式(51A)又は下記式(51B)で表される第2のオルガノポリシロキサンであり、上記第1のオルガノポリシロキサンにおける下記式(X1)より求められるアリール基の含有比率が30モル%以上、70モル%以下であり、かつ上記第2のオルガノポリシロキサンにおける下記式(X51)より求められるアリール基の含有比率が30モル%以上、70モル%以下である。
Figure 0004911805
上記式(1A)中、a、b及びcは、a/(a+b+c)=0〜0.50、b/(a+b+c)=0.40〜1.0及びc/(a+b+c)=0〜0.50を満たし、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表す。
Figure 0004911805
上記式(1B)中、a、b、c及びdは、a/(a+b+c+d)=0〜0.40、b/(a+b+c+d)=0.40〜0.99、c/(a+b+c+d)=0〜0.50及びd/(a+b+c+d)=0.01〜0.40を満たし、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す上記式(1B)中、(R7R8R9R10Si R11O 2/2 )の構造単位は、後述する式(1b−1)で表される構造単位である。後述する式(1b−1)中、Raは、水素原子又は炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。
Figure 0004911805
上記式(51A)中、p、q及びrは、p/(p+q+r)=0.05〜0.50、q/(p+q+r)=0.05〜0.50及びr/(p+q+r)=0.20〜0.80を満たし、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個が珪素原子に直接結合している水素原子を表し、フェニル基及び珪素原子に直接結合している水素原子以外のR51〜R56は、炭素数1〜8の炭化水素基を表す。
Figure 0004911805
上記式(51B)中、p、q、r及びsは、p/(p+q+r+s)=0.05〜0.50、q/(p+q+r+s)=0.05〜0.50、r/(p+q+r+s)=0.20〜0.80及びs/(p+q+r+s)=0.01〜0.40を満たし、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個が珪素原子に直接結合している水素原子を表し、フェニル基及び珪素原子に直接結合している水素原子以外のR51〜R56は炭素数1〜8の炭化水素基を表す上記式(51B)中、(R57R58R59R60Si R61O 2/2 )の構造単位は、後述する式(51b−1)で表される構造単位である。後述する式(51b−1)中、Rbは、水素原子又は炭素数1〜8の炭化水素基を表し、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。
アリール基の含有比率(モル%)=(平均組成式が上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/平均組成式が上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X1)
アリール基の含有比率(モル%)=(平均組成式が上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/平均組成式が上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X51)
本発明に係る光半導体装置用封止剤の別の特定の局面では、上記式(1B)で表される第1のオルガノポリシロキサン及び上記式(51B)で表される第2のオルガノポリシロキサンの内の少なくとも一方が含まれる。
本発明に係る光半導体装置用封止剤の他の特定の局面では、封止剤中で、上記白金のアルケニル錯体による白金元素の含有量が1ppm以上、300ppm以下である。
本発明に係る光半導体装置用封止剤の他の特定の局面では、上記第2のオルガノポリシロキサンは、下記式(51−a)で表される構造単位を含む。
Figure 0004911805
上記式(51−a)中、R52及びR53はそれぞれ、水素原子、フェニル基又は炭素数1〜8の炭化水素基を示す。
本発明に係る光半導体装置用封止剤のさらに他の特定の局面では、上記第2のオルガノポリシロキサンの全シロキサン構造単位100モル%中、上記式(51−a)で表される構造単位の割合が5モル%以上である。
本発明に係る光半導体装置用封止剤の他の特定の局面では、上記第2のオルガノポリシロキサンは、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位を含む。
本発明に係る光半導体装置は、光半導体素子と、該光半導体素子を封止するように設けられており、かつ本発明に従って構成された光半導体装置用封止剤とを備える。
本発明に係る光半導体装置用封止剤は、珪素原子に結合した水素原子を有さず、かつ珪素原子に結合したアルケニル基及び珪素原子に結合したアリール基を有する第1のオルガノポリシロキサンと、珪素原子に結合した水素原子及び珪素原子に結合したアリール基を有する第2のオルガノポリシロキサンと、塩化白金酸6水和物及び6当量以上の2官能以上であるアルケニル化合物の反応物である白金のアルケニル錯体とを含むので、更に上記比(珪素原子に結合したアルケニル基の数/珪素原子に結合した水素原子の数)が、1.0以上、2.5以下であるので、封止剤を用いた光半導体装置が高温高湿下での過酷な環境で通電した状態で使用されても、光度が低下し難い。さらに、高温高湿下での過酷な環境で通電した状態で使用されても、光半導体装置用封止剤の変色が生じ難い。
図1は、本発明の一実施形態に係る光半導体装置を示す正面断面図である。
以下、本発明の詳細を説明する。
本発明に係る光半導体装置用封止剤は、第1のオルガノポリシロキサンと、第2のオルガノポリシロキサンと、白金のアルケニル錯体とを含む。該白金のアルケニル錯体は、塩化白金酸6水和物と、6当量以上の2官能以上であるアルケニル化合物との反応物である。
上記第1のオルガノポリシロキサンは、珪素原子に結合した水素原子を有さず、かつ珪素原子に結合したアルケニル基と、珪素原子に結合したアリール基とを有する。上記第2のオルガノポリシロキサンは、珪素原子に結合した水素原子と、珪素原子に結合したアリール基とを有する。封止剤中における上記オルガノポリシロキサンの珪素原子に結合したアルケニル基の数の封止剤中における上記オルガノポリシロキサンの珪素原子に結合した水素原子の数に対する比(珪素原子に結合したアルケニル基の数/珪素原子に結合した水素原子の数)は、1.0以上、2.5以下である。上記第2のオルガノポリシロキサンがアルケニル基を有する場合には、上記比において、珪素原子に結合したアルケニル基の数には、上記第2のオルガノポリシロキサンのアルケニル基も含まれる。
上記組成の採用により、封止剤を用いた光半導体装置が加熱と冷却とを繰り返し受ける過酷な環境で使用されても、光半導体装置から発せられる光の明るさが低下し難くなる。さらに、封止剤自体も、過酷な環境で使用されても変色し難くなる。
過酷な環境で使用されたときに、光半導体装置から発せられる光の明るさの低下をより一層抑制し、さらに封止剤の変色をより一層抑制する観点からは、上記比(珪素原子に結合したアルケニル基の数/珪素原子に結合した水素原子の数)は、好ましくは1.1以上、好ましくは1.8以下である。
また、従来の光半導体装置用封止剤では、加熱と冷却とを繰り返し受ける過酷な環境で使用されると、封止剤にクラックが生じたり、封止剤がハウジング材等から剥離したりすることがある。さらに、発光素子の背面側に達した光を反射させるために、発光素子の背面に、銀めっきされた電極が形成されていることがある。封止剤にクラックが生じたり、封止剤がハウジング材から剥離したりすると、銀めっきされた電極が大気に晒される。この場合には、大気中に存在する硫化水素ガス又は亜硫酸ガス等の腐食性ガスによって、銀めっきが変色することがある。電極が変色すると反射率が低下するため、発光素子が発する光の明るさが低下するという問題がある。
このような問題に対して、ガスバリア性に優れており、クラック及び剥離が生じ難い封止剤を得る観点からは、上記第1のオルガノポリシロキサンは、式(1A)又は式(1B)で表される第1のオルガノポリシロキサンであることが好ましい。ガスバリア性に優れており、クラック及び剥離が生じ難い封止剤を得る観点からは、上記第2のオルガノポリシロキサンは、式(51A)又は式(51B)で表される第2のオルガノポリシロキサンであることが好ましい。
ガスバリア性により一層優れており、クラック及び剥離がより一層生じ難い封止剤を得る観点からは、本発明に係る光半導体装置用封止剤は、上記式(1B)で表される第1のオルガノポリシロキサン及び上記式(51B)で表される第2のオルガノポリシロキサンの内の少なくとも一方を含むことが好ましい。
上記第1のオルガノポリシロキサン及び上記第2のオルガノポリシロキサンにおける下記式(X)より求められるアリール基の含有比率はそれぞれ、好ましくは30モル%以上、より好ましくは35モル%以上、好ましくは70モル%以下、より好ましくは65モル%以下である。アリール基の含有比率が上記下限以上及び上記上限以下であると、ガスバリア性がより一層高くなり、かつ封止剤の剥離が生じ難くなる。
アリール基の含有比率(モル%)=(上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/上記第1のオルガノポリシロキサン又は上記第2のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X)
(第1のオルガノポリシロキサン)
本発明に係る光半導体装置用封止剤に含まれている第1のオルガノポリシロキサンは、珪素原子に結合した水素原子を有さず、かつ珪素原子に結合したアルケニル基と、珪素原子に結合したアリール基とを有する。上記第1のオルガノポリシロキサンとして、珪素原子に結合した水素原子を有するオルガノポリシロキサンは除かれる。上記第1のオルガノポリシロキサンは、珪素原子に結合した水素原子を有さないので、上記第2のオルガノポリシロキサンとは異なる。上記アルケニル基とアリール基とはそれぞれ、珪素原子に直接結合している。上記アリール基としては、無置換のフェニル基、置換フェニル基、無置換のフェニレン基、及び置換フェニレン基が挙げられる。なお、上記アルケニル基の炭素−炭素二重結合における炭素原子が、珪素原子に結合していてもよく、上記アルケニル基の炭素−炭素二重結合における炭素原子とは異なる炭素原子が、珪素原子に結合していてもよい。
ガスバリア性により一層優れた封止剤を得る観点からは、上記第1のオルガノポリシロキサンは、下記式(1A)又は下記式(1B)で表される第1のオルガノポリシロキサンであることが好ましい。ただし、上記第1のオルガノポリシロキサンとして、下記式(1A)又は下記式(1B)で表される第1のオルガノポリシロキサン以外の第1のオルガノポリシロキサンを用いてもよい。下記式(1B)で表される第1のオルガノポリシロキサンは、フェニレン基を有していてもよく、フェニレン基を有していなくてもよい。上記第1のオルガノポリシロキサンは、1種のみが用いられてもよく、2種以上が併用されてもよい。
Figure 0004911805
上記式(1A)中、a、b及びcは、a/(a+b+c)=0〜0.50、b/(a+b+c)=0.40〜1.0及びc/(a+b+c)=0〜0.50を満たし、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表す。なお、上記式(1A)中、(R4R5SiO2/2)で表される構造単位及び(R6SiO3/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
Figure 0004911805
上記式(1B)中、a、b、c及びdは、a/(a+b+c+d)=0〜0.40、b/(a+b+c+d)=0.40〜0.99、c/(a+b+c+d)=0〜0.50及びd/(a+b+c+d)=0.01〜0.40を満たし、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表し、R11は、炭素数1〜8の2価の炭化水素基を表す。なお、上記式(1B)中、(R4R5SiO2/2)で表される構造単位、(R6SiO3/2)で表される構造単位、(R7R8R9R10SiR11O2/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
上記式(1A)及び上記式(1B)は平均組成式を示す。上記式(1A)及び上記式(1B)における炭化水素基は、直鎖状であってもよく、分岐状であってもよい。上記式(1A)及び上記式(1B)中のR1〜R6は同一であってもよく、異なっていてもよい。上記式(1B)中のR7〜R10は同一であってもよく、異なっていてもよい。
上記式(1A)及び上記式(1B)中、(R4R5SiO2/2)で表される構造単位における酸素原子部分、(R6SiO3/2)で表される構造単位における酸素原子部分、(R7R8R9R10SiR11O2/2)で表される構造単位における酸素原子部分はそれぞれ、シロキサン結合を形成している酸素原子部分、アルコキシ基の酸素原子部分、又はヒドロキシ基の酸素原子部分を示す。
なお、一般に、上記式(1A)及び上記式(1B)の各構造単位において、アルコキシ基の含有量は少なく、更にヒドロキシ基の含有量も少ない。これは、一般に、第1のオルガノポリシロキサンを得るために、アルコキシシラン化合物などの有機珪素化合物を加水分解し、重縮合させると、アルコキシ基及びヒドロキシ基の多くは、シロキサン結合の部分骨格に変換されるためである。すなわち、アルコキシ基の酸素原子及びヒドロキシ基の酸素原子の多くは、シロキサン結合を形成している酸素原子に変換される。上記式(1A)及び上記式(1B)の各構造単位がアルコキシ基又はヒドロキシ基を有する場合には、シロキサン結合の部分骨格に変換されなかった未反応のアルコキシ基又はヒドロキシ基がわずかに残存していることを示す。後述の式(51A)及び式(51B)の各構造単位がアルコキシ基又はヒドロキシ基を有する場合に関しても、同様のことがいえる。
上記式(1A)及び上記式(1B)中、アルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。ガスバリア性をより一層高める観点からは、上記第1のオルガノポリシロキサンにおけるアルケニル基及び上記式(1A)及び上記式(1B)中のアルケニル基は、ビニル基又はアリル基であることが好ましく、ビニル基であることがより好ましい。
上記式(1A)及び上記式(1B)における炭素数1〜8の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、イソプロピル基、イソブチル基、sec−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、t−ペンチル基、イソへキシル基及びシクロヘキシル基が挙げられる。上記式(1B)における炭素数1〜8の2価の炭化水素基としては特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロヘキシレン基及びフェニレン基等が挙げられる。
上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンにおける下記式(X1)より求められるアリール基の含有比率は、好ましくは30モル%以上、好ましくは70モル%以下である。このアリール基の含有比率が30モル%以上であると、ガスバリア性がより一層高くなる。アリール基の含有比率が70モル%以下であると、封止剤の剥離が生じ難くなる。ガスバリア性を更に一層高める観点からは、アリール基の含有比率は35モル%以上であることがより好ましい。剥離をより一層生じ難くする観点からは、アリール基の含有比率は、65モル%以下であることがより好ましい。
アリール基の含有比率(モル%)=(平均組成式が上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/平均組成式が上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X1)
上記式(1A)で表される第1のオルガノポリシロキサンを用いる場合には、上記式(X1)におけるアリール基はフェニル基を示し、アリール基の含有比率はフェニル基の含有比率を示す。
上記式(1B)で表される第1のオルガノポリシロキサンを用いる場合には、上記式(X1)におけるアリール基はフェニル基とフェニレン基とを示し、アリール基の含有比率はフェニル基とフェニレン基との合計の含有比率を示す。
上記式(1B)で表される第1のオルガノポリシロキサンがフェニレン基を有さない場合には、上記フェニル基とフェニレン基との合計の含有比率は、フェニル基の含有比率を示す。
上記第1のオルガノポリシロキサンは、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位を含むことが好ましい。上記第1のオルガノポリシロキサンの全シロキサン構造単位100モル%中、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位の割合は、好ましくは5モル%以上、より好ましくは10モル%以上、更に好ましくは25モル%以上、特に好ましくは30モル%以上である。ジフェニルシロキサン構造単位の割合が多いほど、またジフェニルシロキサン構造単位の割合が30モル%以上であると、封止剤のディスペンス性が良好になり、更に複数の光半導体装置から取り出される光の明るさが高くなる。上記ジフェニルシロキサン構造単位の割合は、最も好ましくは40モル%以上、好ましくは60モル%以下である。上記ジフェニルシロキサン構造単位の割合が上記上限以下であると、封止剤のディスペンス性が良好になり、半導体装置から取り出される光の明るさがより高くなる。
上記ジフェニルシロキサン構造単位は、下記式(1−b1)で表される構造単位であることが好ましい。また、下記式(1−b1)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。
Figure 0004911805
上記式(1A)及び上記式(1B)中、(R4R5SiO2/2)で表される構造単位はそれぞれ、上記式(1−b1)で表される構造単位を含むことが好ましい。(R4R5SiO2/2)で表される構造単位は、上記式(1−b1)で表される構造単位のみを含んでいてもよく、上記式(1−b1)で表される構造単位と上記式(1−b1)で表される構造単位以外の構造単位とを含んでいてもよい。
ガスバリア性をより一層高める観点からは、上記式(1B)中、(R7R8R9R10SiR11O2/2)の構造単位は、下記式(1b−1)で表される構造単位であることが好ましい。下記式(1b−1)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。本明細書において、「フェニレン基」の用語には、炭素数1〜8の炭化水素基がベンゼン環に置換した置換フェニレン基も含まれる。なお、下記式(1b−1)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。
Figure 0004911805
上記式(1b−1)中、Raは、水素原子又は炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。上記炭化水素基は直鎖状であってもよく、分岐状であってもよい。なお、上記式(1b−1)中のベンゼン環に結合している3つの基の結合部位は特に限定されない。
上記式(1B)中、(R7R8R9R10SiR11O2/2)の構造単位は、下記式(1b−2)で表される構造単位であることが好ましい。下記式(1b−2)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。下記式(1b−2)中のベンゼン環に結合しているRaの結合部位は特に限定されない。
Figure 0004911805
上記式(1b−2)中、Raは、水素原子又は炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(1B)中、(R7R8R9R10SiR11O2/2)の構造単位は、下記式(1b−3)で表される構造単位であることがより好ましい。下記式(1b−3)で表される構造単位はフェニレン基を有し、該フェニレン基は無置換のフェニレン基である。
Figure 0004911805
上記式(1b−3)中、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンにおいて、(R4R5SiO2/2)で表される構造単位(以下、二官能構造単位ともいう)は、下記式(1−2)で表される構造、すなわち、二官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R4R5SiXO1/2) ・・・式(1−2)
(R4R5SiO2/2)で表される構造単位は、下記式(1−b)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1−2−b)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R4及びR5で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R4R5SiO2/2)で表される構造単位に含まれる。具体的には、アルコキシ基がシロキサン結合の部分骨格に変換された場合には、(R4R5SiO2/2)で表される構造単位は、下記式(1−b)で表される構造単位の破線で囲まれた部分を示す。未反応のアルコキシ基が残存している場合、又はアルコキシ基がヒドロキシ基に変換された場合には、残存アルコキシ基又はヒドロキシ基を有する(R4R5SiO2/2)で表される構造単位は、下記式(1−2−b)で表される構造単位の破線で囲まれた部分を示す。
Figure 0004911805
上記式(1−2)及び(1−2−b)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(1−b)、(1−2)及び(1−2−b)中のR4及びR5は、上記式(1A)又は上記式(1B)中のR4及びR5と同様の基である。
上記式(1A)又は上記式(1B)で表される第1のオルガノポリシロキサンにおいて、(R6SiO3/2)で表される構造単位(以下、三官能構造単位ともいう)は、下記式(1−3)又は下記式(1−4)で表される構造、すなわち、三官能構造単位中の珪素原子に結合した酸素原子の2つがそれぞれヒドロキシ基若しくはアルコキシ基を構成する構造、又は、三官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基若しくはアルコキシ基を構成する構造を含んでいてもよい。
(R6SiX1/2) ・・・式(1−3)
(R6SiXO2/2) ・・・式(1−4)
(R6SiO3/2)で表される構造単位は、下記式(1−c)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1−3−c)又は下記式(1−4−c)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R6で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R6SiO3/2)で表される構造単位に含まれる。
Figure 0004911805
上記式(1−3)、(1−3−c)、(1−4)及び(1−4−c)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(1−c)、(1−3)、(1−3−c)、(1−4)及び(1−4−c)中のR6は、上記式(1A)又は上記式(1B)中のR6と同様の基である。
上記式(1B)で表される第1のオルガノポリシロキサンにおいて、(R7R8R9R10SiR11O2/2)で表される構造単位は、下記式(1−5)で表される構造、すなわち、(R7R8R9R10SiR11O2/2)の構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R7R8R9R10SiR11XO1/2) ・・・式(1−5)
(R7R8R9R10SiR11O2/2)で表される構造単位は、下記式(1−d)で表される構造単位の破線で囲まれた部分を含み、更に下記式(1−5−d)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R7、R8、R9、R10及びR11で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R7R8R9R10SiR11O2/2)で表される構造単位に含まれる。
Figure 0004911805
上記式(1−5)及び(1−5−d)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(1−d)、(1−5)及び(1−5−d)中のR7〜R11は、上記式(1B)中のR7〜R11と同様の基である。
上記式(1−b)〜(1−d)、上記式(1−2)〜(1−5)、並びに上記式(1−2−b)、(1−3−c)、(1−4−c)、及び(1−5−d)において、直鎖状又は分岐状の炭素数1〜4のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基及びt−ブトキシ基が挙げられる。
上記式(1A)中、a/(a+b+c)の下限は0、上限は0.50である。a/(a+b+c)が上記上限を満たすと、封止剤の耐熱性をより一層高めることができ、かつ封止剤の剥離をより一層抑制できる。上記式(1A)中、a/(a+b+c)の好ましい上限は0.45、より好ましい上限は0.40である。なお、aが0であり、a/(a+b+c)が0である場合、上記式(1A)中、(R1R2R3SiO1/2)の構造単位は存在しない。
上記式(1A)中、b/(a+b+c)の下限は0.40、上限は1.0である。b/(a+b+c)が上記下限を満たすと、封止剤の硬化物が硬くなりすぎず、封止剤にクラックが生じ難くなる。b/(a+b+c)が上記上限を満たすと、封止剤のガスバリア性がより一層高くなる。上記式(1A)中、b/(a+b+c)の好ましい下限は0.50である。
上記式(1A)中、c/(a+b+c)の下限は0、上限は0.50である。c/(a+b+c)が上記下限を満たすと、封止剤の耐熱性が高くなり、高温環境下で封止剤の硬化物の厚みが減少し難くなる。c/(a+b+c)が上記上限を満たすと、封止剤としての適正な粘度を維持することが容易であり、密着性をより一層高めることができる。上記式(1A)中、c/(a+b+c)の好ましい上限は0.45、より好ましい上限は0.40、更に好ましい上限は0.35である。なお、cが0であり、c/(a+b+c)が0である場合、上記式(1A)中、(R6SiO3/2)の構造単位は存在しない。
上記式(1B)中、a/(a+b+c+d)の下限は0、上限は0.40である。a/(a+b+c+d)が上記上限を満たすと、封止剤の耐熱性をより一層高めることができ、かつ封止剤の剥離をより一層抑制できる。なお、aが0であり、a/(a+b+c+d)が0である場合、上記式(1B)中、(R1R2R3SiO1/2)の構造単位は存在しない。
上記式(1B)中、b/(a+b+c+d)の下限は0.40、上限は0.99である。b/(a+b+c+d)が上記下限を満たすと、封止剤の硬化物が硬くなりすぎず、封止剤にクラックが生じ難くなる。b/(a+b+c+d)が上記上限を満たすと、封止剤のガスバリア性がより一層高くなる。
上記式(1B)中、c/(a+b+c+d)の下限は0、上限は0.50である。c/(a+b+c+d)が上記上限を満たすと、封止剤としての適正な粘度を維持することが容易であり、密着性をより一層高めることができる。なお、cが0であり、c/(a+b+c+d)が0である場合、上記式(1B)中、(R6SiO3/2)の構造単位は存在しない。
上記式(1B)中、d/(a+b+c+d)の下限は0.01、上限は0.40である。d/(a+b+c+d)が上記下限及び上限を満たすと、腐食性ガスに対して高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離が生じ難い光半導体装置用封止剤を得ることができる。腐食性ガスに対してより一層高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離がより一層生じ難い光半導体装置用封止剤を得る観点からは、上記式(1B)中、d/(a+b+c+d)の好ましい下限は0.03、より好ましい下限は0.05、好ましい上限は0.35、より好ましい上限は0.30である。
上記第1のオルガノポリシロキサンについて、テトラメチルシラン(以下、TMS)を基準に29Si−核磁気共鳴分析(以下、NMR)を行うと、置換基の種類によって若干の変動は見られるものの、上記式(1A)及び上記式(1B)中の(R1R2R3SiO1/2で表される構造単位に相当するピークは+10〜−5ppm付近に現れ、上記式(1A)及び上記式(1B)中の(R4R5SiO2/2及び上記式(1−2)の二官能構造単位に相当する各ピークは−10〜−50ppm付近に現れ、上記式(1A)及び上記式(1B)中の(R6SiO3/2、並びに上記式(1−3)及び上記式(1−4)の三官能構造単位に相当する各ピークは−50〜−80ppm付近に現れ、上記式(1B)中の(R7R8R9R10SiR11O2/2及び上記式(1−5)の構造単位に相当するピークは0〜−5ppm付近に現れる。
従って、29Si−NMRを測定し、それぞれのシグナルのピーク面積を比較することによって上記式(1A)及び上記式(1B)中の各構造単位の比率を測定できる。
但し、上記TMSを基準にした29Si−NMRの測定で上記式(1A)及び上記式(1B)中の構造単位の見分けがつかない場合は、29Si−NMRの測定結果だけではなく、H−NMRの測定結果を必要に応じて用いることにより、上記式(1A)及び上記式(1B)中の各構造単位の比率を見分けることができる。
(第2のオルガノポリシロキサン)
本発明に係る光半導体装置用封止剤に含まれている第2のオルガノポリシロキサンは、珪素原子に結合した水素原子と、珪素原子に結合したアリール基とを有する。該水素原子とアリール基とはそれぞれ、珪素原子に直接結合している。該アリール基としては、無置換のフェニル基、置換フェニル基、無置換のフェニレン基、及び置換フェニレン基が挙げられる。
ガスバリア性により一層優れた封止剤を得る観点からは、上記第2のオルガノポリシロキサンは、下記式(51A)又は下記式(51B)で表される第2のオルガノポリシロキサンであることが好ましい。ただし、上記第2のオルガノポリシロキサンとして、下記式(51A)又は下記式(51B)で表される第2のオルガノポリシロキサン以外の第2のオルガノポリシロキサンを用いてもよい。下記式(51B)で表されるオルガノポリシロキサンは、フェニレン基を有していてもよく、フェニレン基を有していなくてもよい。上記第2のオルガノポリシロキサンは1種のみが用いられてもよく、2種以上が併用されてもよい。
Figure 0004911805
上記式(51A)中、p、q及びrは、p/(p+q+r)=0.05〜0.50、q/(p+q+r)=0.05〜0.50及びr/(p+q+r)=0.20〜0.80を満たし、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個が珪素原子に直接結合している水素原子を表し、フェニル基及び珪素原子に直接結合している水素原子以外のR51〜R56は、炭素数1〜8の炭化水素基を表す。なお、上記式(51A)中、(R54R55SiO2/2)で表される構造単位及び(R56SiO3/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
Figure 0004911805
上記式(51B)中、p、q、r及びsは、p/(p+q+r+s)=0.05〜0.50、q/(p+q+r+s)=0.05〜0.50、r/(p+q+r+s)=0.20〜0.80及びs/(p+q+r+s)=0.01〜0.40を満たし、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個が珪素原子に直接結合している水素原子を表し、フェニル基及び珪素原子に直接結合している水素原子以外のR51〜R56は炭素数1〜8の炭化水素基を表し、R57〜60はそれぞれ、炭素数1〜8の炭化水素基を表し、R61は、炭素数1〜8の2価の炭化水素基を表す。なお、上記式(51B)中、(R54R55SiO2/2)で表される構造単位、(R56SiO3/2)で表される構造単位、(R57R58R59R60SiR61O2/2)で表される構造単位はそれぞれ、アルコキシ基を有していてもよく、ヒドロキシ基を有していてもよい。
上記式(51A)及び上記式(51B)は平均組成式を示す。上記式(51A)及び上記式(51B)における炭化水素基は、直鎖状であってもよく、分岐状であってもよい。上記式(51A)及び上記式(51B)中のR51〜R56は同一であってもよく、異なっていてもよい。上記式(51B)中のR57〜R60は同一であってもよく、異なっていてもよい。
上記式(51A)及び上記式(51B)中、(R54R55SiO2/2)で表される構造単位における酸素原子部分、(R56SiO3/2)で表される構造単位における酸素原子部分、(R57R58R59R60SiR61O2/2)で表される構造単位における酸素原子部分はそれぞれ、シロキサン結合を形成している酸素原子部分、アルコキシ基の酸素原子部分、又はヒドロキシ基の酸素原子部分を示す。
上記式(51A)及び上記式(51B)における炭素数1〜8の炭化水素基としては特に限定されず、例えば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、イソプロピル基、イソブチル基、sec−ブチル基、t−ブチル基、イソペンチル基、ネオペンチル基、t−ペンチル基、イソへキシル基、シクロヘキシル基、ビニル基及びアリル基が挙げられる。
上記式(51B)における炭素数1〜8の2価の炭化水素基としては特に限定されず、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、シクロヘキシレン基及びフェニレン基等が挙げられる。
上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンにおける下記式(X51)より求められるアリール基の含有比率は、好ましくは30モル%以上、好ましくは70モル%以下である。このアリール基の含有比率が30モル%以上であると、ガスバリア性がより一層高くなる。アリール基の含有比率が70モル%以下であると、封止剤の剥離が生じ難くなる。ガスバリア性を更に一層高める観点からは、アリール基の含有比率は35モル%以上であることがより好ましい。剥離をより一層生じ難くする観点からは、アリール基の含有比率は、65モル%以下であることがより好ましい。
アリール基の含有比率(モル%)=(平均組成式が上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/平均組成式が上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X51)
上記式(51A)で表される第2のオルガノポリシロキサンを用いる場合には、上記式(X51)におけるアリール基はフェニル基を示し、アリール基の含有比率はフェニル基の含有比率を示す。
上記式(51B)で表される第2のオルガノポリシロキサンを用いる場合には、上記式(X51)におけるアリール基はフェニル基とフェニレン基とを示し、アリール基の含有比率はフェニル基とフェニレン基との合計の含有比率を示す。
上記式(51B)で表される第2のオルガノポリシロキサンがフェニレン基を有さない場合には、上記フェニル基とフェニレン基との合計の含有比率は、フェニル基の含有比率を示す。
封止剤の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記第2のオルガノポリシロキサンは、下記式(51−a)で表される構造単位を含むことが好ましい。なお、下記式(51−a)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。
Figure 0004911805
上記式(51−a)中、R52及びR53はそれぞれ水素原子、フェニル基又は炭素数1〜8の炭化水素基を表す。R52及びR53はそれぞれフェニル基又は炭素数1〜8の炭化水素基を表すことが好ましい。
封止剤の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記式(51A)及び上記式(51B)中の(R51R52R53SiO1/2)で表される構造単位はそれぞれ、R51が珪素原子に結合した水素原子を表し、R52及びR53がフェニル基又は炭素数1〜8の炭化水素基を表す構造単位を含むことが好ましい。
すなわち、上記式(51A)及び上記式(51B)中、(R51R52R53SiO1/2)で表される構造単位は、上記式(51−a)で表される構造単位を含むことが好ましい。(R51R52R53SiO1/2)で表される構造単位は、上記式(51−a)で表される構造単位のみを含んでいてもよく、上記式(51−a)で表される構造単位と上記式(51−a)で表される構造単位以外の構造単位とを含んでいてもよい。
封止剤の硬化性を高め、熱サイクルでのクラック及び剥離をより一層抑制する観点からは、上記第2のオルガノポリシロキサンの全シロキサン構造単位100モル%中、上記式(51−a)で表される構造単位の割合は、好ましくは5モル%以上、より好ましくは10モル%以上、好ましくは50モル%以下、より好ましくは45モル%以下である。
上記式(51A)及び上記式(51B)中の全構造単位100モル%中、R51が珪素原子に結合した水素原子を表し、R52及びR53が水素原子、フェニル基又は炭素数1〜8の炭化水素基を表す構造単位(上記式(51−a)で表される構造単位)の割合は、好ましくは5モル%以上、より好ましくは10モル%以上、好ましくは50モル%以下、より好ましくは45モル%以下である。
上記第2のオルガノポリシロキサンは、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位を含むことが好ましい。上記第2のオルガノポリシロキサンの全シロキサン構造単位100モル%中、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位の割合は、好ましくは5モル%以上、より好ましくは10モル%以上、更に好ましくは20モル%以上である。ジフェニルシロキサン構造単位の割合が多いほど、またジフェニルシロキサン構造単位の割合が20モル%以上であると、封止剤のディスペンス性が良好になり、更に複数の光半導体装置から取り出される光の明るさが高くなる。上記ジフェニルシロキサン構造単位の割合は、好ましくは60モル%以下である。上記ジフェニルシロキサン構造単位の割合が上記上限以下であると、封止剤のディスペンス性が良好になり、半導体装置から取り出される光の明るさがより高くなる。
上記ジフェニルシロキサン構造単位は、下記式(51−b1)で表される構造単位であることが好ましい。また、下記式(51−b1)で表される構造単位において、末端の酸素原子は、一般に隣接する珪素原子とシロキサン結合を形成しており、隣接する構造単位と酸素原子を共有している。従って、末端の1つの酸素原子を「O1/2」とする。
Figure 0004911805
上記式(51A)及び上記式(51B)中、(R5455SiO2/2)で表される構造単位はそれぞれ、上記式(51−b1)で表される構造単位を含むことが好ましい。(R5455SiO2/2)で表される構造単位は、上記式(51−b1)で表される構造単位のみを含んでいてもよく、上記式(51−b1)で表される構造単位と上記式(51−b1)で表される構造単位以外の構造単位とを含んでいてもよい。
ガスバリア性をより一層高める観点からは、上記式(51B)中、(R57R58R59R60SiR61O2/2)の構造単位は、下記式(51b−1)で表される構造単位であることが好ましい。下記式(51b−1)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。
Figure 0004911805
上記式(51b−1)中、Rbは、水素原子又は炭素数1〜8の炭化水素基を表し、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。上記炭化水素基は直鎖状であってもよく、分岐状であってもよい。なお、上記式(51b−1)中のベンゼン環に結合している3つの基の結合部位は特に限定されない。
上記式(51B)中、(R57R58R59R60SiR61O2/2)の構造単位は、下記式(51b−2)で表される構造単位であることが好ましい。下記式(51b−2)で表される構造単位はフェニレン基を有し、該フェニレン基は置換又は無置換のフェニレン基である。下記式(51b−2)中のベンゼン環に結合しているRbの結合部位は特に限定されない。
Figure 0004911805
上記式(51b−2)中、Rbは、水素原子又は炭素数1〜8の炭化水素基を表し、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(51B)中、(R57R58R59R60SiR61O2/2)の構造単位は、下記式(51b−3)で表される構造単位であることがより好ましい。下記式(51b−3)で表される構造単位はフェニレン基を有し、該フェニレン基は無置換のフェニレン基である。
Figure 0004911805
上記式(51b−3)中、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。
上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンにおいて、(R54R55SiO2/2)で表される構造単位(以下、二官能構造単位ともいう)は、下記式(51−2)で表される構造、すなわち、二官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R54R55SiXO1/2) ・・・式(51−2)
(R54R55SiO2/2)で表される構造単位は、下記式(51−b)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51−2−b)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R54及びR55で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R54R55SiO2/2)で表される構造単位に含まれる。
Figure 0004911805
上記式(51−2)及び上記式(51−2−b)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(51−b)、(51−2)及び(51−2−b)中のR54及びR55は、上記式(51A)又は上記式(51B)中のR54及びR55と同様の基である。
上記式(51A)又は上記式(51B)で表される第2のオルガノポリシロキサンにおいて、(R56SiO3/2)で表される構造単位(以下、三官能構造単位ともいう)は、下記式(51−3)又は下記式(51−4)で表される構造、すなわち、三官能構造単位中の珪素原子に結合した酸素原子の2つがそれぞれヒドロキシ基若しくはアルコキシ基を構成する構造、又は、三官能構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基若しくはアルコキシ基を構成する構造を含んでいてもよい。
(R56SiX1/2) ・・・式(51−3)
(R56SiXO2/2) ・・・式(51−4)
(R56SiO3/2)で表される構造単位は、下記式(51−c)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51−3−c)又は下記式(51−4−c)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R56で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R56SiO3/2)で表される構造単位に含まれる。
Figure 0004911805
上記式(51−3)、(51−3−c)、(51−4)及び(51−4−c)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(51−c)、(51−3)、(51−3−c)、(51−4)及び(51−4−c)中のR56は、上記式(51A)及び上記式(51B)中のR56と同様の基である。
上記式(51B)で表される第2のオルガノポリシロキサンにおいて、(R57R58R59R60SiR61O2/2)で表される構造単位は、下記式(51−5)で表される構造、すなわち、(R57R58R59R60SiR61O2/2)の構造単位中の珪素原子に結合した酸素原子の1つがヒドロキシ基又はアルコキシ基を構成する構造を含んでいてもよい。
(R57R58R59R60SiXR61O1/2) ・・・式(51−5)
(R57R58R59R60SiR61O2/2)で表される構造単位は、下記式(51−d)で表される構造単位の破線で囲まれた部分を含み、更に下記式(51−5−d)で表される構造単位の破線で囲まれた部分を含んでいてもよい。すなわち、R57、R58、R59、R60及びR61で表される基を有し、かつアルコキシ基又はヒドロキシ基が末端に残存している構造単位も、(R57R58R59R60SiR61O2/2)で表される構造単位に含まれる。
Figure 0004911805
上記式(51−5)及び上記式(51−5−d)中、Xは、OH又はORを表し、ORは、直鎖状又は分岐状の炭素数1〜4のアルコキシ基を表す。上記式(51−d)、(51−5)及び(51−5−d)中のR57〜R61は、上記式(51B)中のR57〜R61と同様の基である。
上記式(51−b)〜(51−d)、式(51−2)〜(51−5)、並びに上記式(51−2−b)、(51−3−c)、(51−4−c)、及び(51−5−d)において、直鎖状又は分岐状の炭素数1〜4のアルコキシ基としては特に限定されず、例えば、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基、イソプロポキシ基、イソブトキシ基、sec−ブトキシ基及びt−ブトキシ基が挙げられる。
上記式(51A)中、p/(p+q+r)の下限は0.05、上限は0.50である。p/(p+q+r)が上記上限を満たすと、封止剤の耐熱性をより一層高めることができ、かつ封止剤の剥離をより一層抑制できる。上記式(51A)中、中、p/(p+q+r)の好ましい下限は0.10、より好ましい上限は0.45である。
上記式(51A)中、q/(p+q+r)の下限は0.05、上限は0.50である。q/(p+q+r)が上記下限を満たすと、封止剤の硬化物が硬くなりすぎず、封止剤にクラックが生じ難くなる。q/(p+q+r)が上記上限を満たすと、封止剤のガスバリア性がより一層高くなる。上記式(51A)中、q/(p+q+r)の好ましい下限は0.10、より好ましい上限は0.45である。
上記式(51A)中、r/(p+q+r)の下限は0.20、上限は0.80である。r/(p+q+r)が上記下限を満たすと、封止剤の硬度が上がり、傷及びゴミの付着を防止でき、封止剤の耐熱性が高くなり、高温環境下で封止剤の硬化物の厚みが減少し難くなる。r/(p+q+r)が上記上限を満たすと、封止剤としての適正な粘度を維持することが容易であり、密着性をより一層高めることができる。
上記式(51B)中、p/(p+q+r+s)の下限は0.05、上限は0.50である。p/(p+q+r+s)が上記上限を満たすと、封止剤の耐熱性をより一層高めることができ、かつ封止剤の剥離をより一層抑制できる。
上記式(51B)中、q/(p+q+r+s)の下限は0.05、上限は0.50である。q/(p+q+r+s)が上記下限を満たすと、封止剤の硬化物が硬くなりすぎず、封止剤にクラックが生じ難くなる。q/(p+q+r+s)が上記上限を満たすと、封止剤のガスバリア性がより一層高くなる。
上記式(51B)中、r/(p+q+r+s)の下限は0.20、上限は0.80である。r/(p+q+r+s)が上記上限を満たすと、封止剤としての適正な粘度を維持することが容易であり、密着性をより一層高めることができる。
上記式(51B)中、s/(p+q+r+s)の下限は0.01、上限は0.40である。s/(p+q+r+s)が上記下限及び上限を満たすと、腐食性ガスに対して高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離が生じ難い光半導体装置用封止剤を得ることができる。腐食性ガスに対してより一層高いガスバリア性を有し、過酷な環境下で使用されてもクラック又は剥離がより一層生じ難い光半導体装置用封止剤を得る観点からは、上記式(51B)中、s/(p+q+r+s)の好ましい下限は0.03、より好ましい下限は0.05、好ましい上限は0.35、より好ましい上限は0.30である。
上記第2のオルガノポリシロキサンについて、テトラメチルシラン(以下、TMS)を基準に29Si−核磁気共鳴分析(以下、NMR)を行うと、置換基の種類によって若干の変動は見られるものの、上記式(51A)及び上記式(51B)中の(R51R52R53SiO1/2で表される構造単位に相当するピークは+10〜−5ppm付近に現れ、上記式(51A)及び上記式(51B)中の(R54R55SiO2/2及び上記式(51−2)の二官能構造単位に相当する各ピークは−10〜−50ppm付近に現れ、上記式(51A)及び上記式(51B)中の(R56SiO3/2、並びに上記式(51−3)及び上記式(51−4)の三官能構造単位に相当する各ピークは−50〜−80ppm付近に現れ、上記式(51B)中の(R57R58R59R60SiR61O2/2)及び上記式(51−5)の構造単位に相当するピークは0〜−5ppm付近に現れる。
従って、29Si−NMRを測定し、それぞれのシグナルのピーク面積を比較することによって上記式(51A)及び上記式(51B)中の各構造単位の比率を測定できる。
但し、上記TMSを基準にした29Si−NMRの測定で上記式(51A)及び上記式(51B)中の構造単位の見分けがつかない場合は、29Si−NMRの測定結果だけではなく、H−NMRの測定結果を必要に応じて用いることにより、上記式(51A)及び上記式(51B)中の各構造単位の比率を見分けることができる。
上記第1のオルガノポリシロキサン100重量部に対して、上記第2のオルガノポリシロキサンの含有量は10重量部以上、400重量部以下であることが好ましい。第1,第2のオルガノポリシロキサンの含有量がこの範囲内であると、ガスバリア性により一層優れた封止剤を得ることができる。ガスバリア性にさらに一層優れた封止剤を得る観点からは、上記第1のオルガノポリシロキサン100重量部に対して、上記第2のオルガノポリシロキサンの含有量のより好ましい下限は30重量部、更に好ましい下限は50重量部、より好ましい上限は300重量部、更に好ましい上限は200重量部である。
(第1,第2のオルガノポリシロキサンの他の性質及びその合成方法)
上記第1,第2のオルガノポリシロキサンのアルコキシ基の含有量の好ましい下限は0.5モル%、より好ましい下限は1モル%、好ましい上限は10モル%、より好ましい上限は5モル%である。アルコキシ基の含有量が上記好ましい範囲内であると、封止剤の密着性を高めることができる。
アルコキシ基の含有量が上記好ましい下限を満たすと、封止剤の密着性を高めることができる。アルコキシ基の含有量が上記好ましい上限を満たすと、上記第1,第2のオルガノポリシロキサン及び封止剤の貯蔵安定性が高くなり、封止剤の耐熱性がより一層高くなる。
上記アルコキシ基の含有量は、上記第1,第2のオルガノポリシロキサンの平均組成式中に含まれる上記アルコキシ基の量を意味する。
上記第1,第2のオルガノポリシロキサンはシラノール基を含有しないほうが好ましい。上記第1,第2のオルガノポリシロキサンがシラノール基を含有しないと、上記第1,第2のオルガノポリシロキサン及び封止剤の貯蔵安定性が高くなる。上記シラノール基は、真空下での加熱により減少させることができる。シラノール基の含有量は、赤外分光法を用いて測定できる。
上記第1,第2のオルガノポリシロキサンの数平均分子量(Mn)の好ましい下限は500、より好ましい下限は800、更に好ましい下限は1000、好ましい上限は50000、より好ましい上限は15000である。数平均分子量が上記好ましい下限を満たすと、熱硬化時に揮発成分が少なくなり、高温環境下で封止剤の硬化物の厚みが減少しにくくなる。数平均分子量が上記好ましい上限を満たすと、粘度調節が容易である。
上記数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレンを標準物質して求めた値である。上記数平均分子量(Mn)は、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF−804(長さ300mm)を2本、測定温度:40℃、流速:1mL/分、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いて測定された値を意味する。
上記第1,第2のオルガノポリシロキサンを合成する方法としては特に限定されず、アルコキシシラン化合物を加水分解し縮合反応させる方法、クロロシラン化合物を加水分解し縮合させる方法が挙げられる。なかでも、反応の制御の観点からアルコキシシラン化合物を加水分解し縮合反応させる方法が好ましい。
上記アルコキシシラン化合物を加水分解し縮合反応させる方法としては、例えば、アルコキシシラン化合物を、水と酸性触媒又は塩基性触媒との存在下で反応させる方法が挙げられる。また、ジシロキサン化合物を加水分解して用いてもよい。
上記第1,第2のオルガノポリシロキサンにフェニル基などのアリール基を導入するための有機珪素化合物としては、トリフェニルメトキシシラン、トリフェニルエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチル(フェニル)ジメトキシシラン、及びフェニルトリメトキシシラン等が挙げられる。
上記第1,第2のオルガノポリシロキサンに(R57R58R59R60SiR61O2/2)、(R7R8R9R10SiR11O2/2)の構造単位を導入するための有機珪素化合物としては、例えば、1,4−ビス(ジメチルメトキシシリル)ベンゼン、1,4−ビス(ジエチルメトキシシリル)ベンゼン、1,4−ビス(エトキシエチルメチルシリル)ベンゼン、1,6−ビス(ジメチルメトキシシリル)ヘキサン、1,6−ビス(ジエチルメトキシシリル)ヘキサン及び1,6−ビス(エトキシエチルメチルシリル)ヘキサン等が挙げられる。
上記第1のオルガノポリシロキサンにアルケニル基を導入するための有機珪素化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、メトキシジメチルビニルシラン及び1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン等が挙げられる。
上記第2のオルガノポリシロキサンに珪素原子に直接結合した水素原子を導入するための有機珪素化合物としては、トリメトキシシラン、トリエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、及び1,1,3,3−テトラメチルジシロキサン等が挙げられる。
上記第1,第2のオルガノポリシロキサンを得るために用いることができる他の有機珪素化合物としては、例えば、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、イソプロピル(メチル)ジメトキシシラン、シクロヘキシル(メチル)ジメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン及びオクチルトリメトキシシラン等が挙げられる。
上記酸性触媒としては、例えば、無機酸、有機酸、無機酸の酸無水物及びその誘導体、並びに有機酸の酸無水物及びその誘導体が挙げられる。
上記無機酸としては、例えば、塩酸、リン酸、ホウ酸及び炭酸が挙げられる。上記有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、リンゴ酸、酒石酸、クエン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸及びオレイン酸が挙げられる。
上記塩基性触媒としては、例えば、アルカリ金属の水酸化物、アルカリ金属のアルコキシド及びアルカリ金属のシラノール化合物が挙げられる。
上記アルカリ金属の水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム及び水酸化セシウムが挙げられる。上記アルカリ金属のアルコキシドとしては、例えば、ナトリウム−t−ブトキシド、カリウム−t−ブトキシド及びセシウム−t−ブトキシドが挙げられる。
上記アルカリ金属のシラノール化合物としては、例えば、ナトリウムシラノレート化合物、カリウムシラノレート化合物及びセシウムシラノレート化合物が挙げられる。なかでも、カリウム系触媒又はセシウム系触媒が好適である。
(白金のアルケニル錯体)
本発明に係る光半導体装置用封止剤に含まれている白金のアルケニル錯体は、オルガノポリシロキサン中の珪素原子に結合したアルケニル基と、オルガノポリシロキサン中の珪素原子に結合した水素原子とをヒドロシリル化反応させる触媒である。上記白金のアルケニル錯体は、白金触媒であり、ヒドロシリル化反応用触媒である。
上記白金のアルケニル錯体は、塩化白金酸6水和物と、6当量以上の2官能以上であるアルケニル化合物との反応物である。上記白金のアルケニル錯体は、塩化白金酸6水和物と、6当量以上の2官能以上であるアルケニル化合物とを反応させることにより得られる。上記白金のアルケニル錯体は、1種のみが用いられてもよく、2種以上が併用されてもよい。
特定の上記第1,第2のオルガノポリシロキサンと特定の上記白金のアルケニル錯体との併用とにより、過酷な環境下で使用されても、光半導体装置から発せられる光の明るさが低下し難くなり、かつ封止剤における変色が生じ難くなる。また、上記白金のアルケニル錯体の使用により、封止剤の透明性を高くすることもできる。
上記白金のアルケニル錯体を得るための白金原料として、上記塩化白金酸6水和物(HPtCl・6HO)を用いる。
上記白金のアルケニルを得るための上記6当量以上の2官能以上であるアルケニル化合物としては、例えば、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジメチル−1,3−ジフェニル−1,3−ジビニルジシロキサン及び1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等が挙げられる。
上記6当量以上の2官能以上であるアルケニル化合物における「当量」に関しては、上記塩化白金酸6水和物1モルに対して2官能以上であるアルケニル化合物が1モルである重量を1当量とする。上記6当量以上の2官能以上であるアルケニル化合物は、50当量以下であることが好ましい。
上記白金のアルケニル錯体を得るために用いられる溶媒としては、例えば、メタノール、エタノール、2−プロパノール及び1−ブタノール等のアルコール系溶媒が挙げられる。トルエン及びキシレン等の芳香族系溶媒を用いてもよい。上記溶媒は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記白金のアルケニル錯体を得るために、上記成分に加えて単官能のビニル化合物を用いてもよい。上記単官能のビニル化合物としては、例えば、トリメトキシビニルシラン、トリエトキシビニルシラン及びビニルメチルジメトキシシラン等が挙げられる。
塩化白金酸6水和物と、6当量以上の2官能以上であるアルケニル化合物との反応物に関して、白金元素と6当量以上の2官能以上であるアルケニル化合物とは、共有結合していたり、配位していたり、又は共有結合しかつ配位していたりする。
封止剤中で、白金のアルケニル錯体による白金元素の含有量は、0.01ppm以上、1000ppm以下であることが好ましい。封止剤中で、白金のアルケニル錯体による白金元素の含有量は、より好ましくは1ppm以上、より好ましくは300ppm以下である。上記白金元素の含有量が上記下限以上であると、特に1ppm以上であると、封止剤を十分に硬化性させることが容易であり、封止剤を用いた光半導体装置から発せられる光の明るさの低下をより一層抑制でき、更に封止剤のガスバリア性をより一層高めることができる。上記白金元素の含有量が上記上限以下であると、特に300ppm以下であると、封止剤がより一層変色し難くなる。
(酸化ケイ素粒子)
本発明に係る光半導体装置用封止剤は、酸化ケイ素粒子をさらに含むことが好ましい。
上記酸化ケイ素粒子の使用により、封止剤の硬化物の耐熱性及び耐光性を損なうことなく、硬化前の封止剤の粘度を適当な範囲に調整できる。従って、封止剤の取り扱い性を高めることができる。
上記酸化ケイ素粒子の一次粒子径の好ましい下限は5nm、より好ましい下限は8nm、好ましい上限は200nm、より好ましい上限は150nmである。上記酸化ケイ素粒子の一次粒子径が上記好ましい下限を満たすと、酸化ケイ素粒子の分散性がより一層高くなり、封止剤の硬化物の透明性がより一層高くなる。上記酸化ケイ素粒子の一次粒子径が上記好ましい上限を満たすと、25℃における粘度の上昇効果を充分に得ることができ、かつ温度上昇における粘度の低下を抑制できる。
上記酸化ケイ素粒子の一次粒子径は、以下のようにして測定される。光半導体装置用封止剤の硬化物を透過型電子顕微鏡(商品名「JEM−2100」、日本電子社製)を用いて観察する。視野中の100個の酸化ケイ素粒子の一次粒子の大きさをそれぞれ測定し、測定値の平均値を一次粒子径とする。上記一次粒子径は、上記酸化ケイ素粒子が球形である場合には酸化ケイ素粒子の直径の平均値を意味し、非球形である場合には酸化ケイ素粒子の長径の平均値を意味する。
上記酸化ケイ素粒子のBET比表面積の好ましい下限は30m/g、好ましい上限が400m/gである。上記酸化ケイ素粒子のBET比表面積が30m/g以上であると、封止剤の25℃における粘度を好適な範囲に制御でき、温度上昇における粘度の低下を抑制できる。上記酸化ケイ素粒子のBET比表面積が400m/g以下であると、酸化ケイ素粒子の凝集が生じ難くなり、分散性を高くすることができ、更に封止剤の硬化物の透明性をより一層高くすることができる。
上記酸化ケイ素粒子としては特に限定されず、例えば、フュームドシリカ、溶融シリカ等の乾式法で製造されたシリカ、並びにコロイダルシリカ、ゾルゲルシリカ、沈殿シリカ等の湿式法で製造されたシリカ等が挙げられる。なかでも、揮発成分が少なく、かつ透明性がより一層高い封止剤を得る観点からは、上記酸化ケイ素粒子として、フュームドシリカが好適に用いられる。
上記フュームドシリカとしては、例えば、Aerosil 50(比表面積:50m/g)、Aerosil 90(比表面積:90m/g)、Aerosil 130(比表面積:130m/g)、Aerosil 200(比表面積:200m/g)、Aerosil 300(比表面積:300m/g)、及びAerosil 380(比表面積:380m/g)(いずれも日本アエロジル社製)等が挙げられる。
上記酸化ケイ素粒子は、有機ケイ素化合物により表面処理されていることが好ましい。この表面処理により、酸化ケイ素粒子の分散性が非常に高くなり、硬化前の封止剤の温度上昇による粘度の低下をより一層抑制できる。
上記有機ケイ素化合物としては特に限定されず、例えば、アルキル基を有するシラン系化合物、ジメチルシロキサン等のシロキサン骨格を有するケイ素系化合物、アミノ基を有するケイ素系化合物、(メタ)アクリロイル基を有するケイ素系化合物、及びエポキシ基を有するケイ素系化合物等が挙げられる。上記「(メタ)アクリロイル基」は、アクリロイル基とメタクリロイル基とを意味する。
酸化ケイ素粒子の分散性をさらに一層高める観点からは、表面処理に用いられる上記有機ケイ素化合物は、ジメチルシリル基を有する有機ケイ素化合物、トリメチルシリル基を有する有機ケイ素化合物及びポリジメチルシロキサン基を有する有機ケイ素化合物からなる群から選択された少なくとも1種であることが好ましい。また、酸化珪素粒子の分散性をさらに一層高める観点からは、表面処理に用いられる上記有機ケイ素化合物は、トリメチルシリル基を有する有機ケイ素化合物及びポリジメチルシロキサン基を有する有機ケイ素化合物の内の少なくとも1種であることが好ましい。
有機ケイ素化合物による表面処理する方法の一例として、ジメチルシリル基を有する有機ケイ素化合物又はトリメチルシリル基を有する有機ケイ素化合物を用いる場合には、例えば、ジクロロジメチルシラン、ジメチルジメトキシシラン、ヘキサメチルジシラザン、トリメチルシリルクロライド及びトリメチルメトキシシラン等を用いて、酸化ケイ素粒子を表面処理する方法が挙げられる。ポリジメチルシロキサン基を有する有機ケイ素化合物を用いる場合には、ポリジメチルシロキサン基の末端にシラノール基を有する化合物及び環状シロキサン等を用いて、酸化ケイ素粒子を表面処理する方法が挙げられる。
上記ジメチルシリル基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子の市販品としては、R974(比表面積:170m/g)、及びR964(比表面積:250m/g)(いずれも日本アエロジル社製)等が挙げられる。
上記トリメチルシリル基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子の市販品としては、RX200(比表面積:140m/g)、及びR8200(比表面積:140m/g)(いずれも日本アエロジル社製)等が挙げられる。
上記ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子の市販品としては、RY200(比表面積:120m/g)(日本アエロジル社製)等が挙げられる。
上記有機ケイ素化合物により酸化ケイ素粒子を表面処理する方法は特に限定されない。この方法としては、例えば、ミキサー中に酸化ケイ素粒子を添加し、攪拌しながら有機ケイ素化合物を添加する乾式法、酸化ケイ素粒子のスラリー中に有機ケイ素化合物を添加するスラリー法、並びに、酸化ケイ素粒子の乾燥後に有機ケイ素化合物をスプレー付与するスプレー法などの直接処理法等が挙げられる。上記乾式法で用いられるミキサーとしては、ヘンシェルミキサー及びV型ミキサー等が挙げられる。上記乾式法では、有機ケイ素化合物は、直接、又は、アルコール水溶液、有機溶媒溶液若しくは水溶液として添加される。
上記有機ケイ素化合物により表面処理されている酸化ケイ素粒子を得るために、光半導体装置用封止剤を調製する際に、酸化ケイ素粒子と上記第1,第2のオルガノポリシロキサン等のマトリクス樹脂との混合時に、有機ケイ素化合物を直接添加するインテグレルブレンド法等を用いてもよい。
上記第1のオルガノポリシロキサンと上記第2のオルガノポリシロキサンとの合計100重量部に対して、上記酸化ケイ素粒子の含有量は、0.5重量部以上、40重量部以下であることが好ましい。上記第1のオルガノポリシロキサンと上記第2のオルガノポリシロキサンとの合計100重量部に対して、上記酸化ケイ素粒子の含有量のより好ましい下限は1重量部、より好ましい上限は35重量部である。上記酸化ケイ素粒子の含有量が上記下限を満たすと、硬化時の粘度低下を抑制することが可能になる。上記酸化ケイ素粒子の含有量が上記上限を満たすと、封止剤の粘度をより一層適正な範囲に制御でき、かつ封止剤の透明性をより一層高めることができる。
(蛍光体)
本発明に係る光半導体装置用封止剤は、蛍光体をさらに含有してもよい。上記蛍光体は、光半導体装置用封止剤を用いて封止する発光素子が発する光を吸収し、蛍光を発生することによって、最終的に所望の色の光を得ることができるように作用する。上記蛍光体は、発光素子が発する光によって励起され、蛍光を発し、発光素子が発する光と蛍光体が発する蛍光との組み合わせによって、所望の色の光を得ることができる。
例えば、発光素子として紫外線LEDチップを使用して最終的に白色光を得ることを目的とする場合には、青色蛍光体、赤色蛍光体及び緑色蛍光体を組み合わせて用いることが好ましい。発光素子として青色LEDチップを使用して最終的に白色光を得ることを目的とする場合には、緑色蛍光体及び赤色蛍光体を組み合わせて用いるか、又は、黄色蛍光体を用いることが好ましい。上記蛍光体は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記青色蛍光体としては特に限定されず、例えば、(Sr、Ca、Ba、Mg)10(POCl:Eu、(Ba、Sr)MgAl1017:Eu、(Sr、Ba)MgSi:Eu等が挙げられる。
上記赤色蛍光体としては特に限定されず、例えば、(Sr、Ca)S:Eu、(Ca、Sr)Si:Eu、CaSiN:Eu、CaAlSiN:Eu、YS:Eu、LaS:Eu、LiW:(Eu、Sm)、(Sr、Ca、Bs、Mg)10(POCl:(Eu、Mn)、BaMgSi:(Eu、Mn)等が挙げられる。
上記緑色蛍光体としては特に限定されず、例えば、Y(Al、Ga)12:Ce、SrGa:Eu、CaScSi12:Ce、SrSiON:Eu、ZnS:(Cu、Al)、BaMgAl1017(Eu、Mn)、SrAl:Eu等が挙げられる。
上記黄色蛍光体としては特に限定されず、例えば、YAl12:Ce、(Y、Gd)Al12:Ce、TbAl12:Ce、CaGa:Eu、SrSiO:Eu等が挙げられる。
さらに、上記蛍光体としては、有機蛍光体であるペリレン系化合物等が挙げられる。
(カップリング剤)
本発明に係る光半導体装置用封止剤は、接着性を付与するために、カップリング剤をさらに含有してもよい。
上記カップリング剤としては特に限定されず、例えば、シランカップリング剤等が挙げられる。該シランカップリング剤としては、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、及びN−フェニル−3−アミノプロピルトリメトキシシラン等が挙げられる。カップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(他の成分)
本発明に係る光半導体装置用封止剤は、必要に応じて、分散剤、酸化防止剤、消泡剤、着色剤、変性剤、レベリング剤、光拡散剤、熱伝導性フィラー又は難燃剤等の添加剤をさらに含有してもよい。
なお、上記第1のオルガノポリシロキサンと、上記第2のオルガノポリシロキサンと、上記白金のアルケニル錯体とは、これらを1種又は2種以上含む液を別々に調製しておき、使用直前に複数の液を混合して、本発明に係る光半導体装置用封止剤を調製してもよい。例えば、上記第1のオルガノポリシロキサン及び白金のアルケニル錯体を含むA液と、第2のオルガノポリシロキサンを含むB液とを別々に調製しておき、使用直前にA液とB液を混合して、本発明に係る光半導体装置用封止剤を調製してもよい。このように上記第1のオルガノポリシロキサン及び上記白金のアルケニル錯体と上記第2のオルガノポリシロキサンとを別々に、第1の液と第2の液との2液にすることによって保存安定性を向上させることができる。上記第1のオルガノポリシロキサン、上記第2のオルガノポリシロキサン及び上記白金のアルケニル錯体以外の成分は、上記第1の液に添加してもよく、上記第2の液に添加してもよい。
(光半導体装置用封止剤の詳細及び用途)
本発明に係る光半導体装置用封止剤の硬化温度は特に限定されない。光半導体装置用封止剤の硬化温度の好ましい下限は80℃、より好ましい下限は100℃、好ましい上限は180℃、より好ましい上限は150℃である。硬化温度が上記好ましい下限を満たすと、封止剤の硬化が充分に進行する。硬化温度が上記好ましい上限を満たすと、パッケージの熱劣化が起こり難い。
硬化方式は特に限定されないが、ステップキュア方式を用いることが好ましい。ステップキュア方式は、一旦低温で仮硬化させておき、その後に高温で硬化させる方法である。ステップキュア方式の使用により、封止剤の硬化収縮を抑えることができる。
本発明に係る光半導体装置用封止剤の製造方法としては特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリウムミキサー、ニーダー、三本ロール又はビーズミル等の混合機を用いて、常温又は加温下で、上記第1のオルガノポリシロキサン、上記第2のオルガノポリシロキサン、上記白金のアルケニル錯体、及び必要に応じて配合される他の成分を混合する方法等が挙げられる。
上記発光素子としては、半導体を用いた発光素子であれば特に限定されず、例えば、上記発光素子が発光ダイオードである場合、例えば、基板上にLED形式用半導体材料を積層した構造が挙げられる。この場合、半導体材料としては、例えば、GaAs、GaP、GaAlAs、GaAsP、AlGaInP、GaN、InN、AlN、InGaAlN、及びSiC等が挙げられる。
上記基板の材料としては、例えば、サファイア、スピネル、SiC、Si、ZnO、及びGaN単結晶等が挙げられる。また、必要に応じ基板と半導体材料との間にバッファー層が形成されていてもよい。上記バッファー層の材料としては、例えば、GaN及びAlN等が挙げられる。
本発明に係る光半導体装置としては、具体的には、例えば、発光ダイオード装置、半導体レーザー装置及びフォトカプラ等が挙げられる。このような光半導体装置は、例えば、液晶ディスプレイ等のバックライト、照明、各種センサー、プリンター及びコピー機等の光源、車両用計測器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト並びにスイッチング素子等に好適に用いることができる。
本発明に係る光半導体装置では、本発明に係る光半導体装置用封止剤の硬化物により、光半導体により形成された発光素子が封止されている。本発明に係る光半導体装置では、LEDなどの光半導体により形成された発光素子を封止するように、光半導体装置用封止剤の硬化物が配置されている。このため、発光素子を封止している光半導体装置用封止剤の硬化物にクラックが生じ難く、パッケージからの剥離が生じ難く、かつ光透過性、耐熱性、耐候性及びガスバリア性を高めることができる。
(光半導体装置の実施形態)
図1は、本発明の一実施形態に係る光半導体装置を示す正面断面図である。
本実施形態の光半導体装置1は、ハウジング2を有する。ハウジング2内にLEDからなる光半導体素子3が実装されている。この光半導体素子3の周囲を、ハウジング2の光反射性を有する内面2aが取り囲んでいる。本実施形態では、光半導体により形成された発光素子として、光半導体素子3が用いられている。
内面2aは、内面2aの径が開口端に向かうにつれて大きくなるように形成されている。従って、光半導体素子3から発せられた光のうち、内面2aに到達した光が内面2aにより反射され、光半導体素子3の前方側に進行する。光半導体素子3を封止するように、内面2aで囲まれた領域内には、光半導体装置用封止剤4が充填されている。
なお、図1に示す構造は、本発明に係る光半導体装置の一例にすぎず、光半導体装置の実装構造等には適宜変形され得る。
以下に、実施例を挙げて本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
(合成例1)第1のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン63g、ジメチルジメトキシシラン90g、ジフェニルジメトキシシラン183g、及びビニルトリメトキシシラン133gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水114gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(A)を得た。
得られたポリマー(A)の数平均分子量(Mn)は1700であった。29Si−NMRより化学構造を同定した結果、ポリマー(A)は、下記の平均組成式(A1)を有していた。
(MeSiO1/20.19(MeSiO2/20.24(PhSiO2/20.26(ViSiO3/20.31 …式(A1)
上記式(A1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。
得られたポリマー(A)のフェニル基の含有比率は37モル%であった。
なお、合成例1及び合成例2〜11で得られた各ポリマーの分子量は、10mgにテトラヒドロフラン1mLを加え、溶解するまで攪拌し、GPC測定により測定した。GPC測定では、Waters社製の測定装置(カラム:昭和電工社製 Shodex GPC LF−804(長さ300mm)×2本、測定温度:40℃、流速:1mL/min、溶媒:テトラヒドロフラン、標準物質:ポリスチレン)を用いた。
(合成例2)第1のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン96g、ジフェニルジメトキシシラン318g、及びビニルメチルジメトキシシラン119gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水108gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(B)を得た。
得られたポリマー(B)の数平均分子量(Mn)は5300であった。29Si−NMRより化学構造を同定した結果、ポリマー(B)は、下記の平均組成式(B1)を有していた。
(MeSiO2/20.25(PhSiO2/20.45(ViMeSiO2/20.30…式(B1)
上記式(B1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。
得られたポリマー(B)のフェニル基の含有比率は52モル%であった。
(合成例3)第1のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン60g、ジフェニルジメトキシシラン317g、ビニルメチルジメトキシシラン119g、及び1,6−ビス(ジメチルメトキシシリル)ヘキサン79gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水108gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(C)を得た。
得られたポリマー(C)の数平均分子量(Mn)は3600であった。29Si−NMRより化学構造を同定した結果、ポリマー(C)は、下記の平均組成式(C1)を有していた。
(MeSiO2/20.16(PhSiO2/20.44(ViMeSiO2/20.30(MeSi HexO2/20.10 …式(C1)
上記式(C1)中、Meはメチル基、Phはフェニル基、Viはビニル基、Hexはヘキシレン基を示す。
得られたポリマー(C)のフェニル基の含有比率は46モル%であった。
(合成例4)第1のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン60g、ジフェニルジメトキシシラン317g、ビニルメチルジメトキシシラン119g、及び1,4−ビス(ジメチルメトキシシリル)ベンゼン76gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水108gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(D)を得た。
得られたポリマー(D)の数平均分子量(Mn)は3400であった。29Si−NMRより化学構造を同定した結果、ポリマー(D)は、下記の平均組成式(D1)を有していた。
(MeSiO2/20.16(PhSiO2/20.44(ViMeSiO2/20.30(MeSi PheO2/20.10 …式(D1)
上記式(D1)中、Meはメチル基、Phはフェニル基、Viはビニル基、Pheはフェニレン基を示す。
得られたポリマー(D)のフェニル基とフェニレン基との含有比率(アリール基の含有比率)は52モル%であった。
(合成例5)第2のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン31g、1,1,3,3−テトラメチルジシロキサン50g、ジメチルジメトキシシラン108g、及びフェニルトリメトキシシラン208gを入れ、50℃で攪拌した。その中に、塩酸1.4gと水101gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(E)を得た。
得られたポリマー(E)の数平均分子量(Mn)は1000であった。29Si−NMRより化学構造を同定した結果、ポリマー(E)は、下記の平均組成式(E1)を有していた。
(MeSiO1/20.09(HMeSiO1/20.23(MeSiO2/20.27(PhSiO3/20.41 …式(E1)
上記式(E1)中、Meはメチル基、Phはフェニル基を示す。
得られたポリマー(E)のフェニル基の含有比率は33モル%であった。
(合成例6)第2のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン16g、1,1,3,3−テトラメチルジシロキサン50g、ジメチルジメトキシシラン36g、ジフェニルジメトキシシラン183g、フェニルトリメトキシシラン149g、及びビニルトリメトキシシラン45gを入れ、50℃で攪拌した。その中に、塩酸1.4gと水104gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(F)を得た。
得られたポリマー(F)の数平均分子量(Mn)は1000であった。29Si−NMRより化学構造を同定した結果、ポリマー(F)は、下記の平均組成式(F1)を有していた。
(MeSiO1/20.05(HMeSiO1/20.23(MeSiO2/20.09(PhSiO2/20.26(PhSiO3/20.27(ViSiO3/20.10 …式(F1)
上記式(F1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。
得られたポリマー(F)のフェニル基の含有比率は51モル%であった。
(合成例7)第2のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン31g、1,1,3,3−テトラメチルジシロキサン40g、ジフェニルジメトキシシラン110g、フェニルトリメトキシシラン268g、及びビニルトリメトキシシラン45gを入れ、50℃で攪拌した。その中に、塩酸1.4gと水116gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(G)を得た。
得られたポリマー(G)の数平均分子量(Mn)は1100であった。29Si−NMRより化学構造を同定した結果、ポリマー(G)は、下記の平均組成式(G1)を有していた。
(MeSiO1/20.09(HMeSiO1/20.19(PhSiO2/20.16(PhSiO3/20.46(ViSiO3/20.10 …式(G1)
上記式(G1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。
得られたポリマー(G)のフェニル基の含有比率は51モル%であった。
(合成例8)第2のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン31g、1,1,3,3−テトラメチルジシロキサン40g、ジフェニルジメトキシシラン183g、フェニルトリメトキシシラン149g、ビニルトリメトキシシラン45g、及び1,4−ビス(ジメチルメトキシシリル)ベンゼン76gを入れ、50℃で攪拌した。その中に、塩酸1.4gと水105gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(H)を得た。
得られたポリマー(H)の数平均分子量(Mn)は1100であった。29Si−NMRより化学構造を同定した結果、ポリマー(H)は、下記の平均組成式(H1)を有していた。
(MeSiO1/20.09(HMeSiO1/20.19(PhSiO2/20.26(PhSiO3/20.26(ViSiO3/20.10(MeSiPheO2/20.10 …式(H1)
上記式(H1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示し、Pheはフェニレン基を示す。
得られたポリマー(H)のフェニル基とフェニレン基との含有比率(アリール基の含有比率)は51モル%であった。
(合成例9)第1のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン94g、ジメチルジメトキシシラン99g、ジフェニルジメトキシシラン92g、及びビニルトリメトキシシラン133gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水108gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(I)を得た。
得られたポリマー(I)の数平均分子量(Mn)は1800であった。29Si−NMRより化学構造を同定した結果、ポリマー(I)は、下記の平均組成式(I1)を有していた。
(MeSiO1/20.29(MeSiO2/20.27(PhSiO2/20.13(ViSiO3/20.31 …式(I1)
上記式(I1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。
得られたポリマー(I)のフェニル基の含有比率は21モル%であった。
(合成例10)第1のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、ジメチルジメトキシシラン180g、ジフェニルジメトキシシラン73g、ビニルメチルジメトキシシラン119g、及び1,4−ビス(ジメチルメトキシシリル)ベンゼン76gを入れ、50℃で攪拌した。その中に、水酸化カリウム0.8gを水108gに溶かした溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、反応液に酢酸0.9gを加え、減圧して揮発成分を除去し、酢酸カリウムをろ過により除去して、ポリマー(J)を得た。
得られたポリマー(J)の数平均分子量(Mn)は3400であった。29Si−NMRより化学構造を同定した結果、ポリマー(J)は、下記の平均組成式(J1)を有していた。
(MeSiO2/20.49(PhSiO2/20.10(ViMeSiO2/20.31(MeSiPheO2/20.10 …式(J1)
上記式(J1)中、Meはメチル基、Phはフェニル基、Viはビニル基、Pheはフェニレン基を示す。
得られたポリマー(J)のフェニル基とフェニレン基との含有比率(アリール基の含有比率)は22モル%であった。
(合成例11)第2のオルガノポリシロキサンの合成
温度計、滴下装置及び攪拌機を備えた1000mLのセパラブルフラスコに、トリメチルメトキシシラン31g、1,1,3,3−ヘキサメチルジシロキサン50g、ジメチルジメトキシシラン140g、ジフェニルジメトキシシラン59g、フェニルトリメトキシシラン48g、及びビニルトリメトキシシラン45gを入れ50℃で攪拌した。その中に、塩酸1.4gと水92gの溶液をゆっくりと滴下し、滴下後に50℃で6時間攪拌し、反応させて、反応液を得た。次に、減圧して揮発成分を除去してポリマーを得た。得られたポリマーにヘキサン150gと酢酸エチル150gとを添加し、イオン交換水300gで10回洗浄を行い、減圧して揮発成分を除去してポリマー(K)を得た。
得られたポリマー(K)の数平均分子量(Mn)は600であった。29Si−NMRより化学構造を同定した結果、ポリマー(K)は、下記の平均組成式(K1)を有していた。
(MeSiO1/20.09(HMeSiO1/20.24(MeSiO2/20.38(PhSiO2/20.08(PhSiO3/20.10(ViSiO3/20.10 …式(K1)
上記式(K1)中、Meはメチル基、Phはフェニル基、Viはビニル基を示す。
得られたポリマー(K)のフェニル基の含有比率は23モル%であった。
(白金アルケニル錯体Aの合成)
環流管を備えた反応フラスコに、塩化白金酸6水和物(HPtCl・6HO、300mg)、及び2−プロパノール(4.6ml)を入れて、窒素雰囲気下にて室温で20分間攪拌した。20分後、炭酸水素ナトリウム(NaHCO、400mg)を加えて、ガスの発生がなくなるまで攪拌し、次に1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン(8当量、864mg)を加え、反応溶液を60℃で24時間攪拌した。反応溶液を室温に戻し、無水硫酸マグネシウム(300mg)を加えて5分間攪拌した。その後、ジエチルエーテルを溶媒に用いてセライトろ過を行い、溶液量が5gになるまで濃縮し、白金アルケニル錯体Aの溶液を得た。
(白金アルケニル錯体Bの合成)
環流管を備えた反応フラスコに、塩化白金酸6水和物(HPtCl・6HO、300mg)、及び2−プロパノール(4.6ml)を入れて、窒素雰囲気下にて室温で20分間攪拌した。20分後、炭酸水素ナトリウム(NaHCO、400mg)を加えて、ガスの発生がなくなるまで攪拌し、次に1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン(20当量、2.16g)を加え、反応溶液を60℃で24時間攪拌した。反応溶液を室温に戻し、無水硫酸マグネシウム(300mg)を加えて5分間攪拌した。その後、ジエチルエーテルを溶媒に用いてセライトろ過を行い、溶液量が5gになるまで濃縮し、白金アルケニル錯体Bの溶液を得た。
(白金アルケニル錯体Cの合成)
環流管を備えた反応フラスコに、塩化白金酸6水和物(HPtCl・6HO、300mg)、及び2−プロパノール(4.6ml)を入れて、窒素雰囲気下にて室温で20分間攪拌した。20分後、炭酸水素ナトリウム(NaHCO、400mg)を加えて、ガスの発生がなくなるまで攪拌し、次に2,4,6,8−テトラメチル−2,4,6,8−テトラビニルシクロテトラシロキサン(20当量、3.99g)を加え、反応溶液を60℃で24時間攪拌した。反応溶液を室温に戻し、無水硫酸マグネシウム(300mg)を加えて5分間攪拌した。その後、ジエチルエーテルを溶媒に用いてセライトろ過を行い、溶液量が5gになるまで濃縮し、白金アルケニル錯体Cの溶液を得た。
(白金アルケニル錯体Dの合成)
環流管を備えた反応フラスコに、塩化白金酸6水和物(HPtCl・6HO、300mg)、2−プロパノール(4.6ml)を入れて、窒素雰囲気下にて室温で20分間攪拌した。20分後、炭酸水素ナトリウム(NaHCO、400mg)を加えて、ガスの発生がなくなるまで攪拌し、次に1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン(5当量、540mg)を加え、反応溶液を60℃で24時間攪拌した。反応溶液を室温に戻し、無水硫酸マグネシウム(300mg)を加えて5分間攪拌した。その後、ジエチルエーテルを溶媒に用いてセライトろ過を行い、溶液量が5gになるまで濃縮し、白金アルケニル錯体Dの溶液を得た。
参考例1)実施例1は欠番とする
ポリマーA(10g)、ポリマーE(10g)、及び白金アルケニル錯体Aの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
参考例2)実施例2は欠番とする
ポリマーA(10g)、ポリマーE(10g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
参考例3)実施例3は欠番とする
ポリマーA(10g)、ポリマーE(10g)、及び白金アルケニル錯体Cの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例4)
ポリマーB(10g)、ポリマーE(10g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例5)
ポリマーC(10g)、ポリマーE(10g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例6)
ポリマーC(10g)、ポリマーE(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例7)
ポリマーC(10g)、ポリマーE(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL R8200、トリメチルシリル基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積140m/g、日本アエロジル社製)2gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例8)
ポリマーC(10g)、ポリマーF(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例9)
ポリマーC(10g)、ポリマーG(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例10)
ポリマーC(10g)、ポリマーH(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例11)
ポリマーD(10g)、ポリマーE(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例12)
ポリマーD(10g)、ポリマーF(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例13)
ポリマーD(10g)、ポリマーG(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
(実施例14)
ポリマーD(10g)、ポリマーH(10g)、白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)、及び酸化ケイ素微粒子(AEROSIL RY200、ポリジメチルシロキサン基を有する有機ケイ素化合物により表面処理された酸化ケイ素粒子、比表面積120m/g、日本アエロジル社製)0.4gを混合し、脱泡を行い、光半導体装置用封止剤を得た。
参考例15)実施例15及び参考例4〜14は欠番とする
ポリマーI(10g)、ポリマーE(10g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
参考例16)実施例16は欠番とする
ポリマーJ(10g)、ポリマーE(10g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
参考例17)実施例17は欠番とする
ポリマーA(10g)、ポリマーK(10g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(比較例1)
ポリマーA(10g)、ポリマーE(10g)、及び白金アルケニル錯体Dの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(比較例2)
ポリマーA(8g)、ポリマーE(12g)、及び白金アルケニル錯体Aの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(比較例3)
ポリマーA(8g)、ポリマーE(12g)、及び白金アルケニル錯体Bの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(比較例4)
ポリマーA(8g)、ポリマーE(12g)、及び白金アルケニル錯体Cの溶液(封止剤中での白金元素の含有量が10ppmとなる量)を混合し、脱泡を行い、光半導体装置用封止剤を得た。
(評価)
(光半導体装置の作製)
銀めっきされたリード電極付きポリフタルアミド製ハウジング材に、ダイボンド材によって主発光ピークが460nmの発光素子が実装されており、発光素子とリード電極とが金ワイヤーで接続されている構造において、得られた光半導体装置用封止剤を注入し、150℃で2時間加熱して硬化させ、光半導体装置を作製した。この光半導体装置を用いて、下記の通電試験、ガス腐食試験及び熱衝撃試験を実施した。
(通電試験)
得られた光半導体装置について、23℃の温度下、光度測定装置(「OL770」、オプトロニックラボラトリーズ社製)を用いて発光素子に20mAの電流を流した時の光度を測定した(以下、「初期光度」と称する)。
次いで、発光素子に20mAの電流を流した状態で光半導体装置を85℃及び相対湿度85RH%雰囲気下のチャンバー内に入れて、500時間放置した。500時間後、23℃の温度下、光度測定装置(「OL770」、オプトロニックラボラトリーズ社製)を用いて発光素子に20mAの電流を流した時の光度を測定し、初期光度対する光度の低下率を算出した。光度の低下率が5%未満の場合を「○○」、光度の低下率が5%を超え、10%未満の場合を「○」、10%を超え、20%未満の場合を「△」、20%以上の場合を「×」と判定した。
(変色)
通電試験後のサンプルにおいて、通電試験前のサンプルから変色しているか否かを目視で観察した。
通電試験前後のサンプル間で、変色が見られない場合を「○」、わずかに変色が見られる場合を「△」、著しい変色が見られる場合を「×」と判定した。
(ガス腐食試験)
得られた光半導体装置を、40℃及び相対湿度90%RH雰囲気下のチャンバー内に入れ、硫化水素ガスの濃度が5ppm、二酸化硫黄ガスの濃度が15ppmとなるようにチャンバー内にガスを充填した。ガスの充填から、24時間後、48時間後、96時間後、168時間後及び500時間後にそれぞれ、銀めっきされたリード電極を目視で観察した。
銀めっきに変色が見られない場合を「○○」、銀めっきに茶褐色に変色した箇所が少しみられる場合を「○」、銀めっきのほとんどすべてが茶色に変色した場合を「△」、銀めっきのほとんどすべてが黒色に変色した場合を「×」と判定した。
(熱衝撃試験)
得られた光半導体装置を、液槽式熱衝撃試験機(「TSB−51」、ESPEC社製)を用いて、−50℃で5分間保持した後、135℃まで昇温し、135℃で5分間保持した後−50℃まで降温する過程を1サイクルとする冷熱サイクル試験を実施した。500サイクル後、1000サイクル後及び1500サイクル後にそれぞれ20個のサンプルを取り出した。
実体顕微鏡(「SMZ−10」、ニコン社製)にてサンプルを観察した。20個のサンプルの光半導体装置用封止剤にそれぞれクラックが生じているか否か、又は光半導体装置用封止剤がパッケージ又は電極から剥離しているか否かを観察し、クラック又は剥離が生じたサンプルの数(NG数)を数えた。
結果を下記の表1,2に示す。また、下記の表1,2において、「比」は、封止剤中におけるオルガノポリシロキサンの珪素原子に結合したアルケニル基の数の封止剤中におけるオルガノポリシロキサンの珪素原子に結合した水素原子の数に対する比(珪素原子に結合したアルケニル基の数/珪素原子に結合した水素原子の数)を示す。
Figure 0004911805
Figure 0004911805
1…光半導体装置
2…ハウジング
2a…内面
3…光半導体素子
4…光半導体装置用封止剤

Claims (8)

  1. 光半導体装置に用いられる封止剤であって、
    珪素原子に結合した水素原子を有さず、かつ珪素原子に結合したアルケニル基及び珪素原子に結合したアリール基を有する第1のオルガノポリシロキサンと、
    珪素原子に結合した水素原子及び珪素原子に結合したアリール基を有する第2のオルガノポリシロキサンと、
    白金のアルケニル錯体とを含み、
    前記白金のアルケニル錯体が、塩化白金酸6水和物と、6当量以上の2官能以上であるアルケニル化合物とを反応させることにより得られる白金のアルケニル錯体であり、
    封止剤中における前記オルガノポリシロキサンの珪素原子に結合したアルケニル基の数の封止剤中における前記オルガノポリシロキサンの珪素原子に結合した水素原子の数に対する比が、1.0以上、2.5以下であり、
    前記第1のオルガノポリシロキサンが、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位を含み、
    前記第1のオルガノポリシロキサンの全シロキサン構造単位100モル%中、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位の割合が30モル%以上である、光半導体装置用封止剤。
  2. 前記第1のオルガノポリシロキサンが、下記式(1A)又は下記式(1B)で表される第1のオルガノポリシロキサンであり、
    前記第2のオルガノポリシロキサンが、下記式(51A)又は下記式(51B)で表される第2のオルガノポリシロキサンであり、
    前記第1のオルガノポリシロキサンにおける下記式(X1)より求められるアリール基の含有比率が30モル%以上、70モル%以下であり、かつ
    前記第2のオルガノポリシロキサンにおける下記式(X51)より求められるアリール基の含有比率が30モル%以上、70モル%以下である、請求項1に記載の光半導体装置用封止剤。
    Figure 0004911805
    前記式(1A)中、a、b及びcは、a/(a+b+c)=0〜0.50、b/(a+b+c)=0.40〜1.0及びc/(a+b+c)=0〜0.50を満たし、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表す。
    Figure 0004911805
    前記式(1B)中、a、b、c及びdは、a/(a+b+c+d)=0〜0.40、b/(a+b+c+d)=0.40〜0.99、c/(a+b+c+d)=0〜0.50及びd/(a+b+c+d)=0.01〜0.40を満たし、R1〜R6は、少なくとも1個がフェニル基を表し、少なくとも1個がアルケニル基を表し、フェニル基及びアルケニル基以外のR1〜R6は、炭素数1〜8の炭化水素基を表す前記式(1B)中、(R7R8R9R10Si R11O 2/2 )の構造単位は、下記式(1b−1)で表される構造単位である。
    Figure 0004911805
    前記式(1b−1)中、Raは、水素原子又は炭素数1〜8の炭化水素基を表し、R7〜R10はそれぞれ、炭素数1〜8の炭化水素基を表す。
    Figure 0004911805
    前記式(51A)中、p、q及びrは、p/(p+q+r)=0.05〜0.50、q/(p+q+r)=0.05〜0.50及びr/(p+q+r)=0.20〜0.80を満たし、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個が珪素原子に直接結合している水素原子を表し、フェニル基及び珪素原子に直接結合している水素原子以外のR51〜R56は、炭素数1〜8の炭化水素基を表す。
    Figure 0004911805
    前記式(51B)中、p、q、r及びsは、p/(p+q+r+s)=0.05〜0.50、q/(p+q+r+s)=0.05〜0.50、r/(p+q+r+s)=0.20〜0.80及びs/(p+q+r+s)=0.01〜0.40を満たし、R51〜R56は、少なくとも1個がフェニル基を表し、少なくとも1個が珪素原子に直接結合している水素原子を表し、フェニル基及び珪素原子に直接結合している水素原子以外のR51〜R56は炭素数1〜8の炭化水素基を表す前記式(51B)中、(R57R58R59R60Si R61O 2/2 )の構造単位は、下記式(51b−1)で表される構造単位である。
    Figure 0004911805
    前記式(51b−1)中、Rbは、水素原子又は炭素数1〜8の炭化水素基を表し、R57〜R60はそれぞれ、炭素数1〜8の炭化水素基を表す。
    アリール基の含有比率(モル%)=(平均組成式が前記式(1A)又は前記式(1B)で表される第1のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/平均組成式が前記式(1A)又は前記式(1B)で表される第1のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X1)
    アリール基の含有比率(モル%)=(平均組成式が前記式(51A)又は前記式(51B)で表される第2のオルガノポリシロキサンの1分子あたりに含まれるアリール基の平均個数×アリール基の分子量/平均組成式が前記式(51A)又は前記式(51B)で表される第2のオルガノポリシロキサンの数平均分子量)×100 ・・・式(X51)
  3. 前記式(1B)で表される第1のオルガノポリシロキサン及び前記式(51B)で表される第2のオルガノポリシロキサンの内の少なくとも一方を含む、請求項2に記載の光半導体装置用封止剤。
  4. 封止剤中で、前記白金のアルケニル錯体による白金元素の含有量が1ppm以上、300ppm以下である、請求項1〜3のいずれか1項に記載の光半導体装置用封止剤。
  5. 前記第2のオルガノポリシロキサンが、下記式(51−a)で表される構造単位を含む、請求項1〜4のいずれか1項に記載の光半導体装置用封止剤。
    Figure 0004911805
    前記式(51−a)中、R52及びR53はそれぞれ、水素原子、フェニル基又は炭素数1〜8の炭化水素基を示す。
  6. 前記第2のオルガノポリシロキサンの全シロキサン構造単位100モル%中、前記式(51−a)で表される構造単位の割合が5モル%以上である、請求項5に記載の光半導体装置用封止剤。
  7. 前記第2のオルガノポリシロキサンが、1つの珪素原子に2つのフェニル基が結合したジフェニルシロキサン構造単位を含む、請求項1〜のいずれか1項に記載の光半導体装置用封止剤。
  8. 光半導体素子と、該光半導体素子を封止するように設けられた請求項1〜のいずれか1項に記載の光半導体装置用封止剤とを備える、光半導体装置。
JP2011527131A 2010-06-24 2011-06-22 光半導体装置用封止剤及びそれを用いた光半導体装置 Expired - Fee Related JP4911805B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011527131A JP4911805B2 (ja) 2010-06-24 2011-06-22 光半導体装置用封止剤及びそれを用いた光半導体装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010143719 2010-06-24
JP2010143719 2010-06-24
PCT/JP2011/064263 WO2011162294A1 (ja) 2010-06-24 2011-06-22 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2011527131A JP4911805B2 (ja) 2010-06-24 2011-06-22 光半導体装置用封止剤及びそれを用いた光半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011258722A Division JP5066286B2 (ja) 2010-06-24 2011-11-28 光半導体装置用封止剤及びそれを用いた光半導体装置

Publications (2)

Publication Number Publication Date
JP4911805B2 true JP4911805B2 (ja) 2012-04-04
JPWO2011162294A1 JPWO2011162294A1 (ja) 2013-08-22

Family

ID=45371471

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011527131A Expired - Fee Related JP4911805B2 (ja) 2010-06-24 2011-06-22 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2011258722A Expired - Fee Related JP5066286B2 (ja) 2010-06-24 2011-11-28 光半導体装置用封止剤及びそれを用いた光半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011258722A Expired - Fee Related JP5066286B2 (ja) 2010-06-24 2011-11-28 光半導体装置用封止剤及びそれを用いた光半導体装置

Country Status (6)

Country Link
US (1) US8519429B2 (ja)
EP (1) EP2586832B1 (ja)
JP (2) JP4911805B2 (ja)
KR (1) KR101274418B1 (ja)
CN (1) CN102834465A (ja)
WO (1) WO2011162294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012524A (ja) * 2010-07-01 2012-01-19 Sekisui Chem Co Ltd 光半導体装置用封止剤及びそれを用いた光半導体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102712756B (zh) * 2010-01-25 2017-05-03 Lg化学株式会社 有机硅树脂
JP2014031394A (ja) * 2012-08-01 2014-02-20 Shin Etsu Chem Co Ltd 付加硬化型シリコーン組成物、及び該組成物の硬化物により半導体素子が被覆された半導体装置
JP5851970B2 (ja) * 2012-10-29 2016-02-03 信越化学工業株式会社 シリコーン樹脂組成物、並びにこれを用いたシリコーン積層基板とその製造方法、及びled装置
JP6432844B2 (ja) 2013-04-04 2018-12-05 エルジー・ケム・リミテッド 硬化性組成物
EP2982717B1 (en) 2013-04-04 2018-12-26 LG Chem, Ltd. Curable composition
WO2015136820A1 (ja) * 2014-03-12 2015-09-17 横浜ゴム株式会社 硬化性樹脂組成物
US10544329B2 (en) 2015-04-13 2020-01-28 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
WO2017056913A1 (ja) * 2015-09-29 2017-04-06 セントラル硝子株式会社 硬化性シリコーン樹脂組成物およびその硬化物、並びにこれらを用いた光半導体装置
DE102015225921A1 (de) 2015-12-18 2017-06-22 Wacker Chemie Ag Siloxanharzzusammensetzungen
DE102015225906A1 (de) * 2015-12-18 2017-06-22 Wacker Chemie Ag Siloxanharzzusammensetzungen
KR102279871B1 (ko) 2016-09-26 2021-07-21 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 경화 반응성 실리콘 겔 및 이의 용도
KR102478213B1 (ko) 2017-04-06 2022-12-19 다우 도레이 캄파니 리미티드 액상 경화성 실리콘 접착제 조성물, 그 경화물 및 그 용도
KR102560186B1 (ko) * 2017-05-05 2023-07-28 다우 실리콘즈 코포레이션 하이드로실릴화 경화성 실리콘 수지
US10186424B2 (en) * 2017-06-14 2019-01-22 Rohm And Haas Electronic Materials Llc Silicon-based hardmask

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199989A (ja) * 2000-01-14 2001-07-24 Ge Toshiba Silicones Co Ltd 白金−ビニルシロキサン錯体の製造方法
JP2008222828A (ja) * 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk 凸レンズ形成用シリコーンゴム組成物及びそれを用いた光半導体装置
JP2009062446A (ja) * 2007-09-06 2009-03-26 Momentive Performance Materials Japan Kk 硬化性シリコーン組成物
JP2010013503A (ja) * 2008-07-01 2010-01-21 Showa Highpolymer Co Ltd 硬化性樹脂組成物およびオプトデバイス
JP2010043136A (ja) * 2008-08-08 2010-02-25 Yokohama Rubber Co Ltd:The シリコーン樹脂組成物、これを用いるシリコーン樹脂および光半導体素子封止体
JP2010084118A (ja) * 2008-09-05 2010-04-15 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物、光半導体素子封止剤および光半導体装置
JP2010180323A (ja) * 2009-02-05 2010-08-19 Shin-Etsu Chemical Co Ltd 硬化性シリコーン組成物およびその硬化物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654353B2 (ja) 2001-09-03 2005-06-02 スタンレー電気株式会社 紫外発光素子用のエポキシ樹脂及びエポキシ樹脂材料
JP4040858B2 (ja) * 2001-10-19 2008-01-30 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
CN1625715A (zh) * 2002-02-15 2005-06-08 大日本印刷株式会社 取向膜及其制造方法、带有取向膜的基板及液晶显示装置
JP4908736B2 (ja) * 2003-10-01 2012-04-04 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP2005162859A (ja) * 2003-12-02 2005-06-23 Dow Corning Toray Silicone Co Ltd 付加反応硬化型オルガノポリシロキサン樹脂組成物および光学部材
JP2006063092A (ja) * 2004-07-29 2006-03-09 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物、その硬化方法、光半導体装置および接着促進剤
JP5392805B2 (ja) * 2005-06-28 2014-01-22 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン樹脂組成物および光学部材
EP1987084B1 (en) * 2006-02-24 2014-11-05 Dow Corning Corporation Light emitting device encapsulated with silicones and curable silicone compositions for preparing the silicones
TWI361205B (en) * 2006-10-16 2012-04-01 Rohm & Haas Heat stable aryl polysiloxane compositions
JP5579371B2 (ja) * 2008-04-23 2014-08-27 東レ・ダウコーニング株式会社 含ケイ素ポリマー、及び硬化性ポリマー組成物
JP5769622B2 (ja) * 2008-10-31 2015-08-26 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、光半導体素子封止剤および光半導体装置
KR101265913B1 (ko) * 2010-06-08 2013-05-20 세키스이가가쿠 고교가부시키가이샤 광 반도체 장치용 다이본드재 및 이를 이용한 광 반도체 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199989A (ja) * 2000-01-14 2001-07-24 Ge Toshiba Silicones Co Ltd 白金−ビニルシロキサン錯体の製造方法
JP2008222828A (ja) * 2007-03-12 2008-09-25 Momentive Performance Materials Japan Kk 凸レンズ形成用シリコーンゴム組成物及びそれを用いた光半導体装置
JP2009062446A (ja) * 2007-09-06 2009-03-26 Momentive Performance Materials Japan Kk 硬化性シリコーン組成物
JP2010013503A (ja) * 2008-07-01 2010-01-21 Showa Highpolymer Co Ltd 硬化性樹脂組成物およびオプトデバイス
JP2010043136A (ja) * 2008-08-08 2010-02-25 Yokohama Rubber Co Ltd:The シリコーン樹脂組成物、これを用いるシリコーン樹脂および光半導体素子封止体
JP2010084118A (ja) * 2008-09-05 2010-04-15 Dow Corning Toray Co Ltd 硬化性オルガノポリシロキサン組成物、光半導体素子封止剤および光半導体装置
JP2010180323A (ja) * 2009-02-05 2010-08-19 Shin-Etsu Chemical Co Ltd 硬化性シリコーン組成物およびその硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012524A (ja) * 2010-07-01 2012-01-19 Sekisui Chem Co Ltd 光半導体装置用封止剤及びそれを用いた光半導体装置

Also Published As

Publication number Publication date
US20120146088A1 (en) 2012-06-14
WO2011162294A1 (ja) 2011-12-29
JP5066286B2 (ja) 2012-11-07
KR20120023125A (ko) 2012-03-12
JP2012067318A (ja) 2012-04-05
CN102834465A (zh) 2012-12-19
JPWO2011162294A1 (ja) 2013-08-22
US8519429B2 (en) 2013-08-27
EP2586832A1 (en) 2013-05-01
EP2586832B1 (en) 2014-10-29
KR101274418B1 (ko) 2013-06-17
EP2586832A4 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP4911805B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP5060654B2 (ja) 光半導体装置用封止剤及び光半導体装置
JP5167419B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
WO2013008842A1 (ja) 光半導体装置用封止剤及び光半導体装置
JP5693063B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP4951147B1 (ja) 光半導体装置用硬化性組成物
JP2012007136A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012111836A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
WO2013035736A1 (ja) 光半導体装置用硬化性組成物
JP5323037B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2013253210A (ja) 光半導体装置用硬化性組成物、光半導体装置及び光半導体装置の製造方法
JP5323038B2 (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012199345A (ja) 光半導体装置用レンズ材料、光半導体装置及び光半導体装置の製造方法
JP2012197328A (ja) オルガノポリシロキサンの製造方法、光半導体装置用組成物及び光半導体装置
WO2012157330A1 (ja) 光半導体装置用封止剤及び光半導体装置
JP2012197409A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012241051A (ja) 光半導体装置用封止剤及び光半導体装置
JP2013018900A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012193235A (ja) 光半導体装置用コーティング材料及びそれを用いた光半導体装置
JP2012059868A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2013181061A (ja) 光半導体装置用レンズ材料、光半導体装置及び光半導体装置の製造方法
JP2012188627A (ja) 光半導体装置用レンズ材料、光半導体装置及び光半導体装置の製造方法
JP2013064062A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2013053186A (ja) 光半導体装置用封止剤及びそれを用いた光半導体装置
JP2012190952A (ja) 光半導体装置用封止剤、光半導体装置用封止剤の硬化物及び光半導体装置

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

R150 Certificate of patent or registration of utility model

Ref document number: 4911805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees