JP4910489B2 - 絶縁ゲート型バイポーラトランジスタ - Google Patents

絶縁ゲート型バイポーラトランジスタ Download PDF

Info

Publication number
JP4910489B2
JP4910489B2 JP2006158828A JP2006158828A JP4910489B2 JP 4910489 B2 JP4910489 B2 JP 4910489B2 JP 2006158828 A JP2006158828 A JP 2006158828A JP 2006158828 A JP2006158828 A JP 2006158828A JP 4910489 B2 JP4910489 B2 JP 4910489B2
Authority
JP
Japan
Prior art keywords
type
semiconductor layer
layer
igbt
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006158828A
Other languages
English (en)
Other versions
JP2007329270A (ja
Inventor
規仁 戸倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006158828A priority Critical patent/JP4910489B2/ja
Publication of JP2007329270A publication Critical patent/JP2007329270A/ja
Application granted granted Critical
Publication of JP4910489B2 publication Critical patent/JP4910489B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、トレンチゲート構造の絶縁ゲート型バイポーラトランジスタ(以下、IGBTと呼ぶ)に関するものである。
ゲート電極がトレンチ内に形成されたトレンチゲート構造のIGBTは、プレーナ型ゲート構造と比較して、セル密度を高められるという利点を有するが、その反面、セル密度を高くしすぎた場合、負荷短絡時に、IGBTに大電流が流れ、IGBTが瞬時に破壊されるという問題が生じる。なお、IGBTが破壊に至るまでの期間(耐量)は、IGBTの電流−電圧特性における飽和電流の大きさによって決まる。
そこで、従来では、この対策として、IGBTの構造を、IGBT素子として機能するセル領域を連続して複数配置した構造に対して、複数の連続したセル領域から周期的にセル領域を間引いた、いわゆる間引きセル構造とする方法が採用されている(例えば、特許文献1参照)。
これは、半導体基板表面に対してストライプ状に配置されたゲート電極同士によって挟まれた複数の領域のうち、一部の領域のみに、エミッタ電極と電気的に接続されたP型ベース領域が配置された構造であり、ストライプ状に配置されたゲート電極の長手方向に垂直な方向において、連続して複数配置されたセル領域からその一部のセル領域が間引かれたような構造である。なお、この場合、1つのセル領域は、半導体基板の表面を真上から見たとき、横幅が隣り合うゲート電極からゲート電極までの長さであって、縦幅がゲート電極の長手方向に沿って延長した長さの細長い帯形状となる。
このようにして、セル密度を低減させ、すなわち、単位面積当たりの総チャネル幅を低減させることで、IGBTの電流−電圧特性における飽和電流の大きさを所定範囲内の大きさにでき、負荷短絡耐量を確保することができる。
特開2001−308327号公報
ところで、トレンチゲート構造であって、半導体基板表面に対してストライプ状にゲート電極が配置されたIGBTのセル密度を低減する他の方法としては、上記した帯形状のセルをその長手方向(チャネル幅方向)で分割した、いわゆる短冊形セル構造にする方法が考えられる。
図7に、本発明者が検討したいわゆる短冊形セル構造のIGBTを示し、図2、8に、それぞれ、図7中のA−A線断面図、D−D線断面図を示す。なお、図7では、図1と同様の構成部には、図1と同一の符号を付しており、また、図2、8中の層間絶縁膜11、エミッタ電極12、コレクタ電極13を省略している。
図7に示す構造のIGBTは、図2に示すように、P型コレクタ層2、N型FS(フィールドストップ)層3およびN型ドリフト層4が下から順に位置し、N型ドリフト層4の内部表面側に位置するP型ベース層5を有する半導体基板1と、半導体基板1の表面1a側に形成されたトレンチ6と、トレンチ6の内部にゲート絶縁膜7を介して埋め込まれたゲート電極8と、P型ベース層5の内部表面側に形成されたN型エミッタ層9およびP型ボディ層10とを備えている。
そして、図7に示す構造のIGBTは、半導体基板1の表面1aを真上から見たときの平面レイアウトにおいて、ゲート電極8がストライプ状に配置されており、トランジスタとして機能するセル20が、ゲート電極8の長手方向(図7中のY軸方向)において、互いに離間して複数配置された構成となっている。
ここで、セル20は、図7において、一点鎖線で囲まれた領域であり、半導体基板1のゲート電極8の長手方向に垂直な方向(X−Z平面方向)での断面1cを見ての通り、半導体基板1のうちのP型コレクタ層2、N型FS層3、N型ドリフト層4、P型ベース層5、N型エミッタ層9、P型ボディ層10およびゲート電極8によって構成される領域であり、半導体基板1の表面1aを真上から見たときの平面レイアウトでは、横の長さが隣り合うゲート電極8からゲート電極8までの長さ、縦がゲート電極8の長手方向に沿った方向であって、縦の長さがゲート電極の長手方向の長さよりも短い長方形形状である。
このとき、P型ベース層5は、図2に示すように、N型ドリフト層4の内部表面のうちの隣り合うゲート電極8の間に形成されており、図7に示すように、セル20におけるゲート電極8の長手方向に平行な方向(Y−Z平面方向)での断面1dを見たとき、ゲート電極8の長手方向で、互いに間隔をおいて複数配置されている。
また、N型エミッタ層9およびP型ボディ層10は、図7に示すように、セル20におけるゲート電極8の長手方向に平行な断面1dを見たとき、1つのP型ベース層5の内部に位置しており、ゲート電極8の長手方向で、P型ベース層5からはみ出していない。
このため、図8に示すように、ゲート電極8の長手方向において、隣り合うP型ベース層5の間には、N型エミッタ層9もP型ボディ領域10も存在せず、N型ドリフト層4が存在しているため、隣り合うP型ベース層5同士は、電気的に分離されている。
なお、ゲート電極8の長手方向において、N型エミッタ層9の終端の位置が、セル20の端部となり、N型エミッタ層9の長さがチャネル幅となる。したがって、図7に示すIGBTは、帯状のセルからチャネル幅方向でその一部が間引かれた構造であると言える。
ここで、図7に示す構造のIGBTが、ゲート電極8の長手方向において、P型ベース層を複数に分割して、セルを複数に分割している構造である理由を説明する。図7に示すように、P型ベース層5の内部のうち、ゲート電極8に隣接する部分であって、N型エミッタ層9とN型ドリフト層4とによって挟まれた領域にチャネルが形成されることから、図7に示す構造とは異なり、P型ベース層を複数に分割せず、P型ベース層がゲート電極の長手方向に延長した細長い帯形状としたまま、ゲート電極の長手方向でN型エミッタ層を複数に分割することでも、セルを分割でき、セル密度を低減できる。しかし、この構造よりも、ゲート電極の長手方向でP型ベース層を複数に分割したときの方が、オン電圧を低くすることができるからである。
ところが、図7に示す短冊形セル構造のIGBTは、本発明者が分析した結果、大電流高電圧スイッチング動作時に破壊し易いという問題があることがわかった。なお、ここでいう大電流高電圧とは、例えば、電源電圧がIGBT素子耐圧の1/2〜2/3程度の大きさであって、定格電流が100〜300A/cmであるときをいう。
すなわち、図7に示す短冊形セル構造のIGBTは、ゲート電極8の長手方向において、複数のP型ベース層5同士が半導体基板1の内部において電気的に絶縁されているため、各セル20に接続されている配線の長さの違いや、半導体基板1に温度分布が生じて各セル20の温度が異なる等の理由により、複数の短冊形セル20に流れるホール電流量に不均一が生じ易く、一部の短冊形セル20に電流が集中する場合がある。この場合、ベース・エミッタ間電圧Vbeが所定電圧値Vthを超えて、短冊形セルに内在する寄生NPNトランジスタが動作してラッチアップが発生し、これが原因で、IGBTが破壊に至りやすいことがわかった。
本発明は、上記点に鑑み、トレンチゲート構造であって、ストライプ状に配置されたゲート電極8の長手方向において、複数のP型ベース層5が、N型ドリフト層4の内部に離間して配置されることで、いわゆる短冊形セル構造とされたIGBTにおいて、一部の短冊形セルへの電流集中を緩和することができる構造のIGBTを提供することを目的とする。
上記目的を達成するため、本発明は、半導体基板の表面(1a)を真上から見たときの平面レイアウトにおいて、ゲート電極(8)が、一方向に細長い形状で、ストライプ状に複数配置されており、第3半導体層(5)が、隣り合うゲート電極(8)の間に、ゲート電極(8)の延長方向で間隔をおいて、複数配置されている絶縁ゲート型バイポーラトランジスタに対して、第5半導体層(10)を、ゲート電極(8)の延長方向で、第3半導体層(5)の内部から隣の第3半導体層(5)の内部まで連続する形状としたことを第1の特徴としている。
このように、隣り合うゲート電極の間で、ゲート電極の延長方向に、複数の第3半導体層を互いに離間して配置することで、いわゆる短冊形セル構造とされたIGBTに対して、ゲート電極の延長方向で隣り合う第3半導体層同士が、第5半導体層によって、電気的に接続された構造とすることで、IGBTの動作条件が、複数の第3半導体同士が電気的に絶縁されているときにおいて、複数の短冊形セルに流れるホール電流量が不均一となる動作条件となっても、複数の短冊形セルに流れるホール電流量を均一にすることができ、一部の短冊形セルに電流が集中することを抑制できる。この結果、寄生トランジスタのラッチアップを抑制でき、IGBTが破壊に至るのを抑制することができる。
また、このように、第3半導体層よりも半導体基板表面からの接合深さが浅い第5半導体層で、隣り合う第3半導体層を連結した構造とすることで、本発明とは異なり、第3半導体層がゲート電極の長手方向で連続した1つの細長い形状であって、その内部で第4半導体層が複数離間して配置されることで、いわゆる短冊形セル構造とされたIGBTと比較して、オン電圧を低くすることができる。
また、本発明では、第1電極(12)と電気的に接続された第3半導体層(5)は、半導体基板の表面(1a)に対してストライプ状に配置されたゲート電極(8)の隣り合うもの同士によって挟まれた複数の領域のうち、一部の領域のみに配置されていることを第2の特徴としている。このとき、残りの領域には、例えば、第1電極(8)と電気的に絶縁された第3半導体層が配置されるか、第3半導体層が配置されない。
第2の特徴のように、ゲート電極の長手方向でセルを間引く構造とする第1の特徴に対して、さらに、ゲート電極の長手方向に垂直な方向でセルを間引く構造を組み合わせることもできる。これにより、単に、ゲート電極の長手方向に垂直な方向でセルを間引く従来の構造と比較して、デバイス設計の自由度を高めることができる。
なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
(第1実施形態)
図1に、本発明の第1実施形態におけるIGBTの斜視図を示し、図2、3、4に、それぞれ、図1中のA−A線断面図、B−B線断面図、C−C線断面図を示す。なお、図1では、半導体基板1の表面1aおよび裏面1bに形成されている層間絶縁膜11、エミッタ電極12、コレクタ電極13を省略している。
図1に示すように、本実施形態のIGBTは、図7に示される構造のIGBTと同様に、トレンチゲート構造であって、半導体基板表面1aに対してストライプ状にゲート電極8が配置されており、ゲート電極8の長手方向において、複数のP型ベース層5が離間して配置されることで、短冊形のセル20が複数配置された、いわゆる短冊形セル構造である。なお、図1中のX軸、Y軸およびZ軸は、それぞれ、ゲート電極8の長手方向、ゲート電極8の長手方向に垂直な横方向および半導体基板1の厚さ方向に平行である。
具体的な構造について説明すると、本実施形態のIGBTは、基本的には、パンチスル型で、Nチャネル型のものであり、図2に示すように、P型コレクタ層2、P型コレクタ層2の上に位置するN型層3、N型層3の上に位置し、N型層3よりも不純物濃度が低いN型ドリフト層4およびN型ドリフト層4の内部表面側に位置するP型ベース層5を有し、P型ベース層5が位置する側の面を表面1aとし、反対側の面を裏面1bとする半導体基板1を有している。この半導体基板1は、例えば、シリコン(Si)等によって構成されている。なお、P型ベース層5がN型ドリフト層4の内部表面側に位置するとは、P型ベース層5がN型ドリフト層4の内部であって、かつ、その表面側に位置しており、P型ベース層5の基板表面1aからの深さがN型ドリフト層4よりも浅く、P型ベース層5の接合部がN型ドリフト層4の表面で終端していることを意味する。
さらに、半導体基板1の表面1aからP型ベース層5よりも深く形成され、P型ベース層5に隣接するトレンチ6と、トレンチ6の内壁に形成されたゲート絶縁膜7と、トレンチ6の内部に、ゲート絶縁膜7を介して、埋め込まれたゲート電極8と、P型ベース層5の内部表面側に位置し、トレンチに隣接するN型エミッタ層9と、P型ベース層5の内部表面側に位置し、N型エミッタ層9と異なる位置に配置されたP型ボディ層10とを備えている。
また、半導体基板1の表面1a上には、層間絶縁膜11を介して、エミッタ電極12が形成されており、エミッタ電極12は、層間絶縁膜11のP型ボディ層10の上方部分に形成されたホール11aを通って、P型ボディ層10と接合され、P型ボディ層10と電気的に接続されている。一方、半導体基板1の裏面1bには、P型コレクタ層2と電気的に接続されたコレクタ電極13が形成されている。
ここで、ゲート絶縁膜7および層間絶縁膜11としては、例えば、シリコン酸化膜(SiO膜)が用いられ、ゲート電極8としては、高濃度にリン(P)がドーピングされ低抵抗化されたポリシリコン(Poly−Si)が用いられる。
なお、本実施形態と特許請求の範囲の対応関係については、P型、N型が、それぞれ、特許請求の範囲に記載の第1導電型、第2導電型に相当し、P型コレクタ層2、N型ドリフト層4、P型ベース層5、N型エミッタ層9およびP型ボディ層10が、それぞれ、特許請求の範囲に記載の第1半導体層、第2半導体層、第3半導体層、第4半導体層および第5半導体層に相当し、エミッタ電極12およびコレクタ電極13が、それぞれ、第1電極および第2電極に相当する。
次に、本実施形態のIGBTの半導体基板表面1aを真上から見たときの平面レイアウトを説明する。
図1に示すように、ゲート電極8は、図中に示すY軸方向に延長した細長い形状であり、それらがストライプ状、すなわち、所定間隔で平行に複数配置されている。なお、図示しないが、ゲート電極8の延長先の形状は、隣のゲート電極と連なる形状もしくは終端する形状となっている。
また、P型ベース層5は、図1中のX軸方向において、飛び飛びに配置されている。すなわち、図1、2に示すように、ストライプ状に配置されたゲート電極8の隣り合うもの同士によって挟まれた複数の領域のうち、一部の領域にP型ベース層5が配置されている。 また、P型ベース層5は、図1中のY軸方向においても、飛び飛びに配置されており、すなわち、隣り合うトレンチ同士の間隔を横幅とし、Y軸方向を縦とする長方形であり、互いに間隔をおいて複数配置されている。
また、N型エミッタ層9は、1つのP型ベース層5の内部で、Y軸方向に延びており、Y軸方向でP型ベース層5からはみ出していない。N型エミッタ層9は、P型ベース層5の内部に2つ平行に配置されており、この2つのN型エミッタ層9は、N型コンタクト層14と連通している。ここで、このN型コンタクト層14は、半導体基板1の表層に、Y軸方向で周期的に配置されており、図3に示すように、X−Z平面での断面を見たとき、P型ボディ層10の上側に配置され、エミッタ電極12と接合されている。このN型コンタクト層14を介して、N型エミッタ層9とエミッタ電極12とが電気的に接続されている。
そして、本実施形態では、図7に示す構造のIGBTと異なり、P型ボディ層10は、Y軸方向に途切れることなく延長しており、すなわち、Y軸方向において、1つのP型ベース層5の内部から隣のP型ベース5の内部まで連続する形状となっている。
このため、図1中の半導体基板1のセル領域20におけるY−Z断面1dおよび図4に示すように、Y軸方向でのP型ベース層5同士の間の領域では、P型ベース層5が形成されていないN型ドリフト層4の内部表面側に、P型ボディ層10が存在している。すなわち、本実施形態では、P型ベース層5同士をつなぐように、P型ベース層5の内部から、P型ベース層5が形成されていないN型ドリフト層4に至って、P型ボディ層10が形成されている。
また、Y軸方向でのP型ベース層5同士の間の領域では、図4に示すように、層間絶縁膜11に、P型ボディ層10をエミッタ電極11と接続させるためのホールが形成されていない。
以上説明したように、本実施形態においても、図7に示す構造と同様に、Y軸方向において、P型ベース層5が複数配置されており、P型ベース層5の内部にN型エミッタ層9が配置されていることから、N型エミッタ層9の終端の位置が、セル20の端部となる。したがって、本実施形態では、セル20の平面パターンは、トレンチ同士の間隔を横幅とし、N型エミッタ層9のY軸方向での長さを縦幅とする長方形となっており、セル20が、X軸方向、Y軸方向において、飛び飛びに配置された構造となっている。そして、P型ボディ層10が短冊形セル20を貫通して配置されており、隣り合う短冊形セル20間がP型ボディ層10を介して電気的に接続された構造となっている。 なお、本実施形態のIGBTは、従来の製法に対して、レイアウトを変更することで、製造可能である。
次に、本実施形態の主な特徴を説明する。
(1)上記したように、本実施形態では、Y軸方向において、複数のP型ベース層5が離間して配置されることで、短冊形のセル20が複数配置された、いわゆる短冊形セル構造のIGBTに対して、隣り合うP型ベース層5同士が、P型ボディ層10によって、電気的に接続された構造とすることで、複数の短冊形セル20に流れるホール電流量を均一にすることができ、一部の短冊形セル20に電流が集中することを抑制できる。
ここで、この理由について、図5、6に示す等価回路を用いて説明する。図5に、本実施形態のIGBTの等価回路を示し、図6に、比較例として、図7に示す構造のIGBTの等価回路を示す。
図5、6に示すように、本実施形態および図7に示す構造のIGBTは、複数の短冊セルが並列接続された構成である。なお、図5、6では、1つの短冊形セル20を一点鎖線で示しており、2つの短冊形セル20が並列接続されている状態を示している。
各セル20には、P型ベース層5と、N型FS層3およびN型ドリフト層4と、P型コレクタ層2とによって構成されるPNPトランジスタ21の他に、セル表面部において、N型エミッタ層9と、P型ベース層5と、N型層3およびN型ドリフト層4とによって構成される寄生NPNトランジスタ22が内在する。なお、寄生NPNトランジスタ22に接続されている抵抗23は、P型ベース層5の内部抵抗を表している。
そして、図7に示す構造のIGBTの場合、各セル20のP型ベース層5同士は、互いに、電気的に絶縁(独立)の関係であるため、図6に示すように、抵抗23同士は電気的に接続されていない。このため、各セル20に接続されている配線長さの違い等の理由により、セル20に流れる電流量が不均一になり、一部のセル20において電流集中が生じた場合、各セル20におけるベース・エミッタ間電圧Vbe1、Vbe2の関係は、Vbe1≠Vbe2となり、ベース・エミッタ間電圧Vbeの大きい方が、所定電圧値(しきい値)を超えたとき、寄生トランジスタ22が動作してラッチアップし、IGBTが破壊に至ってしまう。
これに対して、本実施形態の場合、各セル20のP型ベース層5同士は、P型ボディ層10によって連結されているため、図5に示すように、抵抗23の端部23a同士が電気的に接続された状態となる。このため、図5に示すように、各セル20におけるベース・エミッタ間電圧Vbe1、Vbe2の関係は、基本的に、Vbe1=Vbe2であり、IGBTの状態が、図7に示す構造のときでは、セル20に流れる電流量が不均一になるような条件下になった場合でも、各セル20におけるベース・エミッタ間電圧Vbe1、Vbe2が、強制的に等しくなるように、電流、電圧が変化するので、ホール電流の不均一が抑制される。言い換えると、一時的に、セル20に流れる電流量が不均一になっても、P型ボディ層10を介して、セル間で余剰分の電流が流れるため、各セル20での電流集中が回避される。
したがって、本実施形態によれば、図7に示す構造と比較して、各セル20のベース・エミッタ間電圧Vbeが所定電圧値を越えるのを抑制することができる。この結果、寄生トランジスタ22のラッチアップを抑制でき、IGBTが破壊に至るのを抑制することができる。
(2)また、本実施形態では、P型ベース層5よりも半導体基板表面1aからの深さが浅いP型ボディ層10により、Y軸方向に配置された複数のP型ベース層5同士を連結している。
これにより、本実施形態とは異なり、P型ベース層5がY軸方向で連続した1つの細長い形状であって、その内部でN型エミッタ層9が複数離間して配置されることで、いわゆる短冊形セル構造とされたIGBTと比較して、オン電圧を低くすることができる。
これは、どちらの場合においても、Y軸方向における短冊形セル20と短冊形セル20との間の領域では、P型コレクタ層2からホールが、半導体基板1の表面1aに向かって流れ、P型ベース層5を通って、エミッタ電極12に抜けるが、本実施形態のように、Y軸方向における短冊形セル20と短冊形セル20との間の領域に、P型ベース層5よりも基板表面からの深さが浅いP型ボディ層10が存在しているときの方が、P型ベース層5が存在しているときと比較して、エミッタ電極12にホールがはき出されにくく、このためP型ベース層5の近傍のN型ドリフト層4のホールおよび電子の濃度が上昇(いわゆる導電率変調が促進)する結果として、オン電圧が低下するからである。
(3)また、本実施形態では、短冊形セル20が、X軸方向、Y軸方向において、飛び飛びに配置された構造となっており、一般的なストライプ状のトレンチゲート構造のIGBTに対して、X軸方向、Y軸方向で、セルを間引く構造としている。
これにより、特許文献1のように、単に、X軸方向でセルを間引く従来の構造と比較して、デバイス設計の自由度を高めることができる。
(他の実施形態)
(1)第1実施形態のIGBTは、X軸方向においても、セルが間引かれた構造であり、すなわち、上記した実施形態では、半導体基板表面1aにストライプ状に配置されたゲート電極8の隣り合うもの同士によって挟まれた複数の領域のうち、X軸方向における一部の領域のみに短冊形のセル20を形成する場合に対して、本発明を適用した例を説明した。
これに対して、複数の領域のすべてにセルを形成する場合に対して、本発明を適用することもできる。例えば、図1に示すように、半導体基板1の表面側でゲート電極8同士に挟まれた領域であって、P型ベース領域5が形成されていない領域においても、上記した実施形態で構成の短冊形セル20を配置することもできる。このときのIGBTは、一般的なストライプ状のトレンチゲート構造のIGBTに対して、Y軸方向においてセルが間引かれた構造となる。
なお、デバイス設計の自由度の観点では、この場合よりも、X軸、Y軸の2軸方向で、セルを間引く構造とする第1実施形態の方が好ましい。
(2)第1実施形態では、P型ベース層5が、図1中のX軸方向において、飛び飛びに配置されている場合を例として説明したが、図1に示されるように、ストライプ状に配置されたゲート電極8の隣り合うもの同士によって挟まれた複数の領域のうち、P型ベース層5が配置されていない領域に対して、P型ベース層5と同じ導電型であるP型層を配置しても良い。この場合、このP型層を、エミッタ電極12と電気的に接続しないことで、X軸方向においても、セルが間引かれた構造とする。
(3)第1実施形態では、ボディ層10の方が、ベース層5よりも不純物濃度が高い場合を例として説明したが、ボディ層10をベース層5と同じ不純物濃度としても良い。
(4)第1実施形態では、IGBTの構造を、パンチスル型とする場合を例として説明したが、図1に示すIGBTに対して、N型層3を省略したノンパンチスル型とすることもできる。
(5)第1実施形態では、第1導電型をP型とし、第2導電型をN型とし、Nチャネル型のIGBTをとする場合を例として説明したが、第1導電型をN型とし、第2導電型をP型としたPチャネル型のIGBTとすることもできる。すなわち、上記したIGBTの各構成部における導電型をすべて反対の導電型にすることもできる。
なお、第1実施形態および他の実施形態(1)〜(5)については、可能な範囲で、種々の組み合わせが可能である。
本発明の第1実施形態におけるIGBTの斜視図である。 図1中のA−A線断面図である。 図1中のB−B線断面図である。 図1中のC−C線断面図である。 本実施形態のIGBTの等価回路図である。 図7に示す構造のIGBTの等価回路図である。 本発明者が検討したいわゆる短冊形セル構造のIGBTの斜視図である。 図1中のD−D線断面図である。
符号の説明
1…半導体基板、2…P型コレクタ層、3…N型ドリフト層4…N型層、
5…P型ベース層、6…トレンチ、7…ゲート絶縁膜、8…ゲート電極、
9…N型エミッタ層、10…P型ボディ層、11…層間絶縁膜、
12…エミッタ電極、13…コレクタ電極。

Claims (2)

  1. 第1導電型の第1半導体層(2)、前記第1半導体層(2)の上に位置する第2導電型の第2半導体層(4)および前記第2半導体層(4)の内部表面側に位置する第1導電型の第3半導体層(5)を有し、前記第3半導体層(5)が位置する側の面を表面(1a)とする半導体基板(1)と、
    前記半導体基板の表面(1a)から前記第3半導体層(5)よりも深く形成され、前記第3半導体層(5)に隣接するトレンチ(6)と、
    前記トレンチ(6)の内部に、ゲート絶縁膜(7)を介して、埋め込まれたゲート電極(8)と、
    前記第3半導体層(5)の内部表面側に配置され、前記トレンチ(6)に接する第2導電型の第4半導体層(9)と、
    前記第3半導体層(5)の内部表面側であって、前記第4半導体層(9)とは異なる位置に配置された第1導電型の第5半導体層(10)と、
    前記第5半導体層(10)を介して前記第3半導体層(5)と電気的に接続され、かつ、前記第4半導体層(9)と電気的に接続された第1電極(12)と、
    前記第1半導体層(2)と電気的に接続された第2電極(13)とを備え、
    前記半導体基板の表面(1a)を真上から見たときの平面レイアウトにおいて、前記ゲート電極(8)が、一方向に細長い形状で、ストライプ状に複数配置されており、前記第3半導体層(5)が、隣り合う前記ゲート電極(8)の間に、前記ゲート電極(8)の延長方向で間隔をおいて、複数配置されている絶縁ゲート型バイポーラトランジスタであって、
    前記第5半導体層(10)は、前記ゲート電極(8)の延長方向で、前記第3半導体層(5)の内部から隣の前記第3半導体層(5)の内部まで連続する形状であることを特徴とする絶縁ゲート型バイポーラトランジスタ。
  2. 前記第1電極(12)と電気的に接続された前記第3半導体層(5)は、
    前記半導体基板の表面(1a)に対してストライプ状に配置された前記ゲート電極(8)の隣り合うもの同士によって挟まれた複数の領域のうち、一部の領域のみに配置されていることを特徴とする請求項1に記載の絶縁ゲート型バイポーラトランジスタ。
JP2006158828A 2006-06-07 2006-06-07 絶縁ゲート型バイポーラトランジスタ Expired - Fee Related JP4910489B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158828A JP4910489B2 (ja) 2006-06-07 2006-06-07 絶縁ゲート型バイポーラトランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158828A JP4910489B2 (ja) 2006-06-07 2006-06-07 絶縁ゲート型バイポーラトランジスタ

Publications (2)

Publication Number Publication Date
JP2007329270A JP2007329270A (ja) 2007-12-20
JP4910489B2 true JP4910489B2 (ja) 2012-04-04

Family

ID=38929544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158828A Expired - Fee Related JP4910489B2 (ja) 2006-06-07 2006-06-07 絶縁ゲート型バイポーラトランジスタ

Country Status (1)

Country Link
JP (1) JP4910489B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5596278B2 (ja) * 2007-07-10 2014-09-24 富士電機株式会社 トレンチ型絶縁ゲートmos半導体装置
JP2010232335A (ja) * 2009-03-26 2010-10-14 Sanyo Electric Co Ltd 絶縁ゲートバイポーラトランジスタ
JP5609939B2 (ja) * 2011-09-27 2014-10-22 株式会社デンソー 半導体装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274400A (ja) * 2000-03-28 2001-10-05 Toshiba Corp 半導体装置
JP4581179B2 (ja) * 2000-04-26 2010-11-17 富士電機システムズ株式会社 絶縁ゲート型半導体装置
JP2002270842A (ja) * 2001-03-06 2002-09-20 Toshiba Corp 半導体装置

Also Published As

Publication number Publication date
JP2007329270A (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
JP5157201B2 (ja) 半導体装置
KR100974883B1 (ko) 반도체 장치
US9153575B2 (en) Semiconductor device
WO2018079417A1 (ja) 半導体装置
US10186606B2 (en) Semiconductor device
US7989885B2 (en) Semiconductor device having means for diverting short circuit current arranged in trench and method for producing same
US6262470B1 (en) Trench-type insulated gate bipolar transistor and method for making the same
JP2007184486A (ja) 半導体装置
JP5040240B2 (ja) 絶縁ゲート型半導体装置
WO2013179648A1 (ja) 半導体装置
CN109509789B (zh) 半导体装置
JP2006245477A (ja) 半導体装置
JPH10290011A (ja) 絶縁ゲートバイポーラトランジスタ
JP4757449B2 (ja) 半導体装置
US20140084333A1 (en) Power semiconductor device
CN107845677B (zh) 半导体装置
JP4910489B2 (ja) 絶縁ゲート型バイポーラトランジスタ
JP7327672B2 (ja) 半導体装置
JP2011228505A (ja) 半導体集積回路
JP2008027945A (ja) トレンチ型絶縁ゲートバイポーラトランジスタ
US10177248B2 (en) Semiconductor device
JP2007194575A (ja) 半導体装置
JP2022049610A (ja) 半導体装置及び半導体回路
TW201709508A (zh) 半導體裝置
JP4473837B2 (ja) トランジスタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees