JP4879619B2 - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
JP4879619B2
JP4879619B2 JP2006077402A JP2006077402A JP4879619B2 JP 4879619 B2 JP4879619 B2 JP 4879619B2 JP 2006077402 A JP2006077402 A JP 2006077402A JP 2006077402 A JP2006077402 A JP 2006077402A JP 4879619 B2 JP4879619 B2 JP 4879619B2
Authority
JP
Japan
Prior art keywords
data
correction
laser
modulation data
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006077402A
Other languages
English (en)
Other versions
JP2007253167A (ja
JP2007253167A5 (ja
Inventor
達哉 中村
勉 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006077402A priority Critical patent/JP4879619B2/ja
Publication of JP2007253167A publication Critical patent/JP2007253167A/ja
Publication of JP2007253167A5 publication Critical patent/JP2007253167A5/ja
Application granted granted Critical
Publication of JP4879619B2 publication Critical patent/JP4879619B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、レーザ加工装置に関する。例えば、液晶基板、半導体基板やプリント基板等の欠陥のリペアを行うレーザ加工装置に関する。
従来、例えば、液晶表示デバイス(LCD)の製造工程などでは、フォトリソグラフィ処理工程で処理されるガラス基板に対して各種検査を行い、ガラス基板上に形成されたレジストパターンやエッチングパターンに欠陥部が検出された場合に、レーザリペア装置を用いて、欠陥部にレーザ光を照射し欠陥部を除去するリペア加工を施す場合が多い。
このようなレーザリペア装置として利用可能な装置として、特許文献1には、エキシマレーザなどのレーザ発振器から出射されたレーザビームをホモジナイザーなどのビーム均質光学系を用いて断面上の強度分布を均一化し、微小レンズミラーアレイにより被加工物に転写ドットパターンを構成して、レーザ加工を行うレーザ加工装置が記載されている。
特開平8−174242号公報(図1)
しかしながら、上記のような従来のレーザ加工装置には、以下のような問題があった。
特許文献1に記載の技術では、ホモジナイザーなどのビーム均質光学系を用いるので、原理的にはレーザ光の断面における光強度分布を略均一化することができるものの、レーザ光源の特性、ホモジナイザーの均一化能力、微小ミラーアレイの状態、結像光学系の特性等により、完全には補正することができないので、そのような場合には、被加工面でのレーザ光強度分布が不均一となり、欠陥部が同じ厚さであっても光強度が不十分な部分があり、除去の残しが発生するなど、必要な加工性能が得られないという問題がある。
領域毎にレーザ光の照射時間を変更してリペアすることも考えられる。しかし、領域毎に微小ミラーアレイのオンオフ状態を変更して複数回に渡って、リアを行うため、時間がかかるものとなってしまう。
また、領域によって欠陥の種類が異なる場合等、領域によりレーザ光強度を変更したいことがあっても対応できるものではない。
本発明は、上記のような問題に鑑みてなされたものであり、空間変調素子の制御により被加工物に対するレーザ光の照射強度分布を必要に応じて補正することができるレーザ加工装置を提供することを目的とする。
上記の課題を解決するために、本発明のレーザ加工装置は、レーザ光源と、該レーザ光源からのレーザ光束を一定の変調領域内に配置された複数の変調要素により被加工面に到達するオン光と前記被加工面に到達しないオフ光とに空間変調する空間変調素子とを備えたレーザ加工装置であって、前記被加工面の画像をもとに加工形状データを算出する加工形状算出手段と、前記オン光の間引きを行うための補正変調データを生成する補正変調データ生成手段と、前記加工形状データと前記補正変調データとを合成して前記被加工面に加工を行うための変調データを生成するデータ合成手段と、前記変調データをもとに前記空間変調素子を制御し、前記被加工面に対し前記レーザ光を照射して加工を行う構成とする。
この発明によれば、変調要素がすべてオン光を形成する場合の被加工面におけるレーザ光強度分布を、オン光の間引きによって補正するので、空間変調素子がレーザ光強度分布の補正手段を兼ねることができる。
また、補正変調データ生成手段により、オン光の間引きにより補正するための補正変調データを生成し、この補正変調データと、加工形状算出手段により算出した加工形状データとを、データ合成手段により合成して変調データを生成する。そして、この変調データに応じて空間変調素子の各変調要素を制御して、補正変調データに応じたオン光の間引きを行う。
これにより、空間変調素子近傍におけるレーザ光強度分布は不均一になるが、変調要素によるフランホーファ回折によって、被加工面上ではオフ光とされた変調要素に対応する照射領域に隣接するオン光が回り込み、レーザ光強度分布が平均化される。そのため、オン光に対するオフ光の比率に応じて被加工面の加工形状に合わせて、レーザ光強度分布を補正することができる
また、本発明のレーザ加工装置では、前記補正変調データ生成手段は、前記空間変調素子に到達するレーザ光強度分布に基づいて、領域毎に前記補正変調データの生成を行い、前記オン光の間引きによって前記レーザ光強度分布の補正を行うことが好ましい。
この場合、空間変調素子に到達するレーザ光強度分布に基づいて、領域毎に補正変調データの生成を行ってオン光の間引きを行うので、空間変調素子上でのレーザ光強度分布を領域毎に補正することができる。
また、本発明のレーザ加工装置では、前記被加工面を撮像する撮像手段を備え、前記加工形状データは、前記撮像手段により撮像された撮像データをもとに算出される構成とすることが好ましい。
この場合、撮像手段により撮像された撮像データから加工形状データを算出するので、撮像された加工形状に合わせて正確な加工形状データを算出することができる。
また、本発明の撮像手段を備えるレーザ加工装置では、前記補正変調データ生成手段による前記被加工面での前記レーザ光強度分布の補正目標が、前記撮像データをもとに算出された欠陥の情報によって算出される構成とすることが好ましい。
この場合、被加工面でのレーザ光強度分布の補正目標が、撮像データをもとに算出された欠陥の情報によって算出されるので、撮像された欠陥に合わせて補正変調データを生成することができる。
また、本発明のレーザ加工装置では、前記補正変調データ生成手段による前記被加工面での前記レーザ光強度分布の補正目標が略均一分布であることが好ましい。
この場合、被加工面のレーザ光強度分布が略均一分布を補正目標として補正されるので、レーザ光源のレーザ光強度分布、および空間変調素子の反射率分布、あるいは、レーザ光源と被加工面との間に他の光学素子が配置される場合には、その光学素子の反射・透過率分布に不均一性があっても、被加工面のレーザ光強度分布が略均一分布とされるので、均一なレーザ加工を行うことができる。
ここで略均一とは、加工対象を加工ムラの許容値以下で加工できる程度に均一であることをいう。
また、本発明のレーザ加工装置では、前記空間変調素子と前記被加工面との間に配置され、レーザ光照射の分解能を可変する結像光学系と、前記レーザ光照射の分解能に応じて、前記結像光学系の結像位置をデフォーカスするデフォーカス手段とを備えることが好ましい。
この場合、結像光学系によりレーザ光照射の分解能が変更されたとき、デフォーカス手段を用いて、変更されたレーザ光照射の分解能に応じて結像光学系の結像位置をデフォーカスできるので、レーザ光の照射解能が向上した場合にも、間引きによりオフ光とされた変調要素が解像しないように設定することができる。そのため、間引きによるレーザ光強度分布のムラが解像しないのでレーザ加工のムラが発生するのを防止することができる。その結果、レーザ光照射の分解能が変化しても、良好なレーザ加工を行うことができる。
デフォーカス手段としては、例えば、結像光学系のピント位置をずらす手段や、結像光学系と被加工面との間に光路長を可変する部材を挿脱する手段などを採用することができる。
また、本発明のレーザ加工装置では、前記データ合成手段が、前記加工形状データの輪郭線に対応する変調要素を抽出する輪郭抽出部と、該輪郭抽出部で抽出された変調要素に対する前記補正変調データがオフ光形成データである場合に、その隣接領域の変調要素に対するオン光形成データと互いの補正変調データを入れ替える補正変調データ再配置部とを備える構成とすることが好ましい。
この発明によれば、輪郭抽出部により、加工形状データの輪郭線に対応する変調要素を抽出する。そして補正変調データ再配置部により、輪郭線に対応する変調要素がオフ光形成データで変調される場合には、隣接領域のオン光形成データで変調される変調要素と互いの補正変調データを入れ替えるので、加工形状の輪郭線上では確実にオン光が形成される。そのため、例えば、レーザ光照射の分解能が高く、オフ光を形成する変調要素が解像しやすい場合であっても、加工形状の輪郭線が確実に加工される。その結果、正常パターンとの接触を生じるおそれがある欠陥形状の輪郭が確実に除去されるので、レーザ加工の信頼性を向上することができる。
また、本発明のレーザ加工装置では、前記補正変調データ生成手段により生成された複数の補正変調データを記憶する補正変調データ記憶部と、該補正変調データ記憶部に記憶された前記複数の補正変調データの1つを、装置本体の設定条件に応じて選択的に読み出して前記空間変調素子制御手段に送出する補正変調データ切替手段とを有することが好ましい。
この場合、補正変調データ生成手段により、装置本体の設定条件を変えた場合の被加工面のレーザ光強度分布に対応して補正変調データを複数生成し、補正変調データ記憶部に記憶する。そして、補正変調データ切替手段により、装置本体の設定条件に応じて、補正変調データ記憶部から、それらの複数の補正変調データのうち1つを選択的に読み出し、補正変調データを空間変調素子制御手段に送出することができる。そのため、装置本体の設定条件によって被加工面のレーザ光強度分布が変動する場合でも、被加工面上に安定したレーザ光強度分布を形成することができる。
ここで、装置本体の設定条件とは、レーザ加工を行うために装置本体の設定する条件であって、補正変調データに影響を与える諸条件である。例えば、レーザ加工装置における諸構成要素の組み合わせ、相対的な位置関係、諸構成要素の駆動条件、およびそれらの組み合わせによる運転条件などが含まれる。
本発明のレーザ加工装置によれば、加工形状データと、被加工面におけるレーザ光強度分布を、オン光を間引くことによって補正するよう空間変調素子の各変調要素を制御するので、空間変調素子がレーザ光強度分布の補正手段を兼用した構成で、加工対象である被加工物に対するレーザ光の照射強度分布を必要に応じた補正をすることができるという効果を奏する。
以下では、本発明の実施の形態について添付図面を参照して説明する。すべての図面において、実施形態が異なる場合であっても、同一または相当する部材には同一の符号を付し、共通する説明は省略する。
[第1の実施形態]
本発明の第1の実施形態に係るレーザ加工装置について説明する。
図1は、本発明の第1の実施形態に係るレーザ加工装置の概略構成について説明するための模式的な構成説明図である。図2(a)、(b)は、本発明の第1の実施形態に係るレーザ光が照射された被加工面での光の強度分布の一例を示す平面図である。図3は、本発明の第1の実施形態に係るレーザ加工装置に用いる空間変調素子の変調要素の動作について説明するための概念図である。図4は、本発明の第1の実施形態に係るレーザ加工装置の各制御ユニットの概略構成について説明するための機能ブロック図である。
本実施形態のレーザ加工装置であるレーザリペア装置200は、レーザ光でリペア加工を行う装置である。例えばLCDガラス基板や半導体ウエハ基板など、フォトリソグラフィ処理工程で基板上に回路パターンなどが形成された被加工物において、例えば配線部分のショート、フォトレジストのはみ出し等の欠陥部が検出された場合に欠陥部を除去するといったリペア加工に好適に用いることができるものである。
レーザリペア装置200の概略構成は、図1に示すように、レーザ光源1、レーザ光源制御ユニット50、均一化光学素子2、空間変調素子3、空間変調素子制御ユニット51(空間変調素子制御手段)、結像レンズ39、可変絞り40、結像レンズ41、対物レンズ5、ハーフミラー101、102、撮像レンズ42、撮像素子7、画像処理ユニット52、基準反射面設定手段10、装置制御ユニット53、およびユーザインタフェース部54からなる。図1において、符号6、6aは、それぞれ被加工物、被リペア面(被加工面)を示す。
レーザ光源1は、リペア対象を加工するレーザ光束15を出射する加工用の光源である。本実施形態では、リペア対象に応じて複数波長のレーザ光束15を出射することができるものを採用している。例えば、基本波長が1.064μmで、第2、第3高調波(それぞれ、波長532nm、355nm)を切り替えることができ、パルス発振可能なYAGレーザなどを好適に採用することができる。
レーザ光源制御ユニット50は、装置制御ユニット53の制御信号に応じて、レーザ光源1の発光を制御する手段であり、例えば、発光波長、パルス発振などの発振モード、点灯消灯制御などを行うことができる。
レーザ光束15の光強度は、例えば、減光フィルタなどの出力調整手段(不図示)によって適宜変更できるようになっている。
均一化光学素子2は、レーザ光源1から出射されたレーザ光束15の光軸に直交する断面におけるレーザ光強度分布を均一化して、空間変調素子3の変調領域上に均一化された光を投射する光学素子である。例えば、レーザ光束15の光強度分布がガウス分布の場合、所定のビーム径内の光強度分布を略平坦な分布とする適宜のホモジナイザを採用することができる。このようなホモジナイザとしては、例えば、フライアイレンズ、回折素子、非球面レンズや、カレイド型ロッドを用いたものなどの種々の構成が知られているので、必要に応じてどの構成を採用してもよい。
また、スペックル除去のためディフューザを採用してもよい。例えば、レーザ光源からの光をディフューザにより拡散光とし、その拡散光をカレイド型ロッドに入射させることにより、ロッドの出射端では均一化される。この出射端を、出射端と空間変調素子との間に配置されたレンズにより空間変調素子上に投影する構成としてもよい。
空間変調素子3は、各変調要素を空間変調素子制御ユニット51によって制御することで、均一化光学素子2より投射されたレーザ光束15を空間変調するものである。そして、空間変調された光束は、図2に示すように、被加工面である被リペア面上の縦寸法H’、横寸法W’の矩形状の領域内に照射される。本実施形態では、変調要素として多数の微小ミラー3Mを2次元的に配列した微小ミラーアレイであるDMD(Digital Micro mirror Device)を採用している。
微小ミラー3Mは、図3に示すように、2点鎖線で示す基準配列面300に対して、変調制御信号に応じて駆動部(不図示)で発生する静電電界により、角度θON、θOFFだけ傾斜するようになっている。そのため、基準配列面300に入射するレーザ光束15を異なる方向にそれぞれ偏向し、被リペア面6aに到達するオン光16Aと、被リペア面6aに到達しないオフ光16Bとが形成されるようになっている。以下では、角度θON、θOFFだけ傾斜された微小ミラー3Mを、それぞれオン状態ミラー3a、オフ状態ミラー3bと称する。
なお、図3は概念図であって光路は概念的に描かれているものである。
空間変調素子制御ユニット51は、図4に示すように、装置制御ユニット53から送出される変調データ66に応じて、空間変調素子3の駆動部(不図示)が形成する電界を制御し、各微小ミラー3Mを、オン状態ミラー3aまたはオフ状態ミラー3bに、それぞれ独立して制御できるようになっている。
以下では、空間変調素子3の一例として、H=8mm、W=11mmの変調領域内に、一辺が11μmの正方形状の微小ミラー3Mが、582×436個、配列されているものを採用する例で説明する。また傾斜角度は、θON=+12°、θOFF=−12°となっている。
空間変調素子3に照射された光束は、均一化光学素子が不完全なため、不均一になっている場合がある。このような場合、レーザ光束15が完全に均一強度分布を有していないため、微小ミラー3Mがすべてオン状態ミラー3aとなっている場合の被リペア面上に照射された光の光強度は、位置によりバラツキが生じる。以下では、説明の都合上、被リペア面での光強度に便宜的な閾値を設け、図2に示すように、高輝度領域3A、中輝度領域3B、低輝度領域3Cが発生しているとして説明する。
結像レンズ39は、空間変調素子3で空間変調されたオン光16Aを結像する光学素子である。
可変絞り40は、結像レンズ39で集光される光束径を規制するためのもので、対物レンズ5の瞳と共役な位置に配置されている。
ここで、図1の光線は、軸上主光線と空間変調素子3との交点における微小ミラー3Mで反射されたオン光16Aの光線を模式的に示している。
結像レンズ41は、結像レンズ39で集光され、実像を形成した後に発散するオン光16Aを集光し平行光束にする光学素子である。
対物レンズ5は、結像レンズ41で平行光束化されたオン光16Aを、被リペア面6a上に結像する光学素子である。
すなわち、結像レンズ39、結像レンズ41、および対物レンズ5は、空間変調素子3の基準反射面300と被リペア面6aとを共役の関係とする結像光学系を構成している。本実施形態では、この結像光学系の光軸は、被リペア面6aの法線に一致するように配置されている。
ただし、対物レンズ5は、加工範囲を可変するために倍率の異なる複数のものが切替可能に設けられており、結像光学系の結像位置を可変するピント調整機構18(デフォーカス手段)によって光軸方向に移動可能に保持されている。
結像レンズ41と対物レンズ5との間の光路上には、結像レンズ41の側から、ハーフミラー101、102が設けられている。
ハーフミラー101は、被リペア面6aで反射され対物レンズ5により平行光束とされた光の一部を反射して、撮像レンズ42に向けて分岐するための光路分岐手段である。
ハーフミラー102は、照明部11から出射される照明光17を、対物レンズ5に向けて反射し、対物レンズ5を通して被リペア面6aに導くとともに、被リペア面6aからの反射光をハーフミラー101に向けて透過させる光路分岐手段である。
撮像レンズ42は、ハーフミラー101により分岐された被リペア面6aからの反射光を撮像素子7に結像するための光学素子である。
撮像素子7は、照明光17やオン光16Aなど被リペア面6aに照射された光の反射光による画像データを取得するためのもので、例えばCCDなどを採用することができる。
撮像素子7の撮像面は、撮像レンズ42と対物レンズ5とで構成される撮像光学系により、被リペア面6aと共役な関係とされている。
本実施形態では、撮像素子7のサイズとして、1/2インチのCCDを採用している。
画像処理ユニット52の概略構成は、図4に示すように、欠陥抽出部522、リペア形状算出部523(加工形状算出手段)、およびレーザ光強度分布取得部521からなる。
欠陥抽出部522は、被リペア面6aに照明光17を照射し、撮像素子7で被リペア面6aの画像を取得したときに送出される被リペア面画像信号61に、適宜の画像処理を施して、画像から欠陥部の特徴抽出を行い、予め記憶された欠陥判定用データと比較するなどして、欠陥部の抽出を行うものである。
このような欠陥抽出アルゴリズムは、必要に応じて周知のどのようなアルゴリズムを用いてもよい。
リペア形状算出部523は、欠陥抽出部522により抽出された欠陥部の画像データと正常パターンの画像データとを比較して、欠陥部を除去するリペア加工を行うためのリペア形状(加工形状)を算出し、リペア形状の上にオン光16Aが到達するように、各微小ミラー3Mの状態をオン状態ミラー3a、オフ状態ミラー3bにマッピングしたマッピングデータであるリペア形状データ62を生成し、装置制御ユニット53に送出するものである。
レーザ光強度分布取得部521は、空間変調素子3の各微小ミラー3Mがオン状態ミラー3aとされたときの、被リペア面6a上のレーザ光強度分布を撮像したレーザ反射光画像信号60に、例えば、ノイズ除去などの画像処理を施し、撮像された領域に対応する空間変調素子3の各微小ミラー3Mの配置に一対一に対応する光強度を表すレーザ光強度分布データ68に変換し、装置制御ユニット53に送出するものである。例えば、撮像素子7で撮像される範囲が空間変調素子3上で、6.4mm×4.8mmの範囲に相当する場合、その領域の微小ミラー3Mの数に対応したデータとなる。
基準反射面設定手段10は、レーザ反射光画像信号60を取得するために被リペア面6a上に基準反射面を配置して、その反射光を対物レンズ5、ハーフミラー101、撮像レンズ42を介して撮像素子7に導くものであり、図1に示すように、基準反射面であるミラー8と、ミラー8を支持するミラー台9とからなる。
ミラー台9は、装置制御ユニット53からの制御信号によってミラー8の反射面を被リペア面6aと等価な位置上で進退する移動機構を備えている。
装置制御ユニット53の概略構成は、図4に示すように、補正変調データ生成手段531、補正変調データ記憶部532、補正変調データ切替手段533、データ合成手段530、および装置本体制御部535からなる。これらは、適宜のハードウェアにより構成してもよいが、本実施形態では、CPU、メモリ、入出力部、外部記憶装置などで構成されたコンピュータを用い、それぞれの制御機能に対応して作成されたプログラムを実行することにより実現している。
補正変調データ生成手段531は、レーザ光強度分布取得部521から送出されるレーザ光強度分布データ68を基に、その高輝度部分に対応するオン状態ミラー3aを適宜間隔でオフ状態ミラー3bに設定するような間引きを行うマッピングデータである補正変調データ63を生成するものである。間引きは、微小ミラー3Mの一定の2次元配列、例えば、N×Nの配列をエネルギー密度の可変単位とし、この配列中のオフ状態ミラー3bの数を可変してエネルギー密度を調整する、いわゆる面積階調法により設定する。そのため、これらのN×Nの配列単位が反射するオン光16A全体のエネルギー密度をN段階に可変できるものである。
Nの大きさは、レーザ光強度分布の補正レベルや必要な加工分解能などにより設定することができるが、本実施形態では、N=7としている。
補正変調データ生成手段531で生成された補正変調データ63は、その生成条件とともに、補正変調データ記憶部532に記憶される。
補正変調データ記憶部532は、補正変調データ記憶部532を、適宜数だけ記憶する容量を備えている。
補正変調データ切替手段533は、装置本体制御部535から送出される設定条件データ67に応じて、補正変調データ記憶部532に記憶された補正変調データ63の1つを選択し、データ合成手段530に送出するものである。
データ合成手段530は、補正変調データ切替手段533から送出される補正変調データ63と、リペア形状算出部523から送出されるリペア形状データ62とを合成して、リペア加工のために空間変調素子3を制御する変調データ66を生成し、空間変調素子制御ユニット51に送出するものである。
データ合成手段530の概略構成は、輪郭抽出部536、補正変調データ再配置部537、および合成演算部538からなる。
輪郭抽出部536は、リペア形状データ62に対して、例えばエッジ抽出処理などの画像処理を行うなどして、リペア形状の輪郭線に対応する微小ミラー3Mを抽出し、その配置情報を取得する。
補正変調データ再配置部537は、補正変調データ切替手段533から送出される補正変調データ63を参照し、輪郭抽出部536が取得した輪郭線に対応する微小ミラー3Mのうち、補正変調データ63によりオフ状態ミラー3bとされるものがないか判定する。
そして、オフ状態ミラー3bとされるものがある場合には、その隣接領域のオン状態ミラー3aと入れ替えて、輪郭線に対応する微小ミラー3Mがオン状態ミラー3aのみから構成されるように補正変調データ63を再配置して、補正変調データ65を生成する。
また、オフ状態ミラー3bとされるものがない場合には、補正変調データ65として、補正変調データ63をそのまま用いる。
合成演算部538は、リペア形状データ62と補正変調データ65とを合成して、変調データ66を生成する。すなわち、すべての微小ミラー3Mに対応して、リペア形状データ62および補正変調データ65の少なくともいずれかがオフ状態ミラー3bであれば、オフ状態ミラー3bに設定し、その他をオン状態ミラー3aとするようなOR演算を行う。
装置本体制御部535は、操作部やモニタなどの入出力部からなるユーザインタフェース部54からの操作入力に応じて、装置全体の制御を行うものである。少なくとも、図4に示すように、レーザ光源制御ユニット50、ピント調整機構18、基準反射面設定手段10などが接続され、それぞれの動作を設定、制御することができるようになっている。
装置本体制御部535が設定する設定条件のうち、リペア加工を行うためのものであって、補正変調データ63に影響する設定条件は、補正変調データ63を選択するための情報に変換され、設定条件データ67として、補正変調データ切替手段533に送出される。例えば、対物レンズ5を切り替えてレーザ光照射の分解能を変える場合の対物レンズ5の条件、分解能の大きさなどを挙げることができる。
次に、本実施形態のレーザリペア装置200の動作について、変調データ66を生成する工程を中心に説明する。
図5は、本発明の第1の実施形態に係るレーザリペア装置の動作について説明するためのフローチャートである。図6(a)、(b)、(c)は、補正変調データを生成するためのそれぞれ低輝度領域、中輝度領域、高輝度領域に対応する間引きの例について説明する模式説明図である。図7(a)、(b)、(c)は、それぞれ空間変調素子の変調領域に対応するリペア形状データ、補正変調データ、変調データの分布の一例を示す模式説明図である。図8は、補正変調データ再配置部の動作について説明する模式説明図である。
レーザリペア装置200では、例えば、空間変調素子3の各微小ミラー3Mの反射率分布や、対物レンズ5、結像レンズ41、ハーフミラー101、102など、レーザ光源1と被加工物6との間にある光学系の透過率特性などにより、被リペア面6a上で発生するオン光16Aの照射強度ムラを補正する補正変調データ63を生成して、補正変調データ切替手段533に記憶するために、適宜のタイミング、例えば初期設置時、定期的なメンテナンス時あるいは装置本体の設定条件の変更時などに、図5に示す補正変調データ設定工程を行う。
補正変調データ設定工程では、まず、例えばユーザインタフェース部54などを介して、装置本体を所定の設定条件に設定し、装置制御ユニット53によりミラー台9を駆動してミラー8のミラー面8aを被リペア面6aと等価な位置に設置し、ピント調整機構18を駆動して、ピントを調整し、ミラー面8aと空間変調素子3とが共役となるようにする。
そして、ステップS11で、空間変調素子3の各微小ミラー3Mをすべてオン状態ミラー3aとした状態で、レーザ光源1を点灯し、レーザ光束15を出射する。例えば、波長355nmのレーザ光束15を測定用サンプルに出射する。
レーザ光束15は、均一化光学素子2により、例えばガウス分布から所定範囲内で略均一な光強度分布に変換されるとともに集光され、空間変調素子3に入射する。
空間変調素子3で反射されたオン光16Aは、結像レンズ39により集光され、可変絞り40によって光束径を調整されて、中間像を形成した後、結像レンズ41に入射する。ここで、可変絞り40の開口径を変えることで、結像レンズ41に入射する入射光束のNAが変更される。この入射光束のNAは、可変絞り40を絞ることにより適切なレーザ光照射の分解能が得られるように、つまり空間変調素子3の各微小ミラーの1つ1つが結像しないように設定される。
例えば、20倍の結像光学系を構成するために、結像レンズ41、対物レンズ5の焦点距離を、それぞれ200mm、10mmに設定する場合、波長355nmで4μmの分解能を得るための照射側のNAは、NA=0.61×(波長/分解能)であるから、NA=0.61・(0.355/4)=0.054である。すなわち、空間変調素子3に入射するレーザ光束15のNAは、NA=0.054/20=0.0027となる。 このようなNAでレーザ光束15を照射すると被リペア面6a上で4μmより小さいサイズでリペア加工をしても輪郭がボケるので、リペア加工の単位加工サイズは4μm×4μmとなるものである。
空間変調素子3上に照射されたレーザ光束15はすべてオン光16Aとされ、結像レンズ41で集光されて平行光束とされる。そしてハーフミラー101、102を透過して対物レンズ5に入射して集光され、ミラー面8a上に結像される。ここで各微小ミラー3Mの画像はミラー面8a上では1/20倍で投影される。
したがって、単位加工サイズ4μm×4μmの範囲に、微小ミラー3Mが、7×7個含まれることになり、7×7の範囲では、どの微小ミラー3Mをオフ状態ミラー3bとしても、オフ状態ミラー3bは解像されず、単位加工サイズの範囲に照射されるレーザ光量がオフ状態ミラー3bの数に応じて低下する。
ミラー面8a上で結像されたオン光16Aは、同一光軸上で反射され、対物レンズ5で平行光とされて、ハーフミラー102を透過し、ハーフミラー101で反射され、撮像レンズ42で集光される。そして、撮像素子7上に結像される。
したがって、撮像素子7により、被リペア面6a上のレーザ光強度分布を取得することができる。この情報は、レーザ反射光画像信号60として、画像処理ユニット52のレーザ光強度分布取得部521に送出される(ステップS12)。
レーザ光強度分布取得部521では、レーザ反射光画像信号60にノイズ除去などの画像処理を施した後、レーザ光強度分布データ68に変換し、装置制御ユニット53に送出する。
なお、本実施形態では、測定用サンプルの被リペア面に照射され、レジストの除却状態を画像処理して光強度分布を算出しているが、空間変調素子3と結像レンズ41との間にハーフミラー等を挿脱可能に設けて、その反射光をNDフィルタ等で減光して撮像素子に導いて、光強度分布を算出するようにしてもよい。
光強度の低いガイド光が照射できるよう光源から結像レンズ41の途中にハーフミラーを介して入れるようにすれば、NDフィルタを省略できる。また、測定用サンプルを用いなくてもオフ光の光路上にレンズと撮像素子とを配し、空間変調素子3を撮像するようにしてもよい。
ステップS13では、補正変調データ生成手段531により、レーザ光強度分布データ68の情報に応じて、オン状態ミラー3aを間引いてオフ状態ミラー3bを適宜設定するマッピングを行って、補正変調データ63を生成し、補正変調データ記憶部532に記憶する。
補正変調データ生成手段531が行う間引きについて簡単な例で説明する。
例えば、レーザ光強度分布データ68が、図2に示すように、空間変調素子3に対応させた変調領域で、高輝度領域3A、中輝度領域3B、低輝度領域3Cのような強度分布が存在し、平均値±5%の分布を持っているとする。簡単のために、中輝度領域3Bが平均値レベルにあるとし、高輝度領域3A、中輝度領域3Bが、それぞれ、+5%、−5%であったとする。
この光強度分布を略均一化するには、低輝度領域3Cの光強度に合わせて、高輝度領域3A、中輝度領域3Bの光強度を低下させればよい。
すなわち、低輝度領域3Cでは、図6(a)に示すように、オン状態ミラー3aの間引きを行わない。
中輝度領域3Bでは、図6(b)に示すように、単位加工サイズを形成する7×7の単位変調エリア30で、互いに離間した3つの微小ミラー3Mをオフ状態ミラー3bに設定する。この場合、これらがオン状態ミラー3aである場合に比べて、光強度は、約6%(3/(7×7)に対応)低下する。
同様に、高輝度領域3Aでは、図6(c)に示すように、5つの微小ミラー3Mをオン状態ミラー3aとして、約10%だけ光強度分布を低下させる。
このような補正変調データ63によれば、被リペア面6a上のオン光16Aの照射強度分布のバラツキは約1%程度となり、略均一な分布を得ることができる。
なお、これは一例であって、各領域での光強度低下の割合は、レーザ光強度分布データ68の分布に応じて最適化して決めるようにする。また、リペア加工ムラをさらに低減する必要がある場合には、単位変調エリア30の微小ミラー3Mの数を増やせばよい。
以上を、必要な装置本体の設定条件の数だけ繰り返し、それが終了したら、ミラー台9を駆動してミラー8を被リペア面6aから退避し、被加工物6を設置できるようにする。こうして補正変調データ設定工程が終了する。
なお、補正変調データ63を設定したら、補正変調データ63を空間変調素子制御ユニット51に送出して、オン光16Aでミラー8を照射し、この場合のレーザ光強度分布データ68が、所望のバラツキ範囲内に均一化されているか確認することが好ましい。
次に、リペア加工工程の動作について説明する。
リペア加工工程は、図5に示すように、ステップS1〜S5からなる。
なお、本工程は、リペア対象の大きさやリペア形状に応じて、適宜の倍率を設定して行い、加工分解能を上げる場合には、リペア対象上でレーザの照射領域を移動しながら複数回の加工を行うが。以下では、1回でリペア加工が終了する場合の例で説明する。
ステップS1では、被加工物6を被リペア面6aに配置し、照明部11を点灯する。
照明光17は、ハーフミラー102により反射され、対物レンズ5で集光されて被リペア面6aを照明する。
照明光17の反射光は、上記補正変調データ設定工程のオン光16Aと同様にして撮像素子7で撮像され、被リペア面画像信号61として、画像処理ユニット52の欠陥抽出部522に送出される。
ステップS2では、欠陥抽出部522で被リペア面画像信号61を画像処理し、欠陥抽出アルゴリズムによって欠陥部の抽出を行う。
ステップS3では、空間変調素子3の微小ミラー3Mをオン状態ミラー3aにする範囲を設定する。そのために、ステップS1で抽出された欠陥部のデータをリペア形状算出部523で処理してリペア形状データ62を生成する。
リペア形状データ62は、例えば、図7(a)に示すように、欠陥形状範囲31に対応する範囲の微小ミラー3Mをすべてオン状態ミラー3aに設定するようなデータである。
ステップS4では、補正変調データ切替手段533によって、上記補正変調データ設定工程で生成された複数の補正変調データ63から、設定条件データ67に合致するものを選択する。例えば、図2のようなレーザ光強度分布に対応して、図7(b)に示すような補正条件に対応する補正変調データ63を選択する。
図7(b)は、図2の高輝度領域3A、低輝度領域3Cと、それぞれ略重なる領域に矩形状の第1間引き領域32A、非間引き領域32Cを設定し、その他の領域を第2間引き領域32Bとしたものである。
ここで、第1間引き領域32A、第2間引き領域32B、非間引き領域32Cに対応する間引きパターンとしては、それぞれ図6(c)、(b)、(a)に示す間引きパターンを採用している。
そして、データ合成手段530では、以下のようにして補正変調データ63のデータ再配置が必要かどうか判定し、必要な場合に再配置を行った補正変調データ65を生成する。
まず輪郭抽出部536によってリペア形状データ62から輪郭部データ64を抽出する。そして補正変調データ再配置部537で輪郭部データ64と補正変調データ63とを比較して輪郭部データ64上のオフ状態ミラー3bの有無を検出する。
例えば、図8(a)に示すように、リペア形状輪郭線34の内部に補正変調データのパターンを重ねると、間引き候補ミラー35a、35b、35c、35dが、輪郭部データ64かつオフ状態ミラー3bとされたものを表している。
ここで、図8(a)、(b)の各ミラーは、リペア形状輪郭線34上またはその内側のミラーのみを抽出して記載している。これに対して、リペア形状輪郭線34は、各ミラーの境界線とが紛らわしくなるのを避けるため、模式的に滑らかな曲線として図示している。
この場合、レーザ光照射の分解能が高い条件では、これらに対応する輪郭線上に照射される光強度が低下し、輪郭線が確実にリペアされないおそれがある。リペア形状の輪郭線は、例えば、正常パターンに隣接する可能性があるので、リペアが不完全の場合に、回路がショートするといった不具合を起こすおそれがある。
そのため、補正変調データ再配置部537は、間引き候補ミラー35a、35b、35c、35dをオン状態ミラー3aとし、その隣接領域のオン状態ミラー3a、例えば、代替間引きミラー36a、36b、36c、36d、をオフ状態ミラー3bとするような補正変調データ63の再配置を行う(図8(b)の配置)。なお代替間引きミラー36aなどが、オフ状態ミラー3bであった場合には、隣接領域の他の候補を選択する。均一化すべき光強度ムラが50%以上ということはないので、オフ状態ミラー3bの隣接領域すべてがオフ状態ミラー3bとなることはなく、他の候補は必ず存在する。
これにより、リペア形状輪郭線34と重なる微小ミラー3Mがすべてオン状態ミラー3aとされるので、レーザ光照射の分解能が高い状態でもリペア形状輪郭線34のレーザ光強度が確保され、欠陥部を確実に除去することができる。
そして、合成演算部538により、リペア形状データ62と補正変調データ65とのOR演算を行って、変調データ66を生成し、空間変調素子制御ユニット51に送出する。
以上でステップS4が終了する。
ステップS5では、空間変調素子制御ユニット51により空間変調素子3に変調データ66を設定する。
また、ピント調整機構18により、対物レンズ5のピント調整を行う。すなわち、レーザ光照射の分解能が所定値より低い場合には、対物レンズ5のピント位置を被リペア面6aに合致させる。また、レーザ光照射の分解能が所定値以上に設定されている場合は、ピント調整機構18により、リペア形状内のオフ状態ミラー3bが解像しないように、対物レンズ5を適宜デフォーカスさせる。
例えば、本実施形態で、空間変調素子3に入射するレーザ光束15のNA=0.02の場合、対物レンズ5の倍率が20倍のため、NA=0.4となる。したがって、レーザ光照射の分解能は0.54μmになる。このサイズは、空間変調素子3上では、10.82μmとなるため、一辺11μmのオフ状態ミラー3bとされた部分が解像してそのまま加工面に投影されるおそれがある。
そして、レーザ光源1を点灯しリペア加工を行う。
その結果、図7(c)に示すように、欠陥形状範囲31に対応する空間変調素子3上に、第1間引き領域33A、第2間引き領域33B、非間引き領域33Cが設定され、それ以外の領域がオフ状態ミラー領域33Dとされる。
このため、欠陥形状範囲31のみが、略均一化されたオン光16Aでリペア加工される。
以上で、リペア加工工程が終了する。
このように、本実施形態のレーザリペア装置200では、レーザ光源1と被リペア面6aとの間の反射、透過率特性により、オン光16Aの照射強度ムラが発生する場合にも、レーザ反射光画像信号60を取得して、空間変調素子3の空間変調により被リペア面6aに照射されるオン光16Aを略均一化することができる。
[第2の実施形態]
本発明の第2の実施形態に係るレーザリペア装置について説明する。
図9は、本発明の第2の実施形態に係るレーザリペア装置の概略構成について説明するための模式的な構成説明図である。図中の光線は、図1と同様の光線を示している。
本実施形態のレーザリペア装置210は、図9に示すように、上記第1の実施形態のレーザリペア装置200の均一化光学素子2に代えて、集光レンズ12、光ファイバ13、および投影レンズ14を備え、基準反射面設定手段10に代えて、撮像レンズ43、撮像素子72を備える。そして、レーザリペア装置210のうち、レーザ光源1、レーザ光源制御ユニット50、空間変調素子制御ユニット51、画像処理ユニット52、装置制御ユニット53、ユーザインタフェース部54を除く部分が、ユニット化された加工ヘッド部150を構成し、加工ヘッド部移動機構151によって、被加工物6の加工位置に応じて、オン光16Aの照射位置を可変する相対移動が行えるようになっている。以下、上記第1の実施形態と異なる点を中心に説明する。
集光レンズ12は、レーザ光源1から出射されたレーザ光束15を光ファイバ13の一方の端面上に集光して、レーザ光束15を光結合する光学素子である。
光ファイバ13は、加工ヘッド部150が移動しても、レーザ光源1を移動することなくレーザ光束15が伝送できるように、加工ヘッド部150の可動距離以上の長さを有している。
投影レンズ14は、光ファイバ13の他方の端面から射出されるレーザ光束15を集光し、空間変調素子3の所定の変調領域内に投影する光学素子である。投影レンズ14から出射されるレーザ光束15のNAは、レーザリペア装置200において、均一化光学素子2から出射されるレーザ光束15のNAと同様に設定される。
このような構成により、光ファイバ13の一方の端面に光結合されたレーザ光束15は、光ファイバ13内で様々な方向に反射されつつ伝送されて、他方の端面から出射されるため、他方の端面から出射されるレーザ光束15の光強度分布がランダム化され、略均一化されるものである。ただし、加工ヘッド部150の移動に伴って光ファイバ13の状態が変化するため、同一の装置では、加工ヘッド部150の移動位置と相関するレーザ光強度分布のバラツキが生じる場合がある。
光ファイバ13の状態が変化する場合の一例としては、光ファイバ13の移動や変形に伴って光結合部分に外力が作用し、光結合状態が微妙に変化する、といった例が挙げられる。
撮像レンズ43は、ハーフミラー102で反射される一部のオン光16Aを集光し、撮像素子7と同様の構成の撮像素子72に結像する光学素子である。すなわち、撮像素子72の撮像面と空間変調素子3とは、共役の関係にある。
したがって、撮像素子72と被リペア面6aとは光学的に等価な位置関係とされている。
なお、撮像素子72は、加工時のレーザ光の波長に感度をもっている。また、ノイズ低減のために、レーザ光の波長のみを透過させるフィルタを備えていてもよい。
このような構成によれば、補正変調データ設定工程を次のように変形することで、基準反射面設定手段10を用いることなく、補正変調データ63を取得することができる。
すなわち、加工位置を変えるため、加工ヘッド部移動機構151で加工ヘッド部150の位置を移動させ、空間変調素子3の微小ミラー3Mをすべてオン状態ミラー3aに設定し、被加工物6がリペア加工されない程度の光強度に設定されたレーザ光源1を点灯する。このとき、加工位置は、装置本体制御部535内に記憶し、設定条件データ67として、補正変調データ切替手段533に送出できるようにしておく。
そして、ハーフミラー102で反射されるオン光16Aを撮像素子72により撮像し、レーザ反射光画像信号60を取得する。そして、上記の第1の実施形態と同様にして、図5のステップS13を行う。
なお、ハーフミラー102の代わりにレーザ光の波長の一部のみを反射する波長選択ミラーであってもよい。
次に加工位置を変え、補正変調データ63を同様にして順次設定し、補正変調データ記憶部532に記憶する。このときの補正変調データ63は、光ファイバ13の屈曲状態が異なるため、一般には他の加工位置での補正変調データ63とは異なっている。
そして、順次加工位置を変えて必要な加工位置での補正変調データ63を取得する。
その後、加工位置を再設定してリペア加工工程を行う。このとき、補正変調データ63は、設定条件データ67に含まれる加工位置情報に応じて、補正変調データ切替手段533が補正変調データ記憶部532に記憶されているものから選択して切り替えるようにする。
したがって、加工ヘッド部150の加工位置に応じて、オン光16Aのレーザ光強度分布が変化しても、被リペア面6a上での照射強度分布を略均一化することができる。
ただし、場合によっては加工位置を欠陥部の大きさや形状などにより変える必要があるため、あらかじめ想定できないこともある。このような場合、加工位置に移動した状態で、上記のように補正変調データ設定工程を行い、その直後にリペア加工工程を行い、このような工程を、移動させた加工位置ごとに繰り返してもよい。
なお、上記の説明では、被リペア面上のレーザ光の照射強度分布を略均一にする場合の例で説明したが、照射強度分布が、部分的に高強度領域や低強度領域を有するように、均一分布以外の補正目標を設定した補正変調データを構成してもよい。
図10は、補正目標が均一分布でない場合について説明する補正変調データ分布の概念図である。
例えば、図10に示すように、被リペア面上の構成が部分的に異なり、リペア加工に必要な光強度が場所により異なる場合がある。例えば、領域3Dは、欠陥部の除去に相対的な高エネルギー密度を要するリペア対象の領域であり、領域3Eは、同じく相対的な低エネルギー密度を要するリペア対象の領域である。このような場合、照射強度分布の補正目標を均一分布にすると、リペア加工を複数回に分けなければならないが、領域3Dの間引き量をなくすか小さくし、領域3Eで間引き量を増やすことで、必要な照射強度分布を形成することができる。そのため、それぞれのリペア対象に対して、1回でリペア加工を行うことができるという利点がある。
また、上記の第1の実施形態では、ガウス分布を均一化するために均一化光学素子2を設けた例で説明したが、均一化光学素子2を省略し、空間変調素子3のみで、ガウス分布を略均一化するようにしてもよい。
また、上記の説明では、レーザ光照射の分解能が高くなる場合に備えて、輪郭抽出部536、補正変調データ再配置部537を設けた例で説明したが、レーザ光照射の分解能が、輪郭部におけるオフ状態ミラー3bが解像しないように常に設定される構成では、これらを省略し補正変調データの再配置を行わない構成としてもよい。
また、上記の説明では、補正変調データ再配置は、輪郭部のオフ状態ミラー3bを隣接領域のオン状態ミラー3aと置き換える例で説明したが、輪郭部のオフ状態ミラー3bを解消できれば、他のオフ状態ミラー3bの位置を同時に変えてもよい。
また、上記の説明では、複数の補正変調データを記憶して、切り替えて用いる例で説明したが、リペア加工ごとに、補正変調データ設定工程を行う場合には、補正変調データ記憶部、補正変調データ切替手段を備えない構成としてもよい。
また、上記の説明では、レーザ加工として、リペア加工の場合の例で説明したが、本発明のレーザ加工装置はリペア加工に限定されるものではなく、レーザ光を被加工面に照射して、照射領域を加工する他のレーザ加工にも用いることができる。
本発明の第1の実施形態に係るレーザ加工装置の概略構成について説明するための模式的な構成説明図である。 本発明の第1の実施形態に係るレーザ加工装置に用いる空間変調素子の反射率分布の一例を示す平面図である。 本発明の第1の実施形態に係るレーザ加工装置に用いる空間変調素子の変調要素の動作について説明するための概念図である。 本発明の第1の実施形態に係るレーザ加工装置の各制御ユニットの概略構成について説明するための機能ブロック図である。 本発明の第1の実施形態に係るレーザ加工装置の動作について説明するためのフローチャートである。 補正変調データを生成するためのそれぞれ低輝度領域、中輝度領域、高輝度領域に対応する間引きの例について説明する模式説明図である。 それぞれ空間変調素子の変調領域に対応する加工形状データ、補正変調データ、変調データの分布の一例を示す模式説明図である。 補正変調データ再配置部の動作について説明する模式説明図である。 本発明の第2の実施形態に係るレーザ加工装置の概略構成について説明するための模式的な構成説明図である。 補正目標が均一分布でない場合について説明する補正変調データ分布の概念図である。
符号の説明
1 レーザ光源
3 空間変調素子
3M 微小ミラー(変調要素)
3a オン状態ミラー
3b オフ状態ミラー
5 対物レンズ(結像光学系)
6 被加工物
6a 被リペア面(被加工面)
7、72 撮像素子
8 ミラー(基準反射面)
9 ミラー台
10 基準反射面設定手段
11 照明部
13 光ファイバ
15 レーザ光束
16A オン光
16B オフ光
17 照明光
18 ピント調整機構
30 単位変調エリア
31 欠陥形状範囲(加工対象)
34 加工対象輪郭線(輪郭線)
35a、35b、35c、35d 間引き候補ミラー
36a、36b、36c、36d 代替間引きミラー
41 結像レンズ(結像光学系)
42、43 結像レンズ
51 空間変調素子制御ユニット(空間変調素子制御手段)
52 画像処理ユニット
53 装置制御ユニット
60 レーザ反射光画像信号
61 被リペア面画像信号
62 リペア形状データ
63、65 補正変調データ
66 変調データ
67 設定条件データ
150 加工ヘッド部
200、210 レーザリペア装置(レーザ加工装置)
523 リペア形状算出部(加工形状算出手段)
530 データ合成手段
531 補正変調データ生成手段
532 補正変調データ記憶部
533 補正変調データ切替手段
535 装置本体制御部
536 輪郭抽出部
537 補正変調データ再配置部
538 合成演算部

Claims (9)

  1. レーザ光源と、該レーザ光源からのレーザ光束を一定の変調領域内に配置された複数の変調要素により被加工面に到達するオン光と前記被加工面に到達しないオフ光とに空間変調する空間変調素子とを備えたレーザ加工装置であって、
    前記被加工面の画像をもとに加工形状データを算出する加工形状算出手段と、
    前記オン光の間引きを行うための補正変調データを生成する補正変調データ生成手段と、
    前記加工形状データと前記補正変調データとを合成して前記被加工面に加工を行うための変調データを生成するデータ合成手段と、
    前記変調データをもとに前記空間変調素子を制御し、前記被加工面に対し前記レーザ光を照射して加工を行うことを特徴とするレーザ加工装置。
  2. 前記補正変調データ生成手段は、前記空間変調素子に到達するレーザ光強度分布に基づいて、領域毎に前記補正変調データの生成を行い、前記オン光の間引きによって前記レーザ光強度分布の補正を行うことを特徴とする請求項記載のレーザ加工装置。
  3. 前記被加工面を撮像する撮像手段を備え、
    前記加工形状データは、前記撮像手段により撮像された撮像データをもとに算出されることを特徴とする請求項に記載のレーザ加工装置。
  4. 前記補正変調データ生成手段による前記被加工面での前記レーザ光強度分布の補正目標が、前記撮像データをもとに算出された欠陥の情報によって算出されることを特徴とする請求項に記載のレーザ加工装置。
  5. 前記補正変調データ生成手段による前記被加工面での前記レーザ光強度分布の補正目標が略均一分布であることを特徴とする請求項2〜4のいずれかに記載のレーザ加工装置。
  6. 前記被加工面を撮像する撮像手段を備え、
    前記加工形状データは、前記撮像手段により撮像された撮像データをもとに算出されることを特徴とする請求項に記載のレーザ加工装置。
  7. 前記空間変調素子と前記被加工面との間に配置され、レーザ光照射の分解能を可変する結像光学系と、
    前記レーザ光照射の分解能に応じて、前記結像光学系の結像位置をデフォーカスするデフォーカス手段とを備えることを特徴する請求項1〜6のいずれかに記載のレーザ加工装置。
  8. 前記データ合成手段が、前記加工形状データの輪郭線に対応する変調要素を抽出する輪郭抽出部と、該輪郭抽出部で抽出された変調要素に対する前記補正変調データがオフ光形成データである場合に、その隣接領域の変調要素に対するオン光形成データと互いの補正変調データを入れ替える補正変調データ再配置部とを備えることを特徴とする請求項1〜〜7のいずれかに記載のレーザ加工装置。
  9. 前記補正変調データ生成手段により生成された複数の補正変調データを記憶する補正変調データ記憶部と、
    該補正変調データ記憶部に記憶された前記複数の補正変調データの1つを、装置本体の設定条件に応じて選択的に読み出して前記空間変調素子制御手段に送出する補正変調データ切替手段とを有することを特徴とする請求項1〜8のいずれかに記載のレーザ加工装置。
JP2006077402A 2006-03-20 2006-03-20 レーザ加工装置 Expired - Fee Related JP4879619B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077402A JP4879619B2 (ja) 2006-03-20 2006-03-20 レーザ加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077402A JP4879619B2 (ja) 2006-03-20 2006-03-20 レーザ加工装置

Publications (3)

Publication Number Publication Date
JP2007253167A JP2007253167A (ja) 2007-10-04
JP2007253167A5 JP2007253167A5 (ja) 2009-04-16
JP4879619B2 true JP4879619B2 (ja) 2012-02-22

Family

ID=38627922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077402A Expired - Fee Related JP4879619B2 (ja) 2006-03-20 2006-03-20 レーザ加工装置

Country Status (1)

Country Link
JP (1) JP4879619B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267029B2 (ja) * 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
JP5331421B2 (ja) * 2008-09-12 2013-10-30 オリンパス株式会社 レーザリペア装置およびレーザリペア方法
JP2012096277A (ja) * 2010-11-04 2012-05-24 Olympus Corp レーザ加工装置
JP2017051985A (ja) * 2015-09-10 2017-03-16 株式会社ディスコ レーザー加工装置
DE102017203655B4 (de) * 2017-03-07 2019-08-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Formung von Strahlung für die Laserbearbeitung
WO2018203362A1 (ja) 2017-05-01 2018-11-08 株式会社ニコン 加工装置及び加工方法
JP7336977B2 (ja) * 2019-12-11 2023-09-01 株式会社ディスコ レーザービームのスポット形状の補正方法
JP2023000231A (ja) * 2021-06-17 2023-01-04 株式会社日立産機システム レーザマーキングシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174242A (ja) * 1994-12-22 1996-07-09 Sanyo Electric Co Ltd レーザ加工方法及び装置
JP2004098087A (ja) * 2002-09-05 2004-04-02 Dainippon Screen Mfg Co Ltd レーザ加工装置およびレーザ加工方法
JP2005103581A (ja) * 2003-09-29 2005-04-21 Olympus Corp リペア方法及びその装置

Also Published As

Publication number Publication date
JP2007253167A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4879619B2 (ja) レーザ加工装置
JP5137488B2 (ja) レーザ照射装置およびそれを用いたレーザ加工システム
JP5287114B2 (ja) 照明光学系、露光装置及びデバイスの製造方法
JP4762593B2 (ja) 外部レーザ導入装置
JPH0545889A (ja) 投影露光装置
US20110109961A1 (en) Pattern projection apparatus, scanning confocal microscope, and pattern radiating method
JP2008272806A (ja) レーザ加工装置
KR20130020876A (ko) 포토리소그래피 시스템용 프로그래머블 조명기와 조명 방법
JP2006343684A (ja) パターン描画装置
TWI745500B (zh) 用於將感光層曝露於光之裝置及方法
JP5064778B2 (ja) レーザ加工装置
JP4679249B2 (ja) パターン描画装置
JP2007326132A (ja) レーザ加工装置
KR20120038800A (ko) 마스크리스 노광장치 및 노광방법
JP2007029959A (ja) レーザ加工機
KR20140052840A (ko) 레이저 조사 유닛 및 레이저 가공 장치
JP2011023603A (ja) 露光装置
JP4391806B2 (ja) 光学顕微鏡
JP2021096300A (ja) 露光装置
JP5120814B2 (ja) パターン形成方法及びパターン形成装置
JP2009145494A (ja) 焦点位置検出方法および描画装置
JP4686753B2 (ja) 露光方法及び露光装置
JP2015022073A (ja) 顕微鏡と収差補正方法
JP2019117271A (ja) 露光装置
KR101138648B1 (ko) 고속기판검사장치 및 이를 이용한 고속기판검사방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees