JP4871513B2 - 薄く形成されたカンチレバー構造を備えた微小機械装置及び関連の方法 - Google Patents
薄く形成されたカンチレバー構造を備えた微小機械装置及び関連の方法 Download PDFInfo
- Publication number
- JP4871513B2 JP4871513B2 JP2005028526A JP2005028526A JP4871513B2 JP 4871513 B2 JP4871513 B2 JP 4871513B2 JP 2005028526 A JP2005028526 A JP 2005028526A JP 2005028526 A JP2005028526 A JP 2005028526A JP 4871513 B2 JP4871513 B2 JP 4871513B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- wafer
- semiconductor layer
- layer
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0064—Constitution or structural means for improving or controlling the physical properties of a device
- B81B3/0086—Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0408—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00214—Processes for the simultaneaous manufacturing of a network or an array of similar microstructural devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00349—Creating layers of material on a substrate
- B81C1/00357—Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/0092—Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/0802—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/12—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
- G01P15/123—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0228—Inertial sensors
- B81B2201/0235—Accelerometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0264—Pressure sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0118—Cantilevers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2201/00—Manufacture or treatment of microstructural devices or systems
- B81C2201/01—Manufacture or treatment of microstructural devices or systems in or on a substrate
- B81C2201/0174—Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
- B81C2201/019—Bonding or gluing multiple substrate layers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0828—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Pressure Sensors (AREA)
- Measuring Fluid Pressure (AREA)
- Micromachines (AREA)
Description
104−1〜104−8 境界領域
110 加速度計
112、112′ 撓曲領域
113 ビーム
114、114′ 慣性質量領域
115 アンカー領域
116、116′ バイア
117 キャップ
118 小突起
120 圧力センサ
122、122′ ダイヤフラム
130、130′、 シリコン・ウェーハ
132、132′、134、134′、146、148 凹部
142、142′ 第二のシリコン・ウェーハ
143′ 第三のウェーハ
144、144′ N型シリコン層
145′ 第二の半導体層
150、150′ P型ピエゾ抵抗型センサ素子
160、160′ 酸化物/窒化物層
170、170′ 金属相互接続部
Claims (4)
- 微小機械装置の製造方法であって、
全体的に平面的な水平次元を有する第一の半導体ウェーハ(130)を設けるステップと、
該半導体ウェーハ(130)に凹部領域(132)を形成するステップと、
該凹部領域(132)に対向して前記ウェーハ(130)の表面に半導体層(144)を固定するステップであって、
該半導体層(144)は、前記第一の半導体ウェーハ(130)の前記全体的に平面的な水平次元に全体的に垂直な垂直次元を含むと共に、前記第一の半導体ウェーハ(130)の前記全体的に平面的な水平次元に全体的に平行な水平次元を含んでおり、
前記半導体層(144)を形成した第二のウェーハ(142)を設けるステップと、
前記半導体層(144)に凹部(146)を形成するステップと、
前記ウェーハ(130)の第一の表面に前記半導体層(144)を固定するステップと、
前記第二のウェーハ(142)を除去するステップと、
を含んでいる、
固定するステップと、
前記半導体層(144)に、前記凹部領域に対向して配設されている懸吊構造(113)を形成するステップであって、
該懸吊構造(113)は、前記半導体層(144)の垂直次元に全体的に平行な垂直次元を含むと共に、前記半導体層(144)の水平次元に全体的に平行な水平次元を含んでおり、
前記懸吊構造(113)は境界領域(104−1〜104−8)を含んでおり、該境界領域(104−1〜104−8)は、該境界領域(104−1〜104−8)の撓曲領域(112)を除き、前記半導体層(144)の他部分から解放されており、
前記懸吊構造(113)は、前記境界領域(104−1〜104−8)の内部に振動質量領域(114)を含んでおり、
前記境界領域(104−1〜104−8)の前記撓曲領域(112)及び前記境界領域(104−1〜104−8)の解放部分は、前記撓曲領域(112)を通る軸(x)を中心として前記半導体層(144)の前記垂直次元に全体的に平行な方向への前記振動質量(114)の全体的に回転式の運動を許すように配設されており、
前記撓曲領域(112)の垂直次元は、前記半導体層(144)の前記水平次元に全体的に垂直な方向に加わる加速力に応答して前記回転運動を促進するように、前記振動質量領域(114)の垂直次元よりも薄い、懸吊構造(113)を形成するステップと、
を備えた方法。 - 前記半導体層(144)を固定するステップは、第一の副次層(145′)を固定すると共に第二の副次層(144′)を固定するステップを含んでおり、
前記第一の副次層(145′)は前記懸吊構造(113)の前記撓曲領域(112)を画定しており、
前記第一の副次層(145′)及び前記第二の副次層(144′)は共に、前記懸吊構造(113)の前記振動質量領域(114)を画定している、
請求項1に記載の方法。 - 前記第二のウェーハ(142)を除去するステップは、前記第二のウェーハ(142)をエッチングするステップを含んでいる、請求項1に記載の方法。
- 前記ウェーハ(130)に第二の凹部領域(134)を形成するステップと、
前記半導体層(144)に薄く形成された領域(122)を形成するステップと、
前記半導体層(144)の前記垂直次元に全体的に平行な方向での撓曲を許すように、前記第二の凹部領域(134)に対向して前記薄く形成された領域(122)を配設するステップと、
をさらに含んでいる請求項1に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/774,011 US20050172717A1 (en) | 2004-02-06 | 2004-02-06 | Micromechanical device with thinned cantilever structure and related methods |
US10/774,011 | 2004-02-06 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005268758A JP2005268758A (ja) | 2005-09-29 |
JP2005268758A5 JP2005268758A5 (ja) | 2011-02-10 |
JP4871513B2 true JP4871513B2 (ja) | 2012-02-08 |
Family
ID=34679401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005028526A Expired - Fee Related JP4871513B2 (ja) | 2004-02-06 | 2005-02-04 | 薄く形成されたカンチレバー構造を備えた微小機械装置及び関連の方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US20050172717A1 (ja) |
EP (1) | EP1561724A1 (ja) |
JP (1) | JP4871513B2 (ja) |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0302271D0 (en) * | 2003-01-31 | 2003-03-05 | Melexis Nv | Integrated pressure and acceleration measurement device and a method of manufacture thereof |
US7368312B1 (en) * | 2004-10-15 | 2008-05-06 | Morgan Research Corporation | MEMS sensor suite on a chip |
US7485847B2 (en) | 2004-12-08 | 2009-02-03 | Georgia Tech Research Corporation | Displacement sensor employing discrete light pulse detection |
US7371601B2 (en) * | 2005-05-12 | 2008-05-13 | Delphi Technologies, Inc. | Piezoresistive sensing structure |
DE102005032635A1 (de) * | 2005-07-13 | 2007-01-25 | Robert Bosch Gmbh | Mikromechanische Vorrichtung mit zwei Sensorstrukturen, Verfahren zur Herstellung einer mikromechanischen Vorrichtung |
EP1770055B1 (en) * | 2005-09-28 | 2008-05-28 | STMicroelectronics S.r.l. | Process for manufacturing thick suspended structures of semiconductor material |
DE102005055473A1 (de) * | 2005-11-22 | 2007-05-24 | Robert Bosch Gmbh | Mikromechanische Vorrichtung und Verfahren zur Herstellung einer mikromechanischen Vorrichtung |
US7539003B2 (en) | 2005-12-01 | 2009-05-26 | Lv Sensors, Inc. | Capacitive micro-electro-mechanical sensors with single crystal silicon electrodes |
DE102006011545B4 (de) * | 2006-03-14 | 2016-03-17 | Robert Bosch Gmbh | Mikromechanisches Kombi-Bauelement und entsprechendes Herstellungsverfahren |
US7508040B2 (en) | 2006-06-05 | 2009-03-24 | Hewlett-Packard Development Company, L.P. | Micro electrical mechanical systems pressure sensor |
US7851876B2 (en) * | 2006-10-20 | 2010-12-14 | Hewlett-Packard Development Company, L.P. | Micro electro mechanical system |
US7571650B2 (en) * | 2007-07-30 | 2009-08-11 | Hewlett-Packard Development Company, L.P. | Piezo resistive pressure sensor |
NL2000835C2 (nl) * | 2007-08-29 | 2009-03-03 | Xsens Technologies Bv | Inrichting en werkwijze voor het meten van de dynamische interactie tussen lichamen. |
JP4508253B2 (ja) * | 2008-03-13 | 2010-07-21 | 国立大学法人 東京大学 | 3次元構造体およびその製造方法 |
US8468887B2 (en) * | 2008-04-14 | 2013-06-25 | Freescale Semiconductor, Inc. | Resonant accelerometer with low sensitivity to package stress |
KR101001666B1 (ko) * | 2008-07-08 | 2010-12-15 | 광주과학기술원 | 마이크로 수직 구조체의 제조 방법 |
WO2010059433A2 (en) | 2008-11-07 | 2010-05-27 | The Charles Stark Draper Laboratory, Inc. | Mems dosimeter |
US8220330B2 (en) * | 2009-03-24 | 2012-07-17 | Freescale Semiconductor, Inc. | Vertically integrated MEMS sensor device with multi-stimulus sensing |
EP2435789B1 (en) * | 2009-05-27 | 2015-04-08 | King Abdullah University Of Science And Technology | Mems mass spring damper systems using an out-of-plane suspension scheme |
NO333724B1 (no) * | 2009-08-14 | 2013-09-02 | Sintef | En mikromekanisk rekke med optisk reflekterende overflater |
US8569092B2 (en) * | 2009-12-28 | 2013-10-29 | General Electric Company | Method for fabricating a microelectromechanical sensor with a piezoresistive type readout |
US8435821B2 (en) * | 2010-06-18 | 2013-05-07 | General Electric Company | Sensor and method for fabricating the same |
US9131325B2 (en) | 2010-08-31 | 2015-09-08 | Freescale Semiconductor, Inc. | MEMS device assembly and method of packaging same |
US8304275B2 (en) * | 2010-08-31 | 2012-11-06 | Freescale Semiconductor, Inc. | MEMS device assembly and method of packaging same |
JP5674167B2 (ja) * | 2011-01-28 | 2015-02-25 | 国立大学法人 東京大学 | 差圧センサ |
US20120211805A1 (en) * | 2011-02-22 | 2012-08-23 | Bernhard Winkler | Cavity structures for mems devices |
FR2972263B1 (fr) * | 2011-03-03 | 2013-09-27 | Tronics Microsystems | Capteur inertiel et procede de fabrication correspondant |
CN102183677B (zh) * | 2011-03-15 | 2012-08-08 | 迈尔森电子(天津)有限公司 | 集成惯性传感器与压力传感器及其形成方法 |
US8511171B2 (en) * | 2011-05-23 | 2013-08-20 | General Electric Company | Device for measuring environmental forces and method of fabricating the same |
JP5541306B2 (ja) * | 2011-05-27 | 2014-07-09 | 株式会社デンソー | 力学量センサ装置およびその製造方法 |
CN102507978B (zh) * | 2011-09-29 | 2014-12-17 | 中北大学 | 基于e指数半导体器件的嵌入式高灵敏度微加速度计 |
KR101267436B1 (ko) | 2011-10-28 | 2013-05-31 | 앰코 테크놀로지 코리아 주식회사 | 압력센서용 멤스 디바이스 |
TWI518804B (zh) * | 2012-02-14 | 2016-01-21 | Asia Pacific Microsystems Inc | Monolithic compound sensor and its package |
JP5778619B2 (ja) * | 2012-05-02 | 2015-09-16 | セイコーインスツル株式会社 | 圧力センサ |
JP2013250133A (ja) | 2012-05-31 | 2013-12-12 | Seiko Epson Corp | 電子デバイス及びその製造方法、並びに電子機器 |
US9010200B2 (en) | 2012-08-06 | 2015-04-21 | Amphenol Thermometrics, Inc. | Device for measuring forces and method of making the same |
ITMI20121692A1 (it) * | 2012-10-09 | 2014-04-10 | St Microelectronics Srl | Rilevatore di onde gravitazionali e metodo di rilevazione di onde gravitazionali |
CN102976263B (zh) * | 2012-12-11 | 2015-04-15 | 北京大学 | 一种mems压阻式多轴力传感器的制备方法 |
US9580302B2 (en) | 2013-03-15 | 2017-02-28 | Versana Micro Inc. | Cell phone having a monolithically integrated multi-sensor device on a semiconductor substrate and method therefor |
WO2015020881A1 (en) * | 2013-08-05 | 2015-02-12 | Robert Bosch Gmbh | Inertial and pressure sensors on single chip |
US9837935B2 (en) * | 2013-10-29 | 2017-12-05 | Honeywell International Inc. | All-silicon electrode capacitive transducer on a glass substrate |
US10317211B2 (en) * | 2013-12-30 | 2019-06-11 | Robert Bosch Gmbh | Robust inertial sensors |
CN104089642B (zh) * | 2014-06-13 | 2017-04-12 | 浙江工业大学 | 一种压阻式加速度、压力集成传感器及其制造方法 |
CN104062464B (zh) * | 2014-06-13 | 2017-04-12 | 浙江工业大学 | 一种mems压阻式加速度、压力集成传感器及制造方法 |
CN104062463B (zh) * | 2014-06-13 | 2017-04-12 | 浙江工业大学 | 一种压阻式加速度传感器及其制造方法 |
CN105277733B (zh) * | 2014-06-27 | 2018-06-08 | 广芯电子技术(上海)股份有限公司 | Mems加速度传感器的硅盖帽结构 |
US9446940B2 (en) | 2014-10-03 | 2016-09-20 | Freescale Semiconductor, Inc. | Stress isolation for MEMS device |
GB2533084A (en) * | 2014-12-02 | 2016-06-15 | Melexis Tech N V | Relative and absolute pressure sensor combined on chip |
US9837526B2 (en) | 2014-12-08 | 2017-12-05 | Nxp Usa, Inc. | Semiconductor device wtih an interconnecting semiconductor electrode between first and second semiconductor electrodes and method of manufacture therefor |
US9899236B2 (en) * | 2014-12-24 | 2018-02-20 | Stmicroelectronics, Inc. | Semiconductor package with cantilever pads |
US9458008B1 (en) | 2015-03-16 | 2016-10-04 | Freescale Semiconductor, Inc. | Method of making a MEMS die having a MEMS device on a suspended structure |
CN105174198A (zh) * | 2015-08-12 | 2015-12-23 | 中国电子科技集团公司第三十八研究所 | 一种封装结构的加速度传感器及其制备方法 |
CN105181011A (zh) * | 2015-08-12 | 2015-12-23 | 中国电子科技集团公司第三十八研究所 | 一种封装结构的压力、加速度二合一传感器及其制备方法 |
US10348295B2 (en) | 2015-11-19 | 2019-07-09 | Nxp Usa, Inc. | Packaged unidirectional power transistor and control circuit therefore |
US9926190B2 (en) | 2016-01-21 | 2018-03-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS devices and methods of forming the same |
EP3617686B1 (en) | 2018-08-31 | 2021-10-27 | Melexis Technologies NV | Pressure sensor device and method of sensing pressure |
CN109545953B (zh) * | 2018-12-24 | 2023-01-17 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种高温压力传感器芯片的制备方法 |
CN109678102B (zh) * | 2018-12-28 | 2024-07-19 | 杭州士兰集成电路有限公司 | Mems结构及其制造方法 |
CN109640517B (zh) * | 2018-12-29 | 2020-05-08 | 中国电子科技集团公司第五十四研究所 | 一种ltcc基悬臂梁结构的制造方法 |
CN109850840B (zh) * | 2018-12-29 | 2024-09-06 | 杭州士兰集成电路有限公司 | Mems器件及其制造方法 |
US20220099855A1 (en) * | 2019-01-13 | 2022-03-31 | Schlumberger Technology Corporation | Seismic image data interpretation system |
WO2020187761A1 (de) | 2019-03-18 | 2020-09-24 | Siemens Aktiengesellschaft | Multifunktionaler sensor für die prozess- oder versorgungstechnik |
CN110182753B (zh) * | 2019-04-19 | 2021-11-16 | 中国科学院上海微系统与信息技术研究所 | 高灵敏度加速度传感器结构的制作方法 |
CN112504548A (zh) * | 2019-08-23 | 2021-03-16 | 武汉杰开科技有限公司 | 一种复合传感器及其加工方法、tpms芯片 |
KR102250895B1 (ko) * | 2019-12-23 | 2021-05-12 | 주식회사 현대케피코 | 반도체 소자의 제조방법 |
US11981560B2 (en) | 2020-06-09 | 2024-05-14 | Analog Devices, Inc. | Stress-isolated MEMS device comprising substrate having cavity and method of manufacture |
IT202000018670A1 (it) * | 2020-07-30 | 2022-01-30 | St Microelectronics Srl | Accelerometro mems a larga banda per la rilevazione di vibrazioni |
US11825750B2 (en) * | 2020-10-29 | 2023-11-21 | Vanguard International Semiconductor Corporation | Micro-electromechanical system device and method of forming the same |
CN113776721B (zh) * | 2021-09-07 | 2024-06-07 | 上海韦尔半导体股份有限公司 | 传感器集成芯片及其制造方法 |
CN113959327B (zh) * | 2021-10-14 | 2022-11-15 | 中国科学院力学研究所 | 一种具有高灵敏度的多层结构应变传感器 |
CN114061827A (zh) * | 2021-11-11 | 2022-02-18 | 西人马联合测控(泉州)科技有限公司 | 一种传感器芯片及其制备方法 |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2827610C2 (de) * | 1978-06-23 | 1987-02-19 | Goldwell Gmbh, Chemische Fabrik H.E. Dotter, 6100 Darmstadt | Gerätesatz zur Aufbereitung von kosmetischen Oxydations-Haarfärbe-Präparaten |
US4663648A (en) * | 1984-12-19 | 1987-05-05 | Texas Instruments Incorporated | Three dimensional structures of active and passive semiconductor components |
US4730496A (en) * | 1986-06-23 | 1988-03-15 | Rosemount Inc. | Capacitance pressure sensor |
US5121633A (en) * | 1987-12-18 | 1992-06-16 | Nissan Motor Co., Ltd. | Semiconductor accelerometer |
US5016072A (en) * | 1988-01-13 | 1991-05-14 | The Charles Stark Draper Laboratory, Inc. | Semiconductor chip gyroscopic transducer |
US5065978A (en) * | 1988-04-27 | 1991-11-19 | Dragerwerk Aktiengesellschaft | Valve arrangement of microstructured components |
US4882933A (en) * | 1988-06-03 | 1989-11-28 | Novasensor | Accelerometer with integral bidirectional shock protection and controllable viscous damping |
EP0363005B1 (en) * | 1988-09-02 | 1996-06-05 | Honda Giken Kogyo Kabushiki Kaisha | A semiconductor sensor |
US5060526A (en) * | 1989-05-30 | 1991-10-29 | Schlumberger Industries, Inc. | Laminated semiconductor sensor with vibrating element |
US5594172A (en) * | 1989-06-21 | 1997-01-14 | Nissan Motor Co., Ltd. | Semiconductor accelerometer having a cantilevered beam with a triangular or pentagonal cross section |
US5238223A (en) * | 1989-08-11 | 1993-08-24 | Robert Bosch Gmbh | Method of making a microvalve |
DE3926647A1 (de) * | 1989-08-11 | 1991-02-14 | Bosch Gmbh Robert | Verfahren zur herstellung eines mikroventils |
US5132658A (en) * | 1990-04-19 | 1992-07-21 | Sensym, Inc. | Micromachined silicon potentiometer responsive to pressure |
US5400824A (en) * | 1991-01-21 | 1995-03-28 | Robert Bosch Gmbh | Microvalve |
JPH04268725A (ja) * | 1991-02-25 | 1992-09-24 | Canon Inc | 力学量検出センサおよびその製造方法 |
US5235187A (en) * | 1991-05-14 | 1993-08-10 | Cornell Research Foundation | Methods of fabricating integrated, aligned tunneling tip pairs |
DE4133820A1 (de) * | 1991-10-12 | 1993-04-15 | Bosch Gmbh Robert | Verfahren zur herstellung von halbleiterelementen |
US5627427A (en) * | 1991-12-09 | 1997-05-06 | Cornell Research Foundation, Inc. | Silicon tip field emission cathodes |
US5198390A (en) * | 1992-01-16 | 1993-03-30 | Cornell Research Foundation, Inc. | RIE process for fabricating submicron, silicon electromechanical structures |
US5393375A (en) * | 1992-02-03 | 1995-02-28 | Cornell Research Foundation, Inc. | Process for fabricating submicron single crystal electromechanical structures |
US5179499A (en) * | 1992-04-14 | 1993-01-12 | Cornell Research Foundation, Inc. | Multi-dimensional precision micro-actuator |
JP2776142B2 (ja) * | 1992-05-15 | 1998-07-16 | 株式会社日立製作所 | 加速度センサ |
US5287082A (en) * | 1992-07-02 | 1994-02-15 | Cornell Research Foundation, Inc. | Submicron isolated, released resistor structure |
US5397904A (en) * | 1992-07-02 | 1995-03-14 | Cornell Research Foundation, Inc. | Transistor microstructure |
JP3896158B2 (ja) * | 1993-02-04 | 2007-03-22 | コーネル・リサーチ・ファウンデーション・インコーポレイテッド | マイクロ構造及びその製造のためのシングルマスク、単結晶プロセス |
US5399415A (en) * | 1993-02-05 | 1995-03-21 | Cornell Research Foundation, Inc. | Isolated tungsten microelectromechanical structures |
US5386142A (en) * | 1993-05-07 | 1995-01-31 | Kulite Semiconductor Products, Inc. | Semiconductor structures having environmentally isolated elements and method for making the same |
US5563343A (en) * | 1993-05-26 | 1996-10-08 | Cornell Research Foundation, Inc. | Microelectromechanical lateral accelerometer |
US5426070A (en) * | 1993-05-26 | 1995-06-20 | Cornell Research Foundation, Inc. | Microstructures and high temperature isolation process for fabrication thereof |
US5536988A (en) * | 1993-06-01 | 1996-07-16 | Cornell Research Foundation, Inc. | Compound stage MEM actuator suspended for multidimensional motion |
US5363021A (en) * | 1993-07-12 | 1994-11-08 | Cornell Research Foundation, Inc. | Massively parallel array cathode |
US5415726A (en) * | 1993-12-21 | 1995-05-16 | Delco Electronics Corporation | Method of making a bridge-supported accelerometer structure |
US5615143A (en) * | 1994-09-19 | 1997-03-25 | Cornell Research Foundation, Inc. | Optomechanical terabit data storage system |
JP3399660B2 (ja) * | 1994-10-06 | 2003-04-21 | 株式会社東海理化電機製作所 | 表面型の加速度センサの製造方法 |
JP3305516B2 (ja) * | 1994-10-31 | 2002-07-22 | 株式会社東海理化電機製作所 | 静電容量式加速度センサ及びその製造方法 |
US5565625A (en) * | 1994-12-01 | 1996-10-15 | Analog Devices, Inc. | Sensor with separate actuator and sense fingers |
US5659159A (en) * | 1994-12-16 | 1997-08-19 | Otis Elevator Company | Elevator level control system using elevator/landing gap as a reflection duct |
US5628917A (en) * | 1995-02-03 | 1997-05-13 | Cornell Research Foundation, Inc. | Masking process for fabricating ultra-high aspect ratio, wafer-free micro-opto-electromechanical structures |
US5591679A (en) * | 1995-04-12 | 1997-01-07 | Sensonor A/S | Sealed cavity arrangement method |
US6084257A (en) * | 1995-05-24 | 2000-07-04 | Lucas Novasensor | Single crystal silicon sensor with high aspect ratio and curvilinear structures |
US6316796B1 (en) * | 1995-05-24 | 2001-11-13 | Lucas Novasensor | Single crystal silicon sensor with high aspect ratio and curvilinear structures |
US5587601A (en) * | 1995-06-05 | 1996-12-24 | Kulite Semiconductor Products, Inc. | Support structure for a semiconductor pressure transducer |
US5659195A (en) * | 1995-06-08 | 1997-08-19 | The Regents Of The University Of California | CMOS integrated microsensor with a precision measurement circuit |
US5637539A (en) * | 1996-01-16 | 1997-06-10 | Cornell Research Foundation, Inc. | Vacuum microelectronic devices with multiple planar electrodes |
JPH11160352A (ja) * | 1997-11-25 | 1999-06-18 | Matsushita Electric Works Ltd | 半導体加速度センサの検査装置及びその検査方法 |
JP3533984B2 (ja) * | 1999-03-26 | 2004-06-07 | 松下電工株式会社 | 半導体加速度センサおよびその製造方法 |
US6912759B2 (en) * | 2001-07-20 | 2005-07-05 | Rosemount Aerospace Inc. | Method of manufacturing a thin piezo resistive pressure sensor |
AU2003206552A1 (en) * | 2002-02-14 | 2003-09-04 | Silex Microsystems Ab | Deflectable microstructure and method of manufacturing the same through bonding of wafers |
-
2004
- 2004-02-06 US US10/774,011 patent/US20050172717A1/en not_active Abandoned
-
2005
- 2005-02-01 EP EP05250525A patent/EP1561724A1/en not_active Withdrawn
- 2005-02-04 JP JP2005028526A patent/JP4871513B2/ja not_active Expired - Fee Related
- 2005-12-30 US US11/322,852 patent/US7223624B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7223624B2 (en) | 2007-05-29 |
US20060101912A1 (en) | 2006-05-18 |
US20050172717A1 (en) | 2005-08-11 |
JP2005268758A (ja) | 2005-09-29 |
EP1561724A1 (en) | 2005-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4871513B2 (ja) | 薄く形成されたカンチレバー構造を備えた微小機械装置及び関連の方法 | |
EP2339357B1 (en) | Method for fabricating a sensor | |
US7998777B1 (en) | Method for fabricating a sensor | |
CA2777309C (en) | Device for measuring environmental forces and method of fabricating the same | |
US8435821B2 (en) | Sensor and method for fabricating the same | |
JP5850650B2 (ja) | センサ、及びセンサを製造する方法 | |
US6084257A (en) | Single crystal silicon sensor with high aspect ratio and curvilinear structures | |
Wang et al. | A high-performance dual-cantilever high-shock accelerometer single-sided micromachined in (111) silicon wafers | |
JP2012506616A (ja) | ウェーハレベルでパッケージングされたmemsデバイス | |
JP2004245760A (ja) | 圧力と加速度との双方を検出するセンサおよびその製造方法 | |
CN106053881B (zh) | 单芯片硅集成三轴高频宽高冲击加速度计及其制作方法 | |
EP0737864A1 (en) | Force sensor | |
JP4628018B2 (ja) | 容量型力学量センサとその製造方法 | |
Sindhanaiselvi | Design and analysis of low pressure MEMS sensor | |
US11459227B2 (en) | Hinged microelectromechanical and/or nanoelectromechanical device with out-of-plane movement | |
French | Integrated microsystems in industrial applications | |
Lpadatu et al. | Building of silicon mechanical sensors by bulk micromachining and anodic bonding | |
EP2873095A1 (en) | Semiconductor secured to substrate via hole in substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101118 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101125 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111121 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |