JP4854994B2 - 配線基板の作製方法及び薄膜トランジスタの作製方法 - Google Patents

配線基板の作製方法及び薄膜トランジスタの作製方法 Download PDF

Info

Publication number
JP4854994B2
JP4854994B2 JP2005186509A JP2005186509A JP4854994B2 JP 4854994 B2 JP4854994 B2 JP 4854994B2 JP 2005186509 A JP2005186509 A JP 2005186509A JP 2005186509 A JP2005186509 A JP 2005186509A JP 4854994 B2 JP4854994 B2 JP 4854994B2
Authority
JP
Japan
Prior art keywords
region
light
layer
adhesion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005186509A
Other languages
English (en)
Other versions
JP2006049847A5 (ja
JP2006049847A (ja
Inventor
裕子 山本
亮 徳丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005186509A priority Critical patent/JP4854994B2/ja
Publication of JP2006049847A publication Critical patent/JP2006049847A/ja
Publication of JP2006049847A5 publication Critical patent/JP2006049847A5/ja
Application granted granted Critical
Publication of JP4854994B2 publication Critical patent/JP4854994B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、配線基板、薄膜トランジスタ、表示装置及びテレビジョン装置の作製方法に関する。
薄膜トランジスタ(以下、「TFT」という。)及びそれを用いた電子回路は、半導体、絶縁体及び導電体などの各種薄膜を基板上に積層し、適宜フォトリソグラフィ技術により所定のパターンを形成して製造されている。フォトリソグラフィ技術とは、フォトマスクと呼ばれる透明な平板面上に光を通さない材料で形成した回路等のパターンを、光を利用して目的とする基板上に転写する技術であり、半導体集積回路等の製造工程において広く用いられている。
従来のフォトリソグラフィ技術を用いた製造工程では、フォトレジストと呼ばれる感光性の有機樹脂材料を用いて形成されるマスクパターンの取り扱いだけでも、露光、現像、焼成、剥離といった多段階の工程が必要になる。従って、フォトリソグラフィ工程の回数が増える程、製造コストは必然的に上がってしまうことになる。このような問題点を改善するために、フォトリソグラフィ工程を削減してTFTを製造することが試みられている(例えば、特許文献1参照。)。
特開平11−251259号公報
本発明は、TFT及びそれを用いる電子回路並びにTFTによって形成される表示装置の製造工程においてフォトリソグラフィ工程の回数を削減し、製造工程を簡略化し、一辺が1メートルを越えるような大面積の基板にも、低いコストで歩留まり良く製造することができる技術を提供することを目的とする。
また、本発明は、それらの表示装置を構成する配線等の構成物を、所望の形状で制御性よく形成できる技術を提供することも目的とする。
本発明は、配線等に用いられる導電層、絶縁層などを形成する領域を、光を照射することによって改質処理する。この処理によって、形成される導電層に対する形成領域と非形成領域の密着性を異ならせる。その後形成領域近傍に導電性材料を吐出(噴出など含む)などによって、付着させ、導電層を形成する。形成領域を密着性の高い領域し、と非形成領域を密着性の低い領域と前処理をしておけば、密着力の差を利用して、非形成領域上に形成された不要部分を機械的に除去し繊細なパターニングを行うことができる。なお、形成領域近傍とは、形成領域及びその近傍を意味する。
本発明の表示装置には、エレクトロルミネセンス(以下「EL」ともいう。)と呼ばれる発光を発現する有機物、若しくは有機物と無機物の混合物を含む層を、電極間に介在させた発光素子とTFTとが接続された発光表示装置や、液晶材料を有する液晶素子を表示素子として用いる液晶表示装置などがある。
本発明の配線基板の作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化して導電層を形成し、境界線を越えて第1の領域の一部に形成された導電層を除去する。
本発明の配線基板の作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化して導電層を形成し、導電層に接着面を有する物質の接着面を接着し、接着面を有する物質、及び境界線を越えて第1の領域の一部に形成された導電層を剥離する。
本発明の配線基板の作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を光の照射により改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化して導電層を形成し、境界線を越えて第1の領域の一部に形成された導電層を除去する。
本発明の配線基板の作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を光の照射により改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化して導電層を形成し、導電層に接着面を有する物質の接着面を接着し、接着面を有する物質、及び境界線を越えて第1の領域の一部に形成された導電層を剥離する。
本発明の薄膜トランジスタの作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化してゲート電極層を形成し、境界線を越えて第1の領域の一部に形成されたゲート電極層を除去する。
本発明の薄膜トランジスタの作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化してゲート電極層を形成し、ゲート電極層に接着面を有する物質の接着面を接着し、接着面を有する物質、及び境界線を越えて第1の領域の一部に形成されたゲート電極層を剥離する。
本発明の薄膜トランジスタの作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を光の照射により改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化してゲート電極層を形成し、境界線を越えて第1の領域の一部に形成されたゲート電極層を除去する。
本発明の薄膜トランジスタの作製方法の一は、被処理物を有する第1の領域を形成し、一部の被処理物表面を光の照射により改質して、第1の領域と境界線を有する第2の領域を形成し、境界線を越えて第1の領域の一部、及び第2の領域に連続的に導電性材料を含む組成物を吐出し、組成物を固化してゲート電極層を形成し、ゲート電極層に接着面を有する物質の接着面を接着し、接着面を有する物質、及び境界線を越えて第1の領域の一部に形成されたゲート電極層を剥離する。
本発明により、配線等を所望なパターンで制御性よく簡便に形成できる。また、材料のロスも少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態1)
本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
本発明の実施の形態について、図1乃至図3を用いて説明する。
本発明は、配線層若しくは電極を形成する導電層や、所定のパターンに形成するためのマスク層など表示パネルを作製するために必要な物体(その目的や機能に応じて膜や層などあらゆる形態で存在する)のうち、少なくとも一つ若しくはそれ以上を、選択的に所望な形状に形成可能な方法により形成して、表示装置を作製することを特徴とするものである。本発明は、薄膜トランジスタや表示装置を構成する、ゲート電極層、ソース電極層、ドレイン電極層などの導電層、半導体層、マスク層、絶縁層など、所定の形状を有して形成される全ての構成要素に対して適用できる。選択的に所望な形状に形成可能な方法として、導電層や絶縁層など形成し、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパターンに形成することが可能な、液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれる。)を用いる。また、物体が所望のパターンに転写、または描写できる方法、例えば各種印刷法(スクリーン(孔版)印刷、オフセット(平版)印刷、凸版印刷やグラビア(凹版)印刷など所望なパターンで形成される方法)なども用いることができる。
本実施の形態は、流動性を有する形成する材料を含む組成物を、液滴として吐出(噴出)し、所望なパターンに形成する方法を用いている。形成物の被形成領域に、形成する材料を含む液滴を吐出し、焼成、乾燥等を行って固定化し所望なパターンで物体を形成する。本発明では、形成物の被形成領域に前処理を行う。
液滴吐出法に用いる液滴吐出装置の一態様を図28に示す。液滴吐出手段1403の個々のヘッド1405、ヘッド1412は制御手段1407に接続され、それがコンピュータ1410で制御することにより予めプログラミングされたパターンに描画することができる。描画するタイミングは、例えば、基板1400上に形成されたマーカー1411を基準に行えば良い。或いは、基板1400の縁を基準にして基準点を確定させても良い。これを撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発生させて制御手段1407に送る。撮像手段1404としては、電荷結合素子(CCD)や相補型金属酸化物半導体(CMOS)を利用したイメージセンサなどを用いることができる。勿論、基板1400上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405、ヘッド1412を個別に制御することができる。
ヘッド1405とヘッド1412のノズルのサイズは異なっており、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで、導電性材料や有機、無機材料などをそれぞれ吐出し、描画することができ、層間膜のような広領域に描画する場合は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画することができる。大型基板を用いる場合、ヘッド1405、ヘッド1412は基板上を、矢印の方向に自在に走査し、描画する領域を自由に設定することができ、同じパターンを一枚の基板に複数描画することができる。
本発明では、図2及び図3で示すように形成物の被形成領域を含む近傍に、前処理として、光による照射処理を行い、選択的に表面を改質する処理を行う。この改質処理によって、形成する材料を含む組成物の吐出領域に、形成物との密着性が異なる少なくとも2種類以上の領域を形成することができる。
改質処理に用いる光は、特に限定されず、赤外光、可視光、または紫外光のいずれか一またはそれらの組み合わせを用いることが可能である。例えば、紫外線ランプ、ブラックライト、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、または高圧水銀ランプから射出された光を用いてもよい。その場合、ランプ光源は、必要な時間点灯させて照射してもよいし、複数回照射してもよい。
また、レーザ光を用いてもよく、レーザ光を用いるとより精密なパターンで被形成領域を改質処理できるので、そこに形成される物体も高繊細化することができる。本発明で用いることのできるレーザ光(レーザビームともいう)を処理領域に描画する、レーザ光描画装置について、図32を用いて説明する。本実施の形態では、レーザ光を照射する領域をマスク等を介して選択するのではなく、処理領域を選択して直接照射して処理するため、レーザ光直接描装置を用いる。図32に示すようにレーザ光直接描画装置1001は、レーザ光を照射する際の各種制御を実行するパーソナルコンピュータ(以下、PCと示す。)1002と、レーザ光を出力するレーザ発振器1003と、レーザ発振器1003の電源1004と、レーザ光を減衰させるための光学系(NDフィルタ)1005と、レーザ光の強度を変調するための音響光学変調器(AOM)1006と、レーザ光の断面の拡大又は縮小をするためのレンズ、光路を変更するためのミラー等で構成される光学系1007、Xステージ及びYステージを有する基板移動機構1009と、PC1002から出力される制御データをデジタルーアナログ変換するD/A変換部1010と、D/A変換部から出力されるアナログ電圧に応じて音響光学変調器1006を制御するドライバ1011と、基板移動機構1009を駆動するための駆動信号を出力するドライバ1012とを備えている。
レーザ発振器1003としては、紫外光、可視光、又は赤外光を発振することが可能なレーザ発振器を用いることができる。レーザ発振器としては、KrF、ArF、XeCl、Xe等のエキシマレーザ発振器、He、He−Cd、Ar、He−Ne、HF等の気体レーザ発振器、YAG、GdVO4、YVO4、YLF、YAlO3などの結晶にCr、Nd、Er、Ho、Ce、Co、Ti又はTmをドープした結晶を使った固体レーザ発振器、GaN、GaAs、GaAlAs、InGaAsP等の半導体レーザ発振器を用いることができる。なお、固体レーザ発振器においては、基本波、第2高調波〜第5高調波を適用するのが好ましい。
次に、レーザ光直接描画装置を用いた物質(表面)の改質処理について述べる。基板1008が基板移動機構1009に装着されると、PC1002は図外のカメラによって、基板に付されているマーカの位置を検出する。次いで、PC1002は、検出したマーカの位置データと、予め入力されている描画パターンデータとに基づいて、基板移動機構1009を移動させるための移動データを生成する。この後、PC1002が、ドライバ1011を介して音響光学変調器1006の出力光量を制御することにより、レーザ発振器1003から出力されたレーザ光は、光学系1005によって減衰された後、音響光学変調器1006によって所定の光量になるように光量が制御される。一方、音響光学変調器1006から出力されたレーザ光は、光学系1007で光路及びレーザ光(ビームスポット)の形状を変化させ、レンズで集光した後、基板上に形成された被処理物に該レーザ光を照射して、被処理物を改質処理する。このとき、PC1002が生成した移動データに従い、基板移動機構1009をX方向及びY方向に移動制御する。この結果、所定の場所にレーザ光が照射され、被処理物の改質処理が行われる。
この結果、図1(A)に示すように、レーザ光が照射された領域で、被処理物は改質され、形成物との密着性が向上する。よって領域72a、領域72bに比べて、領域71は密着性が高くなり、結果、基板50上に、相対的に密着性が高い領域(以下、高密着性領域ともいう)71と、密着性が低い領域(以下、低密着性領域ともいう)72a、72bという、形成物に対する密着性の異なる領域が形成される。レーザ光のエネルギーの一部は被処理物材料で熱に変換され、被処理物の一部を反応させるため、処理された被処理物の領域71の幅が、処理するレーザ光の幅より若干大きくなることもある。また、短波長のレーザ光ほど、レーザ光の径を短く集光することが可能であるため、微細な幅に処理領域を形成するためには、短波長のレーザ光を照射することが好ましい。
また、レーザ光の膜表面でのスポット形状は、点状、円形、楕円形、矩形、または線状(厳密には細長い長方形状)となるように光学系で加工されている。
なお、ここでは、基板を移動して選択的にレーザ光を照射しているが、これに限定されず、レーザ光をX−Y軸方向に走査してレーザ光を照射することができる。この場合、光学系1007にポリゴンミラーやガルバノミラーを用いることが好ましい。
また、光は、ランプ光源による光とレーザ光とを組み合わせて用いることもでき、比較的広範囲なパターニングを行う領域は、マスクを用いてランプによる照射処理を行い、高繊細なパターニングを行う領域のみレーザ光で照射処理を行うこともできる。このように光の照射処理を行うと、スループットも向上でき、かつ高繊細にパターニングされた配線基板などを得ることができる。
本実施の形態では、光を照射し、その照射領域の密着性を変化させるように改質する。よって、形成物の被形成領域近傍に、形成物に対する密着性の異なる領域が形成される。この密着性の違いは両領域の相対的な関係であり形成物の形成領域と、その周囲の非形成領域とで形成物に対する密着性の程度に差を有していればよい。また、密着性が異なるとは、その領域に接して形成される形成物とその領域との密着力が異なることである。密着性が高い領域であれば、形成物は機械的に除去(剥離、吸引、エアブロー等による除去)されにくく、密着性が低い領域であれば、形成物は機械的に除去(剥離、吸引、エアブロー等による除去)されやすい。本発明は、この密着性の差を利用して、導電層、絶縁層、半導体層などの形成物を高繊細なパターンに選択的に形成する。ここでの密着性は、形成された形成物とその領域との密着性であるので、被形成領域に付着する、流動性を有する形成する材料を含む組成物と、その領域との密着性の良否には影響されない。例えば、流動性を有する組成物の場合は、形成領域との密着性が低くても、焼成や乾燥等の工程を経て、固体の形状に形成されると、形成領域との密着性が高くなる場合、またその逆の場合もあり得る。それらの場合も考慮して、被形成領域、改質処理の条件、形成物とを適宜設定、選択すればよい。
本実施の形態では、密着性の異なる領域を形成するために、光による照射処理を行う。被形成領域近傍にわたって被処理物である物質を形成し、光により選択的に密着性を高める処理、密着性を低める処理を行うのである。本実施の形態では、形成物の被形成領域近傍に被処理物として密着性が低い物質を形成し、密着性が低い物質が分解する程度の光を照射し、処理領域の密着性が低い物質を分解、除去することにより、処理領域の密着性を向上させ、高密着性領域を形成する。よって高密着性領域より、低密着性領域に含まれる密着性が低い物質の濃度(本実施の形態においては密着性を低める効果をもつフッ化炭素鎖の濃度、量など)は高くなる。密着性が低い物質とは、密着性を低める効果を有する材料を含む物質であればよく、この密着性を低める材料を光照射処理によって分解、破壊し、密着性を低める効果を消滅させるのである。
光の波長としては、使用する密着性が低い物質が吸収する波長である必要がある。光照射による処理効率を向上させるため、処理される物質に、そのレーザ光の波長領域に吸収域を有する光吸収体を添加することは有効である。光の波長領域に吸収域を持つ光吸収体は、照射された光を吸収し、周囲に放射(輻射)する。その放射エネルギーは、周囲の物質に作用し、結果として物質の物性を変化させ、改質する。光に合わせて、光吸収体を選択すればよいので光の選択の幅が広がる。また光の照射効率も向上できるので、光自体が低エネルギーであっても十分に処理を行うことができる。よって、装置や工程が簡略化するので、コストや時間が軽減し、生産性も向上させることができる。
本実施の形態では、密着性の低い物質52に光吸収体53を添加する(図2(A)参照。)。密着性の低い物質は本実施の形態では、液状にして塗布する方法を用いるため、溶媒等に混入し、液状としている。しかし、被形成領域近傍に物質が付着すればよいので、その形成方法は本実施の形態に限定されない。例えば、ゾルゲル法のディップコーティング法、スピンコーティング法、液滴吐出法、イオンプレーティング法、イオンビーム法、CVD法、スパッタリング法、RFマグネトロンスパッタリング法、プラズマ溶射法、プラズマスプレー法、により形成することができる。ディップコーティング法、スピンコーティング法等の塗布法により形成する場合、溶媒を除去する必要があるとき、焼成したり、乾燥すればよい。液滴吐出法など直接所望なパターンに被形成領域近傍に形成する方法を用いると、材料の利用効率が向上するため低コスト化できる。
密着性の低い物質52中に添加された光吸収体は、図2(A)のように密着性の低い物質52に混入(溶解、又は分散によって)し、液状の密着性の低い組成物となり、吐出装置54より液滴55として基板50上に吐出され、密着性の低い組成物51が形成される。
密着性の低い組成物51の形成物の形成領域のみに、光56を照射する。本実施の形態では、照射する光56としてレーザ光を用い、レーザ照射装置より射出、照射する。密着性の低い組成物51中に含まれる光吸収体は、光56の波長に吸収領域を持つので、照射された光を吸収し、そのエネルギーを放射する。その放射エネルギーによって密着性の低い物質は分解、破壊され、処理領域の密着性が高まる。よって、密着性の高い領域である高密着性領域58が形成され、被形成領域近傍に密着性が異なる領域が形成される。よって非処理領域は、相対的に密着性が低くなり、低密着性領域57a、低密着性領域57bとなる(図2(B)参照。)。
密着性の異なる領域を形成した後、密着性の低い組成物中に含まれる光吸収体をアルコールや水などで洗浄し、取り除いても良い。この場合、光吸収体のみを除去するため、密着性の低い物質52が溶解しないよう選択比の高い溶媒を選択する必要がある。本実施の形態では、光吸収体53を溶解する溶媒で洗浄し、光吸収体53を除去し、高密着性領域71、低密着性領域72a、低密着性領域72bを形成する(図2(C)参照。)。
光吸収体は、密着性の低い物質中に含まれていれば良く、その存在する状態は、溶解して存在しても良いし、粒子として分散して存在してもよい。光吸収体が、分散して含まれる場合、光吸収体として、処理領域より小さな大きさの粒子を用いる必要がある。粒子から放射されるエネルギーは周囲の物質に作用するため、粒子の大きさで処理領域の最小値が決定されてしまうからである。また、分散する光吸収体の形状は、粒状、柱状、針状、板状などどのような形状でも良く、複数の被形成物表面を形成する物質のうち、少なくとも一つと同じ物質が凝集し、単体として集合体を形成してもよい。
また、図32に示した装置は、基板の表面側からレーザ光を照射して露光する例を示したが、光学系や基板移動機構を適宜変更し、基板の裏面側からレーザ光を照射して露光するレーザ光描画装置としてもよい。
基板裏側から露光して被形成領域の改質処理を行う例を図3を用いて説明する。透光性を有する基板60を用い、基板60上にマスク62を形成する(図3(A)参照。)。マスク62は、照射される光を遮断するマスクとして機能させるため、照射する光が透過しにくい材料を用いる必要がある。
図2で用いたように、密着性の低い物質65に光吸収体を添加しても良い。密着性の低い物質65は、吐出装置64より液滴として基板60上に吐出され、密着性が低い組成物61が形成される(図3(B)参照。)。
この密着性が低い組成物61に、基板60を通過して光源66より光69を照射する(図3(C)参照。)。図3の例では、光源としてランプ光源を用いている。光69は、マスク62の形成領域では、マスク62によって遮断されるので、マスク62上の密着性が低い組成物表面は処理されない。よって、密着性の高い領域である高密着性領域67a、高密着性領域67bが形成され、被形成領域近傍に密着性が異なる領域が形成される。よって非処理領域は、相対的に密着性が低くなり、低密着性領域68となる。
以上の工程により、形成物の被形成領域近傍に密着性の異なる複数の領域が形成される(図1(A)参照。)。
被形成領域である高密着性領域71に、液滴吐出装置73のノズルより、形成する材料を含む液滴74を吐出する。吐出された液滴74は、高密着性領域71、低密着性領域72a及び低密着性領域72bの一部に付着し、形成される(図1(B)参照。)。焼成、乾燥等を行い、形成物75は、密着性の異なる3つの領域に跨って形成され、高密着性領域71上には形成物75b、低密着性領域72aには形成物75a、低密着性領域72bには形成物75cがそれぞれ形成される。形成物75a、形成物75b、形成物75cの間にある点線は、形成領域における光照射による処理領域と非処理領域との境目であり、境界線を表したものである。各領域と形成される形成物との間には、各密着性に応じて、それぞれ密着力77a、密着力77b、密着力77cが働く。図1(B)で示す密着力は、そこに生じる力をあくまで直感的に理解できるように矢印で表したものである。高密着性領域71は、密着性が高くなるように改質処理されているので、形成物75bとは密着性が高く、密着力77bも大きい。一方、低密着性領域72a。低密着性領域72bは、改質処理されていないため、形成物75a、形成物75cとの密着性が低く、密着力77a、密着力77cも小さい。
形成物75に、接着面を有する物質76を接着させ、形成物75a、形成物75bを剥離するように除去する(図1(C)参照。)。高密着性領域71に形成される形成物75bは、密着力77bが接着面を有する物質76への接着する力より大きいため、基板50上に残存する。一方低密着性領域72a、低密着性領域72bに形成される形成物75a、形成物75cは、密着力77a、密着力77cが接着面を有する物質76への接着する力より小さいため、接着面を有する物質76へ付着し、基板50上より除去される。このように、除去に用いる力は、不要部分として除去する形成物と形成領域との密着力より大きく、形成物として残存させる領域の密着力より小さな力であることが必要であり、この設定により所望のパターンで形成物を得られるように、選択的に不要部分を除去することができる。
本実施の形態では、形成する材料を含む組成物に導電性材料を含む組成物を用い、形成物として、導電層を形成する。このように得られた導電層は、制御性よく高繊細に形成することができ、微細にパターニングされた配線基板を作製することができる。また、形成する材料を含む組成物に絶縁性材料を含む組成物を用いれば、同様に微細にパターニングされた層間絶縁層などの絶縁層が形成でき、またマスク層として用いれば、高繊細なマスクとしてパターニングに用いることができる。
本発明に用いることのできる除去手段を図4を用いて説明する。除去手段91はローラー形状をしており基板と接する側面は、除去能力がある接着剤(粘着剤)を有する接着面92となっている。接着面は除去手段91自体に接着剤が直接形成されていてもよいし、紙、フィルム、テープなどのようなフレキシブルな物質に接着剤が形成されているものを除去手段91に設置してもよい。紙、フィルム、テープなどの物質が媒体となって接着面を有する場合、使用済みの除去能力の消失した接着面を有する紙などの媒体ごと、新しい使用前の除去能力を有する接着面を有する物質と交換することができ、簡便である。もちろん、洗浄、清掃することによって繰り返し、接着面を利用することもできる。接着剤は、適する接着力が得られるものならば、どのようなものでも限定はなく、保管時の形態も溶剤系、水系、ホットメルト系でもよく、材料もゴム系、アクリル酸エステルやメタクリル酸エステルなどのアクリル系ポリマーを主体とするアクリル系、シリコーン系などを用いることができる。接着剤を形成された接着面を有する物質に限定はなく、導電性材料であっても、絶縁性材料であってもよい。除去手段91は矢印96の方向に回転することによって、基板上を走査される。このとき、基板90も矢印97の方向へ走査してもよく、除去手段91と相対的に制御し、走査すればよい。また、除去手段91は、矢印98で示す方向にも走査することができ、形成物93と接着する時の圧力の強さと方向を制御することができる。また、不要部分に対する剥離方法、例えば剥離する方向によって、剥離後の形成物の形状が異なる場合もある。剥離方法や除去手段は、形成物の材料、大きさなどの形状によって選択すればよい。除去方法によって、同材料、同工程で形成された形成物も異なる形状に、形成、整形することができうる。
形成物の形状の例を図35を用いて説明する。図35の(A)に示すように、基板203上に、形成物に対して改質処理された高密着性領域205及び非処理領域である低密着性領域204a、低密着性領域204bが形成されている。接着面を有する物質202の接着力により、形成物201は接着面を有する物質に接着し、基板203から剥離される。基板203上に残存する形成物200は、図35(A)のようにテーパー形状を有する形成物200となる。
図35の(B)に示すように、接着面を有する物質212の接着力により、形成物211は接着面を有する物質に接着し、基板203から剥離される。除去される形成物211は、低密着性領域204a、低密着性領域204b上の形成物と、高密着性領域205上の形成物の一部であり、基板203上に残存する形成物210は、図35(B)のようにもとに形成された形成物より、膜厚が小さい形成物210となる。
図35の(C)に示すように、接着面を有する物質222の接着力により、形成物221は接着面を有する物質に接着し、基板203から剥離される。除去される形成物221は、低密着性領域204a、低密着性領域204b上の形成物と、高密着性領域205上の形成物の一部であり、基板203上に残存する形成物220は、図35(C)のようにくぼみのような凹部を有する形成物220となる。以上のように、除去手段として用いられる物質の接着力、剥離力、剥離方法(方向や速度)によって得られる形成物の形状は変化しうる。
基板90には被形成領域のみが、周辺の非形成領域よりも密着性が高いように改質処理されている。被形成領域近傍に形成された形成物93に対し、除去手段91は、選択的に低密着性領域に形成されている除去部分である形成物95を、接着面92に接着して剥離し、除去する。よって、高密着性領域上に形成された形成物94のみが、基板90上に所望とするパターンで形成される。図4においては除去手段はローラー形状を示したが、それに限定されず、除去するべき不要部分のみにシート形状の除去手段を接着してもよい。また、不要部分を除去したい領域のみ、部分的に接着面を接着してもよく、また複数回除去工程を繰り返し行ってもよい。
本実施の形態では接着面を有する物質によって、機械的に低密着性領域上の形成物を除去するが、このような接着力(粘着力)による剥離の他、吸引による除去でもよいし、エアブロー、エアガンなどによる噴射によって選択的に除去部分を吹き飛ばすように剥離、除去させてもよい。また、物理的に衝撃を与えても良いし、前述した除去方法を組み合わせて行ってもよい。本発明は、物理的な力で機械的に不要な形成物を除去するので、化学的処理によって生じる廃液などの汚染物質が生じないため、環境に配慮した廃液処理などの工程の追加や装置の設置などの対策を行わなくて良い。よって、工程は簡略化し、コストも低下する。また、本実施の形態で示したように接着面を有する物質による剥離という簡便な工程によって、所望の形状にパターニングされた形成物が制御性よく正確に得ることができる。
本発明を用いると、例えば電極層など、微細なパターンで形成したい場合、液滴の吐出口が多少大きく一部非形成領域にも形成されたとしても、不要部分の除去が可能なので、細線化できる。また液滴の液量をその線幅によって制御する必要がないので、その配線の膜厚制御も可能になる。本実施の形態のように、レーザ光照射により物質表面の改質を行うと、レーザ光は微細な加工ができるため、微細な配線や、電極などを制御性よく形成することができる。また、液滴吐出法を組み合わせることで、スピンコート法などによる全面塗布形成に比べ、材料のロスが防げ、コストダウンが可能になる。
本実施の形態では、前処理として密着性の低い組成物を形成したが、その形成条件によっては膜厚が極薄であり、膜として形態を保っていなくてもよい。また、その密着性は形成物に接し、留めておく表面だけでもよく、必ずしも膜厚方向全体にわたって同様の性質を有する必要はない。
所望なパターンに形成物を形成後、前処理として形成した密着性を変化させる物質を残してもよいし、形成物を形成後に、不必要な部分は除去してしまってもよい。除去は、酸素等によるアッシング、エッチングなどにより除去すればいい。その形成物をマスクとして用いることもできる。
低密着性領域を形成する処理物である溶液の組成物の一例としては、Rn−Si−X(4-n)(n=1、2、3)の化学式で表されるシランカップリング剤を用いる。ここで、Rは、アルキル基などの比較的不活性な基を含む物である。また、Xはハロゲン、メトキシ基、エトキシ基又はアセトキシ基など、基質表面の水酸基あるいは吸着水との縮合により結合可能な加水分解基からなる。
また、シランカップリング剤の代表例として、Rにフルオロアルキル基を有するフッ素を有するシランカップリング剤(フルオロアルキルシラン(以下、FASともいう。))を用いることにより、より密着性を低めることができる。FASのRは、(CF3)(CF2x(CH2y(x:0以上10以下の整数、y:0以上4以下の整数)で表される構造を持ち、複数個のR又はXがSiに結合している場合には、R又はXはそれぞれすべて同じでも良いし、異なっていてもよい。代表的なFASとしては、ヘプタデカフルオロテトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロテトラヒドロデシルトリクロロシラン、トリデカフルオロテトラヒドロオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシラン等のフルオロアルキルシランが挙げられる。
低密着性領域を形成する溶液の溶媒としては、nーペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−デカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素を有する溶媒又はテトラヒドロフランなど、低密着性領域を形成する溶媒を用いる。
また、低密着性領域を形成する溶液の組成物の一例として、フッ素炭素鎖を有する物質(フッ素樹脂)を用いることができる。フッ素樹脂として、ポリテトラフルオロエチレン(PTFE;四フッ化エチレン樹脂)、パーフルオロアルコキシアルカン(PFA;四フッ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂)、パーフルオロエチレンプロペンコーポリマー(PFEP;四フッ化エチレン−六フッ化プロピレン共重合樹脂)、エチレン−テトラフルオロエチレンコポリマー(ETFE;四フッ化エチレン−エチレン共重合樹脂)、ポリビニリデンフルオライド(PVDF;フッ化ビニリデン樹脂)、ポリクロロトリフルオロエチレン(PCTFE;三フッ化塩化エチレン樹脂)、エチレン−クロロトリフルオロエチレンコポリマー(ECTFE;三フッ化塩化エチレン−エチレン共重合樹脂)、ポリテトラフルオロエチレン−パーフルオロジオキソールコポリマー(TFE/PDD)、ポリビニルフルオライド(PVF;フッ化ビニル樹脂)等を用いることができる。
また、低密着性領域を形成しない(すなわち、高密着性領域を形成する)有機材料を用い、後にCF4プラズマ等による処理を行って、低密着性領域を形成してもよい。例えば、ポリビニルアルコール(PVA)のような水溶性樹脂を、H2O等の溶媒に混合した材料を用いることができる。また、PVAと他の水溶性樹脂を組み合わせて使用してもよい。有機(樹脂)材料(ポリイミド、アクリル)やシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。さらには、低密着性領域を有する材料であっても、さらにプラズマ処理等を行うことによって、密着性をより低下させることができる。
光吸収体としては、有機材料、無機材料、無機材料及び有機材料を含む物質などを用いることができ、用いるレーザ光の波長によって、その波長に吸収領域を持つものを選択すればよい。金属等の導電性材料でもよいし、有機樹脂などの絶縁性材料であってもよい。無機材料としては、鉄、金、銅、珪素やゲルマニウム、有機材料としては、ポリイミド、アクリルなどのプラスチックや色素などを用いることができ、例えば、レーザ波長が532nmに対応する色素としては、ローダミンB、エオシンY、メチルオレンジ、ローズベンガルなど、レーザ波長が405nmに対応する色素としては、クマリン系(クマリン6H、クマリン102、クマリン152、クマリン153など)をそれぞれ用いることができる。また、色素としては黒色のカーボンブラックなどや顔料の黒色樹脂なども用いることができる。
また光照射による処理効率を向上させるため、処理される物質に接して光触媒物質を形成してもよい。光触媒物質は光触媒機能を有するので、照射された光によって活性化し、そのエネルギーによって改質処理効率が向上する。
光触媒物質は、酸化チタン(TiOX)、チタン酸ストロンチウム(SrTiO3)、セレン化カドミウム(CdSe)、タンタル酸カリウム(KTaO3)、硫化カドミウム(CdS)、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb25)、酸化亜鉛(ZnO)、酸化鉄(Fe23)、酸化タングステン(WO3)等が好ましい。これら光触媒物質に紫外光領域の光(波長400nm以下、好ましくは380nm以下)を照射し、光触媒活性を生じさせることができる。
光触媒物質は、ゾルゲル法のディップコーティング法、スピンコーティング法、液滴吐出法、イオンプレーティング法、イオンビーム法、CVD法、スパッタリング法、RFマグネトロンスパッタリング法、プラズマ溶射法、プラズマスプレー法、又は陽極酸化法により形成することができる。また物質は、その形成方法により膜としての連続性を有さなくても良い。複数の金属を含む酸化物半導体からなる光触媒物質の場合、構成元素の塩を混合、融解して形成することができる。ディップコーティング法、スピンコーティング法等の塗布法により光触媒物質を形成する場合、溶媒を除去する必要があるとき、焼成したり、乾燥すればよい。具体的には、所定の温度(例えば、300℃以上)で加熱すればよく、好ましくは酸素を有する雰囲気で行う。
形成物を形成する被形成領域を、周囲の領域より形成物に対する密着性を向上させる前処理を行うことによって、形成物を所望な形状に形成できる。また、レーザ光照射の微細な加工により、パターンの細線化も自由に設計できる。本発明により、形成する形成物を、所望なパターンで制御性よく形成できる。また、材料のロスも少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態2)
本発明の実施の形態について、図5乃至図12、図15及び図33を用いて説明する。より詳しくは、本発明を適用した、チャネルエッチ型の薄膜トランジスタを有する表示装置の作製方法について説明する。図5乃至図11の(A)は表示装置画素部の上面図であり、図5乃至図11(B)は、図5乃至図11(A)における線A−Cによる断面図、(C)は線B−Dによる断面図である。
図33(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス上に配列させた画素部2701、走査線側入力端子2703、信号線側入力端子2704が形成されている。画素数は種々の規格に従って設ければ良く、XGAであれば1024×768×3(RGB)、UXGAであれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させるのであれば1920×1080×3(RGB)とすれば良い。
画素2702は、走査線側入力端子2703から延在する走査線と、信号線側入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。
TFTは、その主要な構成要素として、半導体層、ゲート絶縁層及びゲート電極層が挙げられ、半導体層に形成されるソース及びドレイン領域に接続する配線層がそれに付随する。構造的には基板側から半導体層、ゲート絶縁層及びゲート電極層を配設したトップゲート型と、基板側からゲート電極層、ゲート絶縁層及び半導体層を配設したボトムゲート型などが代表的に知られているが、本発明においてはそれらの構造のどのようなものを用いても良い。
図33(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、図15(A)に示すように、COG(Chip on Glass)方式によりドライバIC2751を基板2700上に実装しても良い。また他の実装形態として、図15(B)に示すようなTAB(Tape Automated Bonding)方式を用いてもよい。ドライバICは単結晶半導体基板に形成されたものでも良いし、ガラス基板上にTFTで回路を形成したものであっても良い。図15において、ドライバIC2751は、FPC(Flexible printed circuit)2750と接続している。
また、画素に設けるTFTをSASで形成する場合には、図33(B)に示すように走査線側駆動回路3702を基板3700上に形成し一体化することもできる。図33(B)において、画素部3701は、信号線側入力端子3704と接続した図33(A)と同様に外付けの駆動回路により制御する。画素に設けるTFTを移動度の高い、多結晶(微結晶)半導体、単結晶半導体などで形成する場合は、図33(C)は、画素部4701、走査線駆動回路4702と、信号線駆動回路4704を基板4700上に一体形成することもできる。
基板100は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス等からなるガラス基板、石英基板、シリコン基板、金属基板、ステンレス基板又は本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板を用いる。また、基板100の表面が平坦化されるようにCMP法などによって、研磨しても良い。なお、基板100上に、絶縁層を形成してもよい。絶縁層は、CVD法、プラズマCVD法、スパッタリング法、スピンコート法等の公知の方法により、珪素を含む酸化物材料、窒化物材料を用いて、単層又は積層して形成される。この絶縁層は、形成しなくても良いが、基板100からの汚染物質などを遮断する効果がある。ガラス基板よりの汚染を防ぐための下地層を形成する場合は、その上に密着性が異なる複数の領域(高密着性領域と低密着性領域)を形成する。
前処理として形成物の被形成領域を周囲の領域と比較して、改質する。本実施の形態では、密着性の低い物質を形成し、光の照射処理によって選択的に密着性を変化させ、高密着性領域と低密着性領域を形成する。密着性の差は、形成物とその形成領域とに働く密着力(形成物の付着力)の差である。光の照射処理効率を向上させるため、処理物に、照射するレーザ光の波長に吸収領域を持つ光吸収体を添加(混入)してもよい。
基板100上に、密着性の低い物質を含む密着性の低い組成物101を形成する(図5参照。)。
低密着性領域を形成する溶液の組成物の一例としては、Rn−Si−X(4-n)(n=1、2、3)の化学式で表されるシランカップリング剤を用いる。ここで、Rは、アルキル基などの比較的不活性な基を含む物である。また、Xはハロゲン、メトキシ基、エトキシ基又はアセトキシ基など、基質表面の水酸基あるいは吸着水との縮合により結合可能な加水分解基からなる。
また、シランカップリング剤の代表例として、Rにフルオロアルキル基を有するフッ素を有するシランカップリング剤(フルオロアルキルシラン(以下、FASともいう。))を用いることにより、より密着性を低めることができる。FASのRは、(CF3)(CF2x(CH2y(x:0以上10以下の整数、y:0以上4以下の整数)で表される構造を持ち、複数個のR又はXがSiに結合している場合には、R又はXはそれぞれすべて同じでも良いし、異なっていてもよい。代表的なFASとしては、ヘプタデカフルオロテトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロテトラヒドロデシルトリクロロシラン、トリデカフルオロテトラヒドロオクチルトリクロロシラン、トリフルオロプロピルトリメトキシシラン等のフルオロアルキルシランが挙げられる。
低密着性領域を形成する溶液の溶媒としては、nーペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−デカン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランなどの炭化水素を有する溶媒又はテトラヒドロフランなど、低密着性表面を形成する溶媒を用いる。
また、低密着性領域を形成する溶液の組成物の一例として、フッ素炭素(フルオロカーボン)鎖を有する材料(フッ素樹脂)を用いることができる。フッ素樹脂として、ポリテトラフルオロエチレン(PTFE;四フッ化エチレン樹脂)、パーフルオロアルコキシアルカン(PFA;四フッ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂)、パーフルオロエチレンプロペンコーポリマー(PFEP;四フッ化エチレン−六フッ化プロピレン共重合樹脂)、エチレン−テトラフルオロエチレンコポリマー(ETFE;四フッ化エチレン−エチレン共重合樹脂)、ポリビニリデンフルオライド(PVDF;フッ化ビニリデン樹脂)、ポリクロロトリフルオロエチレン(PCTFE;三フッ化塩化エチレン樹脂)、エチレン−クロロトリフルオロエチレンコポリマー(ECTFE;三フッ化塩化エチレン−エチレン共重合樹脂)、ポリテトラフルオロエチレン−パーフルオロジオキソールコポリマー(TFE/PDD)、ポリビニルフルオライド(PVF;フッ化ビニル樹脂)等を用いることができる。
また、低密着性領域を示さない(すなわち、高密着性領域を示す)有機材料を用い、後にCF4プラズマ等による処理を行って、低密着性領域を形成してもよい。例えば、ポリビニルアルコール(PVA)のような水溶性樹脂を、H2O等の溶媒に混合した材料を用いることができる。また、PVAと他の水溶性樹脂を組み合わせて使用してもよい。有機(樹脂)材料(ポリイミド、アクリル)やシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。さらには、低密着性表面を有する材料であっても、さらにプラズマ処理等を行うことによって、密着性をより低下させることができる。
本実施の形態では、密着性の低い物質としてFASを用いる。この密着性は後工程で形成するゲート電極層に対してである。本実施の形態では、スピンコート法による全面塗布を行うが、液滴吐出法などにより、ゲート電極層の被形成領域近傍に選択的に形成しても良い。この場合、無駄になる材料を減らすことができるため、材料の利用効率が向上する。
次に、ゲート電極層が形成される領域にレーザ照射装置によりレーザ光171a、レーザ光171bを照射し、照射領域の密着性の低い物質を分解し、密着性を高める。本実施の形態では、処理する光として精密に微細な加工が可能なレーザ光を用いる。また、本実施の形態では、密着性の低い物質としてFASを用いているので、FASが分解する200nm以下の波長の光を照射する。しかし前述したように、光吸収体や光触媒物質など、光処理効率を向上させる機能を有する物質を処理物質に添加する場合は、その添加する物質の吸収波長などを考慮して適宜設定すればよい。このレーザ光の照射処理によって、照射領域は、周囲と比較して相対的に密着性が高い高密着性領域102a、高密着性領域102bとなる(図6参照。)。
密着性の低い組成物中に光吸収体や光触媒物質を添加した場合、密着性の異なる領域を形成した後、光吸収体をアルコールや水などで洗浄し、取り除いても良い。光吸収体のみを除去するため、密着性の低い物質が溶解しないよう選択比の高い溶媒を選択する必要がある。基板100から光を取り出す両面放射型や下方放射型の発光表示装置や、透過型液晶表示装置の場合、光の取り出し効率が低下してしまう恐れがあるので、光吸収体を除去することが好ましい。配線基板や、上方放射型の発光表示装置、反射型の液晶表示装置などの場合は、必ずしも光吸収体を除去する必要はない。
被形成領域である高密着性領域102a、高密着性領域102b近傍に、液滴吐出装置180a、液滴吐出装置180bより、導電性材料を含む組成物を吐出し、導電層190、導電層191を形成する(図7参照。)。導電層190、導電層191は、設計上の非形成領域の一部にも形成されるが、非形成領域は低密着性領域であるので、後工程により不要部分の除去が可能である。よって、所望の線幅だけでなく、膜厚も同時に制御でき、細線形成のための液量制御により、所望の膜厚が得られないなどの問題点が解消される。また液滴が吐出されるノズルの吐出口の大きさが、形成したい所望の大きさより大きい場合、吐出領域を広範囲に選択しスループットを上げたい場合も本発明を適用すれば、所望のパターンで形成したい形成物を形成できる。
形成された導電層190及び導電層191に対して、接着剤が形成された接着面を有する物質195を、接着面を張り合わすように接着する。接着後、接着面を有する物質195を引きはがし、導電層190及び導電層191における低密着性領域上に形成された不要部分である導電層193及び導電層194を、基板100上から除去する。光による改質処理によって密着性が高められた高密着性領域102a、高密着性領域102b上の導電層は基板上の被形成領域と密着力が高いので、接着面を有する物質195によって剥離されず、基板100上に残存する。よって所望の形状にパターニングされたゲート電極層103、及びゲート電極層104が形成される(図8参照。)。また、細線化によるゲート電極層のチャネル方向の幅は、10μm以下、好ましくは5μm以下が好ましい。
本実施の形態のように、レーザ光照射により物質の改質を行うと、レーザ光は微細な加工ができるため、微細な配線や、電極などを制御性よく形成することができる。また、液滴吐出法を組み合わせることで、スピンコート法などによる全面塗布形成に比べ、材料のロスが防げ、コストダウンが可能になる。
また、前処理として液滴吐出法による形成物に対する密着性を上げるために、接着材として機能するような有機材料の物質や、酸化チタンなどの下地膜を形成してもよい。この場合、この物質上に、密着性の異なる領域を形成する処理を行えばよい。有機(樹脂)材料(ポリイミド、アクリル)やシロキサン樹脂を用いてもよい。
導電層190、導電層191の形成は、液滴吐出手段を用いて行う。液滴吐出手段とは、組成物の吐出口を有するノズルや、1つ又は複数のノズルを具備したヘッド等の液滴を吐出する手段を有するものの総称とする。液滴吐出手段が具備するノズルの径は、0.02〜100μm(好適には30μm以下)に設定し、該ノズルから吐出される組成物の吐出量は0.001pl〜100pl(好適には0.1pl以上40pl以下、より好ましくは10pl以下)に設定する。吐出量は、ノズルの径の大きさに比例して増加する。また、被処理物とノズルの吐出口との距離は、所望の箇所に滴下するために、出来る限り近づけておくことが好ましく、好適には0.1〜3mm(好適には1mm以下)程度に設定する。
吐出口から吐出する組成物は、導電性材料を溶媒に溶解又は分散させたものを用いる。導電性材料とは、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al等の金属、Cd、Znの金属硫化物、Fe、Ti、Si、Ge、Zr、Baなどの酸化物、ハロゲン化銀の微粒子又は分散性ナノ粒子に相当する。また、透明導電膜として用いられるインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタン等に相当する。導電性材料は、単一元素、又は複数種の元素の粒子を用いることができる。但し、吐出口から吐出する組成物は、比抵抗値を考慮して、金、銀、銅のいずれかの材料を溶媒に溶解又は分散させたものを用いることが好適であり、より好適には、低抵抗な銀、銅を用いるとよい。但し、銀、銅を用いる場合には、不純物対策のため、合わせてバリア膜を設けるとよい。バリア膜としては、窒化珪素膜やニッケルボロン(NiB)を用いるとことができる。
また、導電性材料の周りに他の導電性材料がコーティングされ、複数の層になっている粒子でも良い。例えば、銅の周りにニッケルボロン(NiB)がコーティングされ、その周囲に銀がコーティングされている3層構造の粒子などを用いても良い。溶媒は、酢酸ブチル、酢酸エチル等のエステル類、イソプロピルアルコール、エチルアルコール等のアルコール類、メチルエチルケトン、アセトン等の有機溶剤等を用いる。組成物の粘度は20mPa・s(cp)以下が好適であり、これは、乾燥が起こることを防止したり、吐出口から組成物を円滑に吐出できるようにしたりするためである。また、組成物の表面張力は、40mN/m以下が好適である。但し、用いる溶媒や、用途に合わせて、組成物の粘度等は適宜調整するとよい。一例として、ITOや、有機インジウム、有機スズを溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・s、銀を溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・s、金を溶媒に溶解又は分散させた組成物の粘度は5〜20mPa・sに設定するとよい。
また、導電層は、複数の導電性材料を積層しても良い。また、始めに導電性材料として銀を用いて、液滴吐出法で導電層を形成した後、銅などでめっきを行ってもよい。めっきは電気めっきや化学(無電界)めっき法で行えばよい。めっきは、めっきの材料を有する溶液を満たした容器に基板表面を浸してもよいが、基板を斜め(または垂直)に立てて設置し、めっきする材料を有する溶液を、基板表面に流すように塗布してもよい。基板を立てて溶液を塗布するようにめっきを行うと、工程装置が小型化する利点がある。
各ノズルの径や所望のパターン形状などに依存するが、ノズルの目詰まり防止や高精細なパターンの作製のため、導電体の粒子の径はなるべく小さい方が好ましく、好適には粒径0.1μm以下が好ましい。組成物は、電解法、アトマイズ法又は湿式還元法等の公知の方法で形成されるものであり、その粒子サイズは、一般的に約0.01〜10μmである。但し、ガス中蒸発法で形成すると、分散剤で保護されたナノ粒子は約7nmと微細であり、またこのナノ粒子は、被覆剤を用いて各粒子の表面を覆うと、溶剤中に凝集がなく、室温で安定に分散し、液体とほぼ同じ挙動を示す。従って、被覆剤を用いることが好ましい。
また、組成物を吐出する工程は、減圧下で行ってもよく、減圧下で行うと、導電層の表面に酸化膜などが形成されないため好ましい。組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、例えば、乾燥は100度で3分間、焼成は200〜350度で15分間〜60分間で行うもので、その目的、温度と時間が異なるものである。乾燥の工程、焼成の工程は、常圧下又は減圧下で、レーザ光の照射や瞬間熱アニール、加熱炉などにより行う。なお、この加熱処理を行うタイミング、加熱処理の回数は特に限定されない。乾燥と焼成の工程を良好に行うためには、基板を加熱しておいてもよく、そのときの温度は、基板等の材質に依存するが、一般的には100〜800度(好ましくは200〜350度)とする。本工程により、組成物中の溶媒の揮発、又は化学的に分散剤を除去するとともに、周囲の樹脂が硬化収縮することで、ナノ粒子間を接触させ、融合と融着を加速する。
乾燥や焼成の工程で用いられるレーザ光の照射は、連続発振またはパルス発振の気体レーザ又は固体レーザを用いれば良い。前者の気体レーザとしては、エキシマレーザ、He−Cdレーザ、Arレーザ等が挙げられ、後者の固体レーザとしては、Cr、Nd等がドーピングされたYAG、YVO4、GdVO4等の結晶を使ったレーザ等が挙げられる。なお、レーザ光の吸収率の関係から、連続発振のレーザを用いることが好ましい。また、パルス発振と連続発振を組み合わせた所謂ハイブリッドのレーザ照射方法を用いてもよい。但し、基板100の耐熱性に依っては、レーザ光の照射による加熱処理は、基板100を破壊しないように、数マイクロ秒から数十秒の間で瞬間的に行うとよい。瞬間熱アニール(RTA)は、不活性ガスの雰囲気下で、紫外光乃至赤外光を照射する赤外ランプやハロゲンランプなどを用いて、急激に温度を上昇させ、数分〜数マイクロ秒の間で瞬間的に熱を加えて行う。この処理は瞬間的に行うために、実質的に最表面の薄膜のみを加熱することができ、下層の膜には影響を与えない。つまり、プラスチック基板等の耐熱性が弱い基板にも影響を与えない。
また、ゲート電極層103、ゲート電極層104を、組成物を形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法としては、ローラー状のものを表面に走査することによって、凹凸をならすように軽減したり、平坦な板状な物で表面を垂直にプレスしてもよい。プレスする時に、加熱工程を行っても良い。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸が生じる場合に、その表面の平坦化する場合適用することができる。
次に、ゲート電極層103、ゲート電極層104の上にゲート絶縁層106を形成する(図9参照。)。ゲート絶縁層106としては、珪素の酸化物材料又は窒化物材料等の公知の材料で形成すればよく、積層でも単層でもよい。本実施の形態では、窒化珪素膜、酸化珪素膜、窒化珪素膜3層の積層を用いる。またそれらや、酸化窒化珪素膜の単層、2層からなる積層でも良い。好適には、緻密な膜質を有する窒化珪素膜を用いるとよい。また、液滴吐出法で形成される導電層に銀や銅などを用いる場合、その上にバリア膜として窒化珪素膜やNiB膜を形成すると、不純物の拡散を防ぎ、表面を平坦化する効果がある。なお、低い成膜温度でゲートリーク電流が少ない緻密な絶縁膜を形成するには、アルゴンなどの希ガス元素を反応ガスに含ませ、形成される絶縁膜中に混入させると良い。
次に半導体層を形成する。一導電性型を有する半導体層は必要に応じて形成すればよい。本実施の形態では、半導体層107、半導体層108と一導電型を有する半導体層としてN型半導体層109、N型半導体層110を積層する(図9参照。)。またN型半導体層を形成し、Nチャネル型TFTのNMOS構造、P型半導体層を形成したPチャネル型TFTのPMOS構造、Nチャネル型TFTとPチャネル型TFTとのCMOS構造を作製することができる。また、導電性を付与するために、導電性を付与する元素をドーピングによって添加し、不純物領域を半導体層に形成することで、Nチャネル型TFT、Pチャネル型TFTを形成することもできる。N型半導体層を形成するかわりに、PH3ガスによるプラズマ処理を行うことによって、半導体層に導電性を付与してもよい。
半導体層を形成する材料は、シランやゲルマンに代表される半導体材料ガスを用いて気相成長法やスパッタリング法で作製されるアモルファス半導体(以下「AS」ともいう。)、該非晶質半導体を光エネルギーや熱エネルギーを利用して結晶化させた多結晶半導体、或いはセミアモルファス(微結晶若しくはマイクロクリスタルとも呼ばれる。以下「SAS」ともいう。)半導体などを用いることができる。半導体層は公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により成膜することができる。
SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5〜20nmの結晶領域を観測することが出来、珪素を主成分とする場合にはラマンスペクトルが520cm-1よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。未結合手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。SASは、珪化物気体をグロー放電分解(プラズマCVD)して形成する。珪化物気体としては、SiH4、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることが可能である。またF2、GeF4を混合させても良い。この珪化物気体をH2、又は、H2とHe、Ar、Kr、Neから選ばれた一種または複数種の希ガス元素で希釈しても良い。希釈率は2〜1000倍の範囲、圧力は概略0.1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHzである。基板加熱温度は300℃以下が好ましく、100〜200℃の基板加熱温度でも形成可能である。ここで、主に成膜時に取り込まれる不純物元素として、酸素、窒素、炭素などの大気成分に由来する不純物は1×1020cm-3以下とすることが望ましく、特に、酸素濃度は5×1019cm-3以下、好ましくは1×1019cm-3以下となるようにすることが好ましい。また、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なSASが得られる。また半導体層としてフッ素を含む珪化物気体より形成されるSAS層に水素を含む珪化物気体より形成されるSAS層を積層してもよい。
アモルファス半導体としては、代表的には水素化アモルファスシリコン、結晶性半導体としては代表的にはポリシリコンなどがあげられる。ポリシリコン(多結晶シリコン)には、800℃以上のプロセス温度を経て形成されるポリシリコンを主材料として用いた所謂高温ポリシリコンや、600℃以下のプロセス温度で形成されるポリシリコンを主材料として用いた所謂低温ポリシリコン、また結晶化を促進する元素などを添加し結晶化させたポリシリコンなどを含んでいる。もちろん、前述したように、セミアモルファス半導体又は半導体層の一部に結晶相を含む半導体を用いることもできる。
半導体層に、結晶性半導体層を用いる場合、その結晶性半導体層の作製方法は、公知の方法(レーザ結晶化法、熱結晶化法、またはニッケルなどの結晶化を助長する元素を用いた熱結晶化法等)を用いれば良い。また、SASである微結晶半導体をレーザ照射して結晶化し、結晶性を高めることもできる。結晶化を助長する元素を導入しない場合は、非晶質珪素膜にレーザ光を照射する前に、窒素雰囲気下500℃で1時間加熱することによって非晶質珪素膜の含有水素濃度を1×1020atoms/cm3以下にまで放出させる。これは水素を多く含んだ非晶質珪素膜にレーザ光を照射すると非晶質珪素膜が破壊されてしまうからである。
非晶質半導体層への金属元素の導入の仕方としては、当該金属元素を非晶質半導体層の表面又はその内部に存在させ得る手法であれば特に限定はなく、例えばスパッタ法、CVD法、プラズマ処理法(プラズマCVD法も含む)、吸着法、金属塩の溶液を塗布する方法を使用することができる。このうち溶液を用いる方法は簡便であり、金属元素の濃度調整が容易であるという点で有用である。また、このとき非晶質半導体層の表面の濡れ性を改善し、非晶質半導体層の表面全体に水溶液を行き渡らせるため、酸素雰囲気中でのUV光の照射、熱酸化法、ヒドロキシラジカルを含むオゾン水又は過酸化水素による処理等により、酸化膜を成膜することが望ましい。
非晶質半導体層の結晶化は、熱処理とレーザ光照射による結晶化を組み合わせてもよく、熱処理やレーザ光照射を単独で、複数回行っても良い。
また、結晶性半導体層を、直接基板にプラズマ法により形成しても良い。また、プラズマ法を用いて、結晶性半導体層を選択的に基板に形成してもよい。
半導体として、有機半導体材料を用い、印刷法、スプレー法、スピン塗布法、液滴吐出法などで形成することができる。この場合、上記エッチング工程が必要ないため、工程数を削減することが可能である。有機半導体としては、低分子材料、高分子材料などが用いられ、有機色素、導電性高分子材料などの材料も用いることができる。本発明に用いる有機半導体材料としては、その骨格が共役二重結合から構成されるπ電子共役系の高分子材料が望ましい。代表的には、ポリチオフェン、ポリフルオレン、ポリ(3−アルキルチオフェン)、ポリチオフェン誘導体、ペンタセン等の可溶性の高分子材料を用いることができる。
その他にも本発明に用いることができる有機半導体材料としては、可溶性の前駆体を成膜した後で処理することにより第1の半導体領域を形成することができる材料がある。このような有機半導体材料としては、ポリチエニレンビニレン、ポリ(2,5−チエニレンビニレン)、ポリアセチレン、ポリアセチレン誘導体、ポリアリレンビニレンなどがある。
前駆体を有機半導体に変換する際には、加熱処理だけではなく塩化水素ガスなどの反応触媒を添加することがなされる。また、これらの可溶性有機半導体材料を溶解させる代表的な溶媒としては、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、アニソール、クロロフォルム、ジクロロメタン、γブチルラクトン、ブチルセルソルブ、シクロヘキサン、NMP(N−メチル−2−ピロリドン)、シクロヘキサノン、2−ブタノン、ジオキサン、ジメチルホルムアミド(DMF)または、THF(テトラヒドロフラン)などを適用することができる。
本実施の形態では、半導体として、非晶質半導体を用いる。半導体層を形成し、その後、プラズマCVD法等により一導電型を有する半導体層としてN型半導体層を形成する。
続いて、レジストやポリイミド等の絶縁体からなるマスクを用いて、半導体層、N型半導体層を同時にパターン加工し、半導体層107、半導体層108、N型半導体層109、N型半導体層110を形成する(図9参照。)。マスクは組成物を選択的に吐出して形成することができる。マスクは、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フレア、透過性を有するポリイミドなどの有機材料、シロキサンポリマー等の重合によってできた化合物材料、水溶性ホモポリマーと水溶性共重合体を含む組成物材料等を用いて液滴吐出法で形成する。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、代表的なポジ型レジストである、ノボラック樹脂と感光剤であるナフトキノンジアジド化合物、ネガ型レジストであるベース樹脂、ジフェニルシランジオール及び酸発生剤などを用いてもよい。いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整したり、界面活性剤等を加えたりして適宜調整する。
また、本実施の形態で、マスクを液滴吐出法によって形成する際、前処理として、被形成領域近傍を密着性が異なる領域を形成する処理を行ってもよい。本発明において、液滴吐出法により液滴を吐出してマスクを形成する際、マスクの被形成領域に低密着性領域、高密着性領域を形成し、マスクの形状を制御することができる。この処理によって、非形成領域では、密着力が低いので、機械的に不要部分を除去でき、制御性よくマスク層を形成することができる。この工程は、液滴吐出法を用いる場合、あらゆる形成物のパターニングの前処理として適用することができる。
再び、レジストやポリイミド等の絶縁体からなるマスクを液滴吐出法を用いて形成し、そのマスクを用いて、エッチング加工によりゲート絶縁層106の一部に貫通孔145を形成して、その下層側に配置されているゲート電極層104の一部を露出させる。エッチング加工はプラズマエッチング(ドライエッチング)又はウエットエッチングのどちらを採用しても良いが、大面積基板を処理するにはプラズマエッチングが適している。エッチングガスとしては、CF4、NF3、Cl2、BCl3、などのフッ素を含むガス又は塩素を含むガスを用い、HeやArなどの不活性ガスを適宜加えても良い。また、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
マスクを除去した後、導電性材料を含む組成物を吐出して、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114を形成し、該ソース、ドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114をマスクとして、半導体層107、半導体層108及びN型半導体層109、N型半導体層110をパターン加工して、半導体層107、半導体層108を露出させる(図10参照。)。ソース電極層又はドレイン電極層111はソース配線層又はドレイン配線層としても機能し、ソース電極層又はドレイン電極層113は電源線としても機能する。
ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114を形成する工程も、前述したゲート電極層103及びゲート電極層104を形成したときと同様に形成することができる。よって、低密着性領域、高密着性領域を形成する前処理を行い、不要部分を機械的に除去し繊細なパターニングを行ってもよい。
ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114を形成する導電性材料としては、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。また、透光性を有するインジウム錫酸化物(ITO)、インジウム錫酸化物と酸化珪素からなるITSO、有機インジウム、有機スズ、酸化亜鉛、窒化チタンなどを組み合わせても良い。
ゲート絶縁層106に形成した貫通孔145において、ソース電極層又はドレイン電極層112とゲート電極層104とを電気的に接続させる。ソース電極層又はドレイン電極層の一部は容量素子を形成する。
ゲート絶縁層106の一部に貫通孔145を形成する工程を、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114形成後に、ソース電極層又はドレイン電極層111、ソース電極層又はドレイン電極層112、ソース電極層又はドレイン電極層113、ソース電極層又はドレイン電極層114をマスクとして用いて貫通孔145を形成してもよい。そして貫通孔145に導電層を形成しソース電極層又はドレイン電極層112とゲート電極層104を電気的に接続する。この場合、工程が簡略化する利点がある。
続いて、ゲート絶縁層106上に選択的に、導電性材料を含む組成物を吐出して、第1の電極層117を形成する(図11参照。)。勿論この第1の電極層117を形成する際、ゲート電極層103及びゲート電極層104を形成した時と同様に、低密着性領域、高密着性領域を形成する前処理を行い、不要部分を機械的に除去し繊細なパターニングを行ってもよい。高密着性領域に導電性材料を含む組成物を吐出することによって第1の電極層117をより制御性よく、選択的に形成することもできる。第1の電極層117は、基板100側から光を放射する場合、または透過型の表示パネルを作製する場合には、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)を含むインジウム亜鉛酸化物(IZO(indium zinc oxide))、酸化亜鉛(ZnO)、ZnOにガリウム(Ga)をドープしたもの、酸化スズ(SnO2)などを含む組成物により所定のパターンに形成し、焼成によって形成しても良い。
また、好ましくは、スパッタリング法によりインジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)などで形成する。より好ましくは、ITOに酸化珪素が2〜10重量%含まれたターゲットを用いてスパッタリング法で酸化珪素を含む酸化インジウムスズを用いる。この他、ZnOにガリウム(Ga)をドープした導電性材料、酸化珪素を含み酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した酸化物導電性材料であるインジウム亜鉛酸化物(IZO(indium zinc oxide))を用いても良い。スパッタリング法で第1の電極層117を形成した後は、液滴吐出法を用いてマスク層を形成しエッチングにより、所望のパターンに形成すれば良い。本実施の形態では、第1の電極層117は、透光性を有する導電性材料により液滴吐出法を用いて形成し、具体的には、インジウム錫酸化物、ITOと酸化珪素から構成されるITSOを用いて形成する。
本実施の形態では、ゲート絶縁層は窒化珪素からなる窒化珪素膜、酸化窒化珪素膜(酸化珪素膜)、窒化珪素膜の3層の例を前述した。好ましい構成として、酸化珪素を含む酸化インジウムスズで形成される第1の電極層117は、ゲート絶縁層106に含まれる窒化珪素からなる絶縁層と密接して形成され、それにより電界発光層で発光した光が外部に放射される割合を高めることが出来るという効果を発現させることができる。また、ゲート絶縁層はゲート電極層と、第1の電極層の間に介在し、容量素子として機能することもできる。
第1の電極層117は、ソース電極層又はドレイン電極層114の形成前に、ゲート絶縁層106上に選択的に形成することもできる。この場合、本実施の形態とはソース電極層又はドレイン電極層114と、第1の電極層117の接続構造が、第1の電極層の上にソース電極層又はドレイン電極層114が積層する構造となる。第1の電極層117をソース電極層又はドレイン電極層114より先に形成すると、平坦な形成領域に形成できるので、被覆性、成膜性がよく、CMPなどの研磨処理も十分に行えるので平坦性よく形成できる。
また、ソース電極層又はドレイン電極層114上に層間絶縁層となる絶縁層を形成し、配線層によって、第1の電極層117と電気的に接続する構造を用いてもよい。この場合、開口部の形成に本発明を用いることができる。形成する絶縁層に対して、開口部の被形成領域のみを低密着性領域に、その他の領域を高密着性領域とし、絶縁層を形成する。その後、剥離等の機械的によって、低密着性領域上の絶縁層のみを除去すれば、除去領域に開口部が形成される。その後開口部に形成されている密着性の低めるために形成した物質を除去する。
また、開口部(コンタクトホール)を絶縁層を除去して形成するのではなく、絶縁層を選択的に形成する方法を用いてもよい。この場合、絶縁層に対してぬれ性の低い物質をソース電極層又はドレイン電極層114上に形成する。その後、絶縁層を含む組成物を塗布法などで塗布すると、ぬれ性の低い物質の形成されている領域を除いた領域に絶縁層は形成される。加熱、乾燥等によって絶縁層を固化して形成した後、ぬれ性の低い物質を除去し、開口部を形成する。
上述の方法によって形成された開口部を埋めるように配線層を形成し、この配線層に接するように第1の電極層117を形成する。この方法を用いると、エッチングによる開口部の形成が必要ないので工程が簡略化する効果がある。
また、発光した光を基板100側とは反対側に放射させる構造とする場合、反射型のEL表示パネルを作製する場合には、Ag(銀)、Au(金)、Cu(銅))、W(タングステン)、Al(アルミニウム)等の金属の粒子を主成分とした組成物を用いることができる。他の方法としては、スパッタリング法により透明導電膜若しくは光反射性の導電膜を形成して、液滴吐出法によりマスクパターンを形成し、エッチング加工を組み合わせて第1の電極層117を形成しても良い。
第1の電極層117は、その表面が平坦化されるように、CMP法、ポリビニルアルコールなどの多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層117の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
以上の工程により、基板100上にボトムゲート型(逆スタガ型ともいう。)のTFTと画素電極が接続された表示パネル用のTFT基板100が完成する。また本実施の形態のTFTはチャネルエッチ型である。
次に、絶縁層121(隔壁、土手とも呼ばれる)を選択的に形成する。絶縁層121は、第1の電極層117上に開口部を有するように形成する。本実施の形態では、絶縁層121を全面に形成し、レジスト等のマスクによって、エッチングしパターニングする。絶縁層121を、直接選択的に形成できる液滴吐出法や印刷法などを用いて形成する場合は、エッチングによるパターニングは必ずしも必要はない。また絶縁層121も本発明の前処理によって、所望の形状に形成できる。
絶縁層121は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸窒化アルミニウムその他の無機絶縁性材料、又はアクリル酸、メタクリル酸及びこれらの誘導体、又はポリイミド(polyimide)、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又シロキサン樹脂を用いてもよい。アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成してもよい。絶縁層121は曲率半径が連続的に変化する形状が好ましく、上に形成される電界発光層122、第2の電極層123の被覆性が向上する。
また、液滴吐出法により、絶縁層121を組成物を吐出し形成した後、その平坦性を高めるために表面を圧力によってプレスして平坦化してもよい。プレスの方法としては、ローラー状のものを表面に走査することによって、凹凸をならすように軽減したり、平坦な板状な物で表面を垂直にプレスしてもよい。また溶剤等によって表面を軟化、または融解させエアナイフで表面の凹凸部を除去しても良い。また、CMP法を用いて研磨しても良い。この工程は、液滴吐出法によって凹凸が生じる場合に、その表面の平坦化する場合適用することができる。この工程により平坦性が向上すると、表示パネルの表示ムラなどを防止することができ、高繊細な画像を表示することができる。
薄膜トランジスタに電気的に接続するように、発光素子を形成する(図12参照。)。
電界発光層122を形成する前に、大気圧中で200℃の熱処理を行い第1の電極層117、絶縁層121中若しくはその表面に吸着している水分を除去する。また、減圧下で200〜400℃、好ましくは250〜350℃に熱処理を行い、そのまま大気に晒さずに電界発光層122を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。
電界発光層122として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。電界発光層122上に第2の電極層123を積層形成して、発光素子を用いた表示機能を有する表示装置が完成する。
図示しないが、第2の電極層123を覆うようにしてパッシベーション膜を設けることは有効である。表示装置を構成する際に設ける保護膜は、単層構造でも多層構造でもよい。パッシベーション膜としては、窒化珪素(SiN)、酸化珪素(SiO2)、酸化窒化珪素(SiON)、窒化酸化珪素(SiNO)、窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素膜(CNX)を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。例えば窒素含有炭素膜(CNX)と窒化珪素(SiN)との積層のような積層構造、また有機材料を用いることも出来、スチレンポリマーなど高分子の積層でもよい。また、シロキサン樹脂を用いてもよい。
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い電界発光層の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素を含むガス(例えばCH4、C22、C66など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてC24ガスとN2ガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、電界発光層の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に電界発光層が酸化するといった問題を防止できる。
続いて、シール材を形成し、封止基板を用いて封止する。その後、ゲート電極層103と電気的に接続して形成されるゲート配線層に、フレキシブル配線基板を接続し、外部との電気的な接続をしても良い。これは、ソース配線層でもあるソース電極層又はドレイン電極層111と電気的に接続して形成されるソース配線層も同様である。
本発明を用いて作製したEL表示パネルの完成図を図18に示す。図18(A)はEL表示パネルの上面図であり、図18(B)は、図18(A)における線E−Fによる断面図である。図18において、素子基板3300上に形成された画素部3301は、画素3302、ゲート配線層3306a、ゲート配線層3306b、ソース配線層3308を有しており、封止基板3310とシール材3303によって貼り合わされ固着されている。本実施の形態では、FPC3350上にドライバIC3351を設置し、TAB方式で実装している。
図18(A)、(B)で示すとおり、表示パネル内には素子の水分による劣化を防ぐため、乾燥剤3305、乾燥剤3304a、乾燥剤3304bが設置されている。乾燥剤3305は画素部周囲を取り囲むように形成され、乾燥剤3304a、乾燥剤3304bは、ゲート配線層3306a、3306bに対応する領域に形成されている。本実施の形態では、乾燥剤は、図18(B)に示されるように封止基板に形成された凹部に設置され、薄型化を妨げない構成となっている。ゲート配線層に対応する領域にも乾燥剤を形成しているので、吸水面積を広く取ることができ、吸水効果も向上する。また、直接発光しないゲート配線層上に乾燥剤を形成しているので、光取り出し効率を低下させることもない。本実施の形態では、表示パネル内に充填剤3307を充填している。この充填剤として、乾燥剤などの吸湿性を含む物質を用いると、さらなる吸水効果が得られ、素子の劣化を防ぐことができる。
なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理とは、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させる場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けても良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。
本実施の形態では、スイッチングTFTはシングルゲート構造を示したが、ダブルゲート構造などのマルチゲート構造でもよい。また半導体をSASや結晶性半導体を用いて作製した場合、一導電型を付与する不純物の添加によって不純物領域を形成することもできる。この場合、半導体層は濃度の異なる不純物領域を有していてもよい。例えば、半導体層のチャネル領域近傍、ゲート電極層と積層する領域は、低濃度不純物領域とし、その外側の領域を高濃度不純物領域としてもよい。
以上示したように、本実施の形態では、工程を省略化することができる。また、液滴吐出法を用いて基板上に直接的に各種の構成物(パーツ)を形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。
本発明により、表示装置を構成する構成物を所望なパターンで制御性よく簡便に形成できる。また、材料のロスも少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
(実施の形態3)
本発明の実施の形態を、図13、図14を用いて説明する。本実施の形態は、薄膜トランジスタとしてトップゲート型(順スタガ型)の薄膜トランジスタを用いて、表示装置を作製するものである。なお表示素子として液晶材料を用いた液晶表示装置の例を示す。よって、同一部分又は同様な機能を有する部分の繰り返しの説明は省略する。なお、図13、図14は表示装置の断面図である。
本実施の形態でも、光照射処理により、照射領域の密着性を変化させるように改質する。基板300上に、密着性の低い物質を含む密着性の低い組成物を、吐出装置382により吐出し、密着性の低い組成物351を形成する(図13(A)参照。)。本実施の形態では、光としてレーザ光を用いる。
密着性の低い組成物351の両端をレーザ光370a、レーザ光370bによって照射し、密着性の高い高密着性領域360a、高密着性領域360bを形成する(図13(B)参照。)。本実施の形態のように、レーザ光照射により膜の改質を行うと、レーザ光は微細な加工ができるため、微細なパターンでも制御性よく形成することができる。また、液滴吐出法を組み合わせることで、スピンコート法などによる全面塗布形成に比べ、材料のロスが防げ、コストダウンが可能になる。高密着性領域360a、高密着性領域360bに挟まれた低密着性領域301は、レーザ光による微細な加工により形成されたため、細線化された形状を有する。本実施の形態においては、高密着性領域360a、高密着性領域360bと複数の領域をレーザ光で照射処理して、低密着性領域の細線化を行うが、本発明はこれに限定されず、所望とする配線間の間隔に対応するようにレーザ光の照射処理を行い、密着性の制御をすればよい。この低密着性領域301を横切り、周囲の高密着性領域360a、高密着性領域360b上にまたがるように導電性材料を含む組成物を、液滴吐出装置380より吐出する。吐出された導電性材料を含む組成物を乾燥、焼成を行い、導電層390を形成する(図13(C)参照。)。
形成された導電層390に対して、接着剤が形成された接着面を有する物質395を、接着面を張り合わすように接着する。接着後、接着面を有する物質395を引きはがし、導電層390における低密着性領域上に形成された不要部分である導電層391を、基板300上から除去する。光による改質処理によって密着性が高められた高密着性領域360a、高密着性領域360b上の導電層は基板上の被形成領域と密着力が高いので、接着面を有する物質395によって剥離されず、基板300上に残存する。よって所望の形状にパターニングされたソース電極層又はドレイン電極層330、ソース電極層又はドレイン電極層308が形成される(図13(D)参照。)。
ソース電極層又はドレイン電極層330、ソース電極層又はドレイン電極層308の間には、細幅でありながら制御性よく間隔が形成でき、ソース電極層又はドレイン電極層330、ソース電極層又はドレイン電極層308同士が接触しない。そのため半導体のチャネル幅が短いため、低抵抗化し移動度も上がり、かつ制御性よく形成されるためショート等の不良を防止できる。本発明により、配線等が、小型化、薄膜化により密集、複雑に配置される設計であっても、制御性よく形成することができる。
電極層の形成後に前処理として形成した密着性を変化させる物質を残してもよいし、パターンに形成した後に、不必要な部分は除去してしまってもよい。除去は、形成物をマスクとして用いることもでき、酸素等によるアッシング、エッチングなどにより除去すればいい。
ソース電極層又はドレイン電極層330、ソース電極層又はドレイン電極層308にN型半導体層形成し、レジスト等からなるマスクによってエッチングする。レジストは液滴吐出法を用いて形成すればよい。N型半導体層上に半導体層を形成し再び、マスク等を用いてパターニングする。よってN型半導体層306、半導体層307が形成される。
次に、プラズマCVD法やスパッタリング法を用いて、ゲート絶縁層305を単層又は積層構造で形成する(図13(E)参照。)。特に好ましい形態としては、窒化珪素からなる絶縁体層、酸化珪素からなる絶縁体層、窒化珪素からなる絶縁体層の3層の積層体をゲート絶縁層としてもよい。
次に、ゲート絶縁層305上に、レジストなどからなるマスクを形成し、ゲート絶縁層305をエッチングし、貫通孔345を形成する(図14(A)参照。)。本実施の形態では、液滴吐出法によりマスクを選択的に形成する。
ゲート絶縁層305上に液滴吐出装置381によって導電性材料を含む組成物を吐出し、ゲート電極層303が形成される(図14(B)参照。)。実施の形態1のように本発明を用いて、所望の形状にゲート電極層をさらに細線化して形成することもできる。本発明を用いると、ゲート電極層303のチャネル方向の幅を狭くできるため、より低抵抗化し、移動度が向上する。
画素電極層311を液滴吐出法で形成する。画素電極層311とソースまたはドレイン電極層308とを、先に形成した貫通孔345において電気的に接続する。画素電極層311は、前述した第1の電極層117と同様な材料を用いることができ、透過型の液晶表示パネルを作製する場合には、インジウム錫酸化物(ITO)、酸化珪素を含むインジウム錫酸化物(ITSO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などを含む組成物により所定のパターンに形成し、焼成によって形成しても良い。
次に、画素電極層311を覆うように、印刷法やスピンコート法により、配向膜と呼ばれる絶縁層312を形成する。なお、絶縁層312は、スクリーン印刷法やオフセット印刷法を用いれば、選択的に形成することができる。その後、ラビングを行う。続いて、シール材を液滴吐出法により画素を形成した周辺の領域に形成する(図示せず。)。
その後、配向膜として機能する絶縁層321、カラーフィルタとして機能する着色層322、対向電極として機能する導電体層323、偏光板325が設けられた対向基板324とTFT基板である基板300とをスペーサを介して貼り合わせ、その空隙に液晶層320を設けることにより液晶表示パネルを作製することができる(図14(C)参照。)。また偏光板は、基板300のTFTを有さない側にも設けてもよい。シール材にはフィラーが混入されていても良く、さらに対向基板324には、遮蔽膜(ブラックマトリクス)などが形成されていても良い。なお、液晶層を形成する方法として、ディスペンサ式(滴下式)や、対向基板324を貼り合わせてから毛細管現象を用いて液晶を注入するディップ式(汲み上げ式)を用いることができる。
ディスペンサ方式を採用した液晶滴下注入法を図29を用いて説明する。図29の液晶滴下注入法は、制御装置40、撮像手段42、ヘッド43、液晶33、マーカー35、マーカー45は、バリア層34、シール材32、TFT基板30、対向基板20からなる。シール材32で閉ループを形成し、その中にヘッド43より液晶33を1回若しくは複数回滴下する。液晶材料の粘性が高い場合は、連続的に吐出され、繋がったまま被形成領域に付着する。一方、液晶材料の粘性が低い場合には、図29のように間欠的に吐出され液滴が滴下される。そのとき、シール材32と液晶33とが反応することを防ぐため、バリア層34を設ける。続いて、真空中で基板を貼り合わせ、その後紫外線硬化を行って、液晶が充填された状態とする。またTFT基板側にシール材を形成し、液晶を滴下してもよい。
以上の工程で形成された画素部と外部の配線基板を接続するために接続部を形成する。大気圧又は大気圧近傍下で、酸素ガスを用いたアッシング処理により、接続部の絶縁体層を除去する。この処理は、酸素ガスと、水素、CF4、NF3、H2O、CHF3から選択された一つ又は複数とを用いて行う。本工程では、静電気による損傷や破壊を防止するために、対向基板を用いて封止した後に、アッシング処理を行っているが、静電気による影響が少ない場合には、どのタイミングで行っても構わない。
続いて、異方性導電体層を介して、配線層が電気的に接続するように、接続用の配線基板を設ける。配線基板は、外部からの信号や電位を伝達する役目を担う。上記工程を経て、表示機能を有する液晶表示パネルを作製することができる。
本実施の形態では、スイッチングTFTはシングルゲート構造を示したが、ダブルゲート構造などのマルチゲート構造でもよい。また半導体をSASや結晶性半導体を用いて作製した場合、一導電型を付与する不純物の添加によって不純物領域を形成することもできる。この場合、半導体層は濃度の異なる不純物領域を有していてもよい。例えば、半導体層のチャネル領域近傍、ゲート電極層と積層する領域は、低濃度不純物領域とし、その外側の領域を高濃度不純物領域としてもよい。
以上示したように、本実施の形態では、工程を簡略化することができる。また、液滴吐出法を用いて基板上に直接的に各種の構成物(パーツ)を形成することにより、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。
本発明により、表示装置を構成する構成物を、所望なパターンで制御性よく形成できる。また、材料のロスも少なく、コストダウンも達成できる。よって高性能、高信頼性の液晶表示装置を歩留まりよく作製することができる。
(実施の形態4)
本発明を適用して薄膜トランジスタを形成し、該薄膜トランジスタを用いて表示装置を形成することができるが、発光素子を用いて、なおかつ、該発光素子を駆動するトランジスタとしてN型トランジスタを用いた場合、該発光素子から発せられる光は、下面放射、上面放射、両面放射のいずれかを行う。ここでは、それぞれの場合に応じた発光素子の積層構造について、図31を用いて説明する。
また、本実施の形態では、本発明を適用したチャネル保護型の薄膜トランジスタ481、薄膜トランジスタ461、薄膜トランジスタ471を用いる。チャネル保護膜は、液滴吐出法を用いてポリイミド又はポリビニルアルコール等を滴下してもよい。その結果、露光工程を省略することができる。チャネル保護膜としては、無機材料(酸化珪素、窒化珪素、酸化窒化珪素、窒化酸化珪素など)、感光性または非感光性の有機(樹脂)材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、ベンゾシクロブテンなど)、レジスト、低誘電率であるLow k材料などの一種、もしくは複数種からなる膜、またはこれらの膜の積層などを用いることができる。また、シロキサン樹脂を用いてもよい。作製法としては、プラズマCVD法や熱CVD法などの気相成長法やスパッタリング法を用いることができる。また、液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷など直接パターンが形成される方法)を用いることもできる。塗布法で得られるTOF膜やSOG膜なども用いることができる。
まず、光が基板480側に放射する場合、つまり下面放射を行う場合について、図31(A)を用いて説明する。この場合、薄膜トランジスタ481に電気的に接続するように、ソース電極又はドレイン電極482第1の電極484、電界発光層485、第2の電極486が順に積層される。次に、光が基板480と反対側に放射する場合、つまり上面放射を行う場合について、図31(B)を用いて説明する。薄膜トランジスタ461に電気的に接続するソース電極又はドレイン電極462、第1の電極463、電界発光層464、第2の電極465が順に積層される。上記構成により、第1の電極463において光が透過しても、該光はソース電極又はドレイン電極462において反射され、基板460と反対側に放射する。なお、本構成では、第1の電極463には透光性を有する材料を用いる必要はない。最後に、光が基板470側とその反対側の両側に放射する場合、つまり両面放射を行う場合について、図31(C)を用いて説明する。薄膜トランジスタ471に電気的に接続するソース電極又はドレイン電極475、第1の電極472、電界発光層473、第2の電極474が順に積層される。このとき、第1の電極472と第2の電極474のどちらも透光性を有する材料、又は光を透過できる厚さで形成すると、両面放射が実現する。
発光素子は、電界発光層を第1の電極と第2の電極で挟んだ構成になっている。第1の電極及び第2の電極は仕事関数を考慮して材料を選択する必要があり、そして第1の電極及び第2の電極は、画素構成によりいずれも陽極、又は陰極となりうる。本実施の形態では、駆動用TFTの極性がNチャネル型であるため、第1の電極を陰極、第2の電極を陽極とすると好ましい。また駆動用TFTの極性がpチャネル型である場合、第1の電極を陽極、第2の電極を陰極とするとよい。
また第1の電極が陽極であった場合、電界発光層は、陽極側から、HIL(ホール注入層)、HTL(ホール輸送層)、EML(発光層)、ETL(電子輸送層)、EIL(電子注入層)の順に積層するのが好ましい。また、第1の電極が陰極である場合はその逆となり、陰極側からEIL(電子注入層)、ETL(電子輸送層)、EML(発光層)、HTL(ホール輸送層)、HIL(ホール注入層)、第2の電極である陽極の順に積層するのが好ましい。なお電界発光層は、積層構造以外に単層構造、又は混合構造をとることがでる。
また、電界発光層として、赤色(R)、緑色(G)、青色(B)の発光を示す材料を、それぞれ蒸着マスクを用いた蒸着法等によって選択的に形成する。赤色(R)、緑色(G)、青色(B)の発光を示す材料はカラーフィルタ同様、液滴吐出法により形成することもでき(低分子または高分子材料など)、この場合マスクを用いずとも、RGBの塗り分けを行うことができるため好ましい。
また上面放射型の場合で、第2の電極に透光性を有するITOやITSOを用いる場合、ベンゾオキサゾール誘導体(BzOS)にLiを添加したBzOS−Liなどを用いることができる。また例えばEMLは、R、G、Bのそれぞれの発光色に対応したドーパント(Rの場合DCM等、Gの場合DMQD等)をドープしたAlq3を用いればよい。
なお、電界発光層は上記材料に限定されない。例えば、CuPcやPEDOTの代わりに酸化モリブデン(MoOx:x=2〜3)等の酸化物とα−NPDやルブレンを共蒸着して形成し、ホール注入性を向上させることもできる。また電界発光層の材料は、有機材料(低分子又は高分子を含む)、又は有機材料と無機材料の複合材料として用いることができる。以下発光素子を形成する材料について詳細に述べる。
電荷注入輸送物質のうち、特に電子輸送性の高い物質としては、例えばトリス(8−キノリノラト)アルミニウム(略称:Alq3)、トリス(5−メチル−8−キノリノラト)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]−キノリナト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリノラト)−4−フェニルフェノラト−アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等が挙げられる。また正孔輸送性の高い物質としては、例えば4,4'−ビス[N−(1−ナフチル)−N−フェニル−アミノ]−ビフェニル(略称:α−NPD)や4,4'−ビス[N−(3−メチルフェニル)−N−フェニル−アミノ]−ビフェニル(略称:TPD)や4,4',4''−トリス(N,N−ジフェニル−アミノ)−トリフェニルアミン(略称:TDATA)、4,4',4''−トリス[N−(3−メチルフェニル)−N−フェニル−アミノ]−トリフェニルアミン(略称:MTDATA)などの芳香族アミン系(即ち、ベンゼン環−窒素の結合を有する)の化合物が挙げられる。
また、電荷注入輸送物質のうち、特に電子注入性の高い物質としては、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又はアルカリ土類金属の化合物が挙げられる。また、この他、Alq3のような電子輸送性の高い物質とマグネシウム(Mg)のようなアルカリ土類金属との混合物であってもよい。
電荷注入輸送物質のうち、正孔注入性の高い物質としては、例えば、モリブデン酸化物(MoOx)やバナジウム酸化物(VOx)、ルテニウム酸化物(RuOx)、タングステン酸化物(WOx)、マンガン酸化物(MnOx)等の金属酸化物が挙げられる。また、この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPC)等のフタロシアニン系の化合物が挙げられる。
発光層は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルターを設けた構成とすることで、色純度の向上や、画素部の鏡面化(映り込み)の防止を図ることができる。フィルターを設けることで、従来必要であるとされていた円偏光板などを省略することが可能となり、発光層から放射される光の損失を低減することができる。さらに、斜方から画素部(表示画面)を見た場合に起こる色調の変化を低減することができる。
発光材料には様々な材料がある。低分子有機発光材料では、4−ジシアノメチレン−2−メチル−6−[2−(1,1,7,7−テトラメチル−9−ジュロリジル)エテニル]−4H−ピラン(略称:DCJT)、4−ジシアノメチレン−2−t−ブチル−6−[2−(1,1,7,7−テトラメチルジュロリジン−9-イル)エテニル]−4H−ピラン(略称:DCJTB)、ペリフランテン、2,5−ジシアノ−1,4−ビス[2−(10−メトキシ−1,1,7,7−テトラメチルジュロリジン−9−イル)エテニル]ベンゼン、N,N’−ジメチルキナクリドン(略称:DMQd)、クマリン6、クマリン545T、トリス(8−キノリノラト)アルミニウム(略称:Alq3)、9,9’−ビアントリル、9,10−ジフェニルアントラセン(略称:DPA)や9,10−ビス(2−ナフチル)アントラセン(略称:DNA)等を用いることができる。また、この他の物質でもよい。
一方、高分子有機発光材料は低分子に比べて物理的強度が高く、素子の耐久性が高い。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。高分子有機発光材料を用いた発光素子の構造は、低分子有機発光材料を用いたときと基本的には同じであり、順に陰極、有機発光層、陽極となる。しかし、高分子有機発光材料を用いた発光層を形成する際には、低分子有機発光材料を用いたときのような積層構造を形成することは難しく、多くの場合2層構造となる。具体的には、順に陰極、発光層、正孔輸送層、陽極という構造である。
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を示す発光素子を形成することができる。発光層の形成に用いることができる高分子の電界発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、ポリフルオレン系が挙げられる。
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV] の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−PPV]、ポリ(2−(2'−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキシルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
なお、正孔輸送性の高分子有機発光材料を、陽極と発光性の高分子有機発光材料の間に挟んで形成すると、陽極からの正孔注入性を向上させることができる。一般にアクセプター材料と共に水に溶解させたものをスピンコート法などで塗布する。また、有機溶媒には不溶であるため、上述した発光性の有機発光材料との積層が可能である。正孔輸送性の高分子有機発光材料としては、PEDOTとアクセプター材料としてのショウノウスルホン酸(CSA)の混合物、ポリアニリン[PANI]とアクセプター材料としてのポリスチレンスルホン酸[PSS]の混合物等が挙げられる。
また、発光層は単色又は白色の発光を呈する構成とすることができる。白色発光材料を用いる場合には、画素の光放射側に特定の波長の光を透過するフィルター(着色層)を設けた構成としてカラー表示を可能にすることができる。
白色に発光する発光層を形成するには、例えば、Alq3、部分的に赤色発光色素であるナイルレッドをドープしたAlq3、Alq3、p−EtTAZ、TPD(芳香族ジアミン)を蒸着法により順次積層することで白色を得ることができる。また、スピンコートを用いた塗布法によりELを形成する場合には、塗布した後、真空加熱で焼成することが好ましい。例えば、正孔注入層として作用するポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)水溶液(PEDOT/PSS)を全面に塗布、焼成し、その後、発光層として作用する発光中心色素(1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)、4−ジシアノメチレン−2−メチル−6−(p−ジメチルアミノ−スチリル)−4H−ピラン(DCM1)、ナイルレッド、クマリン6など)ドープしたポリビニルカルバゾール(PVK)溶液を全面に塗布、焼成すればよい。
発光層は単層で形成することもでき、ホール輸送性のポリビニルカルバゾール(PVK)に電子輸送性の1,3,4−オキサジアゾール誘導体(PBD)を分散させてもよい。また、30wt%のPBDを電子輸送剤として分散し、4種類の色素(TPB、クマリン6、DCM1、ナイルレッド)を適当量分散することで白色発光が得られる。ここで示した白色発光が得られる発光素子の他にも、発光層の材料を適宜選択することによって、赤色発光、緑色発光、または青色発光が得られる発光素子を作製することができる。
さらに、発光層は、一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を一重項励起発光材料で形成してもよい。三重項励起発光材料は発光効率が良いので、同じ輝度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることができる。
三重項励起発光材料の一例としては、金属錯体をドーパントとして用いたものがあり、第三遷移系列元素である白金を中心金属とする金属錯体、イリジウムを中心金属とする金属錯体などが知られている。三重項励起発光材料としては、これらの化合物に限られることはなく、上記構造を有し、且つ中心金属に周期表の8〜10属に属する元素を有する化合物を用いることも可能である。
以上に掲げる発光層を形成する物質は一例であり、正孔注入輸送層、正孔輸送層、電子注入輸送層、電子輸送層、発光層、電子ブロック層、正孔ブロック層などの機能性の各層を適宜積層することで発光素子を形成することができる。また、これらの各層を合わせた混合層又は混合接合を形成しても良い。発光層の層構造は変化しうるものであり、特定の電子注入領域や発光領域を備えていない代わりに、もっぱらこの目的用の電極を備えたり、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲において許容されうるものである。
上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくは実施の形態2で示すようなアクティブマトリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ、発光表示装置の信頼性を向上させることができる。また、デジタル駆動、アナログ駆動どちらでも適用可能である。
よって、図31には図示していないが、基板480の対向基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は液滴吐出法によって形成することができ、その場合、前述の下地前処理としてレーザ光照射処理などを適用することができる。本発明を用いると、所望なパターンに制御性よくカラーフィルタ(着色層)を形成することができる。カラーフィルタ(着色層)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光スペクトルにおいてブロードなピークを鋭くなるように補正できるからである。
以上、各RGBの発光を示す材料を形成する場合を説明したが、単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば第2の基板(封止基板)に形成し、基板へ張り合わせればよい。また上述したように、単色の発光を示す材料、カラーフィルタ(着色層)、及び色変換層のいずれも液滴吐出法により形成することができる。
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。
上記構成において、陰極としては、仕事関数が小さい材料を用いることが可能で、例えば、Ca、Al、CaF、MgAg、AlLi等が望ましい。電界発光層は、単層型、積層型、また層の界面がない混合型のいずれでもよい。またシングレット材料、トリプレット材料、又はそれらを組み合わせた材料や、有機化合物又は無機化合物を含む電荷注入輸送物質及び発光材料で形成し、その分子数から低分子有機化合物、中分子有機化合物(昇華性を有さず、且つ分子数が20以下、又は連鎖する分子の長さが10μm以下の有機化合物を指していう)、高分子有機化合物から選ばれた一種又は複数種の層を含み、電子注入輸送性又は正孔注入輸送性の無機化合物と組み合わせても良い。第1の電極484、第1の電極463、第1の電極472は光を透過する透明導電膜を用いて形成し、例えばITO、ITSOの他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した透明導電膜を用いてもよい。なお、第1の電極484、第1の電極463、第1の電極472形成前に、酸素雰囲気中でのプラズマ処理や真空雰囲気下での加熱処理を行うとよい。隔壁(土手ともいう)は、珪素を含む材料、有機材料及び化合物材料を用いて形成する。また、多孔質膜を用いても良い。但し、アクリル、ポリイミド等の感光性、非感光性の材料を用いて形成すると、その側面は曲率半径が連続的に変化する形状となり、上層の薄膜が段切れせずに形成されるため好ましい。本実施の形態は、上記の実施の形態と自由に組み合わせることが可能である。
(実施の形態5)
実施の形態4乃至6によって作製される表示パネルにおいて、半導体層をSASで形成することによって、図33(B)で説明したように、走査線側の駆動回路を基板3700上に形成することができる。
図25は、1〜15cm2/V・secの電界効果移動度が得られるSASを使ったnチャネル型のTFTで構成する走査線側駆動回路のブロック図を示している。
図25においてブロック500が1段分のサンプリングパルスを出力するパルス出力回路に相当し、シフトレジスタはn個のパルス出力回路により構成される。901はバッファ回路であり、その先に画素902が接続される。
図26は、パルス出力回路に相当するブロック500の具体的な構成を示したものであり、nチャネル型のTFT601〜612で回路が構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を8μmとすると、チャネル幅は10〜80μmの範囲で設定することができる。
また、バッファ回路901の具体的な構成を図27に示す。バッファ回路も同様にnチャネル型のTFT620〜635で構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を10μmとすると、チャネル幅は10〜1800μmの範囲で設定することとなる。本発明を用いると、配線を所望の形状に制御性よく形成することができるので、このようなチャネル幅を10μmとするような細い配線も断線することなく安定的に形成することができる。
このような回路を実現するには、TFT相互を配線によって接続する必要があり、その場合における配線の構成例を図16に示す。図16では、実施の形態4と同様に、ゲート電極層103、ゲート絶縁層106(窒化珪素からなる絶縁体層106a、酸化珪素からなる絶縁体層106b、窒化珪素からなる絶縁体層106cの3層の積層体)、SASで形成される半導体層107、ソース及びドレインを形成するN型半導体層109、ソース電極層及びドレイン電極層111、ソース電極層及びドレイン電極層112が形成された状態を示している。この場合、基板100上には、ゲート電極層104と同じ工程で接続配線層160、接続配線層161、接続配線層162を形成しておく。基板100上には光吸収体を含む密着性の低い物質が形成されており、ゲート電極層104、接続配線層160、接続配線層161、接続配線層162の被形成領域は、その光吸収体が吸収する波長のレーザ光による照射処理がされている。よって処理された領域は、周囲の領域と比べて高密着性領域102a、高密着性領域102b、高密着性領域102c、高密着性領域102dとなっている。そして、接続配線層160、接続配線層161、接続配線層162が露出するようにゲート絶縁層の一部をエッチング加工して、ソース電極層及びドレイン電極層111、ソース電極層及びドレイン電極層112及びそれと同じ工程で形成する接続配線層163により適宜TFTを接続することにより様々な回路を実現することができる。
(実施の形態6)
次に、実施の形態4乃至7によって作製される表示パネルに駆動用のドライバ回路を実装する態様について説明する。
まず、COG方式を採用した表示装置について、図15(A)を用いて説明する。基板2700上には、文字や画像などの情報を表示する画素部2701が設けられる。複数の駆動回路が設けられた基板を、矩形状に分断し、分断後の駆動回路(ドライバICとも表記)2751は、基板2700上に実装される。図15(A)は複数のドライバIC2751、該ドライバIC2751の先にFPC2750を実装する形態を示す。また、分割する大きさを画素部の信号線側の辺の長さとほぼ同じにし、単数のドライバICに、該ドライバICの先にテープを実装してもよい。
また、TAB方式を採用してもよく、その場合は、図15(B)で示すように複数のテープを貼り付けて、該テープにドライバICを実装すればよい。COG方式の場合と同様に、単数のテープに単数のドライバICを実装してもよく、この場合には、強度の問題から、ドライバICを固定する金属片等を一緒に貼り付けるとよい。
これらの表示パネルに実装されるドライバICは、生産性を向上させる観点から、一辺が300mmから1000mmの矩形状の基板上に複数個作り込むとよい。
つまり、基板上に駆動回路部と入出力端子を一つのユニットとする回路パターンを複数個形成し、最後に分割して取り出せばよい。ドライバICの長辺の長さは、画素部の一辺の長さや画素ピッチを考慮して、長辺が15〜80mm、短辺が1〜6mmの矩形状に形成してもよいし、画素領域の一辺、又は画素部の一辺と各駆動回路の一辺とを足した長さに形成してもよい。
ドライバICのICチップに対する外形寸法の優位性は長辺の長さにあり、長辺が15〜80mmで形成されたドライバICを用いると、画素部に対応して実装するのに必要な数がICチップを用いる場合よりも少なくて済み、製造上の歩留まりを向上させることができる。また、ガラス基板上にドライバICを形成すると、母体として用いる基板の形状に限定されないので生産性を損なうことがない。これは、円形のシリコンウエハからICチップを取り出す場合と比較すると、大きな優位点である。
また、図33(B)のように走査線側駆動回路3702は基板上に一体形成される場合、画素部3701の外側の領域には、信号線側の駆動回路が形成されたドライバICが実装される。これらのドライバICは、信号線側の駆動回路である。RGBフルカラーに対応した画素領域を形成するためには、XGAクラスで信号線の本数が3072本必要であり、UXGAクラスでは4800本が必要となる。このような本数で形成された信号線は、画素部3701の端部で数ブロック毎に区分して引出線を形成し、ドライバICの出力端子のピッチに合わせて集められる。
ドライバICは、基板上に形成された結晶質半導体により形成されることが好適であり、該結晶質半導体は連続発光のレーザ光を照射することで形成されることが好適である。従って、当該レーザ光を発生させる発振器としては、連続発光の固体レーザ又は気体レーザを用いる。連続発光のレーザを用いると、結晶欠陥が少なく、大粒径の多結晶半導体層を用いて、トランジスタを作成することが可能となる。また移動度や応答速度が良好なために高速駆動が可能で、従来よりも素子の動作周波数を向上させることができ、特性バラツキが少ないために高い信頼性を得ることができる。なお、さらなる動作周波数の向上を目的として、トランジスタのチャネル長方向とレーザ光の走査方向と一致させるとよい。これは、連続発光レーザによるレーザ結晶化工程では、トランジスタのチャネル長方向とレーザ光の基板に対する走査方向とが概ね並行(好ましくは−30度以上30度以下)であるときに、最も高い移動度が得られるためである。なおチャネル長方向とは、チャネル形成領域において、電流が流れる方向、換言すると電荷が移動する方向と一致する。このように作製したトランジスタは、結晶粒がチャネル方向に延在する多結晶半導体層によって構成される活性層を有し、このことは結晶粒界が概ねチャネル方向に沿って形成されていることを意味する。
レーザ結晶化を行うには、レーザ光の大幅な絞り込みを行うことが好ましく、そのレーザ光の形状(ビームスポット)の幅は、ドライバICの短辺の同じ幅の1mm以上3mm以下程度とすることがよい。また、被照射体に対して、十分に且つ効率的なエネルギー密度を確保するために、レーザ光の照射領域は、線状であることが好ましい。但し、ここでいう線状とは、厳密な意味で線を意味しているのではなく、アスペクト比の大きい長方形もしくは長楕円形を意味する。例えば、アスペクト比が2以上(好ましくは10以上10000以下)のものを指す。このように、レーザ光のレーザ光の形状(ビームスポット)の幅をドライバICの短辺と同じ長さとすることで、生産性を向上させた表示装置の作製方法を提供することができる。
図15(A)、(B)のように走査線駆動回路及び信号線駆動回路の両方として、ドライバICを実装してもよい。その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにするとよい。
画素領域は、信号線と走査線が交差してマトリクスを形成し、各交差部に対応してトランジスタが配置される。本発明は、画素領域に配置されるトランジスタとして、非晶質半導体又はセミアモルファス半導体をチャネル部としたTFTを用いることを特徴とする。非晶質半導体は、プラズマCVD法やスパッタリング法等の方法により形成する。セミアモルファス半導体は、プラズマCVD法で300℃以下の温度で形成することが可能であり、例えば、外寸550×650mmの無アルカリガラス基板であっても、トランジスタを形成するのに必要な膜厚を短時間で形成するという特徴を有する。このような製造技術の特徴は、大画面の表示装置を作製する上で有効である。また、セミアモルファスTFTは、SASでチャネル形成領域を構成することにより2〜10cm2/V・secの電界効果移動度を得ることができる。また本発明を用いると、配線を所望の形状に制御性よく形成することができるので、このようなチャネル幅が短い細い配線も断線することなく安定的に形成することができる。画素を十分機能させるのに必要な電気特性を有するTFTを形成できる。従って、このTFTを画素のスイッチング用素子や、走査線側の駆動回路を構成する素子として用いることができる。従って、システムオンパネル化を実現した表示パネルを作製することができる。
半導体層をSASで形成したTFTを用いることにより、走査線側駆動回路も基板上に一体形成することができ、半導体層をASで形成したTFTを用いる場合には、走査線側駆動回路及び信号線側駆動回路の両方をドライバICを実装するとよい。
その場合には、走査線側と信号線側で用いるドライバICの仕様を異なるものにすることが好適である。例えば、走査線側のドライバICを構成するトランジスタには30V程度の耐圧が要求されるものの、駆動周波数は100kHz以下であり、比較的高速動作は要求されない。従って、走査線側のドライバを構成するトランジスタのチャネル長(L)は十分大きく設定することが好適である。一方、信号線側のドライバICのトランジスタには、12V程度の耐圧があれば十分であるが、駆動周波数は3Vにて65MHz程度であり、高速動作が要求される。そのため、ドライバを構成するトランジスタのチャネル長などはミクロンルールで設定することが好適である。本発明を用いると、レーザ照射による処理によって、繊細なパターン形成ができるので、このようなミクロンルールにも十分に対応することが可能である。
ドライバICの実装方法は、特に限定されるものではなく、公知のCOG方法やワイヤボンディング方法、或いはTAB方法を用いることができる。
ドライバICの厚さは、対向基板と同じ厚さとすることで、両者の間の高さはほぼ同じものとなり、表示装置全体としての薄型化に寄与する。また、それぞれの基板を同じ材質のもので作製することにより、この表示装置に温度変化が生じても熱応力が発生することなく、TFTで作製された回路の特性を損なうことはない。その他にも、本実施形態で示すようにICチップよりも長尺のドライバICで駆動回路を実装することにより、1つの画素領域に対して、実装されるドライバICの個数を減らすことができる。
以上のようにして、表示パネルに駆動回路を組み入れることができる。
(実施の形態7)
本実施の形態で示す表示パネルの画素の構成について、図17に示す等価回路図を参照して説明する。
図17(A)に示す画素は、列方向に信号線410及び電源線411、電源線412、電源線413、行方向に走査線414が配置される。また、スイッチング用TFT401、駆動用TFT403、電流制御用TFT404、容量素子402及び発光素子405を有する。
図17(C)に示す画素は、駆動用TFT403のゲート電極が、行方向に配置された電源線415に接続される点が異なっており、それ以外は図17(A)に示す画素と同じ構成である。つまり、図17(A)(C)に示す両画素は、同じ等価回路図を示す。しかしながら、列方向に電源線412が配置される場合(図17(A))と、行方向に電源線415が配置される場合(図17(C))では、各電源線は異なるレイヤーの導電体層で形成される。ここでは、駆動用TFT403のゲート電極が接続される配線に注目し、これらを作製するレイヤーが異なることを表すために、図17(A)(C)として分けて記載する。
図17(A)(C)に示す画素の特徴として、画素内に駆動用TFT403、電流制御用TFT404が直列に接続されており、駆動用TFT403のチャネル長L3、チャネル幅W3、電流制御用TFT404のチャネル長L4、チャネル幅W4は、L3/W3:L4/W4=5〜6000:1を満たすように設定される点が挙げられる。6000:1を満たす場合の一例としては、L3が500μm、W3が3μm、L4が3μm、W4が100μmの場合がある。本発明を用いると、配線を所望の形状に制御性よく形成することができるので、このようなW3を3μmとするような細い配線も断線することなく安定的に形成することができる。よって、図17(A)(C)のような画素を十分機能させるのに必要な電気特性を有するTFTを形成でき、表示能力の優れた信頼性の高い表示パネルを作製することが可能となる。
なお、駆動用TFT403は、飽和領域で動作し発光素子405に流れる電流値を制御する役目を有し、電流制御用TFT404は線形領域で動作し発光素子405に対する電流の供給を制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましい。また駆動用TFT403には、エンハンスメント型だけでなく、ディプリーション型のTFTを用いてもよい。上記構成を有する本発明は、電流制御用TFT404が線形領域で動作するために、電流制御用TFT404のVGSの僅かな変動は発光素子405の電流値に影響を及ぼさない。つまり、発光素子405の電流値は、飽和領域で動作する駆動用TFT403により決定される。上記構成を有する本発明は、TFTの特性バラツキに起因した発光素子の輝度ムラを改善して画質を向上させた表示装置を提供することができる。
図17(A)〜(D)に示す画素において、スイッチング用TFT401は、画素に対するビデオ信号の入力を制御するものであり、スイッチング用TFT401がオンして、画素内にビデオ信号が入力されると、容量素子402にそのビデオ信号が保持される。なお図17(A)(C)には、容量素子402を設けた構成を示したが、本発明はこれに限定されず、ビデオ信号を保持する容量がゲート容量などでまかなうことが可能な場合には、明示的に容量素子402を設けなくてもよい。
発光素子405は、2つの電極間に電界発光層が挟まれた構造を有し、順バイアス方向の電圧が印加されるように、画素電極と対向電極の間(陽極と陰極の間)に電位差が設けられる。電界発光層は有機材料や無機材料等の広汎に渡る材料により構成され、この電界発光層におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と、三重項励起状態から基底状態に戻る際の発光(リン光)とが含まれる。
図17(B)に示す画素は、TFT406と走査線416を追加している以外は、図17(A)に示す画素構成と同じである。同様に、図17(D)に示す画素は、TFT406と走査線416を追加している以外は、図17(C)に示す画素構成と同じである。
TFT406は、新たに配置された走査線416によりオン又はオフが制御される。TFT406がオンになると、容量素子402に保持された電荷は放電し、TFT404がオフする。つまり、TFT406の配置により、強制的に発光素子405に電流が流れない状態を作ることができる。従って、図17(B)(D)の構成は、全ての画素に対する信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始することができるため、デューティ比を向上することが可能となる。
図17(E)に示す画素は、列方向に信号線450、電源線451、電源線452、行方向に走査線453が配置される。また、スイッチング用TFT441、駆動用TFT443、容量素子442及び発光素子444を有する。図17(F)に示す画素は、TFT445と走査線454を追加している以外は、図17(E)に示す画素構成と同じである。なお、図17(F)の構成も、TFT445の配置により、デューティ比を向上することが可能となる。
以上のように、本発明を用いると、配線等を、形成不良を生じることなく制御性よく安定して形成することが出来るので、TFTに高い電気的特性や信頼性をも付与することができ、使用目的に合わせて画素の表示能力を向上するための応用技術にも十分対応できる。
(実施の形態8)
走査線側入力端子部と信号線側入力端子部とに保護ダイオードを設けた一態様について図24を参照して説明する。図24において画素2702にはTFT501、TFT502、容量素子504、発光素子503が設けられている。このTFTは実施の形態2と同様な構成を有している。
信号線側入力端子部には、保護ダイオード561と保護ダイオード562が設けられている。この保護ダイオードは、TFT501若しくはTFT502と同様な工程で作製され、ゲートとドレイン若しくはソースの一方とを接続することによりダイオードとして動作させている。図24で示す上面図の等価回路図を図23に示している。
保護ダイオード561は、ゲート電極層、半導体層、配線層から成っている。保護ダイオード562も同様な構造である。この保護ダイオードと接続する共通電位線554、共通電位線555はゲート電極層と同じ層で形成している。従って、配線層と電気的に接続するには、ゲート絶縁層にコンタクトホールを形成する必要がある。
ゲート絶縁層へのコンタクトホールは、マスク層を形成し、エッチング加工すれば良い。この場合、大気圧放電のエッチング加工を適用すれば、局所的な放電加工も可能であり、基板の全面にマスク層を形成する必要はない。
信号配線層はTFT501におけるソース及びドレイン配線層505と同じ層で形成され、それに接続している信号配線層とソース又はドレイン側が接続する構造となっている。
走査信号線側の入力端子部も同様な構成である。入力段に設けられる保護ダイオードを同時に形成することができる。なお、保護ダイオードを挿入する位置は、本実施の形態のみに限定されず、駆動回路と画素との間に設けることもできる。
以上のように、本発明を用いると、配線等を形成不良を生じることなく制御性よく安定して形成することが出来るので、保護回路を形成することで、配線等が複雑化し、密に形成される場合であっても、形成時の設置不良によるショートなどを生じることはない。また、広いマージンを考慮する必要もないので、装置が小型化、薄型化しても十分に対応できる。よって、良好な電気的特性と高い信頼性とを有する表示装置を作製することができる。
(実施の形態9)
図22は、本発明を適用して作製されるTFT基板2800を用いてEL表示モジュールを構成する一例を示している。図22において、TFT基板2800上には、画素により構成された画素部が形成されている。
図22では、画素部の外側であって、駆動回路と画素との間に、画素に形成されたものと同様なTFT又はそのTFTのゲートとソース若しくはドレインの一方とを接続してダイオードと同様に動作させた保護回路部2801が備えられている。駆動回路2809は、単結晶半導体で形成されたドライバIC、ガラス基板上に多結晶半導体膜で形成されたスティックドライバIC、若しくはSASで形成された駆動回路などが適用されている。
TFT基板2800は、液滴吐出法で形成されたスペーサ2806a、スペーサ2806bを介して封止基板2820と固着されている。スペーサは、基板の厚さが薄く、また画素部の面積が大型化した場合にも、2枚の基板の間隔を一定に保つために設けておくことが好ましい。TFT2802、TFT2803とそれぞれ接続する発光素子2804、発光素子2805上であって、TFT基板2800と封止基板2820との間にある空隙には透光性の樹脂材料を充填して固体化しても良いし、無水化した窒素若しくは不活性気体を充填させても良い。
図22では発光素子2804、発光素子2805を上面放射型(トップエミッション型)の構成とした場合を示し、図中に示す矢印の方向に光を放射する構成としている。各画素は、画素を赤色、緑色、青色として発光色を異ならせておくことで、多色表示を行うことができる。また、このとき封止基板2820側に各色に対応した着色層2807a、着色層2807b、着色層2807cを形成しておくことで、外部に放射される発光の色純度を高めることができる。また、画素を白色発光素子として着色層2807a、着色層2807b、着色層2807cと組み合わせても良い。
駆動回路2809は、TFT基板2800の一端に設けられた走査線若しくは信号線接続端子と、配線基板2810で接続される。また、TFT基板2800に接して若しくは近接させて、ヒートパイプ2813と放熱板2812を設け、放熱効果を高める構成としても良い。
なお、図22では、トップエミッションのELモジュールとしたが、発光素子の構成や外部回路基板の配置を変えてボトムエミッション構造、もちろん上面、下面両方から光が放射する両面放射構造としても良い。トップエミッション型の構成の場合、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法により形成することができ、ポリイミドなどの樹脂材料に、顔料系の黒色樹脂やカーボンブラック等を混合させて形成すればよく、その積層でもよい。
また、TFT基板2800において、画素部が形成された側にシール材や接着性の樹脂を用いて樹脂フィルムを貼り付けて封止構造を形成してもよい。本実施の形態では、ガラス基板を用いるガラス封止を示したが、樹脂による樹脂封止、プラスチックによるプラスチック封止、フィルムによるフィルム封止、など様々な封止方法を用いることができる。樹脂フィルムの表面には水蒸気の透過を防止するガスバリア膜を設けておくと良い。フィルム封止構造とすることで、さらなる薄型化及び軽量化を図ることができる。
(実施の形態10)
本発明によって形成される表示装置によって、テレビジョン装置を完成させることができる。表示パネルには、図33(A)で示すような構成として画素部のみが形成されて走査線側駆動回路と信号線側駆動回路とが、図15(B)のようなTAB方式により実装される場合と、図15(A)のようなCOG方式により実装される場合と、図33(B)に示すようにSASでTFTを形成し、画素部と走査線側駆動回路を基板上に一体形成し信号線側駆動回路を別途ドライバICとして実装する場合、また図33(C)のように画素部と信号線側駆動回路と走査線側駆動回路を基板上に一体形成する場合などがあるが、どのような形態としても良い。
その他の外部回路の構成として、映像信号の入力側では、チューナで受信した信号のうち、映像信号を増幅する映像信号増幅回路と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路などからなっている。コントロール回路は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路を設け、入力デジタル信号をm個に分割して供給する構成としても良い。
チューナで受信した信号のうち、音声信号は、音声信号増幅回路に送られ、その出力は音声信号処理回路を経てスピーカに供給される。制御回路は受信局(受信周波数)や音量の制御情報を入力部から受け、チューナや音声信号処理回路に信号を送出する。
図30は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシール材2602により固着され、その間に画素部2603と液晶層2604が設けられ表示領域を形成している。着色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基板2601の外側には偏光板2606、偏光板2607、レンズフィルム2613が配設されている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、駆動回路2608とフレキシブル配線基板2609によりTFT基板2600と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。
表示モジュールを、図20(A)、(B)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。図22のようなEL表示モジュールを用いると、ELテレビジョン装置に、図30のような液晶表示モジュールを用いると液晶テレビジョン装置を完成することができる。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカ部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョン装置を完成させることができる。
また、図19に示すように、位相差板や偏光板を用いて、外部から入射する光の反射光を遮断するようにしてもよい。図19はトップエミッション型の構成であり、隔壁となる絶縁層3605を着色しブラックマトリクスとして用いている。この隔壁は液滴吐出法により形成することができ、ポリイミドなどの樹脂材料に、カーボンブラック等を混合させてもよく、その積層でもよい。液滴吐出法によって、異なった材料を同領域に複数回吐出し、隔壁を形成してもよい。本実施の形態では、顔料系の黒色樹脂を用いる。位相差板3603、位相差板3604としてはλ/4板、λ/2板を用い、光を制御できるように設計すればよい。構成としては、順にTFT基板2800、発光素子2804、封止基板(封止材)2820、位相差板3603、位相差板3604(λ/4板、λ/2板)、偏光板3602となり、発光素子から放射された光は、これらを通過し偏光板側より外部に放射される。この位相差板や偏光板は光が放射される側に設置すればよく、両面放射される両面放射型の表示装置であれば両方に設置することもできる。また、偏光板の外側に反射防止膜3601を有していても良い。これにより、より高繊細で精密な画像を表示することができる。
図20(A)に示すように、筐体2001に表示素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン装置2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このような大型基板を用いて、多くのTFTや電子部品を用いても、信頼性の高い表示装置とすることができる。
図20(B)は例えば20〜80インチの大型の表示部を有するテレビジョン装置であり、筐体2010、操作部であるキーボード部2012、表示部2011、スピーカー部2013等を含む。本発明は、表示部2012の作製に適用される。図20(B)の表示部は、わん曲可能な物質を用いているので、表示部がわん曲したテレビジョン装置となっている。このように表示部の形状を自由に設計することができるので、所望な形状のテレビジョン装置を作製することができる。
本発明を用いたことにより、工程が簡略化し、1辺が1000mmを超える第5世代以降のガラス基板を用いても、容易に表示パネルを製造することができる。
本発明により、表示装置を構成する構成物を所望なパターンで制御性よく形成でき、材料のロスも少なく、コストダウンも達成できる。よって本発明を用いたテレビジョン装置では、大画面の表示部を有しても低いコストで形成でき、薄型で配線等が精密化しても形成不良が生じない。よって高性能、高信頼性のテレビジョン装置を歩留まりよく作製することができる。
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など大面積の表示媒体としても様々な用途に適用することができる。
(実施の形態11)
本発明を適用して、様々な表示装置を作製することができる。即ち、それら表示装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。
その様な電子機器としては、ビデオカメラ、デジタルカメラ等のカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。それらの例を図21に示す。
図21(A)は、パーソナルコンピュータであり、本体2101、筐体2102、表示部2103、キーボード2104、外部接続ポート2105、ポインティングマウス2106等を含む。本発明は、表示部2103の作製に適用される。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示することができる。
図21(B)は記録媒体を備えた画像再生装置(具体的にはDVD再生装置)であり、本体2201、筐体2202、表示部A2203、表示部B2204、記録媒体(DVD等)読み込み部2205、操作キー2206、スピーカー部2207等を含む。表示部A2203は主として画像情報を表示し、表示部B2204は主として文字情報を表示するが、本発明は、これら表示部A2203、表示部B2204の作製に適用される。本発明を用いると、小型化し、配線等が精密化しても、信頼性の高い高画質な画像を表示することができる。
図21(C)は携帯電話であり、本体2301、音声出力部2302、音声入力部2303、表示部2304、操作スイッチ2305、アンテナ2306等を含む。本発明により作製される表示装置を表示部2304に適用することで、小型化し、配線等が精密化する携帯電話であっても、信頼性の高い高画質な画像を表示できる。
図21(D)はビデオカメラであり、本体2401、表示部2402、筐体2403、外部接続ポート2404、リモコン受信部2405、受像部2406、バッテリー2407、音声入力部2408、接眼部2409、操作キー2410等を含む。本発明は、表示部2402に適用することができる。本発明により作製される表示装置を表示部2402に適用することで、小型化し、配線等が精密化するビデオカメラであっても、信頼性の高い高画質な画像を表示できる。本実施の形態は、上記の実施の形態と自由に組み合わせることができる。
また本発明は、半導体装置にも適用でき、本発明を適用した半導体装置の用途は広範にわたるが、例えば、本発明の半導体装置の一形態であるIDチップは、紙幣、硬貨、有価証券類、証書類、無記名債券類、包装用容器類、書籍類、記録媒体、身の回り品、乗物類、食品類、衣類、保健用品類、生活用品類、薬品類及び電子機器等に設けて使用することができる。また、本発明はいろいろな信号処理機能を有する集合体であるプロセッサチップにも用いることができる。
本実施例では、本発明の効果を実験結果に基づき説明する。
実施の形態1で説明したように、基板を密着性の低い物質を用いて低密着性化した。本実施例では、密着性の低い物質に光吸収体を添加した。密着性の低い物質としてシランカップリング剤であるFASを用い、光吸収体として色素であるローダミンBを用いて、溶媒のイソプロピルアルコールで希釈して密着性の低い組成物とし、スピンコート法により塗布した。レーザの波長532nmのYVO4レーザを用いたので、光吸収体は、レーザ光の波長532nmに吸収領域をもつ色素であるローダミンBを用いた。ローダミンBは飽和するまで混入し、溶液とした。この密着性の低い組成物に対して、処理物の設置されたステージを移動させながら、波長532nmのレーザ光を照射し、処理を行った。その後、水による洗浄を行い、ある程度の色素を除去した後、導電性材料として銀を含む組成物を吐出した。吐出された組成物を大気中で温度100℃で30分、温度230℃で1時間加熱焼成し、図34(A)に示すような銀配線を形成した。図34(A)に示す銀配線にカプトンテープを貼り付け、剥離試験を行いレーザ光による照射処理領域と被処理領域に対する組成物の形状を観察した。実験で用いたカプトンテープ(デュポン社登録商標)の粘着力は5.39N/25mm幅であり、引張強さは122.6N/25mm幅である。図34(B)に、剥離試験後の銀配線、図34(C)、(D)に図34(B)の銀配線の拡大図を示す。図34(A)乃至(D)はいずれも光学顕微鏡写真である。レーザ光のスキャン方向は紙面縦方向であり、導電性材料として銀を含む組成物の吐出方向は、その垂直方向紙面横方向である。
図34(B)において、レーザ光による照射処理領域は1a、1b、1c、1d、1e及び1fであり、非照射処理領域は2a、2b、2c、2d、2e及び2fである。照射処理領域では、レーザ光によって密着性の低い物質が分解され密着性が高められているので、照射領域と非照射領域は密着性が異なり、相対的に、照射処理領域が密着性の高い高密着性領域、非照射処理領域は密着性の低い低密着性領域となる。よって、図34(B)乃至(D)で示すように、テープによる剥離によって低密着性領域である非照射処理領域2a、2b、2c、2d、2e及び2fに形成された銀配線は剥離してしまい、高密着性領域である照射処理領域1a、1b、1c、1d、1e及び1fに形成された銀配線のみが剥離せず残存した。高密着性領域は銀配線との密着力が強く、低密着性領域は銀配線との密着力が弱いことがわかる。レーザ光のビーム径が80μmであるので照射処理領域1a、1b、1c、1d、1e及び1fの銀配線の長軸方向の幅もほぼ80μmとなっている。図34(B)の光学顕微鏡写真中のおける、照射処理領域1cに形成されている銀配線の長軸方向の長さは78μmであり、照射処理領域の幅と同程度である。このように図34(C)、図34(D)でも示すように残存する銀配線は、レーザ光照射領域の形状を反映しており、このことから微細な形状加工が可能なことが確認できる。
以上の結果から確認できるように、本発明を用いると、形成物を、所望なパターンで制御性よく形成できる。また、材料のロスも少なく、コストダウンも達成できる。よって高性能、高信頼性の表示装置を歩留まりよく作製することができる。
本発明を説明する図。 本発明を説明する図。 本発明を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の作製方法を説明する図。 本発明の表示装置の上面図。 本発明の表示装置の作製方法を説明する図。 本発明のEL表示パネルに適用できる画素の構成を説明する回路図。 本発明の表示パネルを説明する上面図。 本発明のEL表示モジュールの構成例を説明する断面図。 本発明が適用される電子機器を示す図。 本発明が適用される電子機器を示す図。 本発明のEL表示モジュールの構成例を説明する断面図。 図24で説明するEL表示パネルの等価回路図。 本発明のEL表示パネルを説明する上面図。 本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図。 本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(シフトレジスタ回路)。 本発明のEL表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(バッファ回路)。 本発明に適用することのできる液滴吐出装置の構成を説明する図。 本発明に適用することのできる液晶滴下注入法を説明する図。 本発明の液晶表示モジュールの構成例を説明する断面図。 本発明の表示装置の断面図。 本発明に適用することのできるレーザ光直接描画装置の構成を説明する図。 本発明の表示装置の上面図。 実施例1で作製した銀配線の光学顕微鏡写真を示す図。 本発明を説明する図。

Claims (8)

  1. 被処理物を形成し、
    前記被処理物の表面の一部を改質して、第1の領域と、前記第1の領域と境界線を有する第2の領域とを形成し、
    前記境界線を越えて、前記第1の領域の一部及び前記第2の領域に連続的に導電性材料を含む組成物を吐出し、
    前記組成物を固化して導電層を形成し、
    前記導電層に接着面を有するローラー形状の除去手段を接着し、
    前記除去手段を回転させ、且つ、前記導電層の表面と平行方向又は垂直方向に移動させ、前記第1の領域の一部に形成された導電層を剥離して、前記第2の領域にテーパー形状を有する導電層を残存させることを特徴とする配線基板の作製方法。
  2. 請求項1において、
    前記被処理物の表面の一部を改質することによって、前記第2の領域は前記第1の領域より前記導電層に対する密着性が高くなることを特徴とする配線基板の作製方法。
  3. 請求項1又は2において、
    前記被処理物の表面の一部の改質は、光を照射することによって行い、
    前記光はレーザ光又はランプ光を用いることを特徴とする配線基板の作製方法。
  4. 請求項1乃至のいずれか一項において、
    前記被処理物はフッ素炭素鎖を有する材料であることを特徴とする配線基板の作製方法。
  5. 被処理物を形成し、
    前記被処理物の表面の一部を改質して、第1の領域と、前記第1の領域と境界線を有する第2の領域とを形成し、
    前記境界線を越えて、前記第1の領域の一部及び前記第2の領域に連続的に導電性材料を含む組成物を吐出し、
    前記組成物を固化して導電層を形成し、
    前記導電層に接着面を有するローラー形状の除去手段を接着し、
    前記除去手段を回転させ、且つ、前記導電層の表面と平行方向又は垂直方向に移動させ、前記第1の領域の一部に形成された導電層を剥離して、前記第2の領域にテーパー形状を有する導電層を残存させ、
    前記導電層を覆ってゲート絶縁膜を形成し、
    前記ゲート絶縁膜上に半導体層を形成することを特徴とする薄膜トランジスタの作製方法。
  6. 請求項において、
    前記被処理物の表面の一部を改質することによって、前記第2の領域は前記第1の領域より前記導電層に対する密着性が高くなることを特徴とする薄膜トランジスタの作製方法。
  7. 請求項5又は6において、
    前記被処理物の表面の一部の改質は、光を照射することによって行い、
    前記光はレーザ光又はランプ光を用いることを特徴とする薄膜トランジスタの作製方法。
  8. 請求項乃至のいずれか一項において、
    前記被処理物はフッ素炭素鎖を有する材料であることを特徴とする薄膜トランジスタの作製方法。
JP2005186509A 2004-06-28 2005-06-27 配線基板の作製方法及び薄膜トランジスタの作製方法 Expired - Fee Related JP4854994B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005186509A JP4854994B2 (ja) 2004-06-28 2005-06-27 配線基板の作製方法及び薄膜トランジスタの作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004189240 2004-06-28
JP2004189240 2004-06-28
JP2005186509A JP4854994B2 (ja) 2004-06-28 2005-06-27 配線基板の作製方法及び薄膜トランジスタの作製方法

Publications (3)

Publication Number Publication Date
JP2006049847A JP2006049847A (ja) 2006-02-16
JP2006049847A5 JP2006049847A5 (ja) 2008-07-17
JP4854994B2 true JP4854994B2 (ja) 2012-01-18

Family

ID=36027989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005186509A Expired - Fee Related JP4854994B2 (ja) 2004-06-28 2005-06-27 配線基板の作製方法及び薄膜トランジスタの作製方法

Country Status (1)

Country Link
JP (1) JP4854994B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755941B2 (ja) * 2006-06-02 2011-08-24 富士フイルム株式会社 デバイスの保護膜形成方法およびデバイス
JP5264016B2 (ja) * 2006-06-30 2013-08-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5314842B2 (ja) * 2006-08-25 2013-10-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5329784B2 (ja) * 2006-08-25 2013-10-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5409369B2 (ja) * 2006-10-12 2014-02-05 カンブリオス テクノロジーズ コーポレイション ナノワイヤベースの透明導電体およびその適用
KR101340514B1 (ko) * 2007-01-24 2013-12-12 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
JP2008258333A (ja) * 2007-04-03 2008-10-23 Sharp Corp 薄膜パターンの形成方法およびその利用
KR102187427B1 (ko) * 2008-09-19 2020-12-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
KR102437444B1 (ko) 2008-11-21 2022-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP5382418B2 (ja) * 2009-01-28 2014-01-08 ソニー株式会社 回路基板およびその製造方法、タッチパネルならびに表示装置
WO2011048959A1 (en) * 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP4893839B2 (ja) * 2010-03-29 2012-03-07 住友化学株式会社 発光装置の製造方法
JP5695535B2 (ja) * 2011-09-27 2015-04-08 株式会社東芝 表示装置の製造方法
JP7525775B2 (ja) 2020-06-05 2024-07-31 日亜化学工業株式会社 金属成膜部材の製造方法、金属成膜部材、波長変換部材、又は、発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815242A (ja) * 1981-07-21 1983-01-28 Nec Home Electronics Ltd 半導体装置の製造方法
JPS62108368A (ja) * 1985-11-06 1987-05-19 Canon Inc 複合画像フアイルシステム
JP3679943B2 (ja) * 1999-03-02 2005-08-03 大日本印刷株式会社 パターン形成体の製造方法
JP4360015B2 (ja) * 2000-03-17 2009-11-11 セイコーエプソン株式会社 有機el表示体の製造方法、半導体素子の配置方法、半導体装置の製造方法
JP2003318515A (ja) * 2002-04-22 2003-11-07 Seiko Epson Corp 膜パターンの形成方法及び膜パターン形成装置、デバイスの製造方法及び製造装置、デバイス及び電子機器
JP4170049B2 (ja) * 2002-08-30 2008-10-22 シャープ株式会社 パターン形成基材およびパターン形成方法

Also Published As

Publication number Publication date
JP2006049847A (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
JP4854994B2 (ja) 配線基板の作製方法及び薄膜トランジスタの作製方法
US8158517B2 (en) Method for manufacturing wiring substrate, thin film transistor, display device and television device
US7615488B2 (en) Method for forming pattern, thin film transistor, display device and method for manufacturing the same, and television device
US8222636B2 (en) Method for forming pattern, thin film transistor, display device, method for manufacturing thereof, and television apparatus
JP5057652B2 (ja) 薄膜トランジスタの作製方法
JP4969041B2 (ja) 表示装置の作製方法
US7491590B2 (en) Method for manufacturing thin film transistor in display device
US7939888B2 (en) Display device and television device using the same
JP4777078B2 (ja) 半導体装置の作製方法
JP5110785B2 (ja) 表示装置の作製方法
US8318601B2 (en) Method for manufacturing thin film transistor and display device
US20050196710A1 (en) Method for forming pattern, thin film transistor, display device and method for manufacturing the same, and television apparatus
JP5089027B2 (ja) 半導体装置
JP2006196879A (ja) 半導体装置の作製方法
JP4628004B2 (ja) 薄膜トランジスタの作製方法
JP2005286320A (ja) パターン形成方法、薄膜トランジスタ、表示装置及びそれらの作製方法、並びにテレビジョン装置
JP2007073976A (ja) 半導体装置
JP5116212B2 (ja) 薄膜トランジスタの作製方法
JP4879496B2 (ja) パターン形成方法
JP4884675B2 (ja) 半導体装置の作製方法
JP4877865B2 (ja) 薄膜トランジスタの作製方法及び表示装置の作製方法
JP5025208B2 (ja) 薄膜トランジスタの作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees