JP5314842B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP5314842B2
JP5314842B2 JP2006229111A JP2006229111A JP5314842B2 JP 5314842 B2 JP5314842 B2 JP 5314842B2 JP 2006229111 A JP2006229111 A JP 2006229111A JP 2006229111 A JP2006229111 A JP 2006229111A JP 5314842 B2 JP5314842 B2 JP 5314842B2
Authority
JP
Japan
Prior art keywords
layer
light
light absorption
laser beam
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006229111A
Other languages
English (en)
Other versions
JP2008053526A5 (ja
JP2008053526A (ja
Inventor
秀和 宮入
幸一郎 田中
博信 小路
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2006229111A priority Critical patent/JP5314842B2/ja
Publication of JP2008053526A publication Critical patent/JP2008053526A/ja
Publication of JP2008053526A5 publication Critical patent/JP2008053526A5/ja
Application granted granted Critical
Publication of JP5314842B2 publication Critical patent/JP5314842B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体素子を有する半導体装置の作製方法に関する。
従来、薄膜トランジスタ(以下、「TFT」ともいう。)やMOSトランジスタに代表される半導体素子によって構成される所謂アクティブマトリクス駆動方式の表示パネル、又は半導体集積回路は、フォトマスクを使った光露光工程(以下、フォトリソグラフィー工程と示す。)によりレジストマスクを形成し、各種薄膜を選択的にエッチングすることにより製造されている。
フォトリソグラフィー工程は、レジストを基板全面に塗布しプリベークを行った後、フォトマスクを介して紫外線等をレジストに照射して露光し、現像してレジストマスクを形成する。この後、該レジストマスクをマスクとして、半導体層や配線となるべき部分以外に存在する薄膜(半導体材料、絶縁体材料、又は導電体材料で形成される薄膜)をエッチング除去して、半導体層や配線を形成している。
また、本出願人は、400μm以下の波長を有するレーザビームを用いて、線状のビームを透光性導電膜に照射し、開溝を形成する薄膜加工方法を特許文献1及び特許文献2に記載している。
特開昭63−84789号公報 特開平2−317号公報
しかしながら、フォトリソグラフィー技術が用いられるフォトマスクは微細な形状を有し、かつ形状の精度を高く要求されるために非常に高価である。さらに、半導体装置を作製するには高価なフォトマスクを複数枚用意する必要があり、コストの面で産業上、非常に大きな負担となる。
また、半導体装置の設計が変更になる際には、当然、変更になる加工パターンに合わせて新たにフォトマスクを用意する必要性が生じる。前述したように、フォトマスクは微細な形状を高精度で形成された造形物であるため、作製には相当の時間を要することになる。つまり、設計変更や設計不備に伴うフォトマスクの交換には、金銭的な負担だけでなく時間的な遅延リスクを背負うことにもなる。
また、レーザ発振器から射出されるレーザビームを光学系により一箇所もしくは複数箇所に集光し、レーザビームを照射することで開口部を形成する場合、レーザ発振器がもつポインティングスタビリティー等のばらつきの影響により、レーザビームが集光される位置が変動する問題がある。
また、従来のフォトリソグラフィー工程を用いて半導体膜をエッチングして、所望の形状の半導体層を形成する場合、半導体膜表面にレジストを塗布する。このとき、半導体膜表面がレジストに直接さらされるため、レジストに含まれる酸素、炭素、重金属元素等の不純物により、半導体膜が汚染されるという問題がある。この汚染により、半導体膜中に不純物元素が混入してしまい、半導体素子の特性が低下する。特に、TFTにおいては、トランジスタ特性のバラツキ及び低下の原因となるという問題がある。
そこで、本発明は、フォトマスクやレジストを使用することなく、薄膜加工を簡単な工程で精度良く行う方法を提示する。また、低コストで半導体装置を作製する方法を提案する。
本発明は、基板上に第1の層を形成し、第1の層上に光吸収層を形成し、光吸収層に選択的にレーザビームを照射する。光吸収層がレーザビームのエネルギーを吸収することで、光吸収層内における気体の放出、光吸収層の昇華または蒸発等により、光吸収層の一部が物理的に解離する。即ち、光吸収層の一部にレーザビームを照射し、当該照射領域の一部を除去する。残存する光吸収層をマスクとして用いて、第1の層をエッチングすることにより、従来のフォトリソグラフィー技術を用いずとも、第1の層を所望の場所及び形状に加工することができる。
また、電気光学素子を有するレーザ照射装置を用いて光吸収層に選択的にレーザビームを照射する。電気光学素子は、CAD(計算支援設計)装置で設計されたデータにより選択的にレーザビームを照射する位置及び面積を制御することが可能である。このため、フォトマスクを用いずとも光吸収層に選択的にレーザビームを照射することができる。
本発明の一は、基板上に第1の層を形成し、第1の層上に光吸収層を形成し、光吸収層に選択的にレーザビームを照射し、レーザビームが照射された光吸収層の一部を除去して光吸収層の一部を露出し、露出された光吸収層及び第1の層をエッチングして、第2の層を形成することを特徴とする半導体装置の作製方法である。
本発明の一は、基板上に第1の層を形成し、第1の層上に光吸収層を形成し、光吸収層に選択的にレーザビームを照射し、レーザビームが照射された光吸収層の一部を除去して第1の層の一部を露出し、露出された第1の層をエッチングして、第2の層を形成することを特徴とする半導体装置の作製方法である。
また、本発明の一は、基板上に第1の層を形成し、第1の層上に光吸収層を形成し、光吸収層に選択的にレーザビームを照射し、レーザビームが照射された光吸収層の一部を除去して第1の膜厚の光吸収層及び第1の膜厚より薄い第2の膜厚の光吸収層を形成し、第1の膜厚の光吸収層をマスクとして、光吸収層及び第1の層をエッチングして、第2の層を形成することを特徴とする半導体装置の作製方法である。
なお、上記第2の層はエッチングされた光吸収層及び第1の層の積層であってもよい。また、第2の層を形成した後、第2の層の光吸収層を除去してもよい。
また、上記エッチングはウェットエッチングまたはドライエッチングである。
また、レーザビームは、電気光学素子を有するレーザ照射装置から照射される。電気光学素子は、制御装置によってレーザビームを照射する領域及び面積を制御されている。また、レーザビームは矩形状または線状である。
なお、本発明において、表示装置とは、表示素子を用いたデバイス、即ち画像表示デバイスを指す。また、表示パネルにコネクター、例えばフレキシブルプリント配線(FPC:Flexible Printed Circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回路)やCPUが直接実装されたモジュールも全て表示装置に含むものとする。
光吸収層にレーザビームを照射することで、光吸収層を自由に加工することができる。また、当該加工された光吸収層を、薄膜を加工するマスクとして用いることができる。
また、選択的にレーザビームの照射領域を制御できる電気光学素子を有するレーザ照射装置を用い、光吸収層にCAD(計算支援設計)装置で設計されたデータにより選択的にレーザビームを照射することができる。
このため、気光学素子により照射領域が制御されたレーザビームの照射により形成されたマスクとして機能する光吸収層を用いて、薄膜をエッチングすることにより、所定の場所に所望の形状を有する層を形成することが可能である。
また、線状レーザビーム、矩形状レーザビーム、面状レーザビーム、さらには任意の形状のビーム等、ビームスポットの面積の大きなレーザビームを光吸収層に照射することで、短時間で複数の領域にレーザビームを照射することが可能であるため、半導体装置を量産性高く作製することが可能である。
したがって、従来のフォトリソグラフィー技術で必要であったレジストやフォトマスクを用いずとも、薄膜を任意の形状に加工することができる。このため、フォトマスクを使用しないため、フォトマスク交換に要していた時間的損失の低減を図ることが可能となり、品種少量生産が可能になる。また、レジストおよびレジストの現像液を使用しないため、大量の薬液や水を必要としない。さらには、レジスト塗布による半導体膜への不純物元素の混入を避けつつ、半導体膜を加工することができる。以上のことから、従来のフォトリソグラフィー技術を用いたプロセスと比較して、工程の大幅な簡略化及びコストの低減が可能である。
このように、本発明を用いることによって、半導体装置の作製における薄膜加工を簡単な工程で精度良く行うことが可能である。また、低コストで、スループットや歩留まり高く半導体装置を作製することができる。
以下、発明を実施するための最良の形態について図面を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は本実施の形態の記載内容に限定して解釈されるものではない。また、各図面において共通の部分は同じ符号を付して詳しい説明を省略する。
(実施の形態1)
本実施の形態では、フォトリソグラフィー工程を経ずとも、レーザビームを用いて薄膜を加工するレーザ・アブレーション・パターニング・プロセス(LAPP(Laser Ablation Patterning Process))について、以下の実施の形態及び実施例に示す。図1、及び3は、基板上に選択的に任意の形状の層を形成する工程を示す断面図であり、図2、及び4は、レーザ照射装置の電気光学素子、及び図1、3の上面図である。
図1(A)に示すように、基板100の片側に下地膜として機能する第1の層101、第1の層101上に第2の層102、第2の層102上に光吸収層103を形成する。
基板100としては、ガラス基板、プラスチック基板、金属基板、セラミック基板等を適宜用いることができる。また、プリント配線基板やFPCを用いることができる。基板100がガラス基板やプラスチック基板の場合、320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mmのような大面積基板を用いることができる。
下地膜として機能する第1の層101は必ずしも必須ではないが、後に第2の層をエッチングする際に、基板100がエッチングされるのを防止する機能を有すため、設けることが好ましい。第1の層101は、適する材料を適宜用いて形成すればよい。代表的には、酸化珪素、窒化珪素、酸化窒化珪素、窒化アルミニウム等がある。
第2の層102は、電極、画素電極、配線、アンテナ、半導体層、絶縁層、プラズマディスプレイの隔壁、蛍光体等の作製する部位に合わせて、導電材料、半導体材料、絶縁材料を適宜用いて形成すればよい。なお、第2の層102は単層でも積層でもよい。
光吸収層103としては、後に照射されるレーザビームを吸収する材料を用いて形成する。レーザビームを吸収する材料としては、後に照射されるレーザビームのエネルギーよりも小さなバンドギャップエネルギーを有する材料を用いて形成する。また、光吸収層103は、第2の層101の融点よりも低い沸点または昇華点を有する材料を用いることが好ましい。このような材料を用いることにより、第2の層101の溶融を避けつつ、レーザビームを吸収し、レーザビームのエネルギーを用いて光吸収層の一部を除去させることができる。
本実施の形態では、光吸収層103及び第2の層102のエッチング速度の差が大きいことが好ましい。代表的には、第2の層102のエッチング速度が光吸収層103のエッチング速度より速いことが好ましい。または、光吸収層103の膜厚に対して第2の層102の膜厚が薄いことが好ましい。この結果、レーザビームを照射してマスクとして機能する光吸収層を形成した後、第2の層をエッチングすることができる。
光吸収層としては、導電材料、半導体材料、絶縁物材料を適宜用いることができる。導電材料としては、チタン(Ti)、アルミニウム(Al)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、銅(Cu)、クロム(Cr)、ネオジム(Nd)、鉄(Fe)、ニッケル(Ni)、コバルト(Co)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、銀(Ag)、金(Au)、白金(Pt)、カドミウム(Cd)、亜鉛(Zn)、珪素(Si)、ゲルマニウム(Ge)、ジルコニウム(Zr)、バリウム(Ba)から選ばれた元素を用いることができる。また、該元素を主成分とする合金材料、窒素化合物等の単層または積層で形成することができる。また、酸化タングステンを含むインジウム酸化物(IWO)、酸化タングステンを含むインジウム亜鉛酸化物(IWZO)、酸化チタンを含むインジウム酸化物(ITiO)、酸化チタンを含むインジウム錫酸化物(ITTiO)インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウム錫酸化物(ITSO)などの透光性を有する導電性材料も用いることができる。
絶縁物材料としては、上記元素の酸素化合物、炭素化合物、若しくはハロゲン化合物の単層で形成することができる。また、これらの積層を用いることができる。代表的には、酸化亜鉛、窒化アルミニウム、硫化亜鉛(ZnS)、窒化珪素(SiN)、酸化珪素(SiO)、硫化水銀(HgS)、塩化アルミニウム(AlCl)等がある。また、光を吸収することが可能な粒子が分散された絶縁膜、代表的にはシリコン微結晶が分散された酸化珪素膜を用いることができる。また、ポリイミド、ポリアミド、BCB(ベンゾシクロブテン)、アクリルなどの有機樹脂を用いることができる。また、シロキサン、ポリシラザン等を用いることができる。また、色素が有機樹脂、シロキサン、ポリシラザン等に溶解または分散された絶縁層を用いることができる。
半導体材料としては、シリコン、ゲルマニウム等を用いることができる。また、非晶質半導体、非晶質状態と結晶状態とが混在したセミアモルファス半導体(SASとも表記する)、非晶質半導体中に0.5nm〜20nmの結晶粒を観察することができる微結晶半導体、及び結晶性半導体膜から選ばれたいずれかの状態を有する膜を用いることができる。さらには、リン、ヒ素、ボロン等のアクセプター型元素又はドナー型元素が含まれていても良い。
さらに、光吸収層103としては、後に照射されるレーザビームを吸収し、且つレーザビームのエネルギーにより光吸収層内における気体の放出または光吸収層の昇華または蒸発等により光吸収層の一部または光吸収層に接する層の一部を物理的に解離させることが可能な材料を用いて形成することが好ましい。このような材料を用いることにより、容易に光吸収層を除去することができる。
レーザビームのエネルギーにより光吸収層内における気体を放出することが可能な光吸収層としては、水素及び希ガス元素の少なくとも一方が含まれる材料で形成される層がある。代表的には、水素を含む半導体層、希ガスまたは水素を含む導電層、希ガスまたは水素を含む絶縁層等がある。この場合、光吸収層内における気体の放出とともに、光吸収層の一部において物理的に解離が生じるため、容易に光吸収層を除去することができる。
レーザビームのエネルギーにより昇華することが可能な光吸収層としては、100〜2000℃程度の昇華点が低い材料が好ましい。または、融点が1500〜3500℃であり、且つ熱伝導率が0.1〜100W/mKである材料を用いることができる。昇華することが可能な光吸収層としては、100〜2000℃程度の昇華点が低い材料があり、その代表例としては、窒化アルミニウム(AlN)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、窒化珪素(SiN)、硫化水銀(HgS)、塩化アルミニウム(AlCl)等がある。沸点が1000〜2700℃であり、且つ熱伝導率が0.1〜100W/mKである材料としては、ゲルマニウム(Ge)、酸化珪素(SiO)、クロム(Cr)、チタン(Ti)等がある。
光吸収層103の形成方法としては、塗布法、電界メッキ法、PVD法(Physical Vapor Deposition)、又はCVD法(Chemical Vapor Deposition)を用いる。
次に、光吸収層103にレーザビーム105を照射する。
レーザビーム105としては、光吸収層103に吸収されるエネルギーを有するものを適宜選択する。代表的には、紫外領域、可視領域、又は赤外領域のレーザビームを適宜選択して照射する。
ここで、本発明に用いるレーザ照射装置について、以下に示す。本発明で用いるレーザ照射装置は、レーザビームを照射する面積及び位置をCAD装置で設計されたデータを用いて制御することができる。このようなレーザ照射装置を用いることにより、フォトマスクを用いずとも選択的にレーザビームを照射することができる。
このようなレーザ照射装置の代表例を図9を用いて説明する。図9は本発明の製造装置の一例を示す斜視図である。射出されるレーザビームはレーザ発振器1003(YAGレーザ装置、エキシマレーザ装置など)から出力され、ビーム形状を矩形状とするための第1の光学系1004と、整形するための第2の光学系1005と、平行光線にするための第3の光学系1006とを通過し、反射ミラー1007で光路を鉛直方向に曲げられる。その後、光吸収層103に照射されるレーザビームの面積及び位置を選択的に調節する電気光学素子1008にレーザビームを通過させて被照射面にレーザビームを照射する。
レーザ発振器1003としては、Arレーザ、Krレーザ、エキシマレーザ(KrF、ArF、KrF、XeCl)などの気体レーザ、単結晶のYAG、YVO、フォルステライト(MgSiO)、YAlO、GdVO、若しくは多結晶(セラミック)のYAG、Y、YVO、YAlO、GdVOに、ドーパントとしてNd、Yb、Cr、Ti、Ho、Er、Tm、Taのうち1種または複数種添加されているものを媒質とするレーザ、GaN、GaAs、GaAlAs、InGaAsP等の半導体レーザ発振器、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、Ti:サファイアレーザ、銅蒸気レーザまたは金蒸気レーザのうち一種または複数種から発振されるものを用いることができる。レーザ媒体が固体である固体レーザを用いると、メンテナンスフリーの状態を長く保てるという利点や、出力が比較的に安定している利点を有している。
また、レーザビーム105は、連続発振のレーザビームやパルス発振のレーザビームを適宜適用することができる。パルス発振のレーザビームにおいては、通常、数十Hz〜数kHzの周波数帯を用いるが、それよりも著しく高い10MHz以上の発振周波数、パルス幅をピコ秒台の周波数、或いはフェムト秒(10−15秒)台の周波数を有するパルス発振レーザを用いてもよい。特に、パルス幅を1フェムト秒〜10ピコ秒で発振されるパルスレーザから射出されるレーザビームは、高強度のレーザビームが得られ、非線形光学効果(多光子吸収)が生じ、レーザビームのエネルギーよりも大きなバンドギャップエネルギーを有する光吸収層をもレーザビームのエネルギーにより除去することができる。
制御装置1016は、代表的にはコンピュータがあり、半導体装置の設計データを格納する記憶部(RAM、ROM等)や、CPU等を含むマイクロプロセッサを有する。制御装置1016から、電気光学素子に半導体装置を設計するためのCADデータに基づく電気信号を入力することで、電気光学素子により基板に照射するレーザビームの位置及面積を制御する。例えば、被処理基板を固定したステージを移動させる場合、レーザ発振器の射出タイミングと、電気光学素子に入力する電気信号と、ステージの移動速度を同期させる。
電気光学素子1008は、半導体装置の設計CADデータに基づく電気信号を入力することで、光シャッターまたは光リフレクターとして機能し、可変のマスクとして機能する。光シャッターとなる電気光学素子に入力する電気信号を制御装置1016により変更することで、レーザビームの面積及び位置を変更することが可能である。即ち、薄膜の加工する面積及び位置を選択的に変更することができる。このため、レーザビームの形状を線状、矩形状、さらには任意の形状とすることができ、複雑な形状のレーザビームをも照射することができる。
電気光学素子1008としては、選択的に光透過する面積を調節できる素子、例えば、液晶材料、エレクトロクロミック材料を有する素子がある。また選択的に光反射が調節できる素子、例えばデジタルマイクロミラーデバイス(DMDとも呼ぶ。)がある。DMDとは空間光変調器の一種であり、静電界作用などによって固定軸周りに回転するマイクロミラーと呼ばれる多数の小型ミラーがSi等の半導体基板にマトリクス状に配置されたデバイスである。また、他の電気光学素子としては、電気光学効果により透過光を変調する光学素子であるPLZT素子を用いることができる。なお、PLZT素子とは、鉛、ランタン、ジルコン、チタンを含む酸化物セラミックスで、それぞれの元素記号の頭文字からPLZTと呼ばれているデバイスである。PLZT素子は、透明なセラミックで光を透過するが、電圧をかけると光の偏光の向きを変えることができ、偏光子と組み合わせることによって光シャッターが構成される。ただし、電気光学素子1008は、レーザビームを通過させても耐えうるデバイスを用いる。
電気光学素子1008は、ビームが通過できる領域が被処理基板と同じとすることができる。電気光学素子において、ビームが通過できる領域が被処理基板と同じ場合、被処理基板と電気光学素子の位置合わせをしてそれぞれの位置を固定したままレーザビームを走査する。なお、この場合、1回の薄膜の加工において、電気光学素子に入力する電気信号は1回とする。
また、製造装置の小型化を図るために、電気光学素子を少なくとも矩形ビームが通過または反射できるような細長い矩形としてもよい。例えば、細長いDMDを用いる場合、反射の角度を制御するマイクロミラーの個数を少なくすることができるため、変調速度を速くすることができる。また、細長い液晶を用いた電気光学素子を用いる場合にも、走査線や信号線が少なくなり駆動速度を速くすることができるので、同様の効果を得ることができる。また、電気光学素子を細長い矩形とした場合、1回の薄膜の加工において、電気光学素子に入力する電気信号を変更する回数は複数回とする。矩形ビームの走査に同期するように、電気光学素子に入力する電気信号を順次変更させることで、薄膜の加工が連続的に行われる。
また、照射面に照射されるレーザビームのスポットの形状は、矩形状または線状とすることが好ましく、具体的には、短辺が1mm〜5mm、且つ長辺が10mm〜50mmの矩形状とすればよい。収差の少ないレーザビームのスポットとしたい場合には、5mm×5mm〜50mm×50mmの正方形としてもよい。また、大面積基板を用いる場合には、処理時間を短縮するため、レーザビームのスポットの長辺を20cm〜100cmとすることが好ましい。また、図9に示すレーザ発振器及び光学系を複数設置して大面積の基板を短時間に処理してもよい。具体的には、基板ステージの上方に複数の電気光学素子を設置して、それぞれに対応するレーザ発振器からレーザビームをそれぞれ照射して基板1枚における処理面積を分担してもよい。さらには、1ショットあたりの面積を上記大きさとし、その中で複雑なスポット形状のレーザビームが照射されるように電気光学素子を制御してもよい。例えば、配線の形状と同様のスポット形状を有するレーザビームを照射することもできる。
さらには、矩形状または線状のレーザビームを重ね合わせて複雑なスポット形状のレーザビームを用いてもよい。
また、基板を保持するステージに代えて、ガスを吹きつけて基板100を浮上させる方法で基板を移動させてもよい。大面積の基板サイズとしては、590mm×670mm、600mm×720mm、650mm×830mmが製造ラインで使用されており、将来的には680mm×880mm、730mm×920mm、またはこれら以上のサイズが使用されることになると推測される。一辺が1mを越えるガラス基板を用いる場合には、基板の自重による撓みを軽減できる搬送方法、例えばガスを吹きつけて基板を浮上させる方法で基板を移動させることが好ましい。
また、横に置かれた基板を保持するステージに代えて、立っている基板を保持するホルダーを用いても良い。基板を立てながらレーザビームを照射することにより、飛散物を基板から除去することができる。
また、レーザ発振器1003と、基板100との間の光路上に複数の光学系を配置し、さらに微細な加工を行ってもよい。代表的には、基板より大きい電気光学素子及び縮小用の光学系を有するステッパー方式を用い縮小投影することで、レーザビームの面積及び位置を微細に加工することができる。また、ミラープロジェクジョン方式を用いた等倍投影をしてもよい。
また、制御装置に電気的に接続する位置アライメント手段を設置することが好ましい。照射位置のアライメントは、CCDカメラ等の撮像素子を設置し、撮像素子から得られるデータを基にレーザ照射を行うことで高精度に行うことができる。また、本製造装置で所望の位置にレーザビームを照射して位置マーカを形成することもできる。
また、レーザビームの照射によって粉塵が生じる場合、粉塵が被処理基板表面に付着しないようにするためのブロー手段、または粉塵のバキューム手段をさらに製造装置に設置することが好ましい。レーザビームを照射しながら、同時にブロー、または粉塵のバキュームを行うことで粉塵が基板表面に付着することを防止できる。
なお、図9は一例であり、レーザビームの光路に配置する各光学系や電気光学素子の位置関係は特に限定されない。例えば、レーザ発振器1003を基板100の上方に配置し、レーザ発振器1003から射出するレーザビームが基板面に垂直な方向となるように配置すれば、反射ミラーを用いずともよい。また、各光学系は、集光レンズ、ビームエキスパンダ、ホモジナイザ、または偏光子などを用いればよく、これらを組み合わせてもよい。また、各光学系としてスリットを組み合わせてもよい。
被照射面上でレーザビームの照射領域を2次元的に、適宜、レーザビームまたは基板を走査させることによって、基板の広い面積に照射を行うことができる。ここでは、基板を保持している基板ステージ1009をXY方向に移動させる移動手段(図示しない)で走査を行う。
また、制御装置1016は、基板ステージ1009をXY方向に移動させる移動手段も制御できるように連動させることが好ましい。さらに、制御装置1016は、レーザ発振器1003も制御できるように連動させることが好ましい。さらに、制御装置1016は、位置マーカを認識するための位置アライメント機構と連動させることが好ましい。
図1(A)で示すようなレーザビーム105を照射させるための電気光学素子1008の一部の上面図を図2(A)に示す。ここでは、電気光学素子1008を光シャッターとして機能するものを用いる形態を示す。図2(A)に示す電気光学素子1008において、レーザビームの遮光領域116a及びレーザビームの透過領域116bを設ける。
上記電気光学素子1008を用いて、光吸収層103に選択的にレーザビーム105を照射する。レーザビーム105は、光吸収層103内における気体の放出や光吸収層の昇華または蒸発等に十分なエネルギー密度、代表的には、1μJ/cm〜100J/cmのエネルギー密度範囲内とすることができる。十分に高いエネルギー密度を持ったレーザビーム105が光吸収層103に吸収される。このとき、光吸収層103は吸収したレーザビームのエネルギーによって局所的に急激に加熱され昇華または蒸発する。この昇華または蒸発に伴う体積膨張により光吸収層104が物理的に解離され飛散する。以上により、図1(B)に示すように、第2の層102上に、エッチングされた光吸収層113を形成することができる。
この結果、図1(B)に示すように、光吸収層103の昇華または蒸発によりレーザビームが照射された光吸収層の一部が除去される。なお、図1(B)の上面図を図2(B)に示す。
レーザビーム105の照射は大気圧下、または減圧下で行うことができる。減圧下で行うと、光吸収層103を除去する場合に生じる飛散物の回収が容易となる。このため、飛散物が基板上に残存することを抑制することが可能である。
さらには、基板100を加熱しながらレーザビームを光吸収層103に照射してもよい。この場合も光吸収層103の除去が容易となる。
以上の工程により、フォトリソグラフィー工程を用いずとも、レーザビームを光吸収層に照射することで、基板上に選択的に光吸収層の一部を用いてマスクを形成することができる。
次に、図1(C)に示すように、エッチングされた光吸収層113をマスクとして、第2の層102をエッチングして第2の層112を形成する。第2の層102のエッチング方法としては、ドライエッチング、ウェットエッチング等を適宜用いることができる。なお、図1(C)の上面図を図2(C)に示す。
次に、図1(D)に示すように、光吸収層113をエッチングして、第2の層112を露出してもよい。なお、図1(D)の上面図を図2(D)に示す。
以上の工程により、所定の場所に所定の形状の第2の層112を形成することができる。
以上の工程により、フォトマスク及びレジストを用いずとも、基板上に選択的に任意の形状の層を形成することができる。また、低コストで半導体装置を作製することができる。
(実施の形態2)
本実施の形態では、実施の形態1とは異なる工程により、所望の形状を有する層の形成する工程を、図3及び4を用いて説明する。本実施の形態では、実施の形態1と比較して、レーザビームによる光吸収層の除去工程が異なる。
図3(A)に示すように、実施の形態1と同様に、基板100上に第1の層101を形成し、第1の層101上に第2の層102を形成し、第2の層102上に光吸収層103を形成する。
次に、実施の形態1に示すレーザ照射装置を用いて、光吸収層103にレーザビーム105を照射する。また、図3(A)で示すようなレーザビーム105を照射させるための電気光学素子1008の一部の上面図を図4(A)に示す。
この結果、図3(B)に示すように、レーザビームが照射された光吸収層の一部が除去される。ここでは、光吸収層103は、レーザビーム105が照射された領域において、一部残存する。即ち、光吸収層133の断面構造においては、レーザビームが照射された領域133aの膜厚をd1とし、レーザビームが照射されない領域133bの膜厚をd2とするとd1<d2、且つd1>0である。
このため、図3(B)の上面図を図4(B)に示すが、実施の形態1と異なり、第2の層102は露出せず、光吸収層133のみが露出している。
次に、図3(C)に示すように、実施の形態1と同様に、光吸収層113の膜厚の厚い領域133bをマスクとして、光吸収層133及び第2の層102をエッチングする。この結果、第2の層112及び光吸収層113の積層を形成することができる。なお、図3(C)の上面図を図4(C)に示す。なお、図3(D)の上面図を図4(D)に示す。
また、実施の形態1と同様に、図3(D)に示すように、光吸収層113をエッチングして、第2の層112を露出してもよい。なお、図3(D)の上面図を図4(D)に示す。
以上の工程により、フォトマスク及びレジストを用いずとも、基板上に選択的に任意の形状の層を形成することができる。また、低コストで半導体装置を作製することができる。
(実施の形態3)
本実施の形態では、上記実施の形態1または2において、適応可能なエッチング工程について図5を用いて説明する。なお、ここでは実施の形態1を用いて説明するが、適宜実施の形態2に適用することができる。
図5(A)に示すように、実施の形態1と同様に、基板100上に第1の層101を形成し、第1の層101上に第2の層102を形成し、第2の層102上に光吸収層103を形成する。
次に、光吸収層103にレーザビーム105を照射する。
この結果、図5(B)に示すように、レーザビーム105が照射された光吸収層が除去され、マスクとして機能する光吸収層113を形成することができる。
次に、図5(C)に示すように、エッチングされた光吸収層113をマスクとして、第2の層102をエッチングする。ここでは、第2の層102のエッチング方法としては、ウェットエッチングを行う。また、光吸収層113と第2の層102のエッチング速度の差が大きく、代表的には第2の層102のエッチング速度が速いことが好ましい。第2の層102が選択的に等方的にエッチングされる。この結果、側面が傾斜した第2の層142及び当該第2の層142上に光吸収層113を形成することができる。
また、実施の形態1と同様に、図5(D)に示すように、光吸収層113をエッチングして、第2の層142単層を形成してもよい。
以上の工程により側面が傾斜した層を形成することができる。このような層をトップゲート型薄膜トランジスタの半導体層や薄膜トランジスタや逆スタガ型薄膜トランジスタのゲート電極として用いることにより、半導体層またはゲート電極上に形成されるゲート絶縁膜の被覆率を高めることができる。この結果、半導体層及びゲート電極のリーク電流を低減することが可能であり、信頼性の高い半導体装置を作製することができる。
(実施の形態4)
本実施の形態では、実施の形態1を用いた半導体素子の作製方法について、図6及び11を用いて説明する。なお、本実施の形態では実施の形態1を用いて説明するが、実施の形態2または3を用いることもできる。
ここでは、半導体素子として、逆スタガ型薄膜トランジスタを用いて説明する。なお、逆スタガ型薄膜トランジスタに限らず、順スタガ型薄膜トランジスタ、コプレナー型薄膜トランジスタ、トップゲート型薄膜トランジスタ、ダイオード、MOSトランジスタ等の半導体素子を作製することでもできる。
図6(A)に示すように、基板100上に下地膜として機能する第1の層101、後のゲート電極を形成する第2の層102、光吸収層103を形成する。
ここでは、基板100としてガラス基板を用いる。第1の層101としてプラズマCVD法を用いて厚さ50〜200nmの酸化窒化珪素層を形成し、第2の層102としてスパッタリング法を用いて厚さ50〜500nm、好ましくは100〜200nmのタングステン層を形成し、光吸収層103として、スパッタリング法を用いて厚さ50〜300nm、好ましくは50〜250nmのクロム層を形成する。
次に、実施の形態1で示すレーザ照射装置を用いて光吸収層103にレーザビーム105を照射する。ここでは、レーザビーム105として、YAGの第4高調波(波長266nm)を用い、レーザビームの照射条件を、出力2W、周波数15kHz、パルス幅10ナノ秒、一パルスの最大エネルギー130μJとする。
光吸収層103にレーザビーム105を照射することで、図6(B)に示すように、光吸収層103の一部を除去し、マスクとして機能する光吸収層162を形成する。
次に、図6(C)に示すように、マスクとして機能する光吸収層162及びを用いて第2の層102をエッチングして、第2の層161を形成する。ここでは、ドライエッチングにより第2の層102をエッチングする。
次に、図6(D)に示すように、光吸収層162をマスクとして機能させ、第2の層161をウェットエッチングして、側面が傾斜している第2の層164を形成する。ここでは、選択的に第2の層102をエッチングするエッチャントを用いてウェットエッチングすることが好ましい。この後、マスクとして機能する光吸収層162を除去する。
次に、図6(E)に示すように、ゲート電極として機能する第2の層164上にゲート絶縁膜として機能する絶縁層165を形成し、その上に半導体層166を形成し、その上に導電性を有する半導体層167を形成し、その上に光吸収層168を形成する。
半導体層166としては、非晶質半導体、非晶質状態と結晶状態とが混在したセミアモルファス半導体(SASとも表記する)、非晶質半導体中に0.5nm〜20nmの結晶粒を観察することができる微結晶半導体、及び結晶性半導体膜から選ばれたいずれかの状態を有する膜を用いることができる。
導電性を有する半導体層167としては、リン、ヒ素、ボロン等のアクセプター型元素又はドナー型元素が含まれている半導体層である。
ここでは、ゲート絶縁膜として機能する絶縁層165として、プラズマCVD法を用いて10〜50nmの酸化窒化珪素層を形成し、半導体層166としてプラズマCVD法を用いて厚さ50〜150nmの非晶質珪素層を形成し、導電性を有する半導体層167としてプラズマCVD法を用いて厚さ50〜150nmのリンがドープされた非晶質珪素層を形成し、光吸収層168としてスパッタリング法を用いて厚さ50〜300nm、好ましくは50〜250nmのクロム層を形成する。
次に、実施の形態1で示すレーザ照射装置を用いて光吸収層168にレーザビーム170を照射する。この結果、図6(F)に示すように、マスクとして機能する光吸収層171を形成する。
次に、光吸収層171をマスクとして用いて、導電性を有する半導体層167及び半導体層166をエッチングする。ここでは、ドライエッチングを用いて導電性を有する半導体層167及び半導体層166をエッチングする。この結果、図7(A)に示すように、エッチングされた半導体層174及び導電性を有する半導体層175を形成することができる。なお、半導体層174及び導電性を有する半導体層175はフォトリソグラフィー工程を用いて形成してもよい。
次に、実施の形態1で示すレーザ照射装置を用いて光吸収層171にレーザビーム178を照射して、光吸収層171の一部を除去する。この結果、図7(B)で示すような、マスクとして機能する光吸収層179を形成する。
次に、光吸収層179をマスクとして用いて半導体層174及び導電性を有する半導体層175をエッチングする。この結果、図7(C)に示すように、導電性を有する半導体層175を分断しコンタクト層として機能する導電性を有する半導体層182を形成することができる。このとき、半導体層175も若干エッチングされる。チャネル部が若干エッチングされた半導体層を半導体層181と示す。なお、半導体層181はチャネル領域として機能する。なお、半導体層181及び導電性を有する半導体層182はフォトリソグラフィー工程を用いて形成してもよい。
次に、図7(D)に示すように、光吸収層179を除去した後、ゲート絶縁膜として機能する絶縁層165、コンタクト層として機能する導電性を有する半導体層182、チャネル領域として機能する半導体層181、及び光吸収層179上に絶縁層183を形成する。
ここでは、絶縁層183としては、組成物を塗布し焼成してポリイミドで形成する。
次に、実施の形態1で示すレーザ照射装置を用いて絶縁層183及び光吸収層179にレーザビーム184を照射する。この結果、図7(E)に示すように、絶縁層183及び光吸収層179の一部を除去して開口部を形成する。開口部においては、光吸収層179、導電性を有する半導体層182、または半導体層181のいずれか一つ以上が露出する。なお、絶縁層183に形成する開口部はフォトリソグラフィー工程を用いて形成してもよい。
次に、開口部に配線186を形成する。配線186の形成方法としては、ゲート電極として機能する第2の層164と同様に形成することができる。また、調整された組成物の液滴を微細な孔から吐出して所定の形状の層を形成する液滴吐出法を用いて形成してもよい。また、印刷法を用いて形成してもよい。また、CVD法、PVD法、塗布法等により基板上に導電層を形成した後、フォトリソグラフィー工程により選択的に導電層をエッチングして形成してもよい。ここでは、液滴吐出法を用いて銀を主成分とする配線を形成する。
以上の工程により、薄膜トランジスタを形成することができる。
(実施の形態5)
本実施の形態では、実施の形態4と比較して配線が層間絶縁膜を介さずに薄膜トランジスタに接する構造の薄膜トランジスタについて、図8を用いて示す。
実施の形態4と同様の工程により、図8(A)に示すように、基板100上に第1の層101、ゲート電極として機能する第2の層164、ゲート絶縁膜として機能する絶縁層165、半導体層174、導電性を有する半導体層175、光吸収層176を形成する。
次に、半導体層174、導電性を有する半導体層175、及び光吸収層176上に、導電層191、光吸収層192を形成する。ここでは、導電層191として、スパッタリング法により厚さ500〜1000nmのアルミニウム層を形成し、光吸収層192としては厚さ5〜50nm、好ましくは10〜40nmのクロム層を形成する。なお、光吸収層192は必ずしも設ける必要はなく、導電層191がレーザビームの照射により除去され難い場合にのみ設ければよい。光吸収層192を設けることにより、マスクとして機能する光吸収層195を容易に形成することができる。
次に、実施の形態1で示すレーザ照射装置を用いて光吸収層192にレーザビーム194を照射して、光吸収層192の一部を除去して、図8(B)に示すように、マスクとして機能する光吸収層195を形成する。
次に、光吸収層195をマスクとして用いて、導電層191及び光吸収層176をエッチングする。ここでは、ドライエッチングで導電層191及び光吸収層176をエッチングする。この結果、図8(C)に示すような、配線197及び光吸収層198を形成する。
次に、図8(D)に示すように、マスクとして機能する光吸収層198を除去する。なお、配線197はフォトリソグラフィー工程を用いて形成してもよい。
次に、配線197をマスクとして用いて導電性を有する半導体層175及び半導体層174をエッチングする。この結果、図8(E)に示すような、コンタクト層として機能する導電性を有する半導体層199、チャネル領域として機能する半導体層200を形成する。
以上の工程により、薄膜トランジスタ1188を形成することができる。
本実施例では、半導体装置として液晶表示パネルを形成する。また、図10においては、液晶表示パネルの一画素の断面図を示して、以下説明する。
図10(A)に示すように、基板100上に実施の形態5で示す薄膜トランジスタ1188、及び薄膜トランジスタ1188覆う絶縁層1190を形成する。ここでは塗布法により組成物を塗布し焼成してポリイミドで形成される絶縁層1190を形成する。なお、ここでは、薄膜トランジスタ1188として実施の形態5で示す薄膜トランジスタを用いたが、実施の形態4で示す薄膜トランジスタや、コプレナー型の薄膜トランジスタ、トップゲート型の薄膜トランジスタを適宜用いることができる。
次に、絶縁層1190の一部にレーザビームを照射して開口部を設け、開口部を有する絶縁層1191を形成する。この後、配線197の表面に形成される酸化物を除去してもよい。
次に、図10(B)に示すように、開口部及び絶縁層1190の表面に配線197に接続する導電層1192を形成する。なお、導電層1192は画素電極として機能する。ここでは、実施の形態1で示す手法によりITOを用いて導電層1192を形成する。透光性を有する導電層1192を形成することで後に透過型発光表示パネルを作製することができる。また、導電層1192として、Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等の反射性を有する導電層を形成することで、後に反射型発光表示パネルを作製することができる。さらには、上記透光性を有する導電層及び反射性を有する導電層を一画素ごとに形成することで、半透過型表示パネルを作製することができる。
なお、図10(B)に示すように、配線197の表面において配線197及び導電層1192が接するように開口部を形成することができる。
また、図10(C)に示すように、導電性を有する半導体層199の表面で導電性を有する半導体層199及び導電性を有する半導体層199が接するように開口部を形成することができる。
以上の工程により、アクティブマトリクス基板を形成することができる。
次に、印刷法やスピンコート法により、絶縁膜を成膜し、ラビングを行って配向膜1193を形成する。なお、配向膜1193は、斜方蒸着法により形成することもできる。
次に、配向膜1264、第2の画素電極(対向電極)1263、及び着色層1262が設けられた対向基板1261において、画素部の周辺の領域に液滴吐出法により閉ループ状のシール材(図示しない。)を形成する。シール材には、フィラーが混入されていてもよく、さらに、対向基板1261にはカラーフィルタや遮蔽膜(ブラックマトリクス)などが形成されていても良い。
次に、ディスペンサ式(滴下式)により、シール材で形成された閉ループ内側に、液晶材料を滴下したのち、真空中で、対向基板とアクティブマトリクス基板とを貼り合わせ、紫外線硬化を行って、液晶材料が充填された液晶層1265を形成する。なお、液晶層1265を形成する方法として、ディスペンサ式(滴下式)の代わりに、対向基板を貼り合わせてから毛細管現象を用いて液晶材料を注入するディップ式(汲み上げ式)を用いることができる。
この後、走査線、信号線の接続端子部に、接続導電層を介して配線基板、代表的にはFPCを貼り付ける。以上の工程により、液晶表示パネルを形成することができる。
なお、本実施の形態ではTN型の液晶パネルについて示しているが、上記のプロセスは他の方式の液晶パネルに対しても同様に適用することができる。例えば、ガラス基板と平行に電界を印加して液晶を配向させる横電界方式の液晶パネルに本実施の形態を適用することができる。また、VA(Vertical Alignment)方式の液晶パネルに本実施の形態を適用することができる。
図11と図12は、VA型液晶パネルの画素構造を示している。図11は平面図であり、図中に示す切断線I−Jに対応する断面構造を図12に表している。以下の説明ではこの両図を参照して説明する。
この画素構造は、一つの画素に複数の画素電極が有り、それぞれの画素電極にTFTが接続されている。各TFTは、異なるゲート信号で駆動されるように構成されている。すなわち、マルチドメイン設計された画素において、個々の画素電極に印加する信号を、独立して制御する構成を有している。
画素電極層1624は開口(コンタクトホール)1623により、配線層1618でTFT1628と接続している。また、画素電極層1626は開口(コンタクトホール)1627により、配線層1619でTFT1629と接続している。TFT1628のゲート配線層1602と、TFT1629のゲート電極層1603には、異なるゲート信号を与えることができるように分離されている。一方、データ線として機能する配線層1616は、TFT1628とTFT1629で共通に用いられている。
画素電極層1624と画素電極層1626は、上記実施の形態と同様に作製することができる。
画素電極層1624と画素電極層1626の形状は異なっており、スリット1625によって分離されている。V字型に広がる画素電極層1624の外側を囲むように画素電極層1626が形成されている。画素電極層1624と画素電極層1626に印加する電圧のタイミングを、TFT1628及びTFT1629により異ならせることで、液晶の配向を制御している。対向基板1601には、遮光膜1632、着色層1636、対向電極層1640が形成されている。また、着色層1636と対向電極層1640の間には平坦化膜1637が形成され、液晶の配向乱れを防いでいる。図13に対向基板側の構造を示す。対向電極層1640は異なる画素間で共通化されている電極であるが、スリット1641が形成されている。このスリット1641と、画素電極層1624及び画素電極層1626側のスリット1625とを交互に咬み合うように配置することで、斜め電界が効果的に発生させて液晶の配向を制御することができる。これにより、液晶が配向する方向を場所によって異ならせることができ、視野角を広げている。
本実施例は、上記の実施の形態と適宜自由に組み合わせることができる。
なお、静電破壊防止のための保護回路、代表的にはダイオードなどを、接続端子とソース配線(ゲート配線)の間または画素部に設けてもよい。この場合、上記したTFTと同様の工程で作製し、画素部のゲート配線層とダイオードのドレイン又はソース配線層とを接続することにより、静電破壊を防止することができる。
本発明により、表示装置を構成する配線等の構成物を、所望の形状で形成できる。また複雑なフォトリソグラフィー工程を用いずとも、簡略化された工程で液晶表示装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の液晶表示装置を歩留まりよく作製することができる。
本実施例では、半導体装置として発光表示パネルを形成する。さらに、図14においては、発光表示パネルの一画素を示して、以下説明する。
実施例1と同様に、図14(A)に示すように、基板100上に実施の形態5で示す薄膜トランジスタ1188、及び薄膜トランジスタ1188を覆い、且つ開口部を有する絶縁層1191を形成する。
次に、図14(B)に示すように、実施例1と同様に配線197に接続する第1の導電層201を形成する。なお、第1の導電層201は画素電極として機能する。
次に、図14(C)に示すように、画素電極として機能する第1の導電層201の端部を覆う絶縁層202を形成する。このような絶縁層としては、絶縁層1191及び第1の導電層201上に図示しない絶縁層を形成し、第1の導電層201上の絶縁層を除去することで形成することができる。
次に、第1の導電層201の露出部及び絶縁層202の一部に発光物質を有する層1203を形成し、その上に画素電極として機能する第2の導電層204を形成する。以上の工程により第1の導電層201、発光物質を有する層1203、及び第2の導電層204で構成される発光素子1205を形成することができる。
ここで、発光素子1205の構造について説明する。
発光物質を含む層1203に、有機化合物を用いた発光機能を担う層(以下、発光層343と示す。)を形成することで、発光素子1205は有機EL素子として機能する。
発光性の有機化合物としては、例えば、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、クマリン30、クマリン6、クマリン545、クマリン545T、ペリレン、ルブレン、ペリフランテン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、9,10−ジフェニルアントラセン(略称:DPA)、5,12−ジフェニルテトラセン、4−(ジシアノメチレン)−2−メチル−6−[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:DCM1)、4−(ジシアノメチレン)−2−メチル−6−[2−(ジュロリジン−9−イル)エテニル]−4H−ピラン(略称:DCM2)、4−(ジシアノメチレン)−2,6−ビス[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:BisDCM)等が挙げられる。また、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C](ピコリナト)イリジウム(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C}(ピコリナト)イリジウム(略称:Ir(CFppy)(pic))、トリス(2−フェニルピリジナト−N,C)イリジウム(略称:Ir(ppy))、(アセチルアセトナト)ビス(2−フェニルピリジナト−N,C)イリジウム(略称:Ir(ppy)(acac))、(アセチルアセトナト)ビス[2−(2’−チエニル)ピリジナト−N,C]イリジウム(略称:Ir(thp)(acac))、(アセチルアセトナト)ビス(2−フェニルキノリナト−N,C)イリジウム(略称:Ir(pq)(acac))、(アセチルアセトナト)ビス[2−(2’−ベンゾチエニル)ピリジナト−N,C]イリジウム(略称:Ir(btp)(acac))などの燐光を放出できる化合物用いることもできる。
また、図15(A)に示すように、第1の導電層201上に正孔注入材料で形成される正孔注入層341、正孔輸送性材料で形成される正孔輸送層342、発光性の有機化合物で形成される発光層343、電子輸送性材料で形成される電子輸送層344、電子注入性材料で形成される電子注入層345により形成された発光材料を含む層318、及び第2の第2の導電層204で発光素子1205を形成してもよい。
正孔輸送性材料は、フタロシアニン(略称:HPc)、銅フタロシアニン(略称:CuPc)、バナジルフタロシアニン(略称:VOPc)の他、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、1,3,5−トリス[N,N−ジ(m−トリル)アミノ]ベンゼン(略称:m−MTDAB)、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、4,4’−ビス{N−[4−ジ(m−トリル)アミノ]フェニル−N−フェニルアミノ}ビフェニル(略称:DNTPD)、4,4’−ビス[N−(4−ビフェニリル)−N−フェニルアミノ]ビフェニル(略称:BBPB)、4,4’,4’’−トリ(N−カルバゾリル)トリフェニルアミン(略称:TCTA)などが挙げられるが、これらに限定されることはない。また、上述した化合物の中でも、TDATA、MTDATA、m−MTDAB、TPD、NPB、DNTPD、BBPB、TCTA、NPBなどに代表される芳香族アミン化合物は、正孔を発生しやすく、有機化合物として好適な化合物群である。ここに述べた物質は、主に10−6cm/Vs以上の正孔移動度を有する物質である。
正孔注入性材料は、上記正孔輸送性材料の他、導電性高分子化合物に化学ドーピングを施した材料もあり、ポリスチレンスルホン酸(略称:PSS)をドープしたポリエチレンジオキシチオフェン(略称:PEDOT)やポリアニリン(略称:PAni)などを用いることもできる。また、酸化モリブデン(MoO)、酸化バナジウム(VO)、酸化ニッケル(NiO)などの無機半導体の薄膜や、酸化アルミニウム(Al)などの無機絶縁体の超薄膜も有効である。
ここで、電子輸送性材料は、トリス(8−キノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]−キノリナト)ベリリウム(略称:BeBq)、ビス(2−メチル−8−キノリノラト)−4−フェニルフェノラト−アルミニウム(略称:BAlq)等キノリン骨格またはベンゾキノリン骨格を有する金属錯体等からなる材料を用いることができる。また、この他、ビス[2−(2−ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛(略称:Zn(BOX))、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などのオキサゾール系、チアゾール系配位子を有する金属錯体などの材料も用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−tert−ブチルフェニル)−4−フェニル−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)等を用いることができる。ここに述べた物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。
電子注入材料としては、上述した電子輸送性材料の他に、LiF、CsFなどのアルカリ金属ハロゲン化物や、CaFのようなアルカリ土類ハロゲン化物、LiOなどのアルカリ金属酸化物のような絶縁体の超薄膜がよく用いられる。また、リチウムアセチルアセトネート(略称:Li(acac)や8−キノリノラト−リチウム(略称:Liq)などのアルカリ金属錯体も有効である。さらに、上述した電子輸送性材料と、Mg、Li、Cs等の仕事関数の小さい金属とを共蒸着等により混合した材料を使用することもできる。
また、図15(B)に示すように、第1の導電層201、有機化合物及び有機化合物に対して電子受容性を有する無機化合物で形成される正孔輸送層346、発光性の有機化合物で形成される発光層343、及び発光性の有機化合物に対して電子供与性を有する無機化合物で形成される電子輸送層347により形成された発光材料を含む層318、並びに第2の第2の導電層204で発光素子1205を形成してもよい。
発光性の有機化合物、及び発光性の有機化合物に対して電子受容性を有する無機化合物で形成される正孔輸送層346は、有機化合物として、上記した正孔輸送性の有機化合物を適宜用いて形成する。また、無機化合物として、有機化合物から電子を受け取りやすいものであれば何であってもよく、種々の金属酸化物または金属窒化物が可能であるが、周期表第4族乃至第12族のいずれかの遷移金属酸化物が電子受容性を示しやすく好適である。具体的には、酸化チタン、酸化ジルコニウム、酸化バナジウム、酸化モリブデン、酸化タングステン、酸化レニウム、酸化ルテニウム、酸化亜鉛などが挙げられる。また、上述した金属酸化物の中でも、周期表第4族乃至第8族のいずれかの遷移金属酸化物は電子受容性の高いものが多く、好ましい一群である。特に酸化バナジウム、酸化モリブデン、酸化タングステン、酸化レニウムは真空蒸着が可能で扱いやすいため、好適である。
発光性の有機化合物、及び発光性の有機化合物に対して電子供与性を有する無機化合物で形成される電子輸送層347は、有機化合物として上記した電子輸送性の有機化合物を適宜用いて形成する。また、無機化合物として、有機化合物から電子を与えやすいものであれば何であってもよく、種々の金属酸化物または金属窒化物が可能であるが、アルカリ金属酸化物、アルカリ土類金属酸化物、希土類金属酸化物、アルカリ金属窒化物、アルカリ土類金属窒化物、希土類金属窒化物が電子供与性を示しやすく好適である。具体的には、酸化リチウム、酸化ストロンチウム、酸化バリウム、酸化エルビウム、窒化リチウム、窒化マグネシウム、窒化カルシウム、窒化イットリウム、窒化ランタンなどが挙げられる。特に酸化リチウム、酸化バリウム、窒化リチウム、窒化マグネシウム、窒化カルシウムは真空蒸着が可能で扱いやすいため、好適である。
発光性の有機化合物及び無機化合物で形成される電子輸送層347又は正孔輸送層346は、電子注入・輸送特性が優れているため、第1の導電層201、第2の第2の導電層204共に、ほとんど仕事関数の制限を受けることなく、種々の材料を用いることができる。また駆動電圧を低減することが可能である。
また、発光物質を含む層1203として、無機化合物を用いた発光機能を担う層(以下、発光層349という。)を有することで、発光素子1205は無機EL素子として機能する。無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。前者は、発光材料の粒子をバインダ中に分散させた発光物質を含む層を有し、後者は、発光材料の薄膜からなる発光物質を含む層を有している点に違いはあるが、高電界で加速された電子を必要とする点では共通である。なお、得られる発光のメカニズムとしては、ドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光と、金属イオンの内殻電子遷移を利用する局在型発光とがある。分散型無機ELではドナー−アクセプター再結合型発光、薄膜型無機EL素子では局在型発光である場合が多い。以下に、無機EL素子の構造について示す。
本実施の形態で用いることのできる発光材料は、母体材料と発光中心となる不純物元素とで構成される。含有させる不純物元素を変化させることで、様々な色の発光を得ることができる。発光材料の作製方法としては、固相法や液相法(共沈法)などの様々な方法を用いることができる。また、噴霧熱分解法、複分解法、プレカーサーの熱分解反応による方法、逆ミセル法やこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法などの液相法なども用いることができる。
固相法は、母体材料と、不純物元素又は不純物元素を含む化合物を秤量し、乳鉢で混合、電気炉で加熱、焼成を行い反応させ、母体材料に不純物元素を含有させる方法である。焼成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うことが好ましい。比較的高温での焼成を必要とするが、簡単な方法であるため、生産性がよく大量生産に適している。
液相法(共沈法)は、母体材料又は母体材料を含む化合物と、不純物元素又は不純物元素を含む化合物を溶液中で反応させ、乾燥させた後、焼成を行う方法である。発光材料の粒子が均一に分布し、粒径が小さく低い焼成温度でも反応が進むことができる。
無機EL素子の発光材料に用いる母体材料としては、硫化物、酸化物、窒化物を用いることができる。硫化物としては、例えば、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化カルシウム(CaS)、硫化イットリウム(Y)、硫化ガリウム(Ga)、硫化ストロンチウム(SrS)、硫化バリウム(BaS)等を用いることができる。また、酸化物としては、例えば、酸化亜鉛(ZnO)、酸化イットリウム(Y)等を用いることができる。また、窒化物としては、例えば、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)等を用いることができる。さらに、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)等も用いることができ、硫化カルシウム−ガリウム(CaGa)、硫化ストロンチウム−ガリウム(SrGa)、硫化バリウム−ガリウム(BaGa)等の3元系の混晶であってもよい。
局在型発光の発光中心として、マンガン(Mn)、銅(Cu)、サマリウム(Sm)、テルビウム(Tb)、エルビウム(Er)、ツリウム(Tm)、ユーロピウム(Eu)、セリウム(Ce)、プラセオジウム(Pr)などを用いることができる。なお、電荷補償として、フッ素(F)、塩素(Cl)などのハロゲン元素が添加されていてもよい。
一方、ドナー−アクセプター再結合型発光の発光中心として、ドナー準位を形成する第1の不純物元素及びアクセプター準位を形成する第2の不純物元素を含む発光材料を用いることができる。第1の不純物元素は、例えば、フッ素(F)、塩素(Cl)、アルミニウム(Al)等を用いることができる。第2の不純物元素としては、例えば、銅(Cu)、銀(Ag)等を用いることができる。
ドナー−アクセプター再結合型発光の発光材料を固相法を用いて合成する場合、母体材料と、第1の不純物元素又は第1の不純物元素を含む化合物と、第2の不純物元素又は第2の不純物元素を含む化合物をそれぞれ秤量し、乳鉢で混合した後、電気炉で加熱、焼成を行う。母体材料としては、上述した母体材料を用いることができ、第1の不純物元素又は第1の不純物元素を含む化合物としては、例えば、フッ素(F)、塩素(Cl)、硫化アルミニウム(Al)等を用いることができる。また、第2の不純物元素又は第2の不純物元素を含む化合物としては、例えば、銅(Cu)、銀(Ag)、硫化銅(CuS)、硫化銀(AgS)等を用いることができる。焼成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うことが好ましい。
また、固相反応を利用する場合の不純物元素として、第1の不純物元素と第2の不純物元素で構成される化合物を組み合わせて用いてもよい。この場合、不純物元素が拡散されやすく、固相反応が進みやすくなるため、均一な発光材料を得ることができる。さらに、余分な不純物元素が入らないため、純度の高い発光材料が得ることができる。第1の不純物元素と第2の不純物元素で構成される化合物としては、例えば、塩化銅(CuCl)、塩化銀(AgCl)等を用いることができる。
なお、これらの不純物元素の濃度は、母体材料に対して0.01〜10atom%であればよく、好ましくは0.05〜5atom%の範囲である。
図15(C)は、発光物質を含む層1203が第1の絶縁層、発光層349、及び第2の絶縁層350で構成される無機EL素子の断面を示す。
薄膜型無機ELの場合、発光層349は、上記発光材料を含む層であり、抵抗加熱蒸着法、電子ビーム蒸着(EB蒸着)法等の真空蒸着法、スパッタリング法等の物理気相成長法(PVD)、有機金属CVD法、ハイドライド輸送減圧CVD法等の化学気相成長法(CVD)、原子エピタキシ法(ALE)等を用いて形成することができる。
第1の絶縁層348及び第2の絶縁層350は、特に限定されることはないが、絶縁耐性が高く、緻密な膜質であることが好ましく、さらには、誘電率が高いことが好ましい。例えば、酸化シリコン(SiO)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化アルミニウム(Al)、酸化ハフニウム(HfO)、酸化タンタル(Ta)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸鉛(PbTiO)、窒化シリコン(Si)、酸化ジルコニウム(ZrO)等やこれらの混合膜又は2種以上の積層を用いることができる。第1の絶縁層348及び第2の絶縁層350は、スパッタリング、蒸着、CVD等により成膜することができる。膜厚は特に限定されることはないが、好ましくは10〜1000nmの範囲である。なお、本実施の形態の発光素子は、必ずしもホットエレクトロンを必要とはしないため、薄膜にすることもでき、駆動電圧を低下できる長所を有する。好ましくは、500nm以下の膜厚、より好ましくは100nm以下の膜厚であることが好ましい。
なお、図示しないが、発光層349と絶縁層348、350、又は発光層349と第1の導電層201、319の間にバッファ層を設けても良い。このバッファ層はキャリアの注入を容易にし、かつ両層の混合を抑制する役割をもつ。バッファ層としては、特に限定されることはないが、例えば、発光層の母体材料であるZnS、ZnSe、ZnTe、CdS、SrS、BaS等、又はCuS、CuS、又はハロゲン化アルカリであるLiF、CaF、BaF、MgF等を用いることができる。
また、図15(D)に示すように、発光物質を含む層1203が発光層349及び第1の絶縁層348で構成されてもよい。この場合、図15(D)においては、第1の絶縁層348は第2の第2の導電層204及び発光層349の間に設けられている形態を示す。なお、第1の絶縁層348は第1の導電層201及び発光層349の間に設けられていてもよい。
さらには、発光物質を含む層1203が、発光層349のみで構成されてもよい。即ち、第1の導電層201、発光物質を含む層1203、第2の第2の導電層204で発光素子1205を構成してもよい。
分散型無機ELの場合、粒子状の発光材料をバインダ中に分散させ膜状の発光物質を含む層を形成する。粒子状に加工する。発光材料の作製方法によって、十分に所望の大きさの粒子が得られない場合は、乳鉢等で粉砕などによって粒子状に加工すればよい。バインダとは、粒状の発光材料を分散した状態で固定し、発光物質を含む層としての形状に保持するための物質である。発光材料は、バインダによって発光物質を含む層中に均一に分散し固定される。
分散型無機ELの場合、発光物質を含む層の形成方法は、選択的に発光物質を含む層を形成できる液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷など)、スピンコート法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。膜厚は特に限定されることはないが、好ましくは、10〜1000nmの範囲である。また、発光材料及びバインダを含む発光物質を含む層において、発光材料の割合は50wt%以上80wt%以下とするよい。
図15(E)における素子は、第1の導電層201、発光物質を含む層1203、第2の第2の導電層204を有し、発光物質を含む層1203が、発光材料352がバインダ351に分散された発光層及び絶縁層348で構成される。なお、絶縁層348は、図15(E)においては、第2の第2の導電層204に接する構造となっているが、第1の導電層201に接する構造でもよい。また、素子は、第1の導電層201及び第2の第2の導電層204それぞれに接する絶縁層を有してもよい。さらには、素子は、第1の導電層201及び第2の第2の導電層204に接する絶縁層を有さなくてもよい。
本実施の形態に用いることのできるバインダとしては、有機材料や無機材料の絶縁材料を用いることができる。また、有機材料及び無機材料の混合材料を用いてもよい。有機絶縁材料としては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることができる。また、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、ポリビニルアルコール、ポリビニルブチラールなどのビニル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂、オキサゾール樹脂(ポリベンゾオキサゾール)等の樹脂材料を用いてもよい。また光硬化型などを用いることができる。これらの樹脂に、チタン酸バリウム(BaTiO)やチタン酸ストロンチウム(SrTiO)などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。
また、バインダに用いる無機絶縁材料としては、酸化珪素(SiO)、窒化珪素(SiN)、酸素及び窒素を含む珪素、窒化アルミニウム(AlN)、酸素及び窒素を含むアルミニウムまたは酸化アルミニウム(Al)、酸化チタン(TiO)、BaTiO、SrTiO、チタン酸鉛(PbTiO)、ニオブ酸カリウム(KNbO)、ニオブ酸鉛(PbNbO)、酸化タンタル(Ta)、タンタル酸バリウム(BaTa)、タンタル酸リチウム(LiTaO)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)、ZnSその他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。有機材料に、誘電率の高い無機材料を含ませる(添加等によって)ことによって、発光材料及びバインダよりなる発光物質を含む層の誘電率をより制御することができ、より誘電率を大きくすることができる。
作製工程において、発光材料はバインダを含む溶液中に分散されるが本実施の形態に用いることのできるバインダを含む溶液の溶媒としては、バインダ材料が溶解し、発光層を形成する方法(各種ウエットプロセス)及び所望の膜厚に適した粘度の溶液を作製できるような溶媒を適宜選択すればよい。有機溶媒等を用いることができ、例えばバインダとしてシロキサン樹脂を用いる場合は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEAともいう)、3−メトシキ−3メチル−1−ブタノール(MMBともいう)などを用いることができる。
無機EL発光素子は、発光物質を含む層を狭持する一対の電極間に電圧を印加することで発光が得られるが、直流駆動又は交流駆動のいずれにおいても動作することができる。
ここでは、赤色を表示する発光素子として、第1の画素電極として機能する第1の導電層201として膜厚125nmの酸化珪素を含むITO層を形成する。また、発光物質を含む層1203として、DNTPDを50nm、NPBを10nm、ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(アセチルアセトナト)(略称:Ir(Fdpq)(acac))が添加されたNPBを30nm、Alqを30nm、Alqを30nm、及びLiFを1nm積層して形成する。第2の画素電極として機能する第2の導電層1204として、膜厚200nmのAl層を形成する。
また、緑色を表示する発光素子として、第1の画素電極として機能する第1の導電層201として膜厚125nmの酸化珪素を含むITO層を形成する。また、発光物質を含む層1203として、DNTPDを50nm、NPBを10nm、クマリン545T(C545T)が添加されたAlqを40nm、Alqを30nm、及びLiFを1nm積層して形成する。第2の画素電極として機能する第2の導電層1204として、膜厚200nmのAl層を形成する。
また、青色を表示する発光素子として、第1の画素電極として機能する第1の導電層201として膜厚125nmの酸化珪素を含むITO層を形成する。また、発光物質を含む層1203として、DNTPDを50nm、NPBを10nm、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)が添加された、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(略称:CzPA:)を30nm、Alqを30nm、及びLiFを1nm積層して形成する。第2の画素電極として機能する第2の導電層1204として、膜厚200nmのAl層を形成する。
次に、第2の導電層204上に保護膜を形成することが好ましい。
この後、走査線、信号線の接続端子部に、接続導電層を介して配線基板、代表的にはFPCを貼り付ける。以上の工程により、発光表示パネルを形成することができる。
なお、静電破壊防止のための保護回路、代表的にはダイオードなどを、接続端子とソース配線(ゲート配線)の間または画素部に設けてもよい。
ここで、図15(A)及び(B)で示す発光素子を有する発光表示パネルにおいて、基板100側に放射する場合、つまり下方放射を行う場合について、図16(A)を用いて説明する。この場合、薄膜トランジスタ1188に電気的に接続するように、配線197に接して、透光性を有する導電層484、発光物質を含む層485、遮光性または反射性を有する導電層486が順に積層される。光が透過する基板100は少なくとも可視領域の光に対して透光性を有する必要がある。
次に、基板100と反対側に放射する場合、つまり上方放射を行う場合について、図16(B)を用いて説明する。薄膜トランジスタ1188は、前述した薄膜トランジスタの同様に形成することができる。薄膜トランジスタ1188に電気的に接続する配線197が遮光性または反射性を有する導電層463と接し、電気的に接続する。遮光性または反射性を有する導電層463、発光物質を含む層464、透光性を有する導電層465が順に積層される。導電層463は遮光性または反射性を有する金属層であり、発光素子から放射される光を矢印の上面に反射する。なお、遮光性または反射性を有する導電層463上に透光性を有する導電層を形成してもよい。発光素子から放出する光は透光性を有する導電層465を透過して放出されるので、透光性を有する導電層465は、少なくとも可視領域において透光性を有する材料で形成する。
次に、光が基板100側とその反対側の両側に放射する場合、つまり両方放射を行う場合について、図16(C)を用いて説明する。薄膜トランジスタ1188の半導体層に電気的に接続する配線197に、第1の透光性を有する導電層472が電気的に接続している。第1の透光性を有する導電層472、発光物質を含む層473、第2の透光性を有する導電層474が順に積層される。このとき、第1の透光性を有する導電層472と第2の透光性を有する導電層474のどちらも少なくとも可視領域において透光性を有する材料、又は光を透過できる厚さで形成すると、両方放射が実現する。この場合、光が透過する絶縁層や基板100も少なくとも可視領域の光に対して透光性を有する必要がある。
ここで、図15(A)及び(B)で示す発光素子を有する発光表示パネルの画素回路、及びその動作構成について、図17を用いて説明する。発光表示パネルの動作構成は、ビデオ信号がデジタルの表示装置において、画素に入力されるビデオ信号が電圧で規定されるのものと、電流で規定されるものとがある。ビデオ信号が電圧によって規定されるものには、発光素子に印加される電圧が一定のもの(CVCV)と、発光素子に印加される電流が一定のもの(CVCC)とがある。また、ビデオ信号が電流によって規定されるものには、発光素子に印加される電圧が一定のもの(CCCV)と、発光素子に印加される電流が一定のもの(CCCC)とがある。本実施例では、CVCV動作をする画素を図17(A)及び(B)用いて説明する。また、CVCC動作をする画素を図17(C)を用いて説明する。
図17(A)及び(B)に示す画素は、列方向に信号線3710及び電源線3711、行方向に走査線3714が配置される。また、スイッチング用TFT3701、駆動用TFT3703、容量素子3702及び発光素子3705を有する。
なお、スイッチング用TFT3701及び駆動用TFT3703は、オンしているときは線形領域で動作する。また駆動用TFT3703は発光素子3705に電圧を印加するか否かを制御する役目を有する。両TFTは同じ導電型を有していると作製工程上好ましい。また駆動用TFT3703には、エンハンスメント型だけでなく、ディプリーション型のTFTを用いてもよい。また、駆動用TFT3703のチャネル幅Wとチャネルと長Lの比(W/L)は、TFTの移動度にもよるが1〜1000であることが好ましい。W/Lが大きいほど、TFTの電気特性が向上する。
図17(A)、(B)に示す画素において、スイッチング用TFT3701は、画素に対するビデオ信号の入力を制御するものであり、スイッチング用TFT3701がオンとなると、画素内にビデオ信号が入力される。すると、容量素子3702にそのビデオ信号の電圧が保持される。
図17(A)において、電源線3711がVssで発光素子3705の対向電極がVddの場合、発光素子の対向電極は陽極であり、駆動用TFT3703に接続される電極は陰極である。この場合、駆動用TFT3703の特性バラツキによる輝度ムラを抑制することが可能である。
図17(A)において、電源線3711がVddで発光素子3705の対向電極がVssの場合、発光素子の対向電極は陰極であり、駆動用TFT3703に接続される電極は陽極である。この場合、Vddより電圧の高いビデオ信号を信号線3710に入力することにより、容量素子3702にそのビデオ信号の電圧が保持され、駆動用TFT3703が線形領域で動作するので、TFTのバラツキによる輝度ムラを改善することが可能である。
図17(B)に示す画素は、TFT3706と走査線3715を追加している以外は、図17(A)に示す画素構成と同じである。
TFT3706は、新たに配置された走査線3715によりオン又はオフが制御される。TFT3706がオンとなると、容量素子3702に保持された電荷は放電し、駆動用TFT3703がオフとなる。つまり、TFT3706の配置により、強制的に発光素子3705に電流が流れない状態を作ることができる。そのためTFT3706を消去用のTFTと呼ぶことができる。従って、図17(B)の構成は、全ての画素に対する信号の書き込みを待つことなく、書き込み期間の開始と同時又は直後に点灯期間を開始することができるため、発光のデューティ比を向上することが可能となる。
上記動作構成を有する画素において、発光素子3705の電流値は、線形領域で動作する駆動用TFT3703により決定することができる。上記構成により、TFTの特性のバラツキを抑制することが可能であり、TFT特性のバラツキに起因した発光素子の輝度ムラを改善して、画質を向上させた表示装置を提供することができる。
次に、CVCC動作をする画素を図17(C)を用いて説明する。図17(C)に示す画素は、図17(A)に示す画素構成に、電源線3712、電流制御用TFT3704が設けられている。なお、図17(C)に示す画素において、駆動用TFT3703のゲート電極を、行方向に配置された電源線3712を、列方向に配置された電源線3712に接続してもよい。
なお、スイッチング用TFT3701は線形領域で動作し、駆動用TFT3703は飽和領域で動作する。また駆動用TFT3703は発光素子3705に流れる電流値を制御する役目を有し、電流制御用TFT3704は飽和領域で動作し発光素子3705に対する電流の供給を制御する役目を有する。
なお、図17(A)及び(B)に示される画素でも、CVCC動作をすることは可能である。また、図17(C)に示される動作構成を有する画素は、図17(A)及び(B)と同様に、発光素子の電流の流れる方向によって、Vdd及びVssを適宜変えることが可能である。
上記構成を有する画素は、電流制御用TFT3704が線形領域で動作するために、電流制御用TFT3704のVgsの僅かな変動は、発光素子3705の電流値に影響を及ぼさない。つまり、発光素子3705の電流値は、飽和領域で動作する駆動用TFT3703により決定することができる。上記構成により、TFTの特性バラツキに起因した発光素子の輝度ムラを改善して、画質を向上させた表示装置を提供することができる。
特に、非晶質半導体等を有する薄膜トランジスタを形成する場合、駆動用TFTの半導体膜の面積を大きくすると、TFTのバラツキの低減が可能であるため好ましい。また、図17(A)及び図17(B)に示す画素は、TFTの数が少ないため開口率を増加させることが可能である。
なお、容量素子3702を設けた構成を示したが、本発明はこれに限定されず、ビデオ信号を保持する容量がゲート容量などで、まかなうことが可能な場合には、容量素子3702を設けなくてもよい。
また、薄膜トランジスタの半導体層が非晶質半導体膜で形成される場合は、しきい値がシフトしやすいため、しきい値を補正する回路を画素内又は画素周辺に設けることが好ましい。
このようなアクティブマトリクス型の発光装置は、画素密度が増えた場合、各画素にTFTが設けられているため低電圧駆動でき、有利であると考えられている。一方、パッシブマトリクス型の発光装置を形成することもできる。パッシブマトリクス型の発光装置は、各画素にTFTが設けられていないため、高開口率となる。
また、本発明の表示装置において、画面表示の駆動方法は特に限定されず、例えば、点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、表示装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
以上のように、多様な画素回路を採用することができる。
本実施例により、発光表示パネルを構成する配線等の構成物を、所望の形状で形成できる。また複雑なフォトリソグラフィー工程を用いずとも、簡略化された工程で発光表示パネルを作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の発光表示装置を歩留まりよく作製することができる。
本実施例では、電気泳動表示パネルの代表例を、図18及び24を用いて説明する。電気泳動素子とは、マイクロカプセルの中にプラスとマイナスに帯電した黒と白の粒子を閉じ込めた物を第1の導電層及び第2の導電層の間に配置し、第1の導電層及び第2の導電層に電位差を生じさせて黒と白の粒子を電極間で移動させて表示を行う素子である。
実施例1と同様に、図18に示すように、基板100上に実施の形態5で示す薄膜トランジスタ1188、及び薄膜トランジスタ1188を覆い、且つ開口部を有する絶縁層1191を形成する。
次に、実施例1と同様に配線197に接続する第1の導電層1171を形成する。なお、第1の導電層1171は画素電極として機能する。ここでは、上記実施の形態で示す手法によりアルニウムを用いて第1の導電層1171を形成する。
また、基板1172上に第2の導電層1173を形成する。第2の導電層1173も平行に形成することが好ましい。ここでは、上記実施の形態で示す手法によりITOを用いて第2の導電層1173を形成する。
次に、基板100及び基板1172をシール材で貼り合わせる。このとき、第1の導電層1171及び第2の導電層1173の間にマイクロカプセル1170を分散させて、基板100及び基板1172の間に電気泳動素子を形成する。基板100及び基板1172は、第1の導電層1171及び第2の導電層1173が交差するように、シール材を用いて貼りあわせる。また、電気泳動素子は、第1の導電層1171、マイクロカプセル1170、第2の導電層1173で構成される。また、マイクロカプセル1170はバインダにより第1の導電層1171及び第2の導電層1173の間に固定される。
次に、マイクロカプセルの構造について、図19を用いて示す。図19(A)、及び(B)に示すように、マイクロカプセル1170は微細な透明容器1174内に透明の分散媒1176及び帯電した黒色粒子1175a及び白色粒子1175bが分散される。なお、黒色粒子1175aの代わりに、青色粒子、赤色粒子、緑色粒子、黄色粒子、青緑粒子、赤紫粒子を用いても良い。さらには、図19(C)及び(D)に示すように、微細な透明容器1331内に着色した分散媒1333及び白色粒子1332が分散されるマイクロカプセル1330を用いてもよい。なお、着色した分散媒1333は、黒色、青色、赤色、緑色、黄色、青緑色、赤紫色のいずれかに着色している。また、一画素に青色粒子、赤色粒子、緑色粒子が分散されるマイクロカプセルをそれぞれ設けることで、カラー表示することができる。また、黄色粒子、青緑粒子、赤紫粒子が分散されるマイクロカプセルをそれぞれ設けることで、カラー表示することができる。また、一画素に青色、赤色、緑色の分散媒を有するマイクロカプセルを配列して設けることで、カラー表示することができる。また、一画素に黄色、青緑色、赤紫色の分散媒を有するマイクロカプセルを配列して設けることで、カラー表示することができる。
次に、電気泳動素子を用いた表示方法を示す。具体的には、図19(A)及び(B)を用いて、二色の粒子を有するマイクロカプセル1170の表示方法について示す。ここでは、二色の粒子として白色粒子及び黒色粒子を用い、また透明な分散媒を有するマイクロカプセルについて示す。なお、二色の粒子の黒色粒子の代わりに他の色の粒子を用いてもよい。
マイクロカプセル1170において、黒色粒子1175aがプラスに帯電されているものとし、白色粒子1175bがマイナスに帯電されているものとし、第1の導電層1171及び第2の導電層1173に電界を印加する。ここでは、矢印で示すように第2の導電層から第1の導電層の方向へ電界を印加すると、図19(A)に示すように、第2の導電層1173側に黒色粒子1175aが泳動し、第1の導電層1171側に白色粒子1175bが泳動する。この結果、マイクロカプセルを第1の導電層1171側から見た場合には、白色に観察され、第2の導電層1173側から見た場合には黒色に観察される。
一方、矢印で示すように第1の導電層1171から第2の導電層1173の方向へ電界を印加すると、図19(B)に示すように、第1の導電層1171側に黒色粒子1175aが泳動し、第2の導電層1173側に白色粒子1175bが泳動する。この結果、マイクロカプセルを第1の導電層1171側から見た場合には、白色に観察され、第2の導電層1173側から見た場合には黒色に観察される。
次に、白色粒子を有し、且つ着色された分散媒を有するマイクロカプセル1330の表示方法について示す。ここでは、分散媒が黒色に着色された例を示すが、他の色に着色された分散媒を用いても同様である。
マイクロカプセル1330において、白色粒子1332がマイナスに帯電されているものとし、第1の導電層1171及び第2の導電層1173に電界を印加する。ここでは、矢印で示すように第2の導電層から第1の導電層の方向へ電界が印加されると、図19(C)に示すように、第1の導電層1171側に白色粒子1175bが泳動する。この結果、マイクロカプセルを第1の導電層1171側から見た場合には、白色に観察され、第2の導電層1173側から見た場合には黒色に観察される。
一方、矢印で示すように第1の導電層から第2の導電層の方向へ電界が印加されると、図19(D)に示すように、第2の導電層1173側に白色粒子1175bが泳動する、この結果、マイクロカプセルを第1の導電層1171側から見た場合には、白色に観察され、第2の導電層1173側から見た場合には黒色に観察される。
ここで、電気泳動素子を用いて説明したが、この代わりにツイストボール表示方式を用いた表示装置を用いてもよい。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を第1の導電層及び第2の導電層の間に配置し、第1の導電層及び第2の導電層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
また、薄膜トランジスタの代わりに、スイッチング素子としてMIM(Metal−Insulator−Metal)、ダイオード等を用いることもできる。
電気泳動素子を有する表示装置やツイストボール表示方式の表示装置は、電界効果トランジスタを取り去った後も長期にわたって、電界印加時と同様の状態を保持する。よって、電源を切っても表示状態を維持することが可能である。このため低消費電力が可能で有る。
本実施例により、電気泳動表示パネルを構成する配線等の構成物を、所望の形状で形成できる。また複雑なフォトリソグラフィー工程を用いずとも、簡略化された工程で電気泳動素子を有する半導体装置を作製することができるので、材料のロスが少なく、コストダウンも達成できる。よって高性能、高信頼性の電気泳動素子を有する半導体装置を歩留まりよく作製することができる。
実施例1乃至3によって作製される表示パネル(EL表示パネル、液晶表示パネル、電気泳動表示パネル)において、半導体層を非晶質半導体、又はセミアモルファスシリコン(SAS)で形成し、走査線側の駆動回路を基板上に形成する例を示す。
図20は、1〜15cm/V・secの電界効果移動度が得られるSASを使ったnチャネル型のTFTで構成する走査線側駆動回路のブロック図を示している。
図20において8500で示すブロックが1段分のサンプリングパルスを出力するパルス出力回路に相当し、シフトレジスタはn個のパルス出力回路により構成される。8501はバッファ回路であり、その先に画素8502が接続される。
図21は、パルス出力回路8500の具体的な構成を示したものであり、nチャネル型のTFT8601〜8612で回路が構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を8μmとすると、チャネル幅は10〜80μmの範囲で設定することができる。
また、バッファ回路8501の具体的な構成を図22に示す。バッファ回路も同様にnチャネル型のTFT8620〜8635で構成されている。このとき、SASを使ったnチャネル型のTFTの動作特性を考慮して、TFTのサイズを決定すれば良い。例えば、チャネル長を10μmとすると、チャネル幅は10〜1800μmの範囲で設定することとなる。
このような回路を実現するには、TFT相互を配線によって接続する必要がある。
以上のようにして、表示パネルに駆動回路を組み入れることができる。
次に、上記実施例に示した表示パネルへの駆動回路の実装について、図23を用いて説明する。
図23(A)に示すように、画素部1401の周辺にソース線駆動回路1402、及びゲート線駆動回路1403a、1403bを実装する。図23(A)では、ソース線駆動回路1402、及びゲート線駆動回路1403a、1403b等として、公知の異方性導電接着剤、及び異方性導電フィルムを用いた実装方法、COG方式、ワイヤボンディング方法、並びに半田バンプを用いたリフロー処理等により、基板1400上にICチップ1405を実装する。ここでは、COG方式を用いる。そして、FPC1406を介して、ICチップと外部回路とを接続する。
なお、ソース線駆動回路1402の一部、例えばアナログスイッチを基板上に形成し、かつその他の部分を別途ICチップで実装してもよい。
また、図23(B)に示すように、SASや結晶性半導体でTFTを形成する場合、画素部1401とゲート線駆動回路1403a、1403b等を基板上に形成し、ソース線駆動回路1402等を別途ICチップとして実装する場合がある。図23(B)において、ソース線駆動回路1402として、COG方式により、基板1400上にICチップ1405を実装する。そして、FPC1406を介して、ICチップと外部回路とを接続する。
なお、ソース線駆動回路1402の一部、例えばアナログスイッチを基板上に形成し、かつその他の部分を別途ICチップで実装してもよい。
さらに、図23(C)に示すように、COG方式に代えて、TAB方式によりソース線駆動回路1402等を実装する場合がある。そして、FPC1406を介して、ICチップと外部回路とを接続する。図23(C)において、ソース線駆動回路をTAB方式により実装しているが、ゲート線駆動回路をTAB方式により実装してもよい。
ICチップをTAB方式により実装すると、基板に対して画素部を大きく設けることができ、狭額縁化を達成することができる。
ICチップは、シリコンウェハを用いて形成するが、ICチップの代わりにガラス基板上に回路を形成したIC(以下、ドライバICと表記する)を設けてもよい。ICチップは、円形のシリコンウェハからICチップを取り出すため、母体基板形状に制約がある。一方ドライバICは、母体基板がガラスであり、形状に制約がないため、生産性を高めることができる。そのため、ドライバICの形状寸法は自由に設定することができる。例えば、ドライバICの長辺の長さを15〜80mmとして形成すると、ICチップを実装する場合と比較し、必要な数を減らすことができる。その結果、接続端子数を低減することができ、製造上の歩留まりを向上させることができる。
ドライバICは、基板上に形成された結晶質半導体を用いて形成することができ、結晶質半導体は連続発振型のレーザビームを照射することで形成するとよい。連続発振型のレーザビームを照射して得られる半導体膜は、結晶欠陥が少なく、大粒径の結晶粒を有する。その結果、このような半導体膜を有するトランジスタは、移動度や応答速度が良好となり、高速駆動が可能となり、ドライバICに好適である。
次に、上記実施例で示される表示パネルを有するモジュールについて、図24を用いて説明する。図24は表示パネル9801と、回路基板9802を組み合わせたモジュールを示している。回路基板9802には、例えば、コントロール回路9804や信号分割回路9805などが形成されている。また、表示パネル9801と回路基板9802とは、接続配線9803で接続されている。表示パネル9801に実施例1乃至3で示すような、液晶表示パネル、発光表示パネル、電気泳動表示パネル等を適宜用いることができる。
この表示パネル9801は、発光素子が各画素に設けられた画素部9806と、走査線駆動回路9807、選択された画素にビデオ信号を供給する信号線駆動回路9808を備えている。画素部9806の構成は、実施例1乃至3と同様である。また、走査線駆動回路9807や信号線駆動回路9808は、異方性導電接着剤、及び異方性導電フィルムを用いた実装方法、COG方式、ワイヤボンディング方法、並びに半田バンプを用いたリフロー処理等の手法により、基板上にICチップで形成される走査線駆動回路9807、信号線駆動回路9808を実装する。
本実施例により、歩留まり高く表示パネルを有するモジュールを形成することが可能である。
上記実施の形態や示される半導体装置を有する電子機器として、テレビジョン装置(単にテレビ、又はテレビジョン受信機ともよぶ)、デジタルカメラ、デジタルビデオカメラ、携帯電話装置(単に携帯電話機、携帯電話ともよぶ)、PDA等の携帯情報端末、携帯型ゲーム機、コンピュータ用のモニター、コンピュータ、カーオーディオ等の音響再生装置、家庭用ゲーム機等の記録媒体を備えた画像再生装置等が挙げられる。その具体例について、図25を参照して説明する。
図25(A)に示す携帯情報端末は、本体9201、表示部9202等を含んでいる。表示部9202に、上記実施の形態に示すものを適用することにより、携帯情報端末を安価に提供することができる。
図25(B)に示すデジタルビデオカメラは、表示部9701、表示部9702等を含んでいる。表示部9701に、上記実施の形態に示すものを適用することにより、デジタルビデオカメラを安価に提供することができる。
図25(C)に示す携帯端末は、本体9101、表示部9102等を含んでいる。表示部9102に、上記実施の形態に示すものを適用することにより、携帯端末を安価に提供することができる。
図25(D)に示す携帯型のテレビジョン装置は、本体9301、表示部9302等を含んでいる。表示部9302に、上記実施の形態に示すものを適用することにより、携帯型のテレビジョン装置を安価に提供することができる。このようなテレビジョン装置は携帯電話などの携帯端末に搭載する小型のものから、持ち運びをすることができる中型のもの、また、大型のもの(例えば40インチ以上)まで、幅広く適用することができる。
図25(E)に示す携帯型のコンピュータは、本体9401、表示部9402等を含んでいる。表示部9402に、上記実施の形態に示すものを適用することにより、携帯型のコンピュータを安価に提供することができる。
図25(F)に示すテレビジョン装置は、本体9601、表示部9602等を含んでいる。表示部9602に、上記実施の形態に示すものを適用することにより、テレビジョン装置を安価に提供することができる。
ここで、テレビジョン装置の構成について、図26を用いて説明する。
図26は、テレビジョン装置の主要な構成を示すブロック図である。チューナ9511は映像信号と音声信号を受信する。映像信号は、映像検波回路9512と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路9513と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路9514により処理される。コントロール回路9514は、表示パネル9515の走査線駆動回路9516と信号線駆動回路9517にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路9518を設け、入力デジタル信号をm個に分割して供給する構成としても良い。
チューナ9511で受信した信号のうち、音声信号は音声検波回路9521に送られ、その出力は音声信号処理回路9522を経てスピーカー9523に供給される。制御回路9524は受信局(受信周波数)や音量の制御情報を入力部9525から受け、チューナ9511や音声信号処理回路9522に信号を送出する。
このテレビジョン装置は、表示パネル9515を含んで構成されることにより、テレビジョン装置の低消費電力を図ることが可能である。またテレビジョン装置を作製することが可能である。
なお、本発明はテレビ受像機に限定されず、パーソナルコンピュータのモニターをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など特に大面積の表示媒体として様々な用途に適用することができる。
本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する上面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する上面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明に適用可能なレーザ照射装置を説明する斜視図である。 本発明の本発明の半導体装置の作製方法を説明する断面図である。 本発明の本発明の半導体装置の作製方法を説明する上面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する上面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明に適応可能な発光素子の断面構造を説明する図である。 本発明に適応可能な発光素子の断面構造を説明する図である。 本発明に適応可能な発光素子の等価回路を説明する図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明に適応可能な電気泳動素子の断面構造を説明する図である。 本発明の表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図。 本発明の表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(シフトレジスタ回路)。 本発明の表示パネルにおいて走査線側駆動回路をTFTで形成する場合の回路構成を説明する図(バッファ回路)。 本発明の半導体装置を説明する上面図である。 本発明の半導体装置を説明する上面図である。 本発明の半導体装置を用いた電子機器を説明する斜視図である。 本発明の半導体装置を用いた電子機器を説明する図である。

Claims (1)

  1. 基板上にゲート電極を形成する工程と、
    前記ゲート電極上にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上に第1の半導体層を形成する工程と、
    前記第1の半導体層上にドナー元素又はアクセプター元素が含まれた第2の半導体層を形成する工程と、
    前記第2の半導体層上に水素を含む導電層からなる第1の光吸収層を形成する工程と、
    第1のレーザビームを照射して前記第1の光吸収層から水素を放出することによって、前記第1の光吸収層の一部を除去して第2の光吸収層を形成する工程と、
    前記第2の光吸収層をマスクとして前記第1の半導体層及び前記第2の半導体層に第1のエッチングを行うことによって、第3の半導体層と、前記第3の半導体層上の第4の半導体層と、を形成する工程と、
    第2のレーザビームを照射して前記第2の光吸収層から水素を放出することによって、前記第2の光吸収層の一部を除去して第3の光吸収層及び第4の光吸収層を形成する工程と、
    前記第3の光吸収層及び前記第4の光吸収層をマスクとして前記第4の半導体層に第2のエッチングを行うことによって、前記第3の半導体層上に第5の半導体層及び第6の半導体層を形成する工程と、を有し、
    前記第1のレーザビーム及び前記第2のレーザビームは電気光学素子を通過したレーザビームであることを特徴とする半導体装置の作製方法。
JP2006229111A 2006-08-25 2006-08-25 半導体装置の作製方法 Expired - Fee Related JP5314842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229111A JP5314842B2 (ja) 2006-08-25 2006-08-25 半導体装置の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229111A JP5314842B2 (ja) 2006-08-25 2006-08-25 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2008053526A JP2008053526A (ja) 2008-03-06
JP2008053526A5 JP2008053526A5 (ja) 2009-09-03
JP5314842B2 true JP5314842B2 (ja) 2013-10-16

Family

ID=39237274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229111A Expired - Fee Related JP5314842B2 (ja) 2006-08-25 2006-08-25 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP5314842B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770443B1 (en) 2005-09-28 2016-01-20 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and exposure method
JP4884148B2 (ja) * 2005-09-28 2012-02-29 株式会社半導体エネルギー研究所 レーザー処理装置、露光装置及び露光方法
KR20100067434A (ko) * 2008-12-11 2010-06-21 한국기계연구원 상이한 레이저 제거 최소 임계값을 이용한 미세 패턴 방법 및 이를 이용한 tft의 형성 방법.
CN111902947A (zh) * 2018-04-11 2020-11-06 堺显示器制品株式会社 有机el显示装置以及有机el显示装置的制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119975A (en) * 1974-08-12 1976-02-17 Fujitsu Ltd Kibanjoheno pataanno sentakukeiseiho
JPS53117428A (en) * 1977-03-23 1978-10-13 Mitsubishi Electric Corp Recording method for information signal
JPS5739534A (en) * 1980-08-21 1982-03-04 Seiko Epson Corp Manufacture of semiconductor device
JPS5848920A (ja) * 1981-09-18 1983-03-23 Hitachi Ltd 半導体装置の製造方法
JPH06140422A (ja) * 1992-10-26 1994-05-20 Sony Corp 電界効果トランジスタの製造方法
JPH0829986A (ja) * 1994-07-13 1996-02-02 Hitachi Ltd パターン形成方法
JP3831981B2 (ja) * 1996-07-05 2006-10-11 大日本インキ化学工業株式会社 エキシマレーザーアブレーション用レジスト材
JP2000349301A (ja) * 1999-04-01 2000-12-15 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2003115449A (ja) * 2001-02-15 2003-04-18 Nsk Ltd 露光装置
JP2004221562A (ja) * 2002-12-26 2004-08-05 Konica Minolta Holdings Inc 有機薄膜トランジスタ素子の製造方法、該製造方法により製造した有機薄膜トランジスタ素子、及び有機薄膜トランジスタ素子シート
JP4712352B2 (ja) * 2003-11-14 2011-06-29 株式会社半導体エネルギー研究所 発光装置の作製方法
JP4299642B2 (ja) * 2003-11-26 2009-07-22 積水化学工業株式会社 パターン形成方法
JP4884675B2 (ja) * 2004-01-26 2012-02-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4854994B2 (ja) * 2004-06-28 2012-01-18 株式会社半導体エネルギー研究所 配線基板の作製方法及び薄膜トランジスタの作製方法
JP4584075B2 (ja) * 2004-08-31 2010-11-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101074389B1 (ko) * 2004-11-05 2011-10-17 엘지디스플레이 주식회사 박막 식각 방법 및 이를 이용한 액정표시장치의 제조방법

Also Published As

Publication number Publication date
JP2008053526A (ja) 2008-03-06

Similar Documents

Publication Publication Date Title
KR101471822B1 (ko) 반도체장치의 제조방법
US7867907B2 (en) Method for manufacturing semiconductor device
US8703579B2 (en) Method of manufacturing semiconductor device
JP5205042B2 (ja) 半導体装置の作製方法
JP5628949B2 (ja) 半導体装置の作製方法
JP5216276B2 (ja) 半導体装置の作製方法
JP4919738B2 (ja) 半導体装置の作製方法
US7732351B2 (en) Manufacturing method of semiconductor device and laser processing apparatus
JP5314857B2 (ja) 半導体装置の作製方法
JP5227563B2 (ja) 半導体装置の作製方法
JP4954836B2 (ja) 半導体装置の作製方法
JP5030535B2 (ja) 半導体装置の作製方法
JP5314842B2 (ja) 半導体装置の作製方法
JP5276811B2 (ja) 半導体装置の作製方法
JP2008085318A (ja) 結晶性半導体膜、及び半導体装置の作製方法
JP2008176095A (ja) パターン形成方法及び薄膜トランジスタの作製方法
JP5409759B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees