JP4830593B2 - 流体制御装置 - Google Patents

流体制御装置 Download PDF

Info

Publication number
JP4830593B2
JP4830593B2 JP2006104200A JP2006104200A JP4830593B2 JP 4830593 B2 JP4830593 B2 JP 4830593B2 JP 2006104200 A JP2006104200 A JP 2006104200A JP 2006104200 A JP2006104200 A JP 2006104200A JP 4830593 B2 JP4830593 B2 JP 4830593B2
Authority
JP
Japan
Prior art keywords
valve
spool
assist
fluid control
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006104200A
Other languages
English (en)
Other versions
JP2007139181A (ja
Inventor
元良 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006104200A priority Critical patent/JP4830593B2/ja
Publication of JP2007139181A publication Critical patent/JP2007139181A/ja
Application granted granted Critical
Publication of JP4830593B2 publication Critical patent/JP4830593B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding Valves (AREA)
  • Fluid-Driven Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、流体制御弁の弁体を電動アクチュエータによって駆動する電動バルブを用いた流体制御装置に関する。
〔従来技術1:ダイレクト制御タイプ〕
流体制御弁の弁体を電動アクチュエータによって駆動する電動バルブの一例として、図4に示すダイレクト制御タイプの電磁スプール弁J1が知られている(例えば、特許文献1参照)。
ダイレクト制御タイプの電磁スプール弁J1は、スプール弁J2と、このスプール弁J2を駆動するリニアソレノイドJ3とからなる。
スプール弁J2は、筒形状を呈したスリーブJ4と、このスリーブJ4内において軸方向へ摺動自在に支持されたスプールJ5とを備え、リターンスプリングJ6の付勢力によってスプールJ5が軸方向の一方(図示右側)へ向けて付勢されている。
リニアソレノイドJ3は、通電により発生する磁気吸引力によって、リターンスプリングJ6の復元力に抗してスプールJ5を軸方向の他方(図示左側)へ駆動するものであり、リニアソレノイドJ3内で磁気吸引されるプランジャJ7が、スプールJ5を直接的に駆動する構造になっている。
上記構造のダイレクト制御タイプの電磁スプール弁J1は、リニアソレノイドJ3に与えられる通電量が増加するに従い、リターンスプリングJ6の復元力に抗してスプールJ5が軸方向の他方(図示左側)へ変位するものである。
〔従来技術1の問題点〕
このダイレクト制御タイプの電磁スプール弁J1は、リニアソレノイドJ3がスプールJ5をダイレクトに駆動するため、スプールJ5の応答遅れが生じず、出力応答性に優れる。
しかし、出力油圧の制御を行うスプールJ5をリニアソレノイドJ3によって直接駆動するには、スプールJ5の駆動力を全て(100%)リニアソレノイドJ3が負わなくてはならず、リニアソレノイドJ3が大型化する不具合がある。
具体的に、ダイレクト制御タイプの電磁スプール弁J1を自動変速機の油圧クラッチの油圧制御に用いる場合、クラッチ油室の容積が大きいため、バルブストロークが大きくなる。このため、リニアソレノイドJ3のバルブストロークも大きくする必要があり、リニアソレノイドJ3の体格が大きくなり、搭載性が悪化する。
〔従来技術2:パイロット制御タイプ〕
リニアソレノイドJ3の体格を小型化可能な電動バルブの一例として、図5に示されるパイロット制御タイプの電磁スプール弁J11が知られている(例えば、特許文献2参照)。
パイロット制御タイプの電磁スプール弁J11は、スプール弁J2と、このスプール弁J2を駆動するパイロット制御弁J12とからなる。
スプール弁J2は、上述したダイレクト制御タイプの電磁スプール弁J1におけるスプール弁J2と同様の基本構成であり、スリーブJ4に相当するバルブハウジングJ13と、このバルブハウジングJ13内において軸方向へ摺動自在に支持されたスプールJ5とからなり、リターンスプリングJ6の付勢力によってスプールJ5が軸方向の一方(図示右側)へ向けて付勢されている。
パイロット制御弁J12は、三方弁構造のパイロット弁J14と、このパイロット弁J14を駆動するリニアソレノイドJ3とからなる。
パイロット弁J14は、バルブハウジングJ13内の一端側(図示右側:リターンスプリングJ6とは異なる側に設けられた制御室J15)に配置されるパイロットスリーブJ16と、このパイロットスリーブJ16内において軸方向へ摺動自在に支持されたパイロット弁体J17とからなり、パイロットリターンスプリングJ18の付勢力によってパイロット弁体J17が軸方向の一方(図示右側)へ向けて付勢されている。
リニアソレノイドJ3は、上述したダイレクト制御タイプの電磁スプール弁J1におけるリニアソレノイドJ3と同様の基本構成であり、通電により発生する磁気吸引力によって、パイロットリターンスプリングJ18の復元力に抗してパイロット弁体J17を軸方向の他方(図示左側)へ駆動するものである。
上記構造のパイロット制御タイプの電磁スプール弁J11は、リニアソレノイドJ3に与えられる通電量が増加するに従い、パイロットリターンスプリングJ18の復元力に抗してパイロット弁体J17が軸方向の他方(図示左側)へ変位して、制御室J15の圧力が上昇(あるいは下降)するものであり、制御室J15の圧力が増加するに従い、リターンスプリングJ6の復元力に抗してスプールJ5が軸方向の他方(図示左側)へ変位するものである。
〔従来技術2の問題点〕
パイロット制御タイプの電磁スプール弁J11は、スプールJ5を駆動する制御室J15の容積が小さいため、パイロット弁体J17のストロークも小さくて済む。このため、リニアソレノイドJ3のバルブストロークが小さくて済み、リニアソレノイドJ3の体格を小型化することができる。
しかし、リニアソレノイドJ3によって制御室J15の圧力を制御し、制御室J15の圧力の変化によってスプールJ5を駆動する「間接制御」であるため、スプールJ5の移動に応答遅れが生じて出力応答性が悪い。
具体的に、パイロット制御タイプの電磁スプール弁J11を自動変速機の油圧クラッチの油圧制御に用いる場合は、「間接制御」であるためクラッチ圧の応答性が悪い。
特開平11−210919号公報 特開2002−206659号公報
本発明は、上記の問題点を解決するためになされたものであり、その目的は、ダイレクト制御タイプの利点(優れた応答性)を残したまま、電動アクチュエータを小型化し、更に省電力をも実現可能な流体制御装置の提供にある。
〔請求項1の手段〕
請求項1に記載の流体制御装置は、ダイレクト制御タイプの電動バルブと、電動バルブのアシスト室(フィードバック室とは別の室)内へ流体の供給あるいは排圧を行う電動アシストバルブとを具備する。
これにより、請求項1に記載の流体制御装置は、次の効果を得ることができる。
○電動アシストバルブによってアシスト室内へ流体の供給を行うことにより、アシスト室の流体圧の上昇によって弁体が駆動される。即ち、弁体の駆動力の一部がアシスト室の流体圧によって得られる。これにより、電動バルブに搭載される電動アクチュエータの駆動負荷を少なくできるため、電動アクチュエータを小型化することが可能になる。
○電動バルブに搭載される電動アクチュエータの動作と、電動アシストバルブの動作を組み合わせることで(例えば、電動アクチュエータの通電量の増加途中に、電動アシストバルブを作動させたり、作動を停止するなど)、流体制御弁の出力特性(出力圧特性、あるいは出力流量特性)の制御バリエーションを広げることが可能になる。
〔請求項2の手段〕
請求項2に記載の流体制御装置においてアシスト室が流体の供給を受けて弁体を駆動する方向は、電動アクチュエータによる弁体の駆動方向と同一方向である。
これにより、リターンスプリングの付勢力に抗して弁体を駆動する駆動力の一部が、アシスト室の流体圧によって得られるため、電動アクチュエータの駆動負荷を少なくすることができる。このため、電動アクチュエータを小型化することが可能になるとともに、電動アクチュエータの電力消費を抑えることができる。
また、アシスト室にアシストの流体圧を発生させる電動アシストバルブの電力消費は少なくて済むため、「電動アクチュエータ+電動アシストバルブ」の電力消費を、従来技術におけるダイレクト制御タイプの電動アクチュエータの電力消費より少なくすることが可能となる。
〔請求項3の手段〕
請求項3に記載の流体制御装置における電動アクチュエータは、リニアソレノイドである。
これにより、電磁制御バルブ(リニアソレノイドが搭載される電動バルブ)において、請求項1または請求項2で記載した効果を得ることができる。
〔請求項4の手段〕
請求項4に記載の流体制御装置における流体制御弁は、スプール弁である。
これにより、電動スプール弁(請求項3と組み合わされる場合は電磁スプール弁)において、請求項1または請求項2で記載した効果を得ることができる。
〔請求項5の手段〕
ここで、スプール弁を構成するスリーブの内周にアシスト室を形成する場合(後述する実施例1参照)、アシスト室を形成するための仕切り部材(図1の符号23参照)をスリーブ内に設ける必要がある。スリーブ内に仕切り部材を設ける手段として、スリーブ内に仕切り部材を圧入固定する手段や、スリーブ内に仕切り部材をカシメ固定する手段が考えられる。しかし、スリーブとスプールには、高い機械精度が要求されているため、スリーブに仕切り部材を固定する技術では、スリーブに変形力が加わることで、スプール弁の機械精度が劣化する懸念がある。
そこで、請求項5に記載の流体制御装置では、スプールの内部にシリンダ室を設け、アシスト室ピストンをシリンダ室内に摺動可能に配置し、スプールとアシスト室ピストンで囲まれる空間(シリンダ室内)によってアシスト室を形成する構成を採用している。
これにより、アシスト室を形成する目的で、スリーブおよびスプールに、圧入やカシメなど負荷応力が加わらないため、スプール弁の機械精度が劣化する懸念がなく、高い機械精度を維持できる。
〔請求項6の手段〕
請求項6に記載の流体制御装置における電動アシストバルブは、電磁三方弁である。
最良の形態1の流体制御装置は、出力油圧の一部が供給されるフィードバック室を備え、このフィードバック室に印加される油圧により弁体の変位を安定させる流体制御弁を備える。
この流体制御装置は、流体制御弁の弁体を電動アクチュエータによって直接的に駆動する電動バルブと、この電動バルブとは別の部位に搭載され、流体制御弁内において弁体に変位力を与えることが可能なアシスト室(フィードバック室とは別の室)内へ、流体の供給あるいは排圧を行う電動アシストバルブとを具備する。
流体制御弁は、弁体を一方向へ付勢するリターンスプリングを備え、電動アクチュエータは、リターンスプリングの付勢力に抗して弁体を他方向へ駆動する。
アシスト室が流体の供給を受けて弁体を駆動する方向は、電動アクチュエータによる弁体の駆動方向と同一方向である。
これにより、弁体の駆動力の一部が、アシスト室に供給された流体圧によって得られるため、電動アクチュエータの駆動負荷を少なくすることができ、電動アクチュエータの小型化および省電力化を図ることができる。
本発明の流体制御装置を自動変速機の油圧制御装置に適用した実施例1を、図1、図2を参照して説明する。
〔電磁スプール弁1の説明〕
自動変速機の油圧制御装置は、自動変速機の油圧クラッチに係合油圧の供給と、係合油圧の排出の切替制御を行う電磁スプール弁1(電動バルブの一例)を搭載している。
電磁スプール弁1は、油圧の切り替えを行うスプール弁2(流体制御弁の一例)と、このスプール弁2を駆動するリニアソレノイド3(電動アクチュエータの一例)とを軸方向に結合したものである。
なお、実施例1に示す電磁スプール弁1は、リニアソレノイド3がOFFの状態で、後述する入力ポート8と出力ポート9の連通度合が最小(閉鎖)になるとともに、後述する出力ポート9と排出ポート10の連通度合が最大になるN/C(ノーマリクローズ)タイプである。
スプール弁2の一例を図1を参照して説明する。スプール弁2は、スリーブ4、スプール5(弁体の一例)およびリターンスプリング6を備える。
スリーブ4は、図示しない油圧コントローラのケース内に挿入されるものであり、略円筒形状を呈する。
スリーブ4には、スプール5を軸方向へ摺動自在に支持する挿通穴7、図示しないオイルポンプ(油圧発生手段)のオイル吐出口に連通して入力油圧(オイル)が供給される入力ポート8、スプール弁2で調圧された出力油圧が出力される出力ポート9、低圧側(オイルパン等)に連通する排出ポート10、出力ポート9と連通するF/B(フィードバック)ポート11、および後述する電磁三方弁21の出力油圧が供給されるアシストポート12が形成されている。
入力ポート8、出力ポート9、排出ポート10、F/Bポート11、アシストポート12等のオイルポートは、スリーブ4の側面に形成された穴であり、スリーブ4の側面には図1左側から図1右側に向けて、F/Bポート11、入力ポート8、出力ポート9、排出ポート10、アシストポート12が形成されている。
スプール5は、スリーブ4内に摺動自在に配置され、入力ポート8をシールする入力シールランド13、排出ポート10をシールする排出シールランド14を備える。そして、入力シールランド13と排出シールランド14の間に、出力ポート9に連通する分配室15が形成される。
また、スプール5は、入力シールランド13の図1左側に、入力シールランド13より小径のF/Bランド16を備える。そして、入力シールランド13とF/Bランド16の間に、F/Bポート11に連通するF/B室17が形成される。なお、F/Bポート11にはオリフィスが設けられており、F/B室17内に適切なF/B油圧が発生するようになっている。
このため、F/B室17に印加される油圧(出力圧)が大きくなるに従って入力シールランド13とF/Bランド16のランド差による差圧により、スプール5には図1右側に変位する軸力が発生する。これによって、スプール5の変位が安定し、入力圧の変動により出力圧が変動するのを防ぐことができる。
なお、スプール5は、リターンスプリング6のバネ荷重と、リニアソレノイド3による駆動力(スプール5に与えられる軸力)と、入力シールランド13とF/Bランド16のランド差による軸力とが釣り合う位置で静止するものである。
また、スプール5は、リニアソレノイド3の出力が伝達されるシャフト18によって駆動される。このシャフト18は、スプール5と一体、または当接、あるいは結合して設けられている。シャフト18の図1右側は、リニアソレノイド3のプランジャ(図示しない)と当接、または結合、あるいは一体に設けられている。この構成により、リニアソレノイド3のプランジャがシャフト18を介してスプール5を直接駆動する。
リターンスプリング6は、スプール5を閉弁側(入力側シール長が長くなって出力圧が低下する側:この実施例では図1右側)に付勢する筒状に螺旋形成されたコイルスプリングであり、スリーブ4の図1左側のバネ室内に圧縮された状態で配置される。このリターンスプリング6は、一端がスリーブ4の挿通穴7の図1左端に螺合する調整ネジ19の底面に当接し、他端がスプール5の図1左端に当接するものであり、調整ネジ19の螺合量(ねじ込み量)により、リターンスプリング6のバネ荷重が調整できるようになっている。
リニアソレノイド3は、周知構造のものであり、通電により磁力を発生するコイル、リニアソレノイド3内で軸方向へ摺動自在に支持されたプランジャ、このプランジャを図1左側へ磁気吸引するステータ、このステータとともに閉磁路を形成するヨーク等を備える(図4、図5参照)。
リニアソレノイド3(具体的にはコイル)は、図示しない電子制御装置によって通電制御される。電子制御装置は、デューティ比制御によって通電量(電流値I)を制御するものであり、リニアソレノイド3に与えられる通電量を制御することによって、リターンスプリング6のバネ荷重に抗してスプール5の軸方向位置をリニアに変位させて、入力側シール長と排出側シール長の比率を制御し、出力ポート9に発生するオイルの出力圧を制御する。
〔実施例1の背景〕
上述した電磁スプール弁1は、リニアソレノイド3(具体的にはプランジャ)がスプール5をダイレクトに駆動するダイレクト制御タイプであり、リニアソレノイド3の出力によってスプール5が直接駆動される構造であるため、スプール5の応答遅れが生じず、出力応答性に優れる利点がある。
しかし、スプール5の駆動力を全て(100%)リニアソレノイド3が負担する場合は、リニアソレノイド3が大型化するとともに、リニアソレノイド3の電力消費が多くなる不具合がある。なお、自動変速機の油圧制御装置は、電磁スプール弁1を複数本使用するため、リニアソレノイド3が大型化すると油圧コントローラへの搭載性が悪化する。
自動変速機の油圧制御装置には、油圧クラッチの係合をスムーズに行うために、高い油圧精度が必要であり、通電電流に対する出力油圧(出力ポート9の出力油圧)の上昇勾配を緩やかにすることが要求される。
一方、油圧クラッチの係合が完了したら、油圧クラッチの係合力を高めるために、出力油圧の上昇勾配を急激にする要求がある。
そこで、従来では、油圧クラッチの係合を緩やかにする油圧の上昇勾配と、係合後に係合力を高める油圧の上昇勾配との両者の中間の上昇勾配が得られるように、電子制御装置は、油圧クラッチの係合時、図2(b)に示すように、リニアソレノイド3に与える通電量(電流値I)を徐々に増加させて、油圧クラッチに供給する油圧(P)を徐々に高めていた。
しかし、両者の中間の上昇勾配では、両者とも満足することが困難であり、油圧クラッチの係合時の油圧の上昇勾配をさらに緩やかにするとともに、係合後の油圧の上昇勾配をさらに高めるという相反する要求がある。
〔実施例1の特徴〕
上記の不具合を解決するために、実施例1の流体制御装置は、上述したダイレクト制御タイプの電磁スプール弁1の他に、この電磁スプール弁1とは独立した電磁三方弁21(電動アシストバルブの一例:3ウェイソレノイド)を備えている。
この電磁三方弁21は、電磁スプール弁1内においてスプール5に変位力を与えることが可能なアシスト室22へ、オイル(流体の一例)の供給あるいは排圧を行うものである。アシスト室22がオイルの供給を受けてスプール5を駆動する方向は、リニアソレノイド3によるスプール5の駆動方向と同一の図1左方向であり、スリーブ4の図1右側内部にアシスト室22が形成される。即ち、このアシスト室22は、スリーブ4内で、且つスプール5(具体的には排出シールランド14)の右側の空間であり、アシストポート12からアシスト室22にオイルが供給されてアシスト室22内の油圧が高まると、アシスト室22内の油圧によってスプール5に図1左方向に向かう変位力が与えられる。なお、スリーブ4の図1右端に設けられた仕切り部材23は、アシスト室22の油圧がリニアソレノイド3に及ぶのを防ぐためのものである。
電磁三方弁21は、三方弁24とソレノイド25を組み合わせた周知構造のものであり、ソレノイド25の作動によってアシスト室22に連通する出力ポート26を、オイルが供給される入力ポート27あるいはオイルの排出ポート28の一方へ切替接続するものである。
具体的に、電磁三方弁21の入力ポート27はオイルポンプ(油圧発生手段)のオイル吐出口に連通して入力油圧(オイル)が供給され、電磁三方弁21の出力ポート26はアシストポート12を介してアシスト室22に連通し、電磁三方弁21の排出ポート28は低圧側(オイルパン等)に連通する。
なお、この実施例1では、電磁三方弁21の一例として、ソレノイド25がOFFの状態で、入力ポート27と出力ポート26が閉鎖し、出力ポート26と排出ポート28が連通し、逆にソレノイド25がONの状態で、入力ポート27と出力ポート26が連通し、出力ポート26と排出ポート28が閉鎖するN/C(ノーマリクローズ)タイプを用いるが、N/O(ノーマリオープン)タイプの電磁三方弁21であっても良い。
(実施例1の効果)
電子制御装置は、油圧クラッチの係合時、図2(a)に示すように、先ず、電磁三方弁21をOFFした状態のまま(アシスト油圧=0)、リニアソレノイド3に与える通電量(電流値I)を徐々に増加させて、油圧クラッチに供給する油圧(P)を徐々に高め、油圧クラッチを円滑に係合させる。そして、電子制御装置は、油圧クラッチの係合が完了したタイミングで電磁三方弁21をONする。すると、アシスト室22の油圧が急激に高まり、スプール5が開弁方向(入力側シール長が短くなって出力圧が増加する側:この実施例では図1左側)へ駆動され、油圧クラッチの係合油圧が素早く上昇する。
このように、電磁スプール弁1と、電磁三方弁21とを組み合わせて用いることで、油圧クラッチが係合する時の油圧の上昇勾配と、油圧クラッチの係合完了後の油圧の上昇勾配とを、独立してコントロールすることができる。このため、油圧クラッチの係合時の油圧の上昇勾配を、従来よりも緩やかにすることができるとともに、係合後の油圧の上昇勾配を従来よりも高めることができる。
即ち、電磁スプール弁1と、電磁三方弁21とを組み合わせることにより、出力特性の制御バリエーションを広げることができる。
スプール5は、リニアソレノイド3の駆動力と、アシスト室22に発生する油圧とにより駆動される。これにより、リニアソレノイド3の駆動負荷が少なくなるため、電磁スプール弁1に搭載されるリニアソレノイド3を小型化することが可能になり、油圧コントローラに対する電磁スプール弁1の搭載性が向上する。なお、電磁三方弁21が別途搭載されるが、アシスト室22にアシストの油圧を発生させる電磁三方弁21は小型で済むため、油圧コントローラへの搭載性に優れ、電磁三方弁21の搭載場所は容易に確保することができる。
また、リニアソレノイド3におけるスプール5の駆動負荷が軽減されることにより、リニアソレノイド3の電力消費を抑えることができる。なお、電磁三方弁21の電力消費が新たに必要になるが、アシスト室22にアシストの油圧を発生させる電磁三方弁21の電力消費は少なくて済むため、「リニアソレノイド3+電磁三方弁21」の電力消費を、従来技術におけるダイレクト制御タイプのリニアソレノイド3の電力消費より少なくすることができる。
実施例2を図3を参照して説明する。なお、実施例2において上記実施例1と同一符号は同一機能物を示すものである。
(実施例2の背景)
上記実施例1では、スリーブ4の内周面にスプール5を駆動するためのアシスト室22を形成する例を示した。具体的に、実施例1では、スリーブ4におけるリニアソレノイド3側の内周面に仕切り部材23を固定し、排出シールランド14、仕切り部材23およびスリーブ4に囲まれる空間によってアシスト室22を形成する例を示した。
ここで、スリーブ4内に仕切り部材23を設ける手段として、スリーブ4内に仕切り部材23を圧入固定する手段や、スリーブ4内に仕切り部材23をカシメ固定する手段が考えられる。一方、スリーブ4とスプール5には、高い機械精度が要求されている。具体的には、スリーブ4とスプール5との間には、摺動クリアランスが要求される。この摺動クリアランスが大きいと内部のオイル漏れが大きくなり、逆に摺動クリアランスが小さいとスプール5の摺動抵抗が大きくなるため、摺動クリアランスを高い精度で管理することが必要となっている。しかし、スリーブ4内に仕切り部材23を圧入固定したり、カシメ固定したりすると、スリーブ4に変形力が加わることになり、スプール弁2の機械精度が劣化して、スプール弁2の性能が劣化したり、作動不良を起こす要因となる。
(実施例2の構成)
上記の不具合を回避するために、この実施例2では、次の技術を採用している。
○スプール5には、軸方向へ伸びる筒形状のシリンダ室31が形成されている。この実施例2のシリンダ室31は、リニアソレノイド3側の端から軸方向に一定の深さで穿設された円筒形状の穴であり、シリンダ室31の軸心とスプール5の軸心とが略一致して設けられている。
○シリンダ室31内には、シリンダ室31内において軸方向へ摺動自在に支持されるアシスト室ピストン32が配置されている。このアシスト室ピストン32は、シリンダ室31の内周面との間に微小の摺動クリアランスを介して挿入された円柱体である。
○アシスト室ピストン32は、リニアソレノイド3の軸方向出力をスプール5に伝達する。具体的に、アシスト室ピストン32は、リニアソレノイド3の軸方向出力が伝達されるシャフト18によって駆動される。シャフト18は、アシスト室ピストン32と一体、または当接、あるいは結合して設けられている。なお、シャフト18の図3右側は、実施例1と同様、リニアソレノイド3のプランジャと当接、または結合、あるいは一体に設けられている。
○スプール5とアシスト室ピストン32で囲まれる空間(シリンダ室31内)によってアシスト室22が形成される。アシスト室22に油圧が供給されていない状態では、リターンスプリング6の閉弁軸力、またはリニアソレノイド3の開弁軸力によって、アシスト室ピストン32の奥端がシリンダ室31の底面に軸方向当接して、スプール5とアシスト室ピストン32が一体に移動する。
○スプール5には、電磁三方弁21の発生する油圧をアシスト室22に導くアシスト圧給排路33が形成されている。
実施例2におけるアシスト圧給排路33を説明する。この実施例2のアシストポート12は、入力ポート8とF/Bポート11の軸方向間に形成されている。そして、アシスト圧給排路33は、アシストポート12とアシスト室22とを連通するスプール5に形成されたオイル通路であり、アシストポート連通溝33a、軸方向孔33bおよび内外連通孔33cからなる。
アシストポート連通溝33aは、入力シールランド13の軸方向の中間部に形成された外周溝であり、スプール5のストローク位置に関わらず、アシストポート12と常に連通する溝幅に設けられている。
軸方向孔33bは、シリンダ室31の底面の中心部からアシストポート連通溝33aの内径部まで形成された軸方向の孔であり、軸方向孔33bの内径寸法はシリンダ室31の内径寸法より小さく設けられている。
内外連通孔33cは、アシストポート連通溝33aの溝底と軸方向孔33bを連通する孔である。
上記の構成を採用することにより、アシスト室22が油圧の供給を受けてスプール5を駆動する方向は、リニアソレノイド3によるスプール5の駆動方向と同一の図3左方向である。
(実施例2の作動)
電磁スプール弁1のリニアソレノイド3、および電磁三方弁21のソレノイド25は、実施例1と同様に制御される。
具体的に電子制御装置は、油圧クラッチの係合時、先ず、電磁三方弁21をOFFしたまま(アシスト油圧=0)、リニアソレノイド3に与える通電量(電流値I)を徐々に増加させる。これにより、図3(a)に示すように、アシスト室ピストン32の奥端がシリンダ室31の底面に当接した状態が保たれたまま、リニアソレノイド3の出力によってスプール5とアシスト室ピストン32が一体に開弁方向へ移動する。即ち、リニアソレノイド3の通電制御に対応してスプール5がリニアにストローク制御され、出力ポート9の出力油圧がリニアに制御される。このようにして、油圧クラッチの供給油圧が徐々に高められ、油圧クラッチが円滑に係合する。
電子制御装置は、油圧クラッチの係合が完了したタイミングで電磁三方弁21をONする。すると、アシスト室22の油圧が急激に高まり、図3(b)に示すように、スプール5が開弁方向へ大きく駆動され、油圧クラッチの係合油圧が素早く上昇する。なお、図3(b)では、シャフト18の伸び量が短くなっている状態を示すが、これはリニアソレノイド3の発生する開弁軸力よりも、アシスト室22にアシスト油圧が供給された際に生じる開弁軸力の方が大きく、アシスト油圧によりシャフト18が押し戻された状態を示すためである。
(実施例2の効果)
実施例2は、上記の構成を採用することにより、上述した実施例1と同様の効果を得ることができる。
さらに、実施例2では、スプール5の内部にシリンダ室31を設け、そのシリンダ室31内にアシスト室ピストン32を摺動クリアランスを介して挿入して、スプール5とアシスト室ピストン32で囲まれる空間(シリンダ室31内)にアシスト室22を形成する構造であるため、アシスト室22を形成する目的でスリーブ4およびスプール5に対して圧入やカシメなどの機械的な負荷応力が加わらない。
これによって、スプール弁2の機械精度が劣化する懸念がなく、スリーブ4およびスプール5に施された高い機械精度を維持することができ、電磁スプール弁1の信頼性を高めることができる。
〔変形例〕
上記の実施例では、電磁三方弁21をON−OFF制御する例を示したが、電磁三方弁21に与える通電量を可変することでアシスト室22の油圧をコントロールして、スプール5のアシスト力を制御しても良い。
上記の実施例では、電動アシストバルブの一例として電磁三方弁21を用いる例を示したが、ソレノイド25に代えて他の電磁アクチュエータ(例えば、ピエゾスタックを用いたピエゾアクチュエータ、電動モータ等)を用いても良い。
上記の実施例では、N/C(ノーマリクローズ)タイプの電磁スプール弁1を用いる例を示したが、N/O(ノーマリオープン)タイプの電磁スプール弁1を用いても良い。
上記の実施例では、自動変速機の油圧制御装置に用いられる電磁スプール弁1に本発明を適用する例を示したが、自動変速機以外の他の電磁スプール弁1に本発明を適用しても良い。
上記の実施例では、流体制御弁の一例として3方弁タイプのスプール弁2を示したが、3方弁に限定されるものではなく、開閉弁(2方弁)や4方弁など、他の構造の流体制御弁を用いても良い。
上記の実施例では、流体制御弁の一例としてスプール弁2を例示したが、流体の流量制御、流体の圧力制御を行う流体制御弁を用いても良い。
上記の実施例では、電動アクチュエータの一例としてリニアソレノイド3を用いる例を示したが、リニアソレノイド3に代えて他の電動アクチュエータ(例えば、ピエゾスタックを用いたピエゾアクチュエータ、電動モータ等)を用いても良い。
流体制御装置の概略構成図である(実施例1)。 リニアソレノイドに印加される電流値(I)と出力油圧(P)との関係を示すグラフである。 流体制御装置の概略構成図である(実施例2)。 ダイレクト制御タイプの電磁スプール弁の断面図である(従来技術1)。 パイロット制御タイプの電磁スプール弁の断面図である(従来技術2)。
符号の説明
1 電磁スプール弁(電動バルブ)
2 スプール弁(流体制御弁)
3 リニアソレノイド(電動アクチュエータ)
4 スリーブ
5 スプール(弁体)
6 リターンスプリング
21 電磁三方弁(電動アシストバルブ)
22 アシスト室
26 電磁三方弁の出力ポート
27 電磁三方弁の入力ポート
28 電磁三方弁の排出ポート
31 シリンダ室
32 アシスト室ピストン
33 アシスト圧給排路

Claims (6)

  1. 出力油圧の一部が供給されるフィードバック室を備え、このフィードバック室に印加される油圧により弁体の変位を安定させる流体制御弁を備えた流体制御装置において、
    この流体制御装置は、
    (a)前記流体制御弁における前記弁体を電動アクチュエータによって直接的に駆動する電動バルブと、
    (b)前記フィードバック室とは独立して設けられ、前記流体制御弁内において前記弁体に変位力を与えることが可能なアシスト室内へ、流体の供給あるいは排圧を行う電動アシストバルブと、
    を具備することを特徴とする流体制御装置。
  2. 請求項1に記載の流体制御装置において、
    前記流体制御弁は、前記弁体を一方向へ付勢するリターンスプリングを備え、
    前記電動アクチュエータは、前記リターンスプリングの付勢力に抗して前記弁体を他方向へ駆動するものであり、
    前記アシスト室が流体の供給を受けて前記弁体を駆動する方向は、前記電動アクチュエータによる前記弁体の駆動方向と同一方向であることを特徴とする流体制御装置。
  3. 請求項2に記載の流体制御装置において、
    前記電動アクチュエータは、通電量に応じた磁気吸引力によって前記弁体に変位力を与えるリニアソレノイドであることを特徴とする流体制御装置。
  4. 請求項1〜請求項3のいずれかに記載の流体制御装置において、
    前記流体制御弁は、筒形状を呈するスリーブ内において前記弁体に相当するスプールを軸方向へ摺動自在に支持するスプール弁であることを特徴とする流体制御装置。
  5. 請求項4に記載の流体制御装置において、
    前記スプールの内部に軸方向へ伸びるシリンダ室を形成し、このシリンダ室内において軸方向へ摺動可能に支持されるアシスト室ピストンを配置し、前記スプールと前記アシスト室ピストンで囲まれる前記シリンダ室内に前記アシスト室を形成し、
    前記スプールには、前記電動アシストバルブのアシスト流体を前記アシスト室へ導くアシスト圧給排路が設けられたことを特徴とする流体制御装置。
  6. 請求項1〜請求項5のいずれかに記載の流体制御装置において、
    前記電動アシストバルブは、前記アシスト室に連通する出力ポートを、流体の入力ポートあるいは流体の排出ポートの一方へ切替接続する電磁三方弁であることを特徴とする流体制御装置。
JP2006104200A 2005-10-20 2006-04-05 流体制御装置 Expired - Fee Related JP4830593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104200A JP4830593B2 (ja) 2005-10-20 2006-04-05 流体制御装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005305769 2005-10-20
JP2005305769 2005-10-20
JP2006104200A JP4830593B2 (ja) 2005-10-20 2006-04-05 流体制御装置

Publications (2)

Publication Number Publication Date
JP2007139181A JP2007139181A (ja) 2007-06-07
JP4830593B2 true JP4830593B2 (ja) 2011-12-07

Family

ID=38202287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104200A Expired - Fee Related JP4830593B2 (ja) 2005-10-20 2006-04-05 流体制御装置

Country Status (1)

Country Link
JP (1) JP4830593B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121929B (zh) * 2013-04-17 2017-10-20 丰田自动车株式会社 液压控制阀和液压控制装置
US9927023B2 (en) 2015-02-23 2018-03-27 Denso Corporation Hydraulic control device
JP6354645B2 (ja) * 2015-02-23 2018-07-11 株式会社デンソー 油圧制御装置
US10443707B2 (en) * 2017-03-24 2019-10-15 Borgwarner Inc. Cooling and lubrication system including 3-way solenoid-actuated valve for automatic transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294987A (ja) * 1988-09-30 1990-04-05 Toshiba Corp キャリアバランス自動調整回路
JPH11210919A (ja) * 1998-01-27 1999-08-06 Denso Corp スプール弁型油圧制御弁
JP2002206659A (ja) * 2001-01-11 2002-07-26 Denso Corp スプール弁型油圧制御弁
JP2004153161A (ja) * 2002-10-31 2004-05-27 Denso Corp 電磁駆動装置及びそれを用いた流量制御装置

Also Published As

Publication number Publication date
JP2007139181A (ja) 2007-06-07

Similar Documents

Publication Publication Date Title
JP5293792B2 (ja) 油圧調整弁
US6619616B1 (en) Solenoid valve device
JP4285354B2 (ja) リニアソレノイドおよび電磁弁
US7938143B2 (en) Fluid pressure control apparatus
JP4775362B2 (ja) スプール弁
JP4141375B2 (ja) 3方ブリード式比例電磁弁
US20210278008A1 (en) Solenoid
JP5076666B2 (ja) スプール装置、リニアソレノイドバルブ
JP4830593B2 (ja) 流体制御装置
JP2006118682A (ja) 油圧電磁制御弁
JP2012241740A (ja) ソレノイドバルブおよび油圧制御装置
JP5724770B2 (ja) 油圧制御バルブ
US10139008B2 (en) Solenoid spool valve
JP4692413B2 (ja) 電磁弁
JP4797969B2 (ja) 電磁弁
JP2009108905A (ja) 電動バルブの固定手段
JP5760936B2 (ja) スプール制御弁
JP4501789B2 (ja) 三方電磁弁
JP2007100829A (ja) バルブ装置
JP4703615B2 (ja) ブリード式バルブ装置
JP2009243544A (ja) 電磁弁
JP4301318B2 (ja) ブリード式バルブ装置
JPH11280935A (ja) 電磁弁
JP5747744B2 (ja) ノーマルオープン型スプール弁
JP2008025710A (ja) 油圧制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees