JP4822769B2 - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
JP4822769B2
JP4822769B2 JP2005247394A JP2005247394A JP4822769B2 JP 4822769 B2 JP4822769 B2 JP 4822769B2 JP 2005247394 A JP2005247394 A JP 2005247394A JP 2005247394 A JP2005247394 A JP 2005247394A JP 4822769 B2 JP4822769 B2 JP 4822769B2
Authority
JP
Japan
Prior art keywords
vibrator
support member
charge detection
support
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005247394A
Other languages
English (en)
Other versions
JP2007064649A (ja
Inventor
道彦 桑畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005247394A priority Critical patent/JP4822769B2/ja
Priority to US11/475,836 priority patent/US7394610B2/en
Priority to KR1020060057887A priority patent/KR100822775B1/ko
Publication of JP2007064649A publication Critical patent/JP2007064649A/ja
Application granted granted Critical
Publication of JP4822769B2 publication Critical patent/JP4822769B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

本発明は加速度センサに関し、特に小型で高感度の加速度センサに関するものである。
従来からハードディスクドライブ等の電子機器に外部から加わる衝撃の検出などの用途に加速度センサが用いられており、短冊状の圧電基板の両主面に電荷検出電極を配置した振動子の端部を支持部材によって支持したタイプの加速度センサが知られている(例えば、特許文献1を参照。)。
このような加速度センサにおいては、与えられた加速度により振動子が撓むことによって圧電基板に歪みが生じ、圧電効果により圧電基板の両主面に形成した電荷検出電極に電荷が発生する。そして、この電荷または電荷によって両主面の電荷検出電極間に発生する電圧によって加速度を検出する。電荷と電圧のどちらを利用して加速度を検出するかは、加速度センサを利用して加速度を検出する加速度検出装置によって異なり、一般的に、発生する電荷によって加速度を検出する場合の加速度の検出感度を電荷感度と称し、発生する電圧によって加速度を検出する場合の加速度の検出感度を電圧感度と称する。加速度センサとしては、電荷感度も電圧感度も高い方が望ましい。
実開平7−36064号公報(図1)
しかしながら、上述したような従来の加速度センサにおいては、加速度の検出感度を向上させるためには、振動子の長さを長くするか、あるいは振動子の幅および厚みを小さくする必要があった。例えば、短冊形の圧電基板を厚み方向に2枚貼り合わせたバイモルフ型の振動子の長手方向の一方端部を支持部材によって挟持した加速度センサに、加速度による力Fが加わったときの出力電圧Vは、圧電基板の圧電定数をD、振動子における支持部材によって挟持されていない自由振動領域の長さをL、振動子の幅をW、振動子の厚みをTとすると、V=(3/2)・D・L・F/(W・T)となり、振動子の自由振動領域の長さLに比例し、振動子の幅Wおよび厚みTに反比例する。よって、加速度センサにおいて加速度の検出感度を向上させるためには振動子の自由振動領域の長さLを大きくして振動子の幅Wおよび厚みTを小さくする必要があるが、振動子の自由振動領域の長さLの増大は加速度センサの大型化を招き、振動子の幅Wおよび厚みTの減少は機械的強度不足による加速度センサの信頼性の低下を招くという問題があった。
本発明は上記のような従来の技術における問題点に鑑み案出されたものであり、その目的は、小型で加速度の検出感度および信頼性が高い加速度センサを提供することにある。
本発明の加速度センサは、支持部材と、短冊状の圧電基板から成り、少なくとも一方の主面が前記支持部材によって支持された支持領域および前記支持部材によって支持されていない、長手方向の長さが前記支持領域よりも長い自由振動領域を有し、両主面の前記自由振動領域から前記支持領域の途中にかけて前記圧電基板を介して互いに対向する2つの
電荷検出電極が配置された振動子とを具備し、前記圧電基板は、一方の主面に前記電荷検出電極から一方の側面に露出された第1の引き出し電極が前記支持領域内に配置され、他方の主面に前記電荷検出電極から他方の側面に露出された第2の引き出し電極が前記支持領域内に配置され、前記第1の引き出し電極および前記第2の引き出し電極は、前記圧電基板を介して互いに対向しないように配置されており、2つの前記電荷検出電極は、前記支持領域において、前記圧電基板の幅方向の中央部で互いに対向するとともに、前記圧電基板の幅方向の両端部で互いに対向しないように配置されていることを特徴とするものである。
また、本発明の加速度センサは、上記構成において、前記支持部材は、前記振動子に接触する側の第1支持部材と該第1支持部材を支持する第2支持部材とから成り、前記第1支持部材の弾性率が前記第2支持部材の弾性率よりも小さいことを特徴とするものである。
さらに、本発明の加速度センサは、上記各構成において、前記振動子は、前記圧電基板が複数厚み方向に積層されており、前記圧電基板の間に前記圧電基板を介して前記電荷検出電極に対向するようにさらに電荷検出電極が配置されていることを特徴とするものである。
本発明の加速度センサは、支持部材と、短冊状の圧電基板から成り、少なくとも一方の主面が支持部材によって支持された支持領域および支持部材によって支持されていない、長手方向の長さが支持領域よりも長い自由振動領域を有した振動子とを具備している。このような加速度センサにおいては、加速度が加えられたときに、自由振動領域に加えて支持領域内における自由振動領域に近接する部分でも圧電基板に歪みが生じて圧電効果による電荷が発生し、支持領域における自由振動領域から離間した部分では圧電基板が殆ど歪まず圧電効果による電荷も殆ど発生しない。そして、本発明の加速度センサでは、振動子の両主面の自由振動領域から支持領域の途中にかけて圧電基板を介して互いに対向する電荷検出電極が配置されている。すなわち、振動子の両主面において、自由振動領域および支持領域内の自由振動領域に近接する部分には電荷検出電極が配置されており、支持領域内の自由振動領域から離間した部分には電荷検出電極が配置されていない。
本発明の加速度センサによれば、支持領域内の自由振動領域に近接する部分にも電荷検出電極が配置されていることにより、自由振動領域で発生する電荷に加えて、支持領域内の自由振動領域に近接する部分で発生する電荷も電荷検出電極に取り込まれるため、電荷検出電極に蓄積される電荷量が増加し、振動子の両主面の電荷検出電極間に発生する電位差も大きくなる。故に、加えられた加速度によって発生する電荷および電圧が増大し、加速度の検出感度が高い加速度センサを得ることができる。
また、支持領域内の自由振動領域から離間した部分に電荷検出電極が配置されていないことにより、支持領域における自由振動領域から離間した部分にも電荷検出電極が配置される場合と比較すると、電荷検出電極の面積が減少して振動子の両主面の電荷検出電極間の静電容量が減少する。その上、支持領域における自由振動領域から離間した部分に電荷検出電極を配置しなくても、支持領域における自由振動領域から離間した部分に電荷検出電極を配置する場合と比較して電荷検出電極に蓄積される電荷量は殆ど減少しない。
ここで、加えられた加速度によって電荷検出電極に蓄積される電荷量をQ,それによって振動子の両主面の電荷検出電極間に発生する電位差をV,振動子の両主面の電荷検出電極間の静電容量をCとするとV=Q/Cとなるため、電荷量Qが一定で静電容量Cが小さくなれば電位差Vが増加することになる。すなわち、支持領域内の自由振動領域から離間した部分に電荷検出電極が配置されていないことにより、加えられた加速度によって電荷検出電極に蓄積される電荷量Qは殆ど変わらずに、振動子の両主面の電荷検出電極間の静電容量Cは減少するので、振動子の両主面の電荷検出電極間に発生する電位差Vが増大する。よって、加えられた加速度を電圧の変化で検出する場合の感度(以下、単に電圧感度と称する。)が高い加速度センサを得ることができる。
このとき、振動子の自由振動領域の長さを増加させないので加速度センサを大型化させることはなく、振動子の幅および厚みを小さくしないので機械的強度不足による信頼性の低下を招くこともない。
また、本発明の加速度センサによれば、上記構成において、支持部材は、振動子に接触する側の第1支持部材と該第1支持部材を支持する第2支持部材とから成り、第1支持部材の弾性率が第2支持部材の弾性率よりも小さいようにしてもよく、これによって加速度の検出感度を高めることができる。すなわち、第1支持部材が第2支持部材よりも小さい弾性率を有しているため、第1支持部材が振動子から受ける力によって変形し易くなって支持領域内において振動子が撓み易くなる。よって、支持領域内における圧電基板に歪みが生じる領域が大きくなり、これにより発生する電荷が増加して出力電圧が増大し、加速度の検出感度をより高くすることができるのである。しかも、第2支持部材の弾性率が第1支持部材の弾性率よりも大きくされているので、第2支持部材に変形が生じにくくなる。第2支持部材を変形しにくくすることにより、加速度センサに衝撃が加えられた際に支持部材全体が大きく変形して衝撃が吸収され、それにより振動子の変形が小さくなることによって生じる加速度の検出感度の低下を抑制することができる。
さらに、本発明の加速度センサによれば、上記構成において、振動子は、圧電基板が複数厚み方向に積層されており、それぞれの圧電基板の間に圧電基板を介して両主面の電荷検出電極に対向するようにさらに電荷検出電極が配置されているようにしてもよい。この場合、圧電基板の間に配置されたそれぞれの電荷検出電極は、振動子の両主面に配置された電荷検出電極と厚み方向において重なるような位置および形状で配置されればよく、振動子の両主面に配置された電荷検出電極と圧電基板を介して直接対向する必要はない。これによって、それぞれの圧電基板の両主面に配置された電荷検出電極に電荷が発生し、振動子全体に発生する電荷量が増加するため、発生する電荷を利用して加速度を検出する場合の加速度の検出感度(以下、単に電荷感度と称する。)を高めることができる。
またさらに、本発明の加速度センサによれば、上記構成において、複数の圧電基板のそれぞれにおいて、一方の主面に電荷検出電極から一方の側面に引き出された第1の引き出し電極が配置され、他方主面に電荷検出電極から他方の側面に引き出された第2の引き出し電極が配置されているようにしてもよい。こうした場合には、複数の圧電基板を厚み方向に積層し、その層間に電荷検出電極を配置した場合においても、全ての電荷検出電極を引き出し電極を介して振動子の両側面において容易に振動子の外部と電気的に接続することができる。これによって、層間に位置する電荷検出電極を振動子の外部と電気的に接続するためのビアホールなどを振動子に形成する必要がなくなるため、単純な構造を有し製造工程も簡略化可能な加速度センサを得ることができる。また、振動子の両側面において振動子の外部と電気的に接続することが可能になることにより、引き出し電極を振動子の端面に引き出して露出させ、振動子の端面において振動子の外部との電気的接続を行う場合と比較すると、振動子の外部との接続部同士の間隔を大きくすることができる。これによって、引き出し電極と振動子の外部とを流動性を有するハンダや導電性接着剤等を用いて接続する場合などに、第1の引き出し電極と第2の引き出し電極との間に電気的短絡が生じる可能性を低減することができる。
以下、本発明の加速度センサについて、添付した図面を参照しつつ詳細に説明する。
図1は本発明の加速度センサの実施の形態の一例を模式的に示す外観斜視図である。同図に示す加速度センサは、側面の下部にリード電極1a,1bを有した直方体状のケース1内に後述する振動子(図示せず)を収納し、一端側の開口部1hを封止用樹脂5で封止した構造を有している。
振動子を収納する直方体状のケース1は、一端側に開口部1hを有した容器体であり、材質としては例えば、液晶ポリマー(LCP),ポリフェニレンサルファイド(PPS)などの高強度のプラスチック材料やアルミナ等のセラミックス材料が好適に用いられる。
ケース1には加速度センサの実装基板等への機械的な固定および電気的な接続に供されるリード電極1a,1bが取り付けられている。リード電極1a,1bの材質としては例えばリン青銅等が用いられ、その厚みは例えば0.1〜0.5mmに設定される。なお、本例の加速度センサにおいては、リード電極1a,1bは、インサートモールドによりケース1と一体成型されている。
封止用樹脂5はケース1の開口部1hを塞ぐようにして形成されており、封止用樹脂5の材質としては例えばエポキシ樹脂等が用いられる。
図2は図1の加速度センサを構成する振動子2、および振動子2の長手方向における一方端部の両主面を挟持する第1支持部材3a,3bを模式的に示す外観斜視図であり、第1支持部材3a,3bを破線で示し透視した状態の図である。また、図3は図2に示した振動子2および第1支持部材3a,3bを模式的に示す分解斜視図であり、図4(a),(b),(c)はそれぞれ振動子2を構成する圧電基板20aおよび圧電基板20aの両主面に配置された主面電極21を模式的に示す上から見た透視図,上面図,下面図であり、図5(a),(b),(c)はそれぞれ振動子2を構成する他の圧電基板20bおよび圧電基板20bの両主面に配置された主面電極21を模式的に示す上から見た透視図,上面図,下面図である。なお、主面電極21は電荷検出電極22a,22b,22c,22dおよび引き出し電極23a,23b,23c,23dから構成されている。
図4に示すように、短冊状の圧電基板20aの上面には、第1支持部材3a,3bによって挟持されない領域である自由振動領域92から第1支持部材3a,3bによって挟持される領域である支持領域91の途中にかけて電荷検出電極22aが配置されており、電荷検出電極22aから引き出された引き出し電極23aが支持領域91内に配置されて圧電基板20aの一方の側面に露出されている。また、圧電基板20aの下面には、第1支持部材3a,3bによって挟持されない自由振動領域92から第1支持部材3a,3bによって挟持される支持領域91の途中にかけて電荷検出電極22bが配置されており、電荷検出電極22bから引き出された引き出し電極23bが支持領域91内に配置されて圧電基板20aの他方の側面に露出されている。そして、電荷検出電極22a,22bは圧電基板20aを介して互いに対向するように配置されており、圧電基板20aに歪みが生じると圧電効果によって電荷検出電極22a,22bに異なる符号の電荷が発生して電荷検出電極22a,22b間に電位差が発生する。また、引き出し電極23a,23bはそれぞれ電荷検出電極22a,22bと振動子2の外部とを電気的に接続する機能を有しており、圧電基板20aを介して互いに対向しないように配置されることによって引き出し電極23a,23b間に大きな静電容量が発生することを防止している。
同様に、図5に示すように、他の短冊状の圧電基板20bの上面には、第1支持部材3a,3bによって挟持されない自由振動領域92から第1支持部材3a,3bによって挟持される支持領域91の途中にかけて電荷検出電極22cが配置されており、電荷検出電極22cから引き出された引き出し電極23cが支持領域91内に配置されて圧電基板20bの一方の側面に露出されている。また、圧電基板20bの下面には、第1支持部材3a,3bによって挟持されない自由振動領域92から第1支持部材3a,3bによって挟持される支持領域91の途中にかけて電荷検出電極22dが配置されており、電荷検出電極22dから引き出された引き出し電極23dが支持領域91内に配置されて圧電基板20bの他方の側面に露出されている。そして、電荷検出電極22c,22dは圧電基板20bを介して互いに対向するように配置されており、圧電基板20bに歪みが生じると圧電効果によって電荷検出電極22c,22dに異なる符号の電荷が発生して電荷検出電極22c,22d間に電位差が発生する。また、引き出し電極23c,23dはそれぞれ電荷検出電極22c,22dと振動子2の外部とを電気的に接続する機能を有しており、圧電基板20bを介して互いに対向しないように配置されることによって引き出し電極23c,23d間に大きな静電容量が発生することを防止している。
このように両主面に主面電極21が配置された圧電基板20a,20bが、図2および図3に示すように、間に接着材25を介して厚み方向に貼り合わされ、一般的にバイモルフ形と呼ばれる構造を有した振動子2が構成されている。なお、圧電基板20a,20bは、それぞれの分極の向きが互いに逆になるように、そして電荷検出電極22b,22cが接着材25を介して対向するようにして貼り合わされており、引き出し電極23a,23cが振動子2の一方の側面に露出され、引き出し電極23b,23dが振動子2の他方の側面に露出されている。
そして、図2に示すように、振動子2の一方の端部に位置する支持領域91が第1支持部材3a,3bにより挟持され、さらに第1支持部材3a,3bが後述する第2支持部材により挟持されることによって、振動子2の支持領域91が支持されて加速度センサとして機能するようになる。すなわち、加えられた加速度により振動子2の自由振動領域92が撓むことによって圧電基板20a,20bに歪みが生じ、圧電効果によって電荷検出電極22a,22b,22c,22dに電荷が発生し、電荷検出電極22a,22bの間、および電荷検出電極22c,22dの間に電位差が生じる。このようにして発生する電荷または電圧によって加速度を検出することができる。
圧電基板20a,20bは、厚み方向に分極されており、材質としては例えばチタン酸ジルコン酸鉛やチタン酸鉛等の圧電セラミック材料などが用いられ、寸法は長さが0.5〜5mm、幅が0.2〜1mm、厚みが0.1〜1mmの短冊状に設定される。
圧電基板20a,20bの製作には、原料粉末にバインダを加えてプレスする方法、あるいは、原料粉末を水,分散剤と共にボールミルを用いて混合および乾燥し、バインダ,溶剤,可塑剤等を加えてドクターブレード法により成型する方法などによってシート状と成す工程、1100〜1400℃のピーク温度で数10分〜数時間焼成して基板を形成する工程、厚み方向に、例えば60〜150℃の温度にて3〜15kV/mmの電圧をかけて分極処理を施す工程を含む製造方法が採用される。
圧電基板20a,20bの両主面に被着された主面電極21は、材質としては、例えば金,銀,銅,クロム,ニッケル,錫,鉛,アルミニウム等の良導電性の金属から成り、厚みは0.1〜3μmの範囲が望ましい。これらの金属材料を従来周知の真空蒸着やスパッタリング法等によって圧電基板20a,20bの両主面に被着・形成するか、あるいは、上述した金属材料を含む所定の導体ペーストを従来周知の印刷法等によって所定パターンに塗布し、高温で焼き付けることにより被着・形成される。
圧電基板20a,20bを貼り合わせる接着材25は、材質としては、ガラス布基材エポキシ樹脂,無機質ガラス,エポキシ樹脂などの絶縁材料が用いられる。ガラス布基材エポキシ樹脂による接合では、ガラス繊維の間にエポキシ樹脂を含浸させたプリプレグ材を間に挟んで圧電基板20a,20bを上下に重ね合わせ、加圧しながら加熱することによりエポキシ樹脂を所定の厚みに圧縮して硬化させる。無機質ガラスによる接合では、ガラスペーストを印刷塗布した後に重ね合わせ、荷重を加えながら焼成炉を用いて溶融一体化する。焼成炉では300〜700℃に加熱し、真空炉を用いて焼成を行なうことによりガラス中への気泡の混入を抑制することができる。300℃以上の高温度で接合した場合は圧電基板20a,20bの分極が減極するので、接合後に圧電基板20a,20bを分極処理する必要がある。
第1支持部材3a,3bの弾性率は10MPa〜10GPa程度が望ましく、第1支持部材3a,3bの材質としては、例えばシリコーン樹脂やエポキシ樹脂等で所望の弾性率を有するものを好適に用いることができる。このように加工の容易な樹脂を第1支持部材3a,3bの材質として用いることにより、所望の弾性率および形状を備えた第1支持部材3a,3bを容易に形成することができ、高い検出感度を備えた加速度センサを容易に得ることができる。また、第1支持部材の厚みは20〜100μmとされ、幅方向は振動子2の全体に渡って、長さ方向は振動子2の一方の端部から0.5〜1.5mmの範囲に渡って形成される。このような第1支持部材3a,3bに樹脂を使用する場合は、貼り合わされた圧電基板20a,20bの両主面の所定位置にスクリーン印刷等によって樹脂ペーストを印刷して硬化させることで形成できる。必要に応じてスクリーン印刷を複数回重ねたり、厚み精度を出すために硬化した樹脂ペーストの表面を研磨してもよい。
図6は本例の加速度センサに用いる第2支持部材4の外観斜視図である。第2支持部材4には振動子2を挿入する貫通孔4hが設けられており、挿入された振動子2の両主面の一方端部に取着された第1支持部材3a,3bの外側を挟持して振動子2を支持する機能を有する。第2支持部材4の弾性率は第1支持部材3a,3bの弾性率よりも大きくされており、第1支持部材3a,3bの弾性率の2倍以上とするのが望ましい。このように第2支持部材4の弾性率を第1支持部材3a,3bの弾性率よりも大きくすることにより加速度の検出感度を高めることができる。すなわち、第1支持部材3a,3bが第2支持部材4よりも小さい弾性率を有していることにより、第1支持部材3a,3bが振動子2から受ける力によって変形し易くなって、支持領域91内において振動子2が撓み易くなる。よって、支持領域91内における圧電基板20a,20bに歪みが生じる領域が大きくなり、これにより発生する電荷および出力電圧が増大し、加速度の検出感度をより高くすることができるのである。しかも、第2支持部材4の弾性率が第1支持部材3a,3bの弾性率よりも大きくされているので、第2支持部材4に変形が生じにくくなる。第2支持部材4を変形しにくくすることにより、加速度センサに衝撃が加えられた際に第1支持部材3a,3bに加えて第2支持部材4も大きく変形して衝撃が吸収され、それにより振動子2の変形が小さくなることによって生じる加速度の検出感度の低下を抑制することができる。第2支持部材4の弾性率の値としては10〜500GPa程度が望ましく、特に20〜500GPa程度が望ましい。
第2支持部材4の材質としては、アルミナなどのセラミックス材料を用いることもできるが、例えば、液晶ポリマー(LCP),ポリフェニレンサルファイド(PPS)等の高強度の樹脂で所望の弾性率を有するものを好適に用いることができる。このように加工の容易な樹脂を第2支持部材4の材質として用いることにより、所望の弾性率および形状を備えた第2支持部材4を容易に形成することができ、高い検出感度を備えた加速度センサを容易に得ることができる。また、第2支持部材4は振動子2の長手方向において、0.5〜1.5mmの長さで第1支持部材3a,3bの外側を挟持するようにされている。第2支持部材4は、ケース1内の開口部1h付近に設けられるが、ケース1と同一材料を用いてケース1の一部として一体的に形成すると製造が容易となる。また、後述する導電性接着剤6a,6bをポッティングするための凹部4a,4bが設けられており、凹部4a,4b内にはケース1の内部を通って延出されたリード電極1a,1bの端部7a,7bが露出されている。
このような第2支持部材4の貫通孔4hに前述した振動子2を自由振動領域92側から挿入し、支持領域91に取着された第1支持部材3a,3bを貫通孔4hに圧入することにより、振動子2の両主面を挟持する第1支持部材3a,3bの外側が第2支持部材4によってさらに挟持されてケース1に固定される。
このようにして支持された振動子2は、外部から加速度が加わると第1支持部材3a,3bに挟持されていない自由振動領域92が撓み、貼り合わされている圧電基板20a,20bに歪みが生じて圧電効果により電荷検出電極22a,22b,22c,22dに電荷が発生し、電荷検出電極22a,22bの間、および電荷検出電極22c,22dの間に電位差が生じる。このようにして発生する電荷または電圧によって加速度が検出できるため、加速度センサとして機能する。
なお、振動子2は水平方向に対して傾斜するように固定されているため、水平方向および垂直方向の加速度を感知することが可能となっている。具体的には、ケース1の実装面となる主面に対して垂直な面と振動子2の主面とが成す角(鋭角になる側の角)が、用途に応じて20〜50°の範囲で設定される。
図7は図1に示す加速度センサの封止用樹脂5を除いた図であり、図8は図1のA−A’線断面図である。これらの図に示す振動子2は図1〜図5に示したものであり、第2支持部材4は図6に示したものである。
引き出し電極23a,23cは、圧電基板20a,20bの一方の側面に露出されており、振動子2の一方の側面近傍までケース1内で延出されたリード電極1aの端部7aと導電性接着剤6aを介して電気的に接続されている。また、引き出し電極23b,23dは圧電基板20a,20bの他方の側面に露出されており、振動子2の他方の側面近傍までケース1内で延出されたリード電極1bの端部7bと導電性接着剤6bを介して電気的に接続されている。これによって電荷検出電極22a,22b間および電荷検出電極22c,22d間に発生した出力電圧はリード電極1a,1bから外部に出力される。また、導電性接着剤6a,6bは第2支持部材4の凹部4a,4b内に被着されており、これによって硬化前の導電性接着剤6a,6bが流動して互いに接触することによって電気的短絡が生じるのを防止している。さらに、第1支持部材3aの上面(圧電基板20aと接触する面とは反対側の面)の幅方向の中央部から第2支持部材4の表面にかけてと、第1支持部材3bの下面(圧電基板20bと接触する面とは反対側の面)の幅方向の中央部から第2支持部材4の表面にかけてとに、絶縁性の樹脂から成る堰8a,8bが設けられており、導電性接着剤6a,6bの流動によるリード電極1a,1b間の電気的短絡が2重に防止されている。
なお、振動子2は主面で機械的な固定が行なわれ側面で電気的な接続が行なわれており、空間が効率よく利用されているので、より小型な加速度センサとされている。
導電性接着剤6a,6bにおいて、接着剤樹脂中に含有させる導電性フィラーは銀,銅など導電性の良いものが望ましく、接着剤樹脂は、圧電基板20a,20bの分極が消えないように300℃未満で硬化するものが望ましいため、例えばエポキシ樹脂などが好適に用いられる、
図9は本例の加速度センサに加速度を与えたときに振動子2の表面に発生する電荷の分布を、有限要素法を用いてシミュレーションした結果を模式的に示す図であり、発生する電荷の密度が高い領域ほど細かいハッチングで表示している。このシミュレーションにおいては、振動子2の長さを3mm、幅を0.5mm、厚みを0.3mm、第1支持部材によって挟持された支持領域91の長さを1mm、第1支持部材によって挟持されていない自由振動領域92の長さを2mm、第1支持部材の厚みをそれぞれ30μmとした。また、第1支持部材の弾性率は4GPa、第2支持部材の弾性率は500GPaとした。なお、図において、一点鎖線よりも左側が第1支持部材および第2支持部材4によって挟持された支持領域91、一点鎖線よりも右側が自由振動領域92となっている。
図9に示した結果よりわかるように、自由振動領域92だけでなく、第1・第2支持部材に挟持された支持領域91内の自由振動領域92に近接する部分においても電荷が発生していることが確認できた。これは支持領域91内の圧電基板にも歪みが発生していること、すなわち支持領域91内においても振動子2が撓んでいることを示している。
また、それとは逆に、自由振動領域92の先端部や、支持領域91内の自由振動領域92と反対側の部分においては、振動子2が撓まず、よって圧電基板に歪みが生じないため電荷が殆ど発生しないことも確認できた。
本例の加速度センサにおいては、振動子2の自由振動領域92から支持領域91の途中にかけて圧電基板20a,20bを介して互いに対向する電荷検出電極22a,22b,22c,22dが配置されている。すなわち、支持領域91内の自由振動領域92に近接する部分には電荷検出電極22a,22b,22c,22dが配置されており、支持領域91内の自由振動領域92から離間した部分には電荷検出電極22a,22b,22c,22dが配置されていない。
支持領域91内の自由振動領域92に近接する部分にも電荷検出電極22a,22b,22c,22dが配置されていることにより、自由振動領域92で発生する電荷に加えて、支持領域91内の自由振動領域92に近接する部分で発生する電荷も電荷検出電極22a,22b,22c,22dに取り込まれるため、電荷検出電極22a,22b,22c,22dに蓄積される電荷量が増加し、電荷検出電極22a,22b間、およびに電荷検出電極22c,22d間に発生する電位差も大きくなる。故に、加えられた加速度によって発生する電荷および電圧が増大し、加速度の検出感度が高い加速度センサを得ることができる。
また、支持領域91内の自由振動領域92から離間した部分に電荷検出電極22a,22b,22c,22dが配置されていないことにより、支持領域91における自由振動領域92から離間した部分にも電荷検出電極22a,22b,22c,22dが配置される場合と比較すると、電荷検出電極22a,22b,22c,22dの面積が減少して電荷検出電極22a,22b間,および電荷検出電極22c,22d間の静電容量が減少する。その上、支持領域91における自由振動領域92から離間した部分に電荷検出電極22a,22b,22c,22dを配置しなくても、支持領域91における自由振動領域92から離間した部分に電荷検出電極22a,22b,22c,22dを配置する場合と比較して、電荷検出電極22a,22b,22c,22dに蓄積される電荷量は殆ど減少しない。よって、電荷検出電極22a,22b間,および電荷検出電極22c,22d間に発生する電位差が増大し、加えられた加速度を電圧によって検出する場合の感度(電圧感度)が高い加速度センサを得ることができる。
図10は本例の加速度センサにおいて電荷検出電極22a,22b,22c,22dの支持領域91内への延出量を変化させたときの加速度の検出感度の変化をシミュレーションした結果を示すグラフである。このグラフにおいて、横軸は振動子2の自由振動領域92の長さに対する電荷検出電極22a,22b,22c,22dの支持領域91内への延出量(図4および図5に示すLaとLbとの比La/Lb)を示し、縦軸は電圧感度(1Gの加速度当たりの、電荷検出電極22a,22cと電荷検出電極22b,22dとの間に発生する電圧)を示す。なお、このシミュレーションにおいては、振動子2の長さを3mm,幅を0.5mm,厚みを0.3mm,支持領域91の長さを1mm,自由振動領域92の長さを2mm,第1支持部材3a,3bの厚みを30μm,第2支持部材4の弾性率を300GPaとして計算した。
図10に示すグラフによれば、第1支持部材3a,3bの弾性率によって程度は異なるものの、電荷検出電極22a,22b,22c,22dを支持領域91の途中まで延出させることによって電圧感度を高めることができることが確認できる。また、電荷検出電極22a,22b,22c,22dの支持領域91内への延出量の最適値は、第1支持部材3a,3bの弾性率が小さい方が大きくなり、それに伴って最適値における電圧感度も大きくなる傾向が見られる。これは、第1支持部材3a,3bの弾性率が小さくなると、振動子2から受ける力によって第1支持部材3a,3bが変形しやすくなるため、支持領域91内における振動子2の撓み量が大きくなり、支持領域91内における圧電基板20a,20bに歪みが生じる領域すなわち電荷が発生する領域が拡大するためであると考えられる。また、自由振動領域92の長さに対する電荷検出電極22a,22b,22c,22dの支持領域91内への延出量は15〜30%の範囲が好ましく、これによって加速度の検出感度をより高くすることができることが確認できる。
また、本例の加速度センサによれば、振動子2に接触する側の第1支持部材3a,3bの弾性率が第2支持部材4の弾性率よりも小さくされているため、加速度の検出感度をさらに高めることができる。すなわち、第1支持部材3a,3bが第2支持部材4よりも小さい弾性率を有しているため、第1支持部材3a,3bが振動子2から受ける力によって変形し易くなって支持領域91内において振動子2が撓み易くなる。よって、支持領域91内における圧電基板20a,20bに歪みが生じる領域が大きくなり、これによって発生する電荷および出力電圧が増大し、加速度の検出感度をより高くすることができるのである。しかも、第2支持部材4の弾性率が第1支持部材3a,3bの弾性率よりも大きくされているので第2支持部材4に変形が生じにくくなる。第2支持部材4を変形しにくくすることにより、加速度センサに衝撃が加えられた際に第2支持部材4が大きく変形して衝撃が吸収され、それにより振動子2の変形が小さくなることによって生じる加速度の検出感度の低下を抑制することができる。
本例の加速度センサにおいて第1支持部材3a,3bの弾性率と第2支持部材4の弾性率を変動させたときの電荷感度(1Gの加速度当たりの電荷検出電極22a,22b,22c,22dに発生する電荷量)の変化をシミュレーションした結果を表1に示す。なお、このシミュレーションにおける弾性率以外の各種条件については前述したとおりである。
表1において、第1支持部材3a,3bの弾性率が3GPaの場合、第2支持部材4の弾性率が3GPa,30GPa,300GPaと増大するにつれて、電荷感度が0.282,0.311,0.313と向上している。第1支持部材3a,3bの弾性率が30GPa,300GPaの場合も同様に、第2支持部材4の弾性率の増大に伴って電荷感度が向上している。これにより、第2支持部材4の弾性率の増大によって電荷感度が向上することがわかる。
また、第2支持部材4の弾性率が3GPaの場合、第1支持部材3a,3bの弾性率が3GPa,30GPa,300GPaと増大するにつれて、電荷感度が0.282,0.267,0.251と悪化している。第2支持部材4の弾性率が30GPa,300GPaの場合も同様に第1支持部材3a,3bの弾性率の増大に伴って電荷感度が悪化している。これにより、第1支持部材3a,3bの弾性率の低下によって電荷感度が向上することがわかる。
さらに、表1の電荷感度を小さい順番に並べると、0.251,0.26,0.267,0.269,0.282,0.283,0.287,0.311,0.313となるが、0.251,0.26,0.267は第1支持部材3a,3bの弾性率が第2支持部材4の弾性率よりも大きい場合(第1>第2)の電荷感度であり、0.269,0.282,0.283は第1支持部材3a,3bの弾性率が第2支持部材4の弾性率と等しい場合(第1=第2)の電荷感度であり、0.287,0.311,0.313は第1支持部材3a,3bの弾性率が第2支持部材4の弾性率よりも小さい場合(第1<第2)の電荷感度である。この結果により、電荷感度に支配的な影響を与えるのは第1支持部材3a,3bの弾性率と第2支持部材4の弾性率との大小関係であり、第1支持部材3a,3bの弾性率を第2支持部材4の弾性率より小さくすることによって加速度の検出感度が向上することが確認できた。
Figure 0004822769
さらに、本例の加速度センサによれば、振動子2は、圧電基板20a,20bが厚み方向に積層されており、圧電基板20a,20bの間に圧電基板20a,20bを介して両主面の電荷検出電極22a,22dに対向するようにさらに電荷検出電極22b,22cが配置されている。これによって、加えられた加速度によりそれぞれの圧電基板20a,20bの両主面に配置された電荷検出電極22a,22b,22c,22dに電荷が発生し、電荷検出電極22c,22dが無い場合と比較して振動子2全体に発生する電荷量が増加するため、電荷感度を高めることができる。
さらに、本例の加速度センサによれば、圧電基板20a,20bのそれぞれにおいて、一方の主面に電荷検出電極22a,22cから一方の側面に引き出された第1の引き出し電極23a,23cが配置され、他方の主面に電荷検出電極22b,22dから他方の側面に引き出された第2の引き出し電極23b,23dが配置されている。これによって、圧電基板20a,20bを厚み方向に積層し、その層間に電荷検出電極22b,22cを配置した構造においても、全ての電荷検出電極22a,22b,22c,22dを引き出し電極23a,23b,23c,23dを介して振動子2の両側面において導電性接着剤6a,6bと接続することができ、さらにリード電極1a,1bを介して全ての電荷検出電極22a,22b,22c,22dを加速度センサの外部と電気的に接続することができる。これによって、層間に位置する電荷検出電極22b,22cを外部と電気的に接続するためのビアホールなどを振動子2に形成する必要がなくなるため、単純な構造を有し製造工程も簡略化可能な加速度センサを得ることができる。また、振動子2の両側面において引き出し電極23a,23b,23c,23dと導電性接着剤6a,6bとを接続することが可能になることにより、引き出し電極23a,23b,23c,23dを振動子2の端面に引き出して露出させ、振動子2の端面において導電性接着剤6a,6bと接続する場合と比較すると、導電性接着剤6a,6b同士の間隔を大きくすることができる。これによって、硬化前の導電性接着剤6a,6bの流動によって第1の引き出し電極23a,23cと第2の引き出し電極23b,23dとの間に電気的短絡が生じる可能性を低減することができる。
図11は参考例の加速度センサを模式的に示す図8と同様の断面図であり、図12は図11に示す加速度センサに用いられる振動子2および第1支持部材3a,3bを模式的に示す外観斜視図であり、図13(a),(b),(c)はそれぞれ振動子2を構成する圧電基板20aおよび圧電基板20aの両主面に配置された主面電極21を模式的に示す上から見た透視図,上面図,下面図であり、図14(a),(b),(c)はそれぞれ振動子2を構成する圧電基板20bおよび圧電基板20bの両主面に配置された主面電極21を模式的に示す上から見た透視図,上面図,下面図である。なお、本例においては前述した例と異なる点についてのみ説明し、同様の構成要素については同一の参照符号を用いて重複する説明を省略する。
本例の加速度センサにおける特徴的な部分は、振動子2の長手方向における両端部が第1支持部材3a,3bおよび第2支持部材4によって支持される支持領域91とされており、中央部が自由振動領域92とされていることである。この場合においても、自由振動領域92から支持領域91の途中にかけて電荷検出電極22a,22b,22c,22dを配置することにより、前述した例と同様のメカニズムによって加速度の検出感度を向上させることができる。
図15は参考例の加速度センサを模式的に示す断面図であり、図16は図15に示す加速度センサに用いられる振動子2および第1支持部材3a,3bを模式的に示す外観斜視図であり、図17(a),(b),(c)はそれぞれ振動子2を構成する圧電基板20aおよび圧電基板20aの両主面に配置された主面電極21を模式的に示す上から見た透視図,上面図,下面図であり、図18(a),(b),(c)はそれぞれ振動子2を構成する圧電基板20bおよび圧電基板20bの両主面に配置された主面電極21を模式的に示す上から見た透視図,上面図,下面図である。なお、本例においても前述した例と異なる点についてのみ説明し、同様の構成要素については同一の参照符号を用いて重複する説明を省略する。
本例の加速度センサにおける特徴的な部分は、振動子2の長手方向における中央部が第1支持部材3a,3bおよび第2支持部材4によって支持される支持領域91とされており、両端部が自由振動領域92とされていることである。この場合においても、自由振動領域92から支持領域91の途中にかけて電荷検出電極22a,22b,22c,22dを配置することにより、前述した例と同様のメカニズムによって加速度の検出感度を向上させることができる。
次に、本発明の加速度センサの具体例について説明する。
まず、チタン酸ジルコン酸鉛の原料粉末にバインダを加えてプレスし、ピーク温度を1200℃として24時間焼成して圧電体のブロックを得た。
次に、ワイヤーソーを用いてスライスし、さらにラップ機を用いて両面をラップすることによって、分割されて圧電基板となる圧電母基板を作製した。圧電母基板の厚みは100μmとした。
次に、分割されて主面電極21となる金属薄膜をスパッタ装置を用いて圧電母基板の両主面に形成した。それぞれの金属薄膜はクロムと銀の2層構造とされており、クロム薄膜を0.3μmの厚みで形成した後に、その上に銀薄膜を0.3μmの厚みで形成した。
次に、分極槽に投入して300Vの電圧を10秒間印加して圧電母基板を厚み方向に分極処理した。
次に、スクリーン印刷法を用いて金属薄膜の表面にレジストパターンを形成した後に、エッチング液に浸漬して金属薄膜のパターニングを行ない、その後トルエンに浸漬してレジストを除去した。
次に、両主面に金属薄膜のパターンが形成された2枚の圧電母基板を真空オーブンに投入して、両者の間にガラス繊維含有エポキシ樹脂のプリプレグを介在させて貼り合わせ、荷重を加えながら180℃で2時間保持して接合した。なお、2枚の圧電母基板を貼り合わせる際は、2枚の圧電基板における分極の向きが互いに逆向きとなるようにした。
次に、第1支持部材3a,3bとなるエポキシ樹脂を圧電母基板上の所定の位置にスクリーン印刷機を用いて塗布し、150℃で2時間保持して硬化させた。
次に、圧電母基板をダイシングソーを用いて個片に分割し、図2および図3に示すような、第1支持部材3a,3bが長手方向における端部の両主面に被着された振動子2を複数個同時に得た。
次に、インサートモールドされたリン青銅からなるリード電極1a,1bを備え、開口部1h付近に第2支持部材4が一体的に形成された、LCP(液晶ポリマー)からなるケース1を準備し、図7および図8に示すように、第1支持部材3a,3bが被着された振動子2を第2支持部材4の貫通孔4hに圧入して固定した。
次に、図7に示すように、露出している第1支持部材3aの上面の中央部付近および第1支持部材3bの下面の中央部付近にエポキシ樹脂からなる堰8a,8bを、第2支持部材4の凹部4a,4b内に露出している振動子2の両側面にエポキシ樹脂と銀フィラーからなる導電性接着材6a,6bを、それぞれディスペンサーを用いて塗布し、200℃で30分間保持して硬化させた。
次に、図1に示すように、ケース1の開口部1hに、振動子2,第1支持部材3a,3b,堰8a,8b,導電性接着剤6a,6b,第2支持部材4を覆うように、エポキシ樹脂からなる封止用樹脂5をディスペンサーを用いて塗布し、150℃で2時間保持して硬化させて加速度センサを完成させた。
このようにして作製した加速度センサに衝撃を与えて電気特性を評価し、従来よりも優れた特性を有していることを確認した。
なお、本発明は上述した実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良が可能である。
例えば、上述した実施の形態の例においては、互いに異なる電位に接続される2つの電荷検出電極22b,22cが圧電基板20a,20bの間に配置される構成としたが、2枚の圧電基板を積層した積層体において両主面と層間にそれぞれ1つの電荷検出電極が配置される構成としても構わない。この場合は、両主面に配置した電荷検出電極を同電位に接続し、2枚の圧電基板の分極の向きを同一にすればよい。
また、上述した実施の形態の例においては、2枚の圧電基板を貼り合わせたバイモルフ形の振動子を使用したが、もっと多数の圧電基板を積層しても構わないし、逆にモノモルフ形やユニモルフ形の振動子としても構わない。モノモルフ形とする場合は、圧電基板を厚み方向で分極反転させればよく、ユニモルフ形とする場合は圧電基板の一方の主面に金属等からなる振動板を被着すればよい。
さらに、上述した実施の形態の例においては、振動子2の両主面を第1支持部材3a,3bで挟持する構造としたが、振動子2の一方の主面のみを支持部材に接着剤等を用いて固定して振動子2を支持するようにしても構わない。
またさらに、上述した実施の形態の例においては、第1支持部材を3aと3bの2つに分けて形成したが、振動子2の上下面および側面を取り囲むように一体的に形成しても構わない。
さらにまた、上述した実施の形態の例においては、第1支持部材3a,3bと第2支持部材4との材質の異なる2つ部材によって支持部材を構成したが、場合によっては、単一の材質によって支持部材を構成しても構わない。但し、第1支持部材3a,3bの弾性率を第2支持部材4の弾性率よりも小さくする場合と比較すると、加速度の検出感度はある程度低くなると考えられる。
なお、第1支持部材3a,3bおよび第2支持部材4の弾性率を測定する場合は、特に問題がなければJIS K7171の規格に基づいて実施すればよく、弾性率を測定したい部材と同じ材料を用いて試験片を作製してその曲げ弾性率を測定すればよい。基本的には、長さ80.0mm,幅10.0mm,厚さ4.0mmの標準試験片を作製し、支点間距離Lを64mm,圧子の半径R1を5.0mm,支持台の半径R2を5.0mm,試験速度を2mm/minとして、温度23℃,湿度50%RHの条件下で測定すればよい。
本発明の加速度センサの実施の形態の一例を模式的に示す外観斜視図である。 本発明の加速度センサの実施の形態の一例に用いられる振動子および第1支持部材を模式的に示す外観斜視図である。 図2に示す振動子および第1支持部材の分解斜視図である。 (a),(b),(c)は、それぞれ本発明の加速度センサの実施の形態の一例における振動子を構成する圧電基板および圧電基板の両主面に配置された主面電極を模式的に示す上から見た透視図,上面図,下面図である。 (a),(b),(c)は、それぞれ本発明の加速度センサの実施の形態の一例における振動子を構成する他の圧電基板および圧電基板の両主面に配置された主面電極を模式的に示す上から見た透視図,上面図,下面図である。 本発明の加速度センサの実施の形態の一例に用いられる第2支持部材を模式的に示す外観斜視図である。 図1に示す加速度センサの封止用樹脂を除いた外観斜視図である。 図1のA−A’線断面図である。 本発明の加速度センサの実施の形態の一例に加速度を与えたときに振動子2の表面に発生する電荷の分布のシミュレーション結果を示す図である。 本発明の加速度センサの実施の形態の一例において、電荷検出電極の支持領域内への延出量を変化させたときの電圧感度の変化をシミュレーションした結果を示すグラフである。 参考例の加速度センサを模式的に示す図8と同様の断面図である。 参考例の加速度センサに用いられる振動子および第1支持部材を模式的に示す外観斜視図である。 (a),(b),(c)は、それぞれ参考例の加速度センサにおける振動子を構成する圧電基板および圧電基板の両主面に配置された主面電極を模式的に示す上から見た透視図,上面図,下面図である。 (a),(b),(c)は、それぞれ参考例の加速度センサにおける振動子を構成する他の圧電基板および圧電基板の両主面に配置された主面電極を模式的に示す上から見た透視図,上面図,下面図である。 参考例の加速度センサを模式的に示す図8と同様の断面図である。 参考例の加速度センサに用いられる振動子および第1支持部材を模式的に示す外観斜視図である。 (a),(b),(c)は、それぞれ参考例の加速度センサにおける振動子を構成する圧電基板を模式的に示す上から見た透視図,上面図,下面図である。 (a),(b),(c)は、それぞれ参考例の加速度センサにおける振動子を構成する他の圧電基板を模式的に示す上から見た透視図,上面図,下面図である。
符号の説明
1・・・ケース
1a,1b・・・リード電極
1h・・・開口部
2・・・振動子
20a,20b・・・圧電基板
22a,22b,22c,22d・・・電荷検出電極
23a,23b,23c,23d・・・引き出し電極
25・・・接着材
3a,3b・・・第1支持部材
4・・・第2支持部材
4a,4b・・・凹部
4h・・・貫通孔
5・・・封止用樹脂
6a,6b・・・導電性接着剤
7a,7b・・・リード電極の端部
8a,8b・・・樹脂の堰
91・・・支持領域
92・・・自由振動領域

Claims (3)

  1. 支持部材と、
    短冊状の圧電基板から成り、少なくとも一方の主面が前記支持部材によって支持された支持領域および前記支持部材によって支持されていない、長手方向の長さが前記支持領域よりも長い自由振動領域を有し、両主面の前記自由振動領域から前記支持領域の途中にかけて前記圧電基板を介して互いに対向する2つの電荷検出電極が配置された振動子とを具備し、
    前記圧電基板は、一方の主面に前記電荷検出電極から一方の側面に露出された第1の引き出し電極が前記支持領域内に配置され、他方の主面に前記電荷検出電極から他方の側面に露出された第2の引き出し電極が前記支持領域内に配置され、前記第1の引き出し電極および前記第2の引き出し電極は、前記圧電基板を介して互いに対向しないように配置されており、
    2つの前記電荷検出電極は、前記支持領域において、前記圧電基板の幅方向の中央部で互いに対向するとともに、前記圧電基板の幅方向の両端部で互いに対向しないように配置されていることを特徴とする加速度センサ。
  2. 前記支持部材は、前記振動子に接触する側の第1支持部材と該第1支持部材を支持する第2支持部材とから成り、前記第1支持部材の弾性率が前記第2支持部材の弾性率よりも小さいことを特徴とする請求項1に記載の加速度センサ。
  3. 前記振動子は、前記圧電基板が複数厚み方向に積層されており、前記圧電基板の間に前記圧電基板を介して前記電荷検出電極に対向するようにさらに電荷検出電極が配置されていることを特徴とする請求項1または請求項2に記載の加速度センサ。
JP2005247394A 2005-06-28 2005-08-29 加速度センサ Expired - Fee Related JP4822769B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005247394A JP4822769B2 (ja) 2005-08-29 2005-08-29 加速度センサ
US11/475,836 US7394610B2 (en) 2005-06-28 2006-06-27 Acceleration sensor and magnetic disk device using the same
KR1020060057887A KR100822775B1 (ko) 2005-06-28 2006-06-27 가속도 센서 및 그것을 이용한 자기 디스크 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247394A JP4822769B2 (ja) 2005-08-29 2005-08-29 加速度センサ

Publications (2)

Publication Number Publication Date
JP2007064649A JP2007064649A (ja) 2007-03-15
JP4822769B2 true JP4822769B2 (ja) 2011-11-24

Family

ID=37927039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247394A Expired - Fee Related JP4822769B2 (ja) 2005-06-28 2005-08-29 加速度センサ

Country Status (1)

Country Link
JP (1) JP4822769B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4894363B2 (ja) * 2006-06-12 2012-03-14 株式会社村田製作所 加速度センサ
JP5205619B2 (ja) * 2007-06-25 2013-06-05 スミダコーポレーション株式会社 圧電落下センサ及び圧電落下センサを用いた落下検出方法
JP2009089869A (ja) * 2007-10-09 2009-04-30 Moritex Corp 静電容量式水分センサ及びその製造方法
JP5422183B2 (ja) * 2008-11-26 2014-02-19 京楽産業.株式会社 遊技機
JP5433217B2 (ja) * 2008-11-26 2014-03-05 京楽産業.株式会社 遊技機
JP5422182B2 (ja) * 2008-11-26 2014-02-19 京楽産業.株式会社 遊技機
CN110945331A (zh) * 2017-07-26 2020-03-31 株式会社村田制作所 按压传感器以及电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305581A (ja) * 1988-06-02 1989-12-08 Matsushita Electric Ind Co Ltd 圧電式アクチュエータ
JP3458493B2 (ja) * 1994-12-01 2003-10-20 松下電器産業株式会社 圧電センサエレメントおよびその製造方法
JPH11183511A (ja) * 1997-12-25 1999-07-09 Hokuriku Electric Ind Co Ltd 加速度センサ
JP3498568B2 (ja) * 1998-03-26 2004-02-16 セイコーエプソン株式会社 圧電振動子ユニットおよび圧電発振器
JP2001027648A (ja) * 1999-07-13 2001-01-30 Matsushita Electric Ind Co Ltd 加速度センサ
JP3446732B2 (ja) * 2000-09-29 2003-09-16 株式会社村田製作所 加速度センサ
JP2003032068A (ja) * 2001-07-11 2003-01-31 Nippon Dempa Kogyo Co Ltd 表面実装用の水晶振動子
JP2005164505A (ja) * 2003-12-05 2005-06-23 Murata Mfg Co Ltd 加速度センサ

Also Published As

Publication number Publication date
JP2007064649A (ja) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5487672B2 (ja) 物理量センサ
JP4822769B2 (ja) 加速度センサ
JP5579190B2 (ja) 圧電式加速度センサ
US10825980B2 (en) Vibrating device
CN108291796B (zh) 压电挠曲传感器以及检测装置
JP6004123B2 (ja) 圧電センサの製造方法
KR100822775B1 (ko) 가속도 센서 및 그것을 이용한 자기 디스크 장치
JP2016051894A (ja) 圧電素子及びこれを含む圧電振動モジュール
US8256292B2 (en) Acceleration sensor with surface protection
JP4583188B2 (ja) 加速度センサ
JP7088341B2 (ja) 振動デバイス
JP2007010377A (ja) 加速度センサ
US7942055B2 (en) Acceleration sensor
JP6052434B2 (ja) 圧電センサの製造方法
JP2013137330A (ja) 圧電式加速度センサ
JP7532216B2 (ja) 振動デバイス
JP2006234795A (ja) 加速度センサ
JP2008232697A (ja) 加速度センサ
JP2009008512A (ja) 加速度センサ
JP2010107288A (ja) 加速度センサおよび加速度センサの実装構造
JP5270622B2 (ja) 圧電式加速度センサ
JP2010078389A (ja) 加速度センサ
JP2011117919A (ja) 加速度センサ
JP2006270944A (ja) 圧電部品
JP2012073161A (ja) 加速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4822769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees