JP4816871B2 - Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device - Google Patents

Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP4816871B2
JP4816871B2 JP2005122447A JP2005122447A JP4816871B2 JP 4816871 B2 JP4816871 B2 JP 4816871B2 JP 2005122447 A JP2005122447 A JP 2005122447A JP 2005122447 A JP2005122447 A JP 2005122447A JP 4816871 B2 JP4816871 B2 JP 4816871B2
Authority
JP
Japan
Prior art keywords
adhesive sheet
adhesive
semiconductor chip
wafer
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005122447A
Other languages
Japanese (ja)
Other versions
JP2006183020A (en
Inventor
禎一 稲田
道夫 増野
道生 宇留野
哲郎 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005122447A priority Critical patent/JP4816871B2/en
Publication of JP2006183020A publication Critical patent/JP2006183020A/en
Application granted granted Critical
Publication of JP4816871B2 publication Critical patent/JP4816871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

本発明は、接着シート、半導体装置、及び半導体装置の製造方法に関する。   The present invention relates to an adhesive sheet, a semiconductor device, and a method for manufacturing a semiconductor device.

近年、半導体パッケージの小型化に伴い、半導体チップと同等サイズであるCSP(Chip Size Package)、さらに、半導体チップを多段に積層したスタックドCSPが普及している(例えば、特許文献1〜5参照。)。これらの例として、図1に示す配線4などに起因する凹凸を有する基板3上に半導体チップA1を積層したパッケージ、又は、図2に示す同サイズの半導体チップA1を2つ以上使用するパッケージであって、ワイヤ2などに起因する凹凸を有する半導体チップ上にさらに別の半導体チップを積層するパッケージなどがある。このようなパッケージには、凹凸を埋込み、かつ上部の半導体チップとの絶縁性を確保することが可能な接着シートが求められている。図1及び図2中、b1は接着剤である。   In recent years, along with the miniaturization of semiconductor packages, CSP (Chip Size Package) that is the same size as a semiconductor chip, and stacked CSP in which semiconductor chips are stacked in multiple stages have become widespread (see, for example, Patent Documents 1 to 5). ). Examples of these include a package in which a semiconductor chip A1 is stacked on a substrate 3 having unevenness caused by the wiring 4 shown in FIG. 1, or a package using two or more semiconductor chips A1 of the same size shown in FIG. There is a package in which another semiconductor chip is stacked on a semiconductor chip having unevenness caused by the wire 2 or the like. For such a package, there is a demand for an adhesive sheet that can be embedded with unevenness and can ensure insulation from the upper semiconductor chip. 1 and 2, b1 is an adhesive.

配線、ワイヤ等の凹凸の充てんには、通常、凹凸の高さより接着シート厚さを厚くすること、接着シートの溶融粘度を低減し、充てん性を改善することが求められる。しかしながら、一方で、厚さが厚く、溶融粘度が低い接着シートは、ウエハ及び接着シートのダイシングによって、得られる半導体チップ端部の破損が大きくなる、糸状のくず(樹脂ばり)が大きくなるという問題があった。   For filling irregularities such as wiring and wires, it is usually required to increase the thickness of the adhesive sheet from the height of the irregularities, to reduce the melt viscosity of the adhesive sheet, and to improve the filling property. However, on the other hand, the adhesive sheet having a large thickness and a low melt viscosity has a problem that the end of the obtained semiconductor chip is greatly damaged due to dicing of the wafer and the adhesive sheet, and the thread-like waste (resin flash) becomes large. was there.

すなわち、通常、ダイシング工程は、ウエハ、接着シート、及びダイシングテープを0℃〜80℃で貼り合わせた後、これらを回転刃で同時に切断し、洗浄後、接着剤付き半導体チップを得る工程が取られている。この切断後にできたダイシングテープの溝に、接着シートやウエハの切断くずが付着し、それが切断後の洗浄時や半導体チップピックアップ時にダイシングテープから剥離し、糸状のくず(樹脂ばり)が生じ、半導体チップに付着し、電極などを汚染することがあった。   That is, the dicing process usually includes a process of bonding a wafer, an adhesive sheet, and a dicing tape at 0 ° C. to 80 ° C., then simultaneously cutting them with a rotary blade, washing, and obtaining a semiconductor chip with an adhesive. It has been. Adhesive sheet or wafer cutting debris adheres to the groove of the dicing tape formed after this cutting, and it peels off from the dicing tape at the time of cleaning or semiconductor chip pick-up after cutting, resulting in thread-like debris (resin flash), There was a case where it adhered to the semiconductor chip and contaminated the electrodes.

以上の点から、ダイシング性が優れ、かつ配線やワイヤ等に起因する凹凸の充てん性が優れ、さらには耐熱性や耐湿性を満足する接着シートを得ることが望まれている。   In view of the above, it is desired to obtain an adhesive sheet having excellent dicing properties, excellent filling of unevenness due to wiring, wires, and the like, and further satisfying heat resistance and moisture resistance.

特開2001−279197号公報JP 2001-279197 A 特開2002−222913号公報JP 2002-222913 A 特開2002−359346号公報JP 2002-359346 A 特開2001−308262号公報JP 2001-308262 A 特開2004−072009号公報Japanese Patent Laid-Open No. 2004-072009

本発明の目的は、基板の配線や、半導体チップに付設されたワイヤ等の凹凸を充てんでき、ダイシング時に樹脂ばりを生じない、耐熱性や耐湿性を満足する接着シートを提供することである。   An object of the present invention is to provide an adhesive sheet that can fill in irregularities such as wiring on a substrate or a wire attached to a semiconductor chip and does not generate a resin flash during dicing and satisfies heat resistance and moisture resistance.

本発明の発明者は、特定の樹脂組成を有する接着シートを使用することにより、ダイシング時に樹脂ばりの発生を防ぐことができ、かつ、基板の配線や、半導体チップのワイヤ等の凹凸を充てん(接着シート中に凸部を埋め込む、又は接着シートで凹部を充填する)できることを見出し、本発明を完成させるに至った。
すなわち、本発明は、架橋性官能基を含む重量平均分子量が10万以上かつTgが−50〜50℃である高分子量成分15〜40重量%及びエポキシ樹脂を主成分とする熱硬化性成分60〜85重量%を含む樹脂100重量部と、フィラー40〜180重量部とを含有し、厚さが10〜250μmであることを特徴とする接着シートに関する。
また、本発明は、硬化前の25℃での動的粘弾性測定による貯蔵弾性率が200〜3000MPaであり、80℃での動的粘弾性測定による貯蔵弾性率が0.1〜10MPaである上記接着シートに関する。
また、本発明は、硬化後の170℃での動的粘弾性測定による貯蔵弾性率が20〜600MPaである上記接着シートに関する。
また、本発明は、硬化前の100℃での溶融粘度が1000〜7500Pa・sである上記接着シートに関する。
また、本発明は、樹脂100重量部とフィラー60〜120重量部とを含有する上記接着シートに関する。
また、本発明は、フィラーのモース硬度が3〜8である上記接着シートに関する。
また、本発明は、フィラーの平均粒径が0.05〜5μmであり、比表面積が2〜200m/gである上記接着シートに関する。
また、本発明は、ウエハ、接着シート及びダイシングテープを0℃〜80℃で貼り合わせ、回転刃でウエハ、接着シート及びダンシングテープを同時に切断し、接着剤付き半導体チップを得た後、当該接着剤付き半導体チップを凹凸を有する基板又は半導体チップに荷重0.001〜1MPaで接着し、接着剤で凹凸を充てんする工程に使用する上記接着シートに関する。
また、本発明は、第1の接着剤層及び第2の接着剤層が直接的に又は間接的に積層された構造を有してなる多層接着シートであって、少なくとも第2の接着剤層が上記接着シートからなり、かつ、第1の接着剤層のフロー量Aμm、厚さaμm、第2の接着剤層のフロー量Bμm、厚さbμmとが、A×3<Bかつa×2<bの関係を有する多層接着シートに関する。
また、本発明は、第1の接着剤層及び第2の接着剤層が直接的に又は間接的に積層された構造を有してなる多層接着シートであって、少なくとも第2の接着剤層が上記接着シートからなり、かつ、第1の接着剤層の溶融粘度αPa・s、厚さaμm、第2の接着剤層の溶融粘度βPa・s、厚さbμmとが、α>β×3かつa×2<bの関係を有する多層接着シートに関する。
また、本発明は、ウエハ、接着シート及びダイシングテープを貼り合せた際に、ウエハに接する側が第1の接着剤層であり、ダイシングテープに接する側が第2の接着剤層である上記多層接着シートに関する。
また、本発明は、ウエハ、上記接着シート及びダイシングテープを0℃〜80℃で貼り合わせ、回転刃でウエハ、接着シート及びダンシングテープを同時に切断し、接着剤付き半導体チップを得た後、当該接着剤付き半導体チップを凹凸を有する基板又は半導体チップに荷重0.001〜1MPaで接着し、接着剤で凹凸を充てんする工程を含む半導体装置の製造方法に関する。
また、本発明は、接着剤付き半導体チップを凹凸を有する基板又は半導体チップに接着する際に、凹凸を加熱する上記半導体装置の製造方法に関する。
また、本発明は、上記接着シートを用いて半導体チップと基板、又は半導体チップと半導体チップとを接着してなる半導体装置に関する。
By using an adhesive sheet having a specific resin composition, the inventor of the present invention can prevent the occurrence of resin burrs during dicing, and fills irregularities such as wiring of a substrate and wires of a semiconductor chip ( It was found that the convex portion can be embedded in the adhesive sheet or the concave portion can be filled with the adhesive sheet), and the present invention has been completed.
That is, the present invention relates to a thermosetting component 60 mainly composed of 15 to 40% by weight of a high molecular weight component containing a crosslinkable functional group and having a weight average molecular weight of 100,000 or more and Tg of −50 to 50 ° C. and an epoxy resin. It is related with the adhesive sheet characterized by containing 100 weight part of resin containing -85weight%, and 40-180 weight part of fillers, and thickness being 10-250 micrometers.
In the present invention, the storage elastic modulus by dynamic viscoelasticity measurement at 25 ° C. before curing is 200 to 3000 MPa, and the storage elastic modulus by dynamic viscoelasticity measurement at 80 ° C. is 0.1 to 10 MPa. The present invention relates to the adhesive sheet.
Moreover, this invention relates to the said adhesive sheet whose storage elastic modulus by the dynamic viscoelasticity measurement in 170 degreeC after hardening is 20-600 MPa.
Moreover, this invention relates to the said adhesive sheet whose melt viscosity in 100 degreeC before hardening is 1000-7500 Pa.s.
Moreover, this invention relates to the said adhesive sheet containing 100 weight part of resin and 60-120 weight part of fillers.
Moreover, this invention relates to the said adhesive sheet whose Mohs hardness of a filler is 3-8.
Moreover, this invention relates to the said adhesive sheet whose average particle diameter of a filler is 0.05-5 micrometers and whose specific surface area is 2-200 m < 2 > / g.
The present invention also includes bonding a wafer, an adhesive sheet, and a dicing tape at 0 ° C. to 80 ° C., simultaneously cutting the wafer, the adhesive sheet, and the dancing tape with a rotary blade to obtain a semiconductor chip with an adhesive, and then bonding the wafer It is related with the said adhesive sheet used for the process which adhere | attaches the semiconductor chip with an agent on the board | substrate or semiconductor chip which has an unevenness | corrugation by load 0.001-1MPa, and fills an unevenness | corrugation with an adhesive agent.
The present invention also provides a multilayer adhesive sheet having a structure in which a first adhesive layer and a second adhesive layer are laminated directly or indirectly, and at least the second adhesive layer Is made of the above adhesive sheet, and the flow amount A μm of the first adhesive layer, the thickness a μm, the flow amount B μm of the second adhesive layer, and the thickness b μm are A × 3 <B and a × 2 <It relates to the multilayer adhesive sheet which has the relationship of b.
The present invention also provides a multilayer adhesive sheet having a structure in which a first adhesive layer and a second adhesive layer are laminated directly or indirectly, and at least the second adhesive layer Comprising the above adhesive sheet, and the melt viscosity αPa · s, thickness a μm of the first adhesive layer, the melt viscosity βPa · s, thickness b μm of the second adhesive layer are α> β × 3 And it is related with the multilayer adhesive sheet which has a relationship of ax2 <b.
The present invention also provides the multilayer adhesive sheet, wherein when the wafer, the adhesive sheet, and the dicing tape are bonded, the side that contacts the wafer is the first adhesive layer, and the side that contacts the dicing tape is the second adhesive layer. About.
The present invention also includes bonding the wafer, the adhesive sheet and the dicing tape at 0 ° C. to 80 ° C., simultaneously cutting the wafer, the adhesive sheet and the dancing tape with a rotary blade to obtain a semiconductor chip with an adhesive, The present invention relates to a method for manufacturing a semiconductor device including a step of adhering a semiconductor chip with an adhesive to a substrate having unevenness or a semiconductor chip under a load of 0.001 to 1 MPa and filling the unevenness with an adhesive.
In addition, the present invention relates to a method for manufacturing the semiconductor device, wherein the unevenness is heated when the adhesive-attached semiconductor chip is bonded to the uneven substrate or the semiconductor chip.
Moreover, this invention relates to the semiconductor device formed by adhere | attaching a semiconductor chip and a board | substrate or a semiconductor chip and a semiconductor chip using the said adhesive sheet.

本発明においては、特定の樹脂組成を有する接着シートを使用することにより、ダイシング時に接着シートやウエハが回転刃により切削され生じた切削くずが、切断後の洗浄時やチップピックアップ時にダイシングテープから糸状に剥離しないようにすることができる。また、層構造を多層化し、特に、フローの低い層と高い層を積層した接着シート、または、溶融粘度の高い層と低い層を積層した接着シートは、配線回路及びワイヤの充てん性と上下の半導体チップとの絶縁性に優れる。
また、本発明の接着シートは、配線回路及びワイヤの充てん性が良好であり、半導体装置の製造において、ウエハと接着シートを同時に切断するダイシング工程での切断性が優れるため、ダイシングの速度を早くすることができる。そのため、本発明の接着シートによれば、半導体装置の歩留の向上、製造速度の向上をはかることが可能となる。
さらに、本発明の接着シートは、半導体装置の製造における半導体チップと基板や下層のチップなどの支持部材との接着工程において、接着信頼性に優れる接着シートとして使用することができる。即ち、本発明の接着シートは、半導体搭載用支持部材に半導体チップを実装する場合に必要な耐熱性、耐湿性、絶縁性を有し、かつ作業性に優れるものである。
In the present invention, by using an adhesive sheet having a specific resin composition, the cutting waste generated by cutting the adhesive sheet or wafer by the rotary blade during dicing is removed from the dicing tape during cleaning after cutting or chip pickup. It can be prevented from peeling off. In addition, the layer structure is multilayered, and in particular, an adhesive sheet in which a low flow layer and a high layer are laminated, or an adhesive sheet in which a high melt viscosity layer and a low layer are laminated, Excellent insulation from semiconductor chip.
In addition, the adhesive sheet of the present invention has good filling properties of wiring circuits and wires, and has excellent cutting performance in the dicing process of simultaneously cutting the wafer and the adhesive sheet in the manufacture of semiconductor devices, so that the dicing speed is increased. can do. Therefore, according to the adhesive sheet of the present invention, it is possible to improve the yield of the semiconductor device and the manufacturing speed.
Furthermore, the adhesive sheet of the present invention can be used as an adhesive sheet having excellent adhesion reliability in an adhesion process between a semiconductor chip and a support member such as a substrate or a lower layer chip in the manufacture of a semiconductor device. That is, the adhesive sheet of the present invention has heat resistance, moisture resistance, insulation necessary for mounting a semiconductor chip on a semiconductor mounting support member, and is excellent in workability.

本発明の接着シートは、架橋性官能基を含む重量平均分子量が10万以上かつTgが−50〜50℃である高分子量成分15〜40重量%及びエポキシ樹脂を主成分とする熱硬化性成分60〜85重量%を含む樹脂100重量部と、フィラー40〜180重量部とを含み、厚さが10〜250μmであることを特徴とする。   The adhesive sheet of the present invention is a thermosetting component mainly composed of 15 to 40% by weight of a high molecular weight component having a cross-linkable functional group and a weight average molecular weight of 100,000 or more and Tg of −50 to 50 ° C. and an epoxy resin. It includes 100 parts by weight of resin containing 60 to 85% by weight and 40 to 180 parts by weight of filler, and has a thickness of 10 to 250 μm.

本発明の接着シートは、架橋性官能基を含む重量平均分子量が10万以上でTgが−50〜50℃である高分子量成分15〜40重量%、エポキシ樹脂を主成分とする熱硬化性成分60〜85重量%を含む樹脂100重量部とフィラー40〜180重量部とを含む接着シートであれば、その構成成分に特に制限はないが、適当なタック強度を有しシート状での取扱い性が良好であることから、高分子量成分、熱硬化性成分、及びフィラーの他に、硬化促進剤、触媒、添加剤、カップリング剤等を含んでも良い。   The adhesive sheet of the present invention has a weight average molecular weight containing a crosslinkable functional group of 100,000 or more and a Tg of -50 to 50 ° C., a high molecular weight component of 15 to 40% by weight, and a thermosetting component mainly composed of an epoxy resin. If the adhesive sheet contains 100 parts by weight of resin containing 60 to 85% by weight and 40 to 180 parts by weight of filler, its constituent components are not particularly limited, but it has an appropriate tack strength and is easy to handle in a sheet form. Therefore, in addition to the high molecular weight component, the thermosetting component, and the filler, a curing accelerator, a catalyst, an additive, a coupling agent, and the like may be included.

高分子量成分としてはエポキシ基、アルコール性またはフェノール性水酸基、カルボキシル基などの架橋性官能基を有するポリイミド樹脂、(メタ)アクリル樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、変性ポリフェニレンエーテル樹脂等が挙げられるが、これらに限定されるものではない。   High molecular weight components include polyimide resins having crosslinkable functional groups such as epoxy groups, alcoholic or phenolic hydroxyl groups, carboxyl groups, (meth) acrylic resins, urethane resins, polyphenylene ether resins, polyetherimide resins, phenoxy resins, modified Examples include polyphenylene ether resin, but are not limited thereto.

上記の接着シートは、高分子量成分が樹脂の15〜40重量%含まれる場合に充てん性が良好となり、高分子量成分の含有量は、さらに好ましくは20〜37重量%であり、より好ましくは25〜35重量%である。   The above adhesive sheet has good filling properties when the high molecular weight component is contained in an amount of 15 to 40% by weight of the resin, and the content of the high molecular weight component is more preferably 20 to 37% by weight, more preferably 25. -35% by weight.

本発明における高分子量成分は、Tg(ガラス転移温度)が−50℃〜50℃で架橋性官能基を有する重量平均分子量が10万以上である高分子量成分である。   The high molecular weight component in the present invention is a high molecular weight component having a Tg (glass transition temperature) of −50 ° C. to 50 ° C. and a weight average molecular weight having a crosslinkable functional group of 100,000 or more.

高分子量成分として、例えば、グリシジルアクリレートまたはグリシジルメタクリレートなどの官能性モノマを含有するモノマを重合して得た、重量平均分子量が10万以上であるエポキシ基含有(メタ)アクリル共重合体などが好ましい。エポキシ基含有(メタ)アクリル共重合体としては、たとえば、(メタ)アクリル酸エステル共重合体、アクリルゴムなどを使用することができ、アクリルゴムがより好ましい。   As the high molecular weight component, for example, an epoxy group-containing (meth) acrylic copolymer having a weight average molecular weight of 100,000 or more obtained by polymerizing a monomer containing a functional monomer such as glycidyl acrylate or glycidyl methacrylate is preferable. . As the epoxy group-containing (meth) acrylic copolymer, for example, (meth) acrylic acid ester copolymer, acrylic rubber and the like can be used, and acrylic rubber is more preferable.

アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリルなどの共重合体や、エチルアクリレートとアクリロニトリルなどの共重合体などからなるゴムである。   Acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like.

高分子量成分のTgが50℃を超えると、シートの柔軟性が低くなる場合があり、Tgが−50℃未満であると、シートの柔軟性が高すぎるため、ウエハダイシング時にシートが切断し難く、ばりが発生しやすくなる場合がある。   When the Tg of the high molecular weight component exceeds 50 ° C., the flexibility of the sheet may be lowered. When the Tg is less than −50 ° C., the flexibility of the sheet is too high and the sheet is difficult to cut during wafer dicing. , Burrs are likely to occur.

また、高分子量成分の重量平均分子量は、好ましくは10万以上100万以下であり、分子量が10万未満であるとシートの耐熱性が低下する場合があり、分子量が100万を超えるとシートのフローが低下する場合がある。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。   Further, the weight average molecular weight of the high molecular weight component is preferably 100,000 or more and 1,000,000 or less. If the molecular weight is less than 100,000, the heat resistance of the sheet may be lowered. If the molecular weight exceeds 1,000,000, The flow may decrease. In addition, a weight average molecular weight is a polystyrene conversion value using the calibration curve by a standard polystyrene by the gel permeation chromatography method (GPC).

ウエハダイシング時に接着シートが切断しやすく樹脂くずが発生し難い点、また耐熱性が高い点で、Tgが−20℃〜40℃で重量平均分子量が10万〜90万の高分子量成分が好ましく、Tgが−10℃〜40℃で分子量が20万〜85万の高分子量成分が好ましい。   A high molecular weight component having a Tg of −20 ° C. to 40 ° C. and a weight average molecular weight of 100,000 to 900,000 is preferable in that the adhesive sheet is easily cut during wafer dicing, and resin waste is not easily generated. High molecular weight components having a Tg of −10 ° C. to 40 ° C. and a molecular weight of 200,000 to 850,000 are preferred.

本発明において用いられる熱硬化性成分としては、半導体チップを実装する場合に要求される耐熱性および耐湿性を有するエポキシ樹脂が好ましい。なお、本発明において、「エポキシ樹脂を主成分とする熱硬化性成分」には、エポキシ樹脂硬化剤も含まれるものとする。エポキシ樹脂は、硬化して接着作用を有するものであれば特に限定されない。ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などの二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂などを使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂または脂環式エポキシ樹脂など、一般に知られているものを適用することができる。   The thermosetting component used in the present invention is preferably an epoxy resin having heat resistance and moisture resistance required for mounting a semiconductor chip. In the present invention, the “thermosetting component mainly composed of epoxy resin” includes an epoxy resin curing agent. The epoxy resin is not particularly limited as long as it is cured and has an adhesive action. Bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolak type epoxy resin, and the like can be used. Moreover, what is generally known, such as a polyfunctional epoxy resin, a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.

特にBステージ状態でのフィルムの可撓性が高い点でエポキシ樹脂の分子量が1000以下であることが好ましく、さらに好ましくは500以下である。また、可撓性に優れる分子量500以下のビスフェノールA型又はビスフェノールF型エポキシ樹脂50〜90重量部と、硬化物の耐熱性に優れる分子量が800〜3000の多官能エポキシ樹脂10〜50重量%とを併用することが好ましい。   In particular, the molecular weight of the epoxy resin is preferably 1000 or less, and more preferably 500 or less, in view of the high flexibility of the film in the B stage state. Further, 50 to 90 parts by weight of a bisphenol A type or bisphenol F type epoxy resin having a molecular weight of 500 or less excellent in flexibility, and 10 to 50% by weight of a polyfunctional epoxy resin having a molecular weight of 800 to 3000 excellent in heat resistance of the cured product It is preferable to use together.

エポキシ樹脂硬化剤としては、通常用いられている公知の硬化剤を使用することができ、例えば、アミン類、ポリアミド、酸無水物、ポリスルフィド、三フッ化ホウ素、ビスフェノールA、ビスフェノールF、ビスフェノールSのようなフェノール性水酸基を1分子中に2個以上有するビスフェノール類、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂又はクレゾールノボラック樹脂等のフェノール樹脂などが挙げられる。   As the epoxy resin curing agent, known curing agents that are usually used can be used. For example, amines, polyamides, acid anhydrides, polysulfides, boron trifluoride, bisphenol A, bisphenol F, and bisphenol S can be used. Examples thereof include bisphenols having two or more such phenolic hydroxyl groups in one molecule, phenol resins such as phenol novolac resins, bisphenol A novolac resins, and cresol novolac resins.

さらに、本発明の接着シートには、Bステージ状態における接着シートのダイシング性の向上、接着シートの取扱い性の向上、熱伝導性の向上、溶融粘度の調整、チクソトロピック性の付与などを目的としてフィラー、好ましくは無機フィラーを配合する。   Furthermore, the adhesive sheet of the present invention is intended to improve the dicing property of the adhesive sheet in the B-stage state, improve the handleability of the adhesive sheet, improve the thermal conductivity, adjust the melt viscosity, impart thixotropic properties, etc. A filler, preferably an inorganic filler is blended.

無機フィラーとしては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ほう酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物などが挙げられる。熱伝導性向上のためには、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカ等が好ましい。溶融粘度の調整やチクソトロピック性の付与の目的には、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、結晶性シリカ、非晶性シリカ等が好ましい。また、ダイシング性を向上させるためにはアルミナ、シリカが好ましい。   Inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whisker, boron nitride, crystalline silica, non Examples thereof include crystalline silica and antimony oxide. In order to improve thermal conductivity, alumina, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable. For the purpose of adjusting melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystalline silica, non-crystalline silica Crystalline silica and the like are preferred. In order to improve dicing properties, alumina and silica are preferable.

本発明において、上記フィラーを樹脂100重量部に対して、40〜180重量部含むことが、ダイシング性が向上する点、接着シート硬化後の貯蔵弾性率が170℃で50〜600MPaになり、ワイヤボンディング性が良好となる点で好ましい。フィラー量は樹脂100重量部に対して、60〜160重量部であることがより好ましく、60〜120重量部であることがさらに好ましい。   In the present invention, the inclusion of the filler in an amount of 40 to 180 parts by weight with respect to 100 parts by weight of the resin improves the dicing property, and the storage elastic modulus after curing of the adhesive sheet is 50 to 600 MPa at 170 ° C. This is preferable in terms of good bonding properties. The amount of filler is more preferably 60 to 160 parts by weight, and still more preferably 60 to 120 parts by weight with respect to 100 parts by weight of the resin.

フィラーの配合量が多くなると、接着シートの貯蔵弾性率の過剰な上昇、接着性の低下、ボイド残存による電気特性の低下等の問題が起きやすくなるので180重量部以下とするのが好ましい。フィラーの配合量が少ないと、ダイシング時の樹脂ばりが発生し易くなる傾向がある。   When the blending amount of the filler is increased, problems such as an excessive increase in the storage elastic modulus of the adhesive sheet, a decrease in adhesiveness, and a decrease in electrical characteristics due to remaining voids are likely to occur. If the blending amount of the filler is small, resin flash during dicing tends to occur.

本発明の発明者はフィラー添加により、下記のダイシング工程における樹脂ばりを大幅に低減できることを見出した。すなわち、ダイシングには、通常、回転刃でウエハ、接着シート、ダイシングテープを同時に切断し、洗浄後、接着剤付き半導体チップを得る工程が取られている。この切断後にできたダイシングテープの溝に、接着シートやウエハの切断くずが付着し、それが切断時や切断後などの洗浄時やチップピックアップ時にダイシングテープから糸状に剥離し、樹脂ばりを発生することがある。   The inventor of the present invention has found that the addition of filler can significantly reduce the resin flash in the dicing process described below. That is, dicing usually involves a step of cutting a wafer, an adhesive sheet, and a dicing tape at the same time with a rotary blade, and obtaining a semiconductor chip with an adhesive after washing. Adhesive sheets and wafer cutting debris adhere to the groove of the dicing tape formed after this cutting, and it is peeled off from the dicing tape during cleaning such as during and after cutting and during chip pick-up, generating a resin flash. Sometimes.

本発明の接着シートを使用した場合、特にシリカ、アルミナフィラー等を樹脂100重量部に対して、40〜180重量部含むため、ダイシング時に発生する樹脂やシリコンの切断くずがフィラーを中心にした細かい粉体状になり、洗浄水と共に除去されやすい。したがって、本発明の接着シートを使用すると、ダイシングテープ上に溜まる切断くずの量が少ない。また、この少ない切断くずがダイシングテープ上に密着しているため、ダイシングテープから糸状に剥離し難い。   When the adhesive sheet of the present invention is used, silica or alumina filler is contained in an amount of 40 to 180 parts by weight with respect to 100 parts by weight of the resin, so that resin and silicon cutting waste generated during dicing is fine with the filler at the center. It becomes powdery and is easily removed together with cleaning water. Therefore, when the adhesive sheet of the present invention is used, the amount of cutting waste collected on the dicing tape is small. Further, since this small amount of cutting waste is in close contact with the dicing tape, it is difficult to peel it off from the dicing tape.

これに対し、フィラーを含有しない場合には、切断くずが粘土状であり、洗浄水と共に除去されないため、ダイシングテープ上に多量の切断くずが付着する。これらの切断くずは、洗浄時や、半導体チップをピックアップする時にダイシングテープから剥離しやすいため、樹脂ばりが多く発生する。   On the other hand, when no filler is contained, the cutting waste is in the form of clay and is not removed together with the washing water, so that a large amount of cutting waste adheres on the dicing tape. Since these cutting scraps are easily peeled off from the dicing tape when cleaning or picking up a semiconductor chip, a large amount of resin flash is generated.

さらに、本発明においては、接着シートがフィラーを含有することにより、シート切断時に回転刃に樹脂を残すことなく、回転刃を研磨しながら、短時間で接着シートを良好に切削できる。したがって、回転刃の研磨効果及び接着シート切断性の点から、接着シートは硬いフィラーを含有することが好ましく、モース硬度(10段階)3〜8の範囲の硬さのフィラーを含有することがより好ましく、モース硬度6〜7のフィラーを含有することがさらに好ましい。このときフィラーのモース硬度(10段階)が3未満では回転刃の研磨効果が少なく、モース硬度が8を超えるとダイシング用の回転刃の寿命が短くなる傾向がある。なお、モース硬度3〜8のフィラーとしては、方解石、大理石、金(18K)、鉄など(モース硬度3)、蛍石、パールなど(モース硬度4)、燐灰石、ガラスなど(モース硬度5)、正長石、オパールなど(モース硬度6)、シリカ、水晶、トルマリンなど(モース硬度7)があるが、中でも安価であり入手が容易でありことからモース硬度7のシリカが好ましい。   Furthermore, in the present invention, since the adhesive sheet contains a filler, the adhesive sheet can be satisfactorily cut in a short time while polishing the rotary blade without leaving resin on the rotary blade when cutting the sheet. Therefore, from the viewpoint of the polishing effect of the rotary blade and the cutting ability of the adhesive sheet, the adhesive sheet preferably contains a hard filler, and more preferably contains a filler having a hardness in the range of Mohs hardness (10 stages) 3-8. Preferably, a filler having a Mohs hardness of 6 to 7 is further contained. At this time, if the Mohs hardness (10 steps) of the filler is less than 3, the polishing effect of the rotary blade is small, and if the Mohs hardness exceeds 8, the life of the rotary blade for dicing tends to be shortened. In addition, as fillers with Mohs hardness of 3 to 8, calcite, marble, gold (18K), iron and the like (Mohs hardness 3), fluorite, pearl and the like (Mohs hardness 4), apatite, glass and the like (Mohs hardness 5), There are plagioclase, opal, etc. (Mohs hardness 6), silica, quartz, tourmaline, etc. (Mohs hardness 7). Among them, silica with Mohs hardness 7 is preferable because it is inexpensive and easily available.

フィラーの平均粒径は、0.05μm未満であるとフィラーに回転刃の研磨効果を持たせつつ、接着シートに流動性を持たせることが困難となる傾向があり、また平均粒径が5μmを超えると接着シートの薄膜化が困難となり、接着シート表面の平滑性を保つことが難しくなる傾向がある。したがって、接着シートの流動性と表面平滑性の点から、フィラーの平均粒径は、0.05〜5μmが好ましい。さらに、流動性が優れる点で平均粒径の下限としては、0.1μmがより好ましく、0.3μmが特に好ましい。また平滑性の点で、平均粒径の上限としては3μmがより好ましく、1μmが特に好ましい。   If the average particle size of the filler is less than 0.05 μm, it tends to be difficult to impart fluidity to the adhesive sheet while giving the filler the polishing effect of the rotary blade, and the average particle size is 5 μm. If it exceeds, it will be difficult to make the adhesive sheet thinner, and it will be difficult to maintain the smoothness of the adhesive sheet surface. Therefore, the average particle diameter of the filler is preferably 0.05 to 5 μm from the viewpoint of fluidity and surface smoothness of the adhesive sheet. Furthermore, the lower limit of the average particle diameter is more preferably 0.1 μm and particularly preferably 0.3 μm in terms of excellent fluidity. In terms of smoothness, the upper limit of the average particle diameter is more preferably 3 μm, and particularly preferably 1 μm.

なお、本発明においては、レーザー回折式粒度分布測定装置(日機装製マイクロトラック)を用いてフィラーの平均粒径を測定した。具体的には、フィラー0.1〜1.0gを秤取り、超音波により分散した後、粒度分布を測定し、その分布での累積重量が50%となる粒子径を平均粒径とした。   In the present invention, the average particle size of the filler was measured using a laser diffraction type particle size distribution measuring device (Nikkiso Microtrack). Specifically, 0.1 to 1.0 g of filler was weighed and dispersed by ultrasonic waves, then the particle size distribution was measured, and the particle diameter at which the cumulative weight in the distribution was 50% was taken as the average particle diameter.

フィラーの比表面積に関しても、フィラーの平均粒径と同様に、流動性と表面平滑性の点から2〜200m/gが好ましく、さらに流動性の点から比表面積の上限は50m/gがより好ましく、10m/gが特に好ましい。 Regarding the specific surface area of the filler, similarly to the average particle diameter of the filler, 2 to 200 m 2 / g is preferable from the viewpoint of fluidity and surface smoothness, and the upper limit of the specific surface area is 50 m 2 / g from the viewpoint of fluidity. More preferred is 10 m 2 / g.

なお、本発明において、比表面積(BET比表面積)は、ブルナウアー・エメット・テーラー(Brunauer−Emmett−Teller)式により、無機フィラーに窒素を吸着させてその表面積を測定した値であり、市販されているBET装置により測定できる。   In addition, in this invention, a specific surface area (BET specific surface area) is the value which made the inorganic filler adsorb | suck nitrogen with the Brunauer-Emmett-Teller (Brunauer-Emmett-Teller) formula and measured the surface area, and is marketed. It can be measured with the existing BET device.

本発明の接着シートは、前記高分子量成分、エポキシ樹脂を主成分とする熱硬化性成分、フィラー、及び他の成分を有機溶媒中で混合、混練してワニスを調製した後、基材フィルム上に上記ワニスの層を形成させ、加熱乾燥した後、基材を除去して得ることができる。上記の混合、混練は、通常の撹拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。上記の加熱乾燥の条件は、使用した溶媒が充分に揮散する条件であれば特に制限はないが、通常60℃〜200℃で、0.1〜90分間加熱して行う。   The adhesive sheet of the present invention is prepared by mixing and kneading the high molecular weight component, a thermosetting component mainly composed of an epoxy resin, a filler, and other components in an organic solvent, and then preparing a varnish. After the above varnish layer is formed and dried by heating, the substrate can be removed. The above mixing and kneading can be carried out by appropriately combining dispersers such as a normal stirrer, a raking machine, a triple roll, and a ball mill. The heating and drying conditions are not particularly limited as long as the used solvent is sufficiently volatilized, but the heating is usually performed at 60 to 200 ° C. for 0.1 to 90 minutes.

上記接着シートの製造における上記ワニスの調製に用いる有機溶媒、即ち接着シート調製後の残存揮発分は、材料を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N―メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレン等が挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノンなどを使用することが好ましい。   The organic solvent used for the preparation of the varnish in the production of the adhesive sheet, that is, the residual volatile content after preparation of the adhesive sheet is not limited as long as the material can be uniformly dissolved, kneaded or dispersed, and a conventionally known one is used. can do. Examples of such a solvent include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.

有機溶媒の使用量は、接着シート調製後の残存揮発分が全重量基準で0.01〜3重量%であれば特に制限はないが、耐熱信頼性の観点からは全重量基準で0.01〜2重量%が好ましく、全重量基準で0.01〜1.5重量%がさらに好ましい。   The amount of the organic solvent used is not particularly limited as long as the residual volatile content after preparation of the adhesive sheet is 0.01 to 3% by weight based on the total weight, but from the viewpoint of heat resistance reliability, 0.01% based on the total weight. ˜2% by weight is preferred, and 0.01 to 1.5% by weight based on the total weight is more preferred.

接着シートの膜厚は、基板の配線回路や下層の半導体チップに付設された金ワイヤ等の凹凸を充てん可能とするため、10〜250μmとする。10μmより薄いと応力緩和効果や接着性が乏しくなる傾向があり、250μmより厚いと経済的でなくなる上に、半導体装置の小型化の要求に応えられない。なお、接着性が高く、また、半導体装置を薄型化できる点で20〜100μmが好ましく、さらに好ましくは40〜80μmである。   The film thickness of the adhesive sheet is set to 10 to 250 μm so as to be able to fill the unevenness such as the gold wire attached to the wiring circuit of the substrate and the semiconductor chip in the lower layer. If the thickness is less than 10 μm, the stress relaxation effect and adhesion tend to be poor. If the thickness is more than 250 μm, it is not economical, and the demand for miniaturization of the semiconductor device cannot be met. Note that the thickness is preferably 20 to 100 μm, more preferably 40 to 80 μm in terms of high adhesiveness and the ability to reduce the thickness of the semiconductor device.

本発明において、硬化前(Bステージ状態)の接着シートの25℃における動的粘弾性測定による貯蔵弾性率が200〜3000MPaであると、ダイシング性が優れる点で好ましい。ダイシング性に優れ、かつウエハとの密着性が優れる点で500〜2000MPaがより好ましい。また、硬化前(Bステージ状態)の接着シートの80℃における動的粘弾性測定による貯蔵弾性率が0.1〜10MPaであると、80℃でウエハにラミネート可能である。特にウエハへの密着性が高い点で、0.5〜5MPaであるとことがより好ましい。   In this invention, it is preferable at the point which is excellent in dicing property that the storage elastic modulus by the dynamic viscoelasticity measurement in 25 degreeC of the adhesive sheet before hardening (B stage state) is 200-3000 MPa. 500 to 2000 MPa is more preferable in terms of excellent dicing properties and excellent adhesion to the wafer. Further, when the storage elastic modulus of the adhesive sheet before curing (B stage state) measured by dynamic viscoelasticity at 80 ° C. is 0.1 to 10 MPa, it can be laminated on the wafer at 80 ° C. In particular, 0.5 to 5 MPa is more preferable in terms of high adhesion to the wafer.

本発明において、硬化後(Cステージ状態)の接着シートの170℃における動的粘弾性測定による貯蔵弾性率は、良好なワイヤボンディング性を得るために20〜600MPaであることが好ましい。貯蔵弾性率は、より好ましくは40〜600MPa、さらに好ましくは40〜400MPaである。   In this invention, it is preferable that the storage elastic modulus by the dynamic viscoelasticity measurement in 170 degreeC of the adhesive sheet after hardening (C stage state) is 20-600 MPa in order to obtain favorable wire bonding property. The storage elastic modulus is more preferably 40 to 600 MPa, and further preferably 40 to 400 MPa.

弾性率は、動的粘弾性測定装置(レオロジー社製、DVE−V4)を用いて測定することができる(サンプルサイズ:長さ20mm、幅4mm、温度範囲−30〜200℃、昇温速度5℃/min、引張りモード、10Hz、自動静荷重)。   The elastic modulus can be measured using a dynamic viscoelasticity measuring device (DVE-V4, manufactured by Rheology) (sample size: length 20 mm, width 4 mm, temperature range -30 to 200 ° C., heating rate 5). ° C / min, tensile mode, 10 Hz, automatic static load).

本発明の接着シートを多層構造を有する多層接着シートとして用いても良く、例えば、上述した接着シートを2枚以上ラミネートしたもの、本発明の接着シートとそれ以外の接着シートを複数ラミネートしたものとして用いても良い。   The adhesive sheet of the present invention may be used as a multilayer adhesive sheet having a multilayer structure. For example, it is assumed that two or more of the above-mentioned adhesive sheets are laminated, or a laminate of the adhesive sheet of the present invention and other adhesive sheets. It may be used.

例えば、第1の接着剤層及び第2の接着層剤が直接的又は間接的に積層された構造を有してなる多層接着シートであって、少なくとも第2の接着剤層が本発明の接着シートからなり、かつ、第1の接着剤層のフロー量A、厚さaμmと、第2の接着剤層のフロー量B、厚さbμmとが、A×3<Bかつa×2<bの関係を有する多層接着シートとして用いることができる。多層接着シートは、ウエハ、接着シート及びダイシングテープを貼り合せた際に、ウエハに接する側が第1の接着剤層であり、ダイシングテープに接する側が第2の接着剤層であることが好ましい。   For example, it is a multilayer adhesive sheet having a structure in which a first adhesive layer and a second adhesive layer agent are directly or indirectly laminated, and at least the second adhesive layer is the adhesive of the present invention. The flow rate A and thickness a μm of the first adhesive layer and the flow amount B and thickness b μm of the second adhesive layer are A × 3 <B and a × 2 <b. It can be used as a multilayer adhesive sheet having the relationship In the multilayer adhesive sheet, when the wafer, the adhesive sheet, and the dicing tape are bonded together, it is preferable that the side in contact with the wafer is the first adhesive layer and the side in contact with the dicing tape is the second adhesive layer.

このような2層シートにすることで、A又はBの絶対値に応じて、接着時に適宜圧力・温度・時間(中でも特に圧力)を選択することにより、第2層は凹凸を埋め込み、第1層は凹凸により突き破られないように接着することが可能である。つまり、配線やワイヤの充てん性と、配線やワイヤと上部半導体チップとの絶縁性を確保することができる。A×3≧Bの場合、第1の接着剤層が配線やワイヤの侵入を妨げる効果が低く、凹凸を形成する基板上の回路やワイヤの上部に位置する半導体チップと接し、絶縁が確保されない傾向があり、またa×2≧bの場合、凹凸やワイヤの充てん性が低下し、ボイドができやすくなる傾向がある。   By using such a two-layer sheet, the second layer is embedded with irregularities by appropriately selecting pressure, temperature, and time (particularly pressure) during bonding according to the absolute value of A or B. The layers can be bonded so that they are not pierced by irregularities. That is, it is possible to ensure the filling property of the wiring or wire and the insulation between the wiring or wire and the upper semiconductor chip. In the case of A × 3 ≧ B, the first adhesive layer has a low effect of preventing the intrusion of the wiring and the wire, is in contact with the circuit on the substrate on which the unevenness is formed and the semiconductor chip located on the upper part of the wire, and insulation is not secured. In the case of a × 2 ≧ b, there is a tendency that the unevenness and the filling property of the wire are lowered and voids are easily formed.

本発明において、フロー量は、硬化前の接着シートとPETフィルムを1×2cmの短冊状に打ち抜いたサンプルについて、熱圧着試験装置(テスター産業(株)製)を用いて熱板温度100℃、圧力1MPaで18秒間プレスした後、サンプルの端部からはみだした樹脂の長さを光学顕微鏡で測定して得ることができる。   In the present invention, the flow amount is set to a hot plate temperature of 100 ° C. using a thermocompression test apparatus (manufactured by Tester Sangyo Co., Ltd.) for a sample obtained by punching a 1 × 2 cm strip of an adhesive sheet and a PET film before curing. After pressing for 18 seconds at a pressure of 1 MPa, the length of the resin protruding from the end of the sample can be obtained by measuring with an optical microscope.

また、例えば、第1の接着剤層及び第2の接着剤層が直接的又は間接的に積層された構造を有してなる多層接着シートであって、少なくとも第2の接着剤層が本発明の接着シートからなり、かつ、第1の接着剤層の溶融粘度αPa・s、厚さaμmと、第2の接着剤層の溶融粘度βPa・s、厚さbμmとが、α>β×3かつa×2<bの関係を有する多層接着シートとして用いることができる。多層接着シートは、ウエハ、接着シート及びダイシングテープを貼り合せた際に、ウエハに接する側が第1の接着剤層であり、ダイシングテープに接する側が第2の接着剤層であることが好ましい。   In addition, for example, a multilayer adhesive sheet having a structure in which a first adhesive layer and a second adhesive layer are laminated directly or indirectly, and at least the second adhesive layer is the present invention. The melt viscosity αPa · s and thickness a μm of the first adhesive layer and the melt viscosity βPa · s and thickness b μm of the second adhesive layer are α> β × 3 And it can be used as a multilayer adhesive sheet having a relationship of a × 2 <b. In the multilayer adhesive sheet, when the wafer, the adhesive sheet, and the dicing tape are bonded together, it is preferable that the side in contact with the wafer is the first adhesive layer and the side in contact with the dicing tape is the second adhesive layer.

このような2層シートにすることで、α又はβの絶対値に応じて、接着時に適宜圧力・温度・時間(中でも特に圧力)を選択することにより、第2層は凹凸を埋め込み、第1層は凹凸により突き破られないように接着することが可能である。つまり、配線やワイヤの充てん性と、配線やワイヤと上部半導体チップとの絶縁性を確保することができる。α≦β×3の場合、第1の接着剤層が配線やワイヤの侵入を妨げる効果が低く、凹凸を形成する基板上の回路やワイヤの上部に位置する半導体チップと接し、絶縁が確保されない傾向があり、またa×2≧bの場合、凹凸やワイヤの充てん性が低下し、ボイドができやすくなる傾向がある。   By using such a two-layer sheet, the second layer is embedded with irregularities by appropriately selecting pressure, temperature, and time (particularly pressure) during bonding according to the absolute value of α or β. The layers can be bonded so that they are not pierced by irregularities. That is, it is possible to ensure the filling property of the wiring or wire and the insulation between the wiring or wire and the upper semiconductor chip. In the case of α ≦ β × 3, the first adhesive layer has a low effect of preventing the intrusion of the wiring and the wire, and it is in contact with the circuit on the substrate on which the unevenness is formed and the semiconductor chip located above the wire, and insulation is not ensured. In the case of a × 2 ≧ b, there is a tendency that the unevenness and the filling property of the wire are lowered and voids are easily formed.

本発明において、溶融粘度は、後述する平行平板プラストメータ法により硬化前の接着シートについて測定、算出して得ることができる。   In this invention, melt viscosity can be obtained by measuring and calculating about the adhesive sheet before hardening with the parallel plate plastometer method mentioned later.

なお、A、B、α、β、a、bはそれぞれ適当な範囲内にあることが好ましく、Aは100〜400μm、Bは300〜2000μmが好ましい。低すぎると充てん性が悪化し、大きすぎると半導体チップ端部からの樹脂の浸みだしが大きくなる傾向がある。αは3000〜150万Pa・sが好ましい。βは好ましくは1000〜7500Pa・s、特に好ましくは1000〜5000Pa・s、さらに好ましくは、1500〜3000Pa・sである。高すぎると充てん性が悪化し、低すぎると半導体チップ端部からの樹脂の浸みだしが大きくなる傾向がある。またaは5〜30μm、bは10〜250μmであることが好ましい。なお、接着シートを単層で用いる場合についても、接着シート単体のフロー、溶融粘度及び厚さが、それぞれ上記で規定するB、β及びbの範囲であることが好ましい。   A, B, α, β, a, and b are preferably within appropriate ranges, and A is preferably 100 to 400 μm, and B is preferably 300 to 2000 μm. If it is too low, the filling property is deteriorated, and if it is too large, the resin oozes out from the end of the semiconductor chip tends to increase. α is preferably 3,000 to 1,500,000 Pa · s. β is preferably 1000 to 7500 Pa · s, particularly preferably 1000 to 5000 Pa · s, and further preferably 1500 to 3000 Pa · s. When it is too high, the filling property is deteriorated, and when it is too low, the resin oozes out from the end of the semiconductor chip tends to increase. Moreover, it is preferable that a is 5-30 micrometers and b is 10-250 micrometers. Even when the adhesive sheet is used as a single layer, the flow, melt viscosity, and thickness of the adhesive sheet alone are preferably in the ranges of B, β, and b as defined above.

第1の接着剤層としては、80℃以下でウエハと貼付できれば、特に制限はなく、日立化成工業(株)製、ハイアタッチHS−210、HS−230など使用できる。第2の接着剤層としては、本発明の接着シートを使用することができる。   The first adhesive layer is not particularly limited as long as it can be attached to a wafer at 80 ° C. or lower, and Hitachi Chemical Industries, Ltd., High Attach HS-210, HS-230, etc. can be used. As the second adhesive layer, the adhesive sheet of the present invention can be used.

好ましい組合せの一例としては、ハイアタッチHS−230(フロー量250μm、厚さ10μm、溶融粘度32万Pa・s)と本発明の接着シート(フロー量1000μm、厚さ70μm、溶融粘度2200Pa・s)が挙げられる。その場合、A×3<B、α>β×3、a×2<bの関係式を満たしている。   As an example of a preferred combination, High Attachment HS-230 (flow amount 250 μm, thickness 10 μm, melt viscosity 320,000 Pa · s) and the adhesive sheet of the present invention (flow amount 1000 μm, thickness 70 μm, melt viscosity 2200 Pa · s) Is mentioned. In this case, the relational expressions A × 3 <B, α> β × 3, and a × 2 <b are satisfied.

本発明の接着シートは、それ自体で用いても構わないが、一実施態様として、本発明の接着シートを従来公知のダイシングテープ上に積層したダイシングテープ一体型接着シートとして用いることもできる。この場合、ウエハへのラミネート工程が一回で済む点で、作業の効率化が可能である。   The adhesive sheet of the present invention may be used by itself, but as an embodiment, it can also be used as a dicing tape-integrated adhesive sheet in which the adhesive sheet of the present invention is laminated on a conventionally known dicing tape. In this case, it is possible to increase the efficiency of the operation in that the laminating process on the wafer is performed only once.

本発明に使用するダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムなどのプラスチックフィルム等が挙げられる。また、必要に応じてプライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理を行っても良い。ダイシングテープは粘着性を有することが好ましく、上述のプラスチックフィルムに粘着性を付与したものを用いても良いし、上述のプラスチックフィルムの片面に粘着剤層を設けても良い。これは、樹脂組成物において特に液状成分の比率、高分子量成分のTgを調整することによって得られる適度なタック強度を有する樹脂組成物を塗布乾燥することで形成可能である。   Examples of the dicing tape used in the present invention include plastic films such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film. Further, surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment and etching treatment may be performed as necessary. The dicing tape preferably has adhesiveness, and the above-mentioned plastic film provided with adhesiveness may be used, or an adhesive layer may be provided on one side of the above-mentioned plastic film. This can be formed by applying and drying a resin composition having an appropriate tack strength obtained by adjusting the ratio of the liquid component and the Tg of the high molecular weight component in the resin composition.

また、接着シートを半導体装置を製造する際に用いた場合、ダイシング時には半導体チップが飛散しない粘着力を有し、その後ピックアップ時にはダイシングテープから剥離することが望まれる。たとえば、接着シートの粘着性が高すぎるとピックアップが困難になることがある。そのため、適宜、接着シートのタック強度を調節することが好ましく、その方法としては、接着シートの室温におけるフローを上昇させることにより、粘着強度及びタック強度も上昇する傾向があり、フローを低下させれば粘着強度及びタック強度も低下する傾向があることを利用すればよい。例えば、フローを上昇させる場合には、可塑剤の含有量の増加、粘着付与材含有量の増加等の方法がある。逆にフローを低下させる場合には、前記化合物の含有量を減らせばよい。前記可塑剤としては、例えば、単官能のアクリルモノマー、単官能エポキシ樹脂、液状エポキシ樹脂、アクリル系樹脂、エポキシ系のいわゆる希釈剤等が挙げられる。   In addition, when the adhesive sheet is used when manufacturing a semiconductor device, it is desired that the semiconductor chip has an adhesive force that does not scatter during dicing, and then peels off from the dicing tape during pickup. For example, if the adhesive sheet is too sticky, picking up may be difficult. For this reason, it is preferable to appropriately adjust the tack strength of the adhesive sheet. As a method for this, the adhesive strength and tack strength tend to increase by increasing the flow of the adhesive sheet at room temperature, and the flow can be reduced. For example, it may be used that the adhesive strength and tack strength tend to decrease. For example, when increasing the flow, there are methods such as increasing the plasticizer content and increasing the tackifier content. Conversely, when the flow is lowered, the content of the compound may be reduced. Examples of the plasticizer include monofunctional acrylic monomers, monofunctional epoxy resins, liquid epoxy resins, acrylic resins, and epoxy-based so-called diluents.

ダイシングテープ上に接着シートを積層する方法としては、印刷のほか、予め作成した接着シートをダイシングテープ上にプレス、ホットロールラミネートする方法が挙げられるが、連続的に製造でき、効率が良い点でホットロールラミネートする方法が好ましい。   As a method of laminating the adhesive sheet on the dicing tape, in addition to printing, there is a method of pressing and hot roll laminating a pre-made adhesive sheet on the dicing tape, but it can be manufactured continuously and is efficient. A hot roll laminating method is preferred.

尚、ダイシングテープの膜厚は、特に制限はなく、接着シートの膜厚やダイシングテープ一体型接着シートの用途によって適宜、当業者の知識に基づいて定められるものであるが、経済性がよく、フィルムの取扱い性が良い点で60〜150μm、好ましくは70〜130μmである。   In addition, the film thickness of the dicing tape is not particularly limited, and is appropriately determined based on the knowledge of a person skilled in the art depending on the film thickness of the adhesive sheet and the application of the dicing tape-integrated adhesive sheet. The film has a handleability of 60 to 150 μm, preferably 70 to 130 μm.

本発明の接着シートは、好ましくは半導体装置の製造に用いられ、より好ましくはウエハ、接着シート及びダイシングテープを0℃〜80℃で貼り合わせた後、回転刃でウエハ、接着シート及びダイシングテープを同時に切断し、接着剤付き半導体チップを得た後、当該接着剤付き半導体チップを凹凸を有する基板又は半導体チップに荷重0.001〜1MPaで接着し、接着剤で凹凸を充てんする工程を含む半導体装置の製造に用いられる。   The adhesive sheet of the present invention is preferably used for the production of a semiconductor device, and more preferably, after bonding the wafer, the adhesive sheet and the dicing tape at 0 ° C. to 80 ° C., the wafer, the adhesive sheet and the dicing tape are attached with a rotary blade. A semiconductor including a step of cutting at the same time to obtain a semiconductor chip with an adhesive, and then bonding the semiconductor chip with an adhesive to a substrate or semiconductor chip having irregularities with a load of 0.001 to 1 MPa and filling the irregularities with an adhesive. Used in the manufacture of equipment.

本発明において、ウエハとしては、単結晶シリコンの他、多結晶シリコン、各種セラミック、ガリウム砒素などの化合物半導体などが使用される。   In the present invention, as the wafer, in addition to single crystal silicon, polycrystalline silicon, various ceramics, compound semiconductors such as gallium arsenide, and the like are used.

接着シートを単層で用いる場合には、ウエハに接着シートを貼り合わせた後、次いで接着シート面にダイシングテープを貼り合わせればよい。また、接着シートを多層で用いる場合には、ウエハに第1の接着剤層、第2の接着剤層を順に貼り合わせてもよいし、予め第1の接着剤層及び第2の接着剤層を含む多層接着シートを作成しておき、当該多層接着シートをウエハに貼り合わせてもよい。また、本発明の接着シート又は多層接着シート、及びダイシングテープを備えるダイシングテープ一体型接着シートを用いることにより、半導体装置を製造することもできる。   When the adhesive sheet is used as a single layer, after adhering the adhesive sheet to the wafer, a dicing tape may be attached to the adhesive sheet surface. When the adhesive sheet is used in multiple layers, the first adhesive layer and the second adhesive layer may be bonded to the wafer in this order, or the first adhesive layer and the second adhesive layer may be bonded in advance. May be prepared, and the multilayer adhesive sheet may be bonded to a wafer. Moreover, a semiconductor device can also be manufactured by using the adhesive sheet or multilayer adhesive sheet of this invention, and a dicing tape integrated adhesive sheet provided with a dicing tape.

接着シートをウエハに貼り付ける温度、即ちラミネート温度は、0〜80℃であり、好ましくは15〜80℃であり、さらに好ましくは20〜70℃である。80℃を超えると接着シート貼り付け後のウエハの反りが大きくなる傾向がある。   The temperature at which the adhesive sheet is attached to the wafer, that is, the laminating temperature, is 0 to 80 ° C., preferably 15 to 80 ° C., and more preferably 20 to 70 ° C. If it exceeds 80 ° C., the warpage of the wafer after adhering the adhesive sheet tends to increase.

ダイシングテープ又はダイシングテープ一体型接着シートを貼り付ける際にも、上記温度で行うことが好ましい。   It is preferable that the dicing tape or the dicing tape-integrated adhesive sheet is also applied at the above temperature.

図3に、本発明の一実施態様である接着シートb、半導体ウエハA、及びダンシングテープ1の断面図を示し、また、図4に、本発明の一実施態様である多層接着シートc、半導体ウエハA、及びダイシングテープ1の断面図を示す。図4中、aは第1の接着剤層、b’は第2の接着剤層を示す。   FIG. 3 shows a cross-sectional view of the adhesive sheet b, the semiconductor wafer A, and the dancing tape 1 according to one embodiment of the present invention, and FIG. 4 shows the multilayer adhesive sheet c and semiconductor according to one embodiment of the present invention. Sectional drawing of the wafer A and the dicing tape 1 is shown. In FIG. 4, a represents the first adhesive layer, and b ′ represents the second adhesive layer.

次いで、接着シート、ダイシングテープが貼り付けられた半導体ウエハを、ダイシングカッターを用いてダイシング、さらに洗浄、乾燥することにより、接着剤付き半導体チップを得ることができる。   Next, the semiconductor wafer with the adhesive can be obtained by dicing, further washing and drying the semiconductor wafer to which the adhesive sheet and the dicing tape are attached using a dicing cutter.

また、他の実施態様として、本発明の接着シートは、図6に示すように基材フィルム5の上に接着シートbを設けた基材フィルム付き接着シートとして用いてもよい。このようにすれば、接着シート単体では扱いにくい場合でも便利であり、例えば、図6に示す構造の接着シートと上述のダイシングテープを貼り合わせた後、基材フィルム5を剥離し、その後に半導体ウエハAを貼り合わせることで、容易に図3のような構造とすることができる。また、基材フィルム5を剥離しないでそのままカバーフィルムとして使用することも可能である。   As another embodiment, the adhesive sheet of the present invention may be used as an adhesive sheet with a base film in which an adhesive sheet b is provided on the base film 5 as shown in FIG. In this way, it is convenient even when it is difficult to handle the adhesive sheet alone, for example, after bonding the adhesive sheet having the structure shown in FIG. 6 and the above-mentioned dicing tape, the base film 5 is peeled off, and then the semiconductor By bonding the wafer A together, the structure as shown in FIG. 3 can be easily obtained. Further, the base film 5 can be used as it is as a cover film without being peeled off.

上記基材フィルム5としては、特に制限はなく、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等がある。   The base film 5 is not particularly limited, and examples thereof include a polyester film, a polypropylene film, a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a polyether naphthalate film, and a methylpentene film.

また、本発明の接着シートは、図7に示すように多層接着シートが第2の接着剤層b’、第1の接着剤層aの順に基材フィルム上に設けられた基材フィルム付き接着シートとして用いてもよい。また、第1の接着剤層a、第2の接着剤層b’の順に基材フィルム上に積層されていてもよい。   In addition, the adhesive sheet of the present invention is an adhesive with a base film in which a multilayer adhesive sheet is provided on a base film in the order of the second adhesive layer b ′ and the first adhesive layer a as shown in FIG. It may be used as a sheet. Moreover, you may laminate | stack on the base film in order of the 1st adhesive bond layer a and 2nd adhesive bond layer b '.

さらに、他の実施態様として、本発明の接着シートは、図6及び図7に示す構造で、かつ接着シート自体がダイシングテープとしての役割を果たしても良い。このような接着シートは、ダイシングダイボンド一体型接着シートなどと呼ばれ、一つのシートでダイシングテープとしての役割と、接着シートとしての役割を果たすので、図8のように、ダイシングしてピックアップするだけで接着剤付き半導体チップを得ることができる。   Furthermore, as another embodiment, the adhesive sheet of the present invention may have the structure shown in FIGS. 6 and 7, and the adhesive sheet itself may serve as a dicing tape. Such an adhesive sheet is called a dicing die bond integrated adhesive sheet or the like, and a single sheet serves as a dicing tape and as an adhesive sheet. Therefore, as shown in FIG. Thus, a semiconductor chip with an adhesive can be obtained.

接着シートにこのような機能を持たせるには、例えば、接着シートが、光硬化性高分子量成分、光硬化性モノマー、光開始剤等の光硬化性成分を含んでいれば良い。このような一体型のシートは、半導体チップを基板又は半導体チップに接着する段階では光照射が行われており、硬化前の25℃での動的粘弾性測定による貯蔵弾性率、硬化前の80℃での動的粘弾性測定による貯蔵弾性率のそれぞれの値は、光照射を行った後であり熱硬化が行われる前の段階における値を指す。   In order to give such a function to the adhesive sheet, for example, the adhesive sheet may contain a photocurable component such as a photocurable high molecular weight component, a photocurable monomer, or a photoinitiator. Such an integrated sheet is irradiated with light at the stage where the semiconductor chip is bonded to the substrate or the semiconductor chip, and has a storage elastic modulus measured by dynamic viscoelasticity at 25 ° C. before curing, and 80 before curing. Each value of the storage elastic modulus by dynamic viscoelasticity measurement at ° C. refers to a value in a stage after light irradiation and before thermosetting.

ダイシングダイボンド一体型の接着シートは、好ましくはウエハ、接着シート及び基材フィルムを0℃〜80℃で貼り合わせた後、回転刃でウエハ、接着シート及び基材フィルムを同時に切断し、接着剤付き半導体チップを得た後、当該接着剤付き半導体チップを凹凸を有する基板又は半導体チップに荷重0.001〜1MPaで接着し、接着剤で凹凸を充てんする工程を含む半導体装置の製造に用いられる。   The dicing die bond integrated adhesive sheet is preferably attached with a wafer, an adhesive sheet and a base film at 0 ° C. to 80 ° C., and then simultaneously cutting the wafer, the adhesive sheet and the base film with a rotary blade. After the semiconductor chip is obtained, the adhesive-attached semiconductor chip is bonded to a substrate having unevenness or a semiconductor chip with a load of 0.001 to 1 MPa, and used for manufacturing a semiconductor device including a step of filling the unevenness with an adhesive.

得られた接着剤付き半導体チップA1は、配線4に起因する凹凸を有する基板3又はワイヤ2に起因する凹凸を有する半導体チップに、接着剤b1を介して荷重0.001〜1MPaで接着され、接着剤により凹凸が充てんされる(図5)。荷重は0.01〜0.5MPaであることが好ましく、0.01〜0.3MPaであることがより好ましい。荷重が0.001MPa未満であるとボイドが発生し耐熱性が低下する傾向があり、1MPaを超えると半導体チップが破損する傾向がある。   The obtained semiconductor chip A1 with adhesive is bonded to the substrate 3 having unevenness due to the wiring 4 or the semiconductor chip having unevenness due to the wire 2 with a load of 0.001 to 1 MPa via the adhesive b1. Unevenness is filled with the adhesive (FIG. 5). The load is preferably 0.01 to 0.5 MPa, and more preferably 0.01 to 0.3 MPa. When the load is less than 0.001 MPa, voids are generated and the heat resistance tends to be lowered, and when it exceeds 1 MPa, the semiconductor chip tends to be damaged.

図5は、接着剤付き半導体チップをワイヤボンディングされた半導体チップに接着する際の工程の一例を示す概略図である。   FIG. 5 is a schematic diagram illustrating an example of a process for bonding a semiconductor chip with an adhesive to a wire-bonded semiconductor chip.

本発明においては、接着剤付き半導体チップを基板又は半導体チップに接着する際に、基板の配線、半導体チップのワイヤ等の凹凸を加熱することが好ましい。加熱温度は、60〜240℃であることが好ましく、100〜180℃であることがより好ましい。60℃未満であると接着性が低下する傾向があり、240℃を超えると基板が変形し、反りが大きくなる傾向がある。加熱方法としては、基板又は半導体チップを予め加熱した熱板に接触させる、基板又は半導体チップに赤外線又はマイクロ波を照射する、熱風を吹きかける等の方法が挙げられる。   In the present invention, when the semiconductor chip with an adhesive is bonded to the substrate or the semiconductor chip, it is preferable to heat irregularities such as wiring on the substrate and wires of the semiconductor chip. The heating temperature is preferably 60 to 240 ° C, and more preferably 100 to 180 ° C. When the temperature is lower than 60 ° C., the adhesiveness tends to decrease. Examples of the heating method include contacting the substrate or semiconductor chip with a preheated hot plate, irradiating the substrate or semiconductor chip with infrared rays or microwaves, and blowing hot air.

[接着シートの組成と製造方法]
(実施例1)
エポキシ樹脂としてビスフェノールF型エポキシ樹脂(エポキシ当量160、東都化成株式会社製商品名YD−8170Cを使用)30重量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量210、東都化成株式会社製商品名YDCN−703を使用)10重量部;エポキシ樹脂の硬化剤としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製商品名プライオーフェンLF2882を使用)27重量部;エポキシ基含有アクリル系共重合体としてエポキシ基含有アクリルゴム(ゲル パーミエーション クロマトグラフィーによる重量平均分子量80万、グリシジルメタクリレート3重量%、Tgは−7℃、ナガセケムテックス株式会社製商品名HTR−860P−3DRを使用)28重量部;硬化促進剤としてイミダゾール系硬化促進剤(四国化成工業株式会社製キュアゾール2PZ−CNを使用)0.1重量部;シリカフィラー(アドマファイン株式会社製、S0−C2(比重:2.2g/cm、モース硬度7、平均粒径0.5μm、比表面積6.0m/g))を使用)95重量部;シランカップリング剤として(日本ユニカー株式会社製商品名A−189を使用)0.25重量部および(日本ユニカー株式会社製商品名A−1160を使用)0.5重量部;からなる組成物に、シクロヘキサノンを加えて撹拌混合し、真空脱気して接着剤ワニスを得た。
[Composition and production method of adhesive sheet]
Example 1
30 parts by weight of bisphenol F type epoxy resin (epoxy equivalent 160, product name YD-8170C manufactured by Toto Kasei Co., Ltd.) as an epoxy resin, cresol novolac type epoxy resin (epoxy equivalent 210, product name YDCN-703 manufactured by Toto Kasei Co., Ltd.) 10 parts by weight; phenol novolak resin (using Dainippon Ink Chemical Co., Ltd., trade name PRIOFEN LF2882) as a curing agent for epoxy resin; 27 parts by weight; epoxy group-containing acrylic as epoxy group-containing acrylic copolymer As a curing accelerator, 28 parts by weight of rubber (gel permeation chromatography weight average molecular weight 800,000, glycidyl methacrylate 3% by weight, Tg is -7 ° C, trade name HTR-860P-3DR manufactured by Nagase ChemteX Corporation) Imidazo Le-based curing accelerator (manufactured by Shikoku Chemicals use made Curezol 2PZ-CN, Ltd.) 0.1 parts by weight; silica filler (ADMAFINE Ltd., S0-C2 (specific gravity: 2.2g / cm 3, Mohs hardness 7 ), Average particle size 0.5 μm, specific surface area 6.0 m 2 / g))) 95 parts by weight; silane coupling agent (using product name A-189 manufactured by Nippon Unicar Co., Ltd.) 0.25 parts by weight (Used by Nippon Unicar Co., Ltd., trade name A-1160) 0.5 parts by weight Cyclohexanone was added to the composition, stirred and mixed, and vacuum degassed to obtain an adhesive varnish.

この接着剤ワニスを、厚さ50μmの離型処理したポリエチレンテレフタレートフィルム上に塗布し、90℃10分間、120℃で5分間加熱乾燥して膜厚が75μmの塗膜とし、Bステージ状態の接着シートを作製した。このフィルムのフローは757μmであった。   This adhesive varnish is applied onto a 50 μm thick polyethylene terephthalate film which has been subjected to a release treatment, and is heated and dried at 90 ° C. for 10 minutes and 120 ° C. for 5 minutes to form a coating film having a film thickness of 75 μm. A sheet was produced. The flow of this film was 757 μm.

加工すべき半導体ウエハA(厚さ80μm)に接着シートbを60℃でラミネートし、端部を切断した。これにダイシングテープ1をホットロールラミネータ(Du Pont製Riston)で25℃でラミネートした(図3)。この際ダイシングテープには古河電工(株)製(UC3004M−80)を用いた。ダイシングテープの膜厚は、100μmであった。   The adhesive sheet b was laminated at 60 ° C. on the semiconductor wafer A (thickness: 80 μm) to be processed, and the ends were cut. Dicing tape 1 was laminated on this at 25 ° C. with a hot roll laminator (Riston manufactured by Du Pont) (FIG. 3). At this time, Furukawa Electric Co., Ltd. (UC3004M-80) was used as the dicing tape. The film thickness of the dicing tape was 100 μm.

(実施例2)
第1の接着剤層としてHS−230(厚さ10μm)と、第2の接着剤層として実施例1と同様の接着シートを60℃でラミネートし、第1及び第2の接着剤層を有する多層接着シートを作製した。第1の接着剤層と第2の接着剤層とが貼り合わされた状態でのフロー量を測定したところ、第1の接着剤層は200μm、第2の接着剤層は758μmであった。
(Example 2)
HS-230 (thickness 10 μm) is laminated as the first adhesive layer, and the same adhesive sheet as in Example 1 is laminated at 60 ° C. as the second adhesive layer, and the first and second adhesive layers are provided. A multilayer adhesive sheet was prepared. When the flow amount in a state where the first adhesive layer and the second adhesive layer were bonded together was measured, the first adhesive layer was 200 μm and the second adhesive layer was 758 μm.

加工すべき半導体ウエハA(厚さ80μm)に、第2の接着剤層が半導体ウエハAに接するように多層接着シートを60℃でラミネートし、端部を切断した。これにダイシングテープ1を、ダイシングテープ1上に第2の接着剤層bが積層されるように配置し、これらをホットロールラミネータ(Du Pont製Riston)で25℃でラミネートした(図4)。この際ダイシングテープには古河電工(株)製(UC3004M−80)を用いた。ダイシングテープの膜厚は、100μmであった。   A multilayer adhesive sheet was laminated at 60 ° C. on the semiconductor wafer A to be processed (thickness: 80 μm) so that the second adhesive layer was in contact with the semiconductor wafer A, and the ends were cut. The dicing tape 1 was placed thereon so that the second adhesive layer b was laminated on the dicing tape 1, and these were laminated at 25 ° C. with a hot roll laminator (Riston manufactured by Du Pont) (FIG. 4). At this time, Furukawa Electric Co., Ltd. (UC3004M-80) was used as the dicing tape. The film thickness of the dicing tape was 100 μm.

(実施例3)
膜厚を50μmとした他は、実施例1と同様に接着シートを作製した。
(Example 3)
An adhesive sheet was produced in the same manner as in Example 1 except that the film thickness was 50 μm.

(比較例1)
フィラーを使用しない他は実施例1と同様に試料を作成した。接着シートのフローは2000μmであった。
(Comparative Example 1)
A sample was prepared in the same manner as in Example 1 except that no filler was used. The flow of the adhesive sheet was 2000 μm.

(実施例4〜8及び比較例2、3)
フィラー及びエポキシ基含有アクリルゴムの含有量を、表1に示す量に変更した他は、実施例1と同様に接着シートを作製した。
(Examples 4 to 8 and Comparative Examples 2 and 3)
An adhesive sheet was prepared in the same manner as in Example 1 except that the contents of the filler and the epoxy group-containing acrylic rubber were changed to the amounts shown in Table 1.

[評価項目]
(1)硬化後の弾性率
Cステージ状態の接着シートの170℃の弾性率を動的粘弾性測定装置(レオロジー社製、DVE−V4)を用いて測定した(サンプルサイズ:長さ20mm、幅4mm、温度範囲−30〜200℃、昇温速度5℃/min、引張りモード、10Hz、自動静荷重)。
[Evaluation item]
(1) Elastic modulus after curing The elastic modulus at 170 ° C. of the adhesive sheet in the C stage state was measured using a dynamic viscoelasticity measuring device (DVE-V4, manufactured by Rheology) (sample size: length 20 mm, width). 4 mm, temperature range −30 to 200 ° C., heating rate 5 ° C./min, tensile mode 10 Hz, automatic static load).

(2)接着力
120℃のホットプレート上で、半導体チップ(5mm角)を金めっき基板(銅箔付フレキ基板電解金めっき(Ni:5μm、Au:0.3μm))上に接着シートを用いて接着し、130℃、30min+170℃、1hキュアした。この試料のついて85℃/85%RH、48h吸湿後の260℃での剪断強度を測定した。
(2) Adhesive force On a hot plate at 120 ° C., an adhesive sheet is used on a gold-plated substrate (flexible substrate electrolytic copper plating with copper foil (Ni: 5 μm, Au: 0.3 μm)) on a semiconductor chip (5 mm square). And then cured at 130 ° C. for 30 minutes + 170 ° C. for 1 hour. With respect to this sample, the shear strength at 260 ° C. after moisture absorption at 85 ° C./85% RH for 48 hours was measured.

(3)ラミネート性
ホットロールラミネータ(60℃、0.3m/分、0.3MPa)で幅10mmの接着シートとウエハを貼り合わせ、その後、接着シートをTOYOBALWIN製UTM−4−100型テンシロンを用いて、25℃の雰囲気中で、90°の角度で、50mm/分の引張り速度で剥がしたときの90°ピール強度を求めた。90°ピール強度が30N/m以上の場合はラミネート性良好(○)、90°ピール強度が30N/m未満の場合はラミネート性不良(×)とした。
(3) Laminating property An adhesive sheet having a width of 10 mm and a wafer are bonded to each other with a hot roll laminator (60 ° C., 0.3 m / min, 0.3 MPa). The 90 ° peel strength when peeled off at an angle of 90 ° at a pulling speed of 50 mm / min in an atmosphere of 25 ° C. was obtained. When the 90 ° peel strength was 30 N / m or more, the laminate property was good (◯), and when the 90 ° peel strength was less than 30 N / m, the laminate property was poor (x).

(4)フロー
接着シートとPETフィルムを1×2cmの短冊状に打ち抜いたサンプルについて、熱圧着試験装置(テスター産業(株)製)を用いて熱板温度100℃、圧力1MPaで18秒間プレスした後、サンプルの端部からはみだした樹脂の長さを光学顕微鏡で測定し、これをフロー量とした。
(4) Flow A sample obtained by punching an adhesive sheet and a PET film into a 1 × 2 cm strip was pressed for 18 seconds at a hot plate temperature of 100 ° C. and a pressure of 1 MPa using a thermocompression test apparatus (manufactured by Tester Sangyo Co., Ltd.). Thereafter, the length of the resin protruding from the end of the sample was measured with an optical microscope, and this was taken as the flow amount.

(5)ダイシング性
接着シート、ダイシングテープの付いた半導体ウエハに、ダイシングカッターを用いてダイシング、さらに洗浄、乾燥を行い接着シート付き半導体チップを得た。その際、半導体チップの側面のクラックの最大高さと樹脂のばりの長さを測定し、それらが、30μm以下の場合は○、30μm超の場合は×とした。
(5) Dicing property The semiconductor wafer with the adhesive sheet and the dicing tape was diced, further washed and dried using a dicing cutter to obtain a semiconductor chip with an adhesive sheet. At that time, the maximum height of the cracks on the side surface of the semiconductor chip and the length of the resin flash were measured, and when they were 30 μm or less, they were marked as “◯”, and when they were larger than 30 μm, they were marked as “X”.

(6)充てん性、耐リフロークラック性、耐温度サイクル性
接着剤付き半導体チップと、厚み25μmのポリイミドフィルムを基材に用いた高さ10μmの凹凸を有する配線基板を0.1MPa、1s、160℃の条件で貼り合せた半導体装置サンプル(片面にはんだボールを形成)を作製し、充てん性、耐熱性を調べた。充てん性の評価は、半導体チップの断面を研磨し、光学顕微鏡で配線基板の凹凸付近などを観察し、直径5μm以上の空隙の有無を調査することにより行った。直径5μm以上の空隙のないものを○、あるものを×とした。耐熱性の評価方法には、耐リフロークラック性と耐温度サイクル試験を適用した。
(6) Fillability, reflow crack resistance, temperature cycle resistance A 0.1 μm, 1 s, 160 wiring board having an unevenness of 10 μm height using a semiconductor chip with an adhesive and a polyimide film with a thickness of 25 μm as a base material. A semiconductor device sample (formed with solder balls formed on one side) bonded at a temperature of ° C. was prepared, and the filling property and heat resistance were examined. The evaluation of the filling property was performed by polishing the cross section of the semiconductor chip, observing the vicinity of the unevenness of the wiring board with an optical microscope, and investigating the presence or absence of voids having a diameter of 5 μm or more. A sample having a diameter of 5 μm or more without voids was marked with “◯”, and a sample with “x”. As the evaluation method for heat resistance, reflow crack resistance and temperature cycle resistance tests were applied.

耐リフロークラック性の評価は、サンプル表面の最高温度が260℃でこの温度を20秒間保持するように温度設定したIRリフロー炉にサンプルを通し、室温で放置することにより冷却する処理を2回繰り返したサンプル中のクラックを、目視と超音波顕微鏡で視察した。試料10個すべてでクラックの発生していないものを○とし、1個以上発生していたものを×とした。   Evaluation of reflow cracking resistance was repeated twice by passing the sample through an IR reflow furnace set at a maximum temperature of 260 ° C and maintaining the temperature for 20 seconds, and then allowing it to cool at room temperature. The cracks in the samples were inspected visually and with an ultrasonic microscope. In all 10 samples, no crack occurred and ◯ indicates that one or more cracks occurred.

耐温度サイクル性は、サンプルを−55℃雰囲気に30分間放置し、その後125℃の雰囲気に30分間放置する工程を1サイクルとして、1000サイクル後において超音波顕微鏡を用いて剥離やクラック等の破壊が試料10すべてで発生していないものを○、1個以上発生したものを×とした。   The temperature cycle resistance is that the sample is left in a −55 ° C. atmosphere for 30 minutes and then left in a 125 ° C. atmosphere for 30 minutes. After 1000 cycles, an ultrasonic microscope is used to destroy peeling or cracks. Is not generated in all of the samples 10, and one or more is generated is ×.

(7)ワイヤ充てん性
半導体チップ及び接着シートと、半導体チップ上に高さ60μmになるように金ワイヤ(直径25μm)を布線した半導体チップを0.1MPa、1s、160℃の条件で貼り合せたサンプルについて充てん性を評価した。半導体チップの断面を研磨し、光学顕微鏡でワイヤ付近に直径5μm以上の空隙の有無を調査した。直径5μm以上の空隙のないものを○、あるものを×とした。
(7) Wire filling property A semiconductor chip and an adhesive sheet and a semiconductor chip in which a gold wire (diameter 25 μm) is laid on the semiconductor chip so as to have a height of 60 μm are bonded together under conditions of 0.1 MPa, 1 s, and 160 ° C. The fillability of each sample was evaluated. The cross section of the semiconductor chip was polished, and the presence or absence of a void having a diameter of 5 μm or more was examined near the wire with an optical microscope. A sample having a diameter of 5 μm or more without voids was marked with “◯”, and a sample with “x”.

(8)硬化前の弾性率
Bステージ状態の接着シートの25℃及び80℃の弾性率を動的粘弾性測定装置(レオロジー社製、DVE−V4)を用いて測定した(サンプルサイズ:長さ20mm、幅4mm、温度範囲−30〜200℃、昇温速度5℃/min、引張りモード、10Hz、自動静荷重)。
(8) Elastic modulus before curing The elastic modulus at 25 ° C. and 80 ° C. of the adhesive sheet in the B-stage state was measured using a dynamic viscoelasticity measuring device (DVE-V4 manufactured by Rheology) (sample size: length). 20 mm, width 4 mm, temperature range -30 to 200 ° C., heating rate 5 ° C./min, tensile mode 10 Hz, automatic static load).

(9)溶融粘度
接着シートの溶融粘度は、下記の平行平板プラストメータ法により測定、算出した値を用いた。すなわち、接着シートをラミネートし、厚さ100〜300μmのフィルムを作製する。これを直径11.3mmの円形に打ち抜いたものを試料とし、100℃において、荷重3.0kgfで5秒間加圧し、加圧前後の試料の厚みから、式1を用いて溶融粘度を算出した。実施例2のフィルムに関しては各層の溶融粘度を測定したところ、第1層の接着剤層は32万Pa・s、第2層の接着剤層は2640Pa・sであった。
(9) Melt viscosity The melt viscosity of the adhesive sheet was measured and calculated by the following parallel plate plastometer method. That is, an adhesive sheet is laminated to produce a film having a thickness of 100 to 300 μm. This was punched into a circle with a diameter of 11.3 mm, and the sample was pressed at 100 ° C. with a load of 3.0 kgf for 5 seconds, and the melt viscosity was calculated using Equation 1 from the thickness of the sample before and after pressing. Regarding the film of Example 2, when the melt viscosity of each layer was measured, the first adhesive layer was 320,000 Pa · s and the second adhesive layer was 2640 Pa · s.

Figure 0004816871
(式中、Z0は荷重を加える前の接着シートの厚さ、Zは荷重を加えた後の接着シートの厚さ、Vは接着シートの体積、Fは加えた荷重、tは荷重を加えた時間を表す。)
Figure 0004816871
(In the formula, Z0 is the thickness of the adhesive sheet before the load is applied, Z is the thickness of the adhesive sheet after the load is applied, V is the volume of the adhesive sheet, F is the applied load, and t is the applied load. Represents time.)

サンプルの作成方法について詳しく説明すると、接着シート単体の厚みが100μm未満である場合は、接着シートを複数枚数貼り合わせて100〜300μmの厚さにする。厚さが100〜300μmであれば測定値が再現性よく得られるためである。例えば接着シート単体の厚みが40μmである場合は、接着シートを3〜7枚貼り合わせればよい。また、貼り合わせる条件はサンプルによって異なるが、測定中に貼り合わせ面において剥離が生じないようにすればよく、通常その接着シートの硬化が進まない条件で貼り合わせる。   The method for producing the sample will be described in detail. When the thickness of the adhesive sheet alone is less than 100 μm, a plurality of adhesive sheets are bonded to a thickness of 100 to 300 μm. This is because the measured value can be obtained with good reproducibility when the thickness is 100 to 300 μm. For example, when the thickness of the adhesive sheet alone is 40 μm, 3 to 7 adhesive sheets may be bonded together. Moreover, although the conditions for bonding differ depending on the sample, it is only necessary to prevent peeling on the bonding surface during measurement, and the bonding is usually performed under the condition that the adhesive sheet does not cure.

評価結果を表1に示す。

Figure 0004816871
Figure 0004816871
The evaluation results are shown in Table 1.
Figure 0004816871
Figure 0004816871

実施例1〜8はダイシング性が良好であり、基板やワイヤの凹凸の充てん性も良好である。比較例1〜3はいずれもダイシング性が不良である。   In Examples 1 to 8, the dicing property is good, and the filling property of the unevenness of the substrate and the wire is also good. All of Comparative Examples 1 to 3 have poor dicing properties.

以上、本発明について実施例を用いて説明してきたが、以下の作用効果を奏することがわかった。本発明の接着シートを用いた場合は、半導体装置を製造する際のダイシング工程において、ウエハと接着シートを良好に切断可能である。また、ダイシング時の半導体チップ飛びも無く、ピックアップ性も良好である。また、半導体チップと凹凸を有する基板、ワイヤ付き半導体チップとの接着工程において、充てん性に優れ、また半導体搭載用支持部材に半導体チップを実装する場合に必要な耐熱性、耐湿性を有し、かつ作業性に優れる。このことから、本発明の接着シートによれば、半導体装置の信頼性の向上と共に、半導体装置の加工速度、歩留の向上をはかることが可能となる。   As mentioned above, although this invention has been demonstrated using the Example, it turned out that there exist the following effects. When the adhesive sheet of the present invention is used, the wafer and the adhesive sheet can be satisfactorily cut in the dicing process when manufacturing the semiconductor device. Further, there is no skipping of the semiconductor chip during dicing, and the pickup property is good. In addition, in the bonding process between the semiconductor chip and the substrate having irregularities, the wire-attached semiconductor chip, it has excellent filling properties, and has heat resistance and moisture resistance necessary when mounting the semiconductor chip on the semiconductor mounting support member, And excellent workability. Therefore, according to the adhesive sheet of the present invention, it is possible to improve the reliability of the semiconductor device and improve the processing speed and yield of the semiconductor device.

CSPの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of CSP. スタックドCSPの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of stacked CSP. 本発明の接着シート、半導体ウエハ、及びダンシングテープの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the adhesive sheet, semiconductor wafer, and dancing tape of this invention. 本発明の多層接着シート、半導体ウエハ、及びダイシングテープの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the multilayer adhesive sheet of this invention, a semiconductor wafer, and a dicing tape. 本発明の接着シートを用いた接着剤付き半導体チップを、ワイヤボンディングされたチップに接着する際の工程の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the process at the time of adhere | attaching the semiconductor chip with an adhesive agent using the adhesive sheet of this invention to the chip | tip bonded by wire bonding. 本発明の基材フィルム付き接着シートの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the adhesive sheet with a base film of this invention. 本発明の基材フィルム付き多層接着シートの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the multilayer adhesive sheet with a base film of this invention. 本発明の接着剤付き半導体チップの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the semiconductor chip with an adhesive agent of this invention.

符号の説明Explanation of symbols

A 半導体ウエハ
A1 半導体チップ
a 第1の接着剤層
b 接着シート
b’ 第2の接着剤層
b1 接着剤
c 多層接着シート
1 ダイシングテープ
2 ワイヤ
3 基板
4 配線
5 基材フィルム
A Semiconductor wafer A1 Semiconductor chip a First adhesive layer b Adhesive sheet b ′ Second adhesive layer b1 Adhesive c Multilayer adhesive sheet 1 Dicing tape 2 Wire 3 Substrate 4 Wiring 5 Base film

Claims (12)

ウエハ、接着シート及びダイシングテープを貼り合わせたものをダイシングして得られる接着シート付き半導体チップを、ワイヤ布線された他の半導体チップ上に、前記接着シート付き半導体チップの接着シートでワイヤの凹凸を充てんするように接着して使用するための接着シートであり、
該接着シートが、重量平均分子量が10万以上かつTgが−50〜50℃であるエポキシ基含有(メタ)アクリル共重合体15〜40重量%及びエポキシ樹脂を主成分とする熱硬化性成分60〜85重量%を含む樹脂100重量部と、
シリカ60〜120重量部とを含有する、厚さが50〜250μmである接着シート。
A semiconductor chip with an adhesive sheet obtained by dicing a wafer, an adhesive sheet, and a dicing tape bonded to each other is placed on another semiconductor chip that has been wired with the adhesive sheet of the semiconductor chip with the adhesive sheet, and the unevenness of the wire. It is an adhesive sheet for use by adhering to fill
Adhesive sheets, thermosetting component composed mainly of Weight average epoxy group-containing molecular weight of 100,000 or more and Tg is -50 to 50 ° C. (meth) acrylic copolymer 15 to 40 wt% and an epoxy resin 100 parts by weight of resin containing 60 to 85% by weight;
An adhesive sheet containing 60 to 120 parts by weight of silica and having a thickness of 50 to 250 μm.
硬化前の25℃での動的粘弾性測定による貯蔵弾性率が200〜3000MPaであり、80℃での動的粘弾性測定による貯蔵弾性率が0.1〜10MPaである請求項1に記載の接着シート。   The storage elastic modulus by dynamic viscoelasticity measurement at 25 ° C before curing is 200 to 3000 MPa, and the storage elastic modulus by dynamic viscoelasticity measurement at 80 ° C is 0.1 to 10 MPa. Adhesive sheet. 硬化後の170℃での動的粘弾性測定による貯蔵弾性率が20〜600MPaである請求項1又は2記載の接着シート。   The adhesive sheet according to claim 1 or 2, wherein a storage elastic modulus by dynamic viscoelasticity measurement at 170 ° C after curing is 20 to 600 MPa. 硬化前の100℃での溶融粘度が1000〜7500Pa・sである請求項1〜3いずれかに記載の接着シート。   The adhesive sheet according to any one of claims 1 to 3, wherein the melt viscosity at 100 ° C before curing is 1000 to 7500 Pa · s. シリカの平均粒径が0.05〜5μmであり、比表面積が2〜200m/gである請求項1〜いずれかに記載の接着シート。 The adhesive sheet according to any one of claims 1 to 4 , wherein the silica has an average particle size of 0.05 to 5 µm and a specific surface area of 2 to 200 m 2 / g. ウエハ、接着シート及びダイシングテープを0℃〜80℃で貼り合わせ、回転刃でウエハ、接着シート及びダンシングテープを同時に切断し、接着シート付き半導体チップを得た後、当該接着シート付き半導体チップを凹凸を有する基板又は半導体チップに荷重0.001〜1MPaで接着し、接着シートで凹凸を充てんする工程に使用する請求項1〜いずれかに記載の接着シート。 Uneven wafer, the adhesive sheet and a dicing tape adhered at 0 ° C. to 80 ° C., the wafer with the rotary blade, the adhesive sheet and Dancing tape was cut at the same time, after obtaining the semiconductor chip with the adhesive sheet, a semiconductor chip with the adhesive sheet The adhesive sheet according to any one of claims 1 to 5 , wherein the adhesive sheet is used for a step of adhering to a substrate or a semiconductor chip having a load of 0.001 to 1 MPa and filling irregularities with an adhesive sheet. 第1の接着剤層及び第2の接着剤層が直接的に又は間接的に積層された構造を有してなる多層接着シートであって、
少なくとも第2の接着剤層が請求項1〜いずれかに記載の接着シートからなり、
かつ、第1の接着剤層のフロー量Aμm、厚さaμm、第2の接着剤層のフロー量Bμm、厚さbμmとが、A×3<Bかつa×2<bの関係を有する多層接着シート。
A multilayer adhesive sheet having a structure in which a first adhesive layer and a second adhesive layer are laminated directly or indirectly,
At least the second adhesive layer is composed of the adhesive sheet according to any one of claims 1 to 6 ,
The first adhesive layer flow amount A μm, the thickness a μm, the second adhesive layer flow amount B μm, and the thickness b μm have a relationship of A × 3 <B and a × 2 <b. Adhesive sheet.
第1の接着剤層及び第2の接着剤層が直接的に又は間接的に積層された構造を有してなる多層接着シートであって、
少なくとも第2の接着剤層が請求項1〜いずれかに記載の接着シートからなり、
かつ、第1の接着剤層の溶融粘度αPa・s、厚さaμm、第2の接着剤層の溶融粘度βPa・s、厚さbμmとが、α>β×3かつa×2<bの関係を有する多層接着シート。
A multilayer adhesive sheet having a structure in which a first adhesive layer and a second adhesive layer are laminated directly or indirectly,
At least the second adhesive layer is made of the adhesive sheet according to any one of claims 1 to 7 ,
In addition, the melt viscosity αPa · s of the first adhesive layer, the thickness a μm, the melt viscosity βPa · s of the second adhesive layer, and the thickness b μm satisfy α> β × 3 and a × 2 <b. A multilayer adhesive sheet having a relationship.
ウエハ、接着シート及びダイシングテープを貼り合せた際に、ウエハに接する側が第1の接着剤層であり、ダイシングテープに接する側が第2の接着剤層である請求項又は記載の多層接着シート。 The multilayer adhesive sheet according to claim 7 or 8 , wherein when the wafer, the adhesive sheet, and the dicing tape are bonded together, the side in contact with the wafer is the first adhesive layer, and the side in contact with the dicing tape is the second adhesive layer. . ウエハ、請求項1〜いずれかに記載の接着シート又は請求項7〜9いずれかに記載の多層接着シート、及びダイシングテープを0℃〜80℃で貼り合わせ、回転刃でウエハ、接着シート及びダンシングテープを同時に切断し、接着シート付き半導体チップを得た後、当該接着シート付き半導体チップを凹凸を有する基板又は半導体チップに荷重0.001〜1MPaで接着し、接着シートで凹凸を充てんする工程を含む半導体装置の製造方法。 The wafer, the adhesive sheet according to any one of claims 1 to 6, or the multilayer adhesive sheet according to any one of claims 7 to 9 and a dicing tape are bonded together at 0 ° C to 80 ° C, and the wafer, the adhesive sheet, and cutting Dancing tape simultaneously, after obtaining an adhesive sheet with semiconductor chips, bonded with a load 0.001~1MPa the substrate or the semiconductor chip having an uneven semiconductor chip with the adhesive sheet, to fill irregularities in the adhesive sheet process A method of manufacturing a semiconductor device including: 接着シート付き半導体チップを凹凸を有する基板又は半導体チップに接着する際に、凹凸を加熱する請求項10記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 10 , wherein the unevenness is heated when the semiconductor chip with an adhesive sheet is bonded to a substrate having unevenness or a semiconductor chip. 請求項1〜いずれかに記載の接着シート又は請求項7〜9いずれかに記載の多層接着シートを用いて半導体チップと基板、又は半導体チップと半導体チップとを接着してなる半導体装置。 A semiconductor device formed by bonding a semiconductor chip and a substrate or a semiconductor chip and a semiconductor chip using the adhesive sheet according to any one of claims 1 to 6 or the multilayer adhesive sheet according to any one of claims 7 to 9 .
JP2005122447A 2004-04-20 2005-04-20 Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device Active JP4816871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122447A JP4816871B2 (en) 2004-04-20 2005-04-20 Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004124118 2004-04-20
JP2004124118 2004-04-20
JP2004351605 2004-12-03
JP2004351605 2004-12-03
JP2005122447A JP4816871B2 (en) 2004-04-20 2005-04-20 Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2006183020A JP2006183020A (en) 2006-07-13
JP4816871B2 true JP4816871B2 (en) 2011-11-16

Family

ID=36736367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122447A Active JP4816871B2 (en) 2004-04-20 2005-04-20 Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP4816871B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4597910B2 (en) * 2005-06-03 2010-12-15 エルエス ケーブル リミテッド Dicing die adhesive film for semiconductor
JP5323310B2 (en) * 2005-11-10 2013-10-23 日立化成株式会社 Connection structure and manufacturing method thereof
JP4621595B2 (en) * 2006-01-11 2011-01-26 株式会社東芝 Manufacturing method of semiconductor device
JP5380806B2 (en) * 2006-08-31 2014-01-08 日立化成株式会社 Adhesive sheet, integrated sheet, semiconductor device, and method for manufacturing semiconductor device
CA2666404A1 (en) 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
JP5364991B2 (en) * 2006-10-24 2013-12-11 日立化成株式会社 Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device
JP2008124141A (en) * 2006-11-09 2008-05-29 Shin Etsu Chem Co Ltd Adhesive film for dicing/die bond
JP2008144160A (en) * 2006-11-16 2008-06-26 Hitachi Chem Co Ltd Adhesive sheet
JP4988531B2 (en) * 2006-12-18 2012-08-01 日東電工株式会社 Adhesive sheet for manufacturing semiconductor device, and method for manufacturing semiconductor device using the same
TW200837137A (en) 2007-01-26 2008-09-16 Hitachi Chemical Co Ltd Sealing film and semiconductor device using the same
JP4732472B2 (en) * 2007-03-01 2011-07-27 日東電工株式会社 Thermosetting die bond film
JP5476673B2 (en) * 2007-04-02 2014-04-23 日立化成株式会社 Adhesive sheet
KR100882060B1 (en) 2007-05-14 2009-02-10 엘에스엠트론 주식회사 Dicing die adhesive film
JP4950777B2 (en) * 2007-06-20 2012-06-13 積水化学工業株式会社 Adhesive sheet, dicing die bonding tape, and semiconductor device manufacturing method
JP5115096B2 (en) * 2007-08-22 2013-01-09 住友ベークライト株式会社 Adhesive film
JP5532575B2 (en) * 2007-10-22 2014-06-25 日立化成株式会社 Adhesive sheet
JP2009120822A (en) * 2007-10-23 2009-06-04 Hitachi Chem Co Ltd Adhesive composition, adhesive member using the same, dicing/die bonding-integrated type film, semiconductor mounting support member and semiconductor device
JP5381121B2 (en) * 2008-01-29 2014-01-08 日立化成株式会社 Semiconductor device manufacturing method and semiconductor device
JP5556070B2 (en) * 2008-08-20 2014-07-23 日立化成株式会社 Manufacturing method of semiconductor device using adhesive sheet integrated with dicing tape
JP5144567B2 (en) * 2009-03-18 2013-02-13 古河電気工業株式会社 Wafer processing tape
JP5421626B2 (en) * 2009-03-19 2014-02-19 積水化学工業株式会社 Adhesive sheet and dicing die bonding tape
JP5534986B2 (en) * 2010-07-09 2014-07-02 古河電気工業株式会社 Wafer processing tape
KR101856557B1 (en) * 2011-03-16 2018-05-10 후루카와 덴키 고교 가부시키가이샤 Highly heat conductive film-shaped adhesive composition, highly heat conductive film-shaped adhesive and method for producing semiconductor package by using the highly heat conductive film-shaped adhesive
JP2012216838A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Three-dimensional integrated circuit laminate
JP2012216839A (en) * 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp Three-dimensional integrated circuit laminate
EP2693476A4 (en) 2011-03-31 2014-10-15 Mitsubishi Chem Corp Three-dimensional integrated circuit laminate and interlayer filler material for three-dimensional integrated circuit laminate
JP2013127014A (en) * 2011-12-16 2013-06-27 Hitachi Chemical Co Ltd Adhesive sheet
KR102310226B1 (en) * 2013-12-24 2021-10-08 닛토덴코 가부시키가이샤 Adhesive film, dicing·die bond film, manufacturing method for semiconductor device, and semiconductor device
KR102344987B1 (en) * 2013-12-24 2021-12-30 닛토덴코 가부시키가이샤 Dicing·die bond film, manufacturing method for semiconductor device, and semiconductor device
JP6312422B2 (en) * 2013-12-24 2018-04-18 日東電工株式会社 Dicing die bond film, semiconductor device manufacturing method, and semiconductor device
JP5828881B2 (en) * 2013-12-24 2015-12-09 日東電工株式会社 Adhesive film, dicing die bond film, semiconductor device manufacturing method, and semiconductor device
JP2015137299A (en) * 2014-01-21 2015-07-30 住友ベークライト株式会社 Resin composition, adhesive sheet, adhesive sheet integrated with dicing tape, adhesive sheet integrated with back grind tape, adhesive sheet integrated with back grind tape also functioning as dicing tape, and electronic device
CN106459719A (en) 2015-04-29 2017-02-22 株式会社Lg化学 Resin composition for bonding semiconductor, adhesive film for semiconductor, and dicing die bonding film
SG11202007034UA (en) * 2018-01-30 2020-08-28 Hitachi Chemical Co Ltd Film-form adhesive, method for producing same, and semiconductor device and method for producing same
WO2022176585A1 (en) * 2021-02-16 2022-08-25 株式会社巴川製紙所 Adhesive sheet for semiconductor device production and method for producing semiconductor device using same
JP2023072930A (en) * 2021-11-15 2023-05-25 株式会社レゾナック Thermosetting adhesive composition, laminate film, connecting body and method for manufacturing the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411748B2 (en) * 1996-05-09 2003-06-03 日立化成工業株式会社 Metal foil with adhesive, adhesive sheet and multilayer wiring board
JP3787889B2 (en) * 1996-05-09 2006-06-21 日立化成工業株式会社 Multilayer wiring board and manufacturing method thereof
JP3792327B2 (en) * 1996-12-24 2006-07-05 日立化成工業株式会社 Thermally conductive adhesive composition and thermally conductive adhesive film using the composition
JP3915940B2 (en) * 1997-06-10 2007-05-16 日立化成工業株式会社 Insulating layer adhesive film
JP3825247B2 (en) * 1999-11-30 2006-09-27 日立化成工業株式会社 Method for producing adhesive composition, adhesive composition, adhesive film, wiring board for semiconductor mounting, and semiconductor device
KR20090075736A (en) * 2000-02-15 2009-07-08 히다치 가세고교 가부시끼가이샤 Adhesive Composition, Process for Producing the Same, Adhesive Film Made with the Same, Substrate for Semiconductor Mounting, and Semiconductor Device
JP4505769B2 (en) * 2000-03-31 2010-07-21 日立化成工業株式会社 Adhesive film, wiring board for semiconductor mounting provided with adhesive film, semiconductor device, and manufacturing method thereof
JP2001279217A (en) * 2000-03-31 2001-10-10 Hitachi Chem Co Ltd Adhesive composition, flame retardant adhesive composition, adhesive film, printed circuit board for mounting semiconductor, semiconductor device and method for producing the same
JP4258984B2 (en) * 2001-03-15 2009-04-30 日立化成工業株式会社 Manufacturing method of semiconductor device
JP2001308262A (en) * 2000-04-26 2001-11-02 Mitsubishi Electric Corp Resin-sealed bga type semiconductor device
JP3913481B2 (en) * 2001-01-24 2007-05-09 シャープ株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2002146324A (en) * 2000-11-16 2002-05-22 Hitachi Chem Co Ltd Adhesive composition and adhesive member using the same and substrate for loading semiconductor and semiconductor device
JP2002359346A (en) * 2001-05-30 2002-12-13 Sharp Corp Semiconductor device and method of stacking semiconductor chips
JP2004043762A (en) * 2001-08-27 2004-02-12 Hitachi Chem Co Ltd Adhesive sheet, semiconductor device, and production method of the sheet
JP3912076B2 (en) * 2001-11-09 2007-05-09 日立化成工業株式会社 Adhesive sheet, semiconductor device and manufacturing method thereof
JP4165072B2 (en) * 2002-01-15 2008-10-15 日立化成工業株式会社 Adhesive composition, adhesive film, wiring board for semiconductor mounting, semiconductor device and manufacturing method thereof
JP4228582B2 (en) * 2002-04-10 2009-02-25 日立化成工業株式会社 Adhesive sheet, semiconductor device and manufacturing method thereof
JP4300393B2 (en) * 2002-07-04 2009-07-22 日立化成工業株式会社 Adhesive sheet, semiconductor device and manufacturing method thereof
JP3912223B2 (en) * 2002-08-09 2007-05-09 富士通株式会社 Semiconductor device and manufacturing method thereof
TWI401326B (en) * 2003-06-06 2013-07-11 Hitachi Chemical Co Ltd Sticking sheet unified with dicing tape

Also Published As

Publication number Publication date
JP2006183020A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4816871B2 (en) Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
JP5524465B2 (en) Adhesive sheet, semiconductor device using the same, and manufacturing method thereof
US8017444B2 (en) Adhesive sheet, semiconductor device, and process for producing semiconductor device
JP2007270125A (en) Adhesive sheet, integrated sheet, semiconductor device, and method for producing the semiconductor device
JP5206769B2 (en) Adhesive sheet
JP5380806B2 (en) Adhesive sheet, integrated sheet, semiconductor device, and method for manufacturing semiconductor device
JP5157229B2 (en) Adhesive sheet
JP5364991B2 (en) Adhesive composition for semiconductor, adhesive sheet for semiconductor, and semiconductor device
JP4258984B2 (en) Manufacturing method of semiconductor device
JP4957064B2 (en) Semiconductor device and manufacturing method thereof
JP2009242605A (en) Adhesive composition, adhesive sheet, and production method of semiconductor device
JP5691244B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP2008088411A (en) Adhesive sheet
JP4401625B2 (en) Adhesive sheet
JP5532575B2 (en) Adhesive sheet
JP5272284B2 (en) Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
JP4123963B2 (en) Adhesive sheet and semiconductor device using the same
JP4806815B2 (en) Adhesive composition, adhesive sheet and method for producing semiconductor device
JP5499772B2 (en) Adhesive member for semiconductor, adhesive composition for semiconductor, adhesive film for semiconductor, laminate and method for producing semiconductor device
JP2008308675A (en) Adhesive sheet and metal-fitted adhesive sheet
JP2009267321A (en) Adhesive sheet, one-piece sheet, semiconductor device, and method of manufacturing semiconductor device
JP5585542B2 (en) Adhesive film, use thereof, and method for manufacturing semiconductor device
JP6662074B2 (en) Adhesive film
JP2009135506A (en) Adhesive film, use of the same, and method of manufacturing semiconductor device
JP5805925B2 (en) Die bonding film and semiconductor device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4816871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350