JP5323310B2 - Connection structure and manufacturing method thereof - Google Patents

Connection structure and manufacturing method thereof Download PDF

Info

Publication number
JP5323310B2
JP5323310B2 JP2006276785A JP2006276785A JP5323310B2 JP 5323310 B2 JP5323310 B2 JP 5323310B2 JP 2006276785 A JP2006276785 A JP 2006276785A JP 2006276785 A JP2006276785 A JP 2006276785A JP 5323310 B2 JP5323310 B2 JP 5323310B2
Authority
JP
Japan
Prior art keywords
conductive adhesive
adhesive film
conductive
connection method
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006276785A
Other languages
Japanese (ja)
Other versions
JP2007158302A (en
JP2007158302A5 (en
Inventor
健博 清水
香 岡庭
直樹 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006276785A priority Critical patent/JP5323310B2/en
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to CN2007800377699A priority patent/CN101529603B/en
Priority to US12/445,227 priority patent/US9123835B2/en
Priority to EP07742645A priority patent/EP2086023A4/en
Priority to PCT/JP2007/059210 priority patent/WO2008044357A1/en
Priority to KR1020097009555A priority patent/KR101081163B1/en
Priority to CA 2666404 priority patent/CA2666404A1/en
Priority to CN2010102920077A priority patent/CN101997059B/en
Priority to TW096115751A priority patent/TW200818525A/en
Publication of JP2007158302A publication Critical patent/JP2007158302A/en
Publication of JP2007158302A5 publication Critical patent/JP2007158302A5/ja
Application granted granted Critical
Publication of JP5323310B2 publication Critical patent/JP5323310B2/en
Priority to US14/813,644 priority patent/US20160035925A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection method between a surface electrode and a wiring member of a solar battery cell that has excellent connection reliability, using a connection member instead of solder. <P>SOLUTION: The surface electrode and the wiring member of the solar battery cell are electrically connected by way of a conductive adhesive film. The conductive adhesive film contains an insulating bond and conductive particles. With a ten points average roughness of the surface of the surface electrode contacting the conductive adhesive film being assumed as Rz (&mu;m) and a maximum height as Ry (&mu;m), the conductive particle has average particle size r(&mu;m) being equal to or more than the ten points average roughness Rz, while the thickness t(&mu;m) of the conductive adhesive film is equal to or more than the maximum height Ry. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、太陽電池セルの表面電極と配線部材との接続方法、導電性接着フィルム及び太陽電池モジュールに関するものである。   The present invention relates to a method for connecting a surface electrode of a solar battery cell and a wiring member, a conductive adhesive film, and a solar battery module.

太陽電池モジュールは、複数の太陽電池セルがその表面電極に電気的に接続された配線部材を介して直列及び/又は並列に接続された構造を有している。この太陽電池モジュールを作製する際に、太陽電池セルの表面電極と配線部材との接続には、従来、はんだが用いられてきた(例えば、特許文献1及び2参照)。はんだは、導通性、固着強度等の接続信頼性に優れ、安価で汎用性があることから広く用いられている。   The solar cell module has a structure in which a plurality of solar cells are connected in series and / or in parallel via a wiring member electrically connected to the surface electrode. In producing this solar cell module, solder has been conventionally used to connect the surface electrode of the solar cell and the wiring member (see, for example, Patent Documents 1 and 2). Solder is widely used because it is excellent in connection reliability such as electrical conductivity and fixing strength, is inexpensive and versatile.

一方、環境保護の観点等から、太陽電池において、はんだを使用しない配線の接続方法が提案されている。例えば、特許文献3〜6には、導電性ペースト等の導電性接着剤により配線間を接続する手法が開示されている。
特開2004−204256号公報 特開2005−050780号公報 特開2000−286436号公報 特開2001−357897号公報 特許第3448924号公報 特開2005−101519号公報
On the other hand, from the viewpoint of environmental protection and the like, a method for connecting wirings that does not use solder in a solar cell has been proposed. For example, Patent Documents 3 to 6 disclose methods for connecting wirings with a conductive adhesive such as a conductive paste.
JP 2004-204256 A JP-A-2005-050780 JP 2000-286436 A JP 2001-357897 A Japanese Patent No. 3448924 JP 2005-101519 A

しかしながら、特許文献1、2に記載されたはんだを用いた接続方法では、太陽電池の特性劣化が生じやすくなる。これは、融点が230〜260℃程度であるはんだを溶融する際に、太陽電池における半導体構造等の部材が加熱されること、及び/又は、はんだの体積収縮による影響が半導体構造等に及ぶことに起因する。また、はんだによる配線の接続では、電極及び配線間の距離を制御することが困難であるため、パッケージングの際の寸法精度を十分に得ることが難しい。寸法精度が低くなると、パッケージングに起因する製品の歩留低下にも繋がる。   However, in the connection method using the solder described in Patent Documents 1 and 2, characteristic deterioration of the solar cell is likely to occur. This is because when a solder having a melting point of about 230 to 260 ° C. is melted, a member such as a semiconductor structure in a solar cell is heated, and / or the influence of solder volume shrinkage affects the semiconductor structure and the like. caused by. Further, in the case of wiring connection by solder, it is difficult to control the distance between the electrode and the wiring, so that it is difficult to obtain sufficient dimensional accuracy during packaging. Lowering the dimensional accuracy also leads to a decrease in product yield due to packaging.

さらに、特許文献3〜5に記載のように、導電性接着剤を用いて太陽電池セルの表面電極と配線部材との接続を行う場合、配線間の接続は、高温高湿条件下において、接続信頼性が時間の経過に伴い大幅に低下することが本発明者らの検討により明らかになった。   Furthermore, as described in Patent Documents 3 to 5, when the conductive electrode is used to connect the surface electrode of the solar battery cell and the wiring member, the connection between the wirings is performed under high temperature and high humidity conditions. It has been clarified by the present inventors that the reliability greatly decreases with time.

また、特許文献6に記載のように、導電性フィルムを用いて太陽電池セルの表面電極と配線部材との接続を行う場合では、低温で接着可能であることから、はんだを用いた場合に生じる太陽電池セルへの悪影響を抑制することができる。しかしながら、特許文献6に記載の接続方法では、被着体の表面状態の影響が考慮されておらず、接続信頼性が必ずしも十分ではなかった。   In addition, as described in Patent Document 6, when a conductive film is used to connect the surface electrode of the solar battery cell and the wiring member, it can be bonded at a low temperature, and thus occurs when solder is used. The bad influence to a photovoltaic cell can be suppressed. However, in the connection method described in Patent Document 6, the influence of the surface state of the adherend is not considered, and the connection reliability is not always sufficient.

そこで、本発明は上記事情にかんがみてなされたものであり、はんだの代替となる接続部材を用い、かつ、十分に優れた接続信頼性を有する太陽電池セルの表面電極と配線部材との接続方法、導電性接着フィルム及び太陽電池モジュールを提供することを目的とする。   Accordingly, the present invention has been made in view of the above circumstances, and uses a connection member as a substitute for solder, and a method of connecting a surface electrode of a solar battery cell and a wiring member having sufficiently excellent connection reliability. An object is to provide a conductive adhesive film and a solar cell module.

本発明は、上記課題を解決するために、太陽電池セルの表面電極と配線部材とを、導電性接着フィルムを介して電気的に接続する方法であって、導電性接着フィルムは絶縁性接着剤と導電性粒子とを含有し、表面電極の導電性接着フィルムと接する面の十点平均粗さをRz(μm)、最大高さをRy(μm)として、導電性粒子は、その平均粒子径r(μm)が十点平均粗さRz以上であり、かつ、導電性接着フィルムの厚さt(μm)は最大高さRy以上である接続方法を提供する。
を提供する。
In order to solve the above problems, the present invention is a method of electrically connecting a surface electrode of a solar battery cell and a wiring member via a conductive adhesive film, and the conductive adhesive film is an insulating adhesive. And conductive particles, the surface roughness of the surface electrode in contact with the conductive adhesive film is Rz (μm), and the maximum height is Ry (μm). Provided is a connection method in which r (μm) is 10-point average roughness Rz or more and the thickness t (μm) of the conductive adhesive film is greater than or equal to the maximum height Ry.
I will provide a.

また、本発明は、太陽電池セルの表面電極と配線部材とを電気的に接続するために用いられる導電性接着フィルムであって、絶縁性接着剤と導電性粒子とを含有し、表面電極の導電性接着フィルムと接する面の十点平均粗さをRz(μm)、最大高さをRy(μm)として、導電性粒子は、その平均粒子径r(μm)が十点平均粗さRz以上であり、かつ、導電性接着フィルムの厚さt(μm)は最大高さRy以上である導電性接着フィルムを提供する。   The present invention also relates to a conductive adhesive film used for electrically connecting a surface electrode of a solar battery cell and a wiring member, comprising an insulating adhesive and conductive particles, The average particle diameter r (μm) of the conductive particles is equal to or greater than the ten-point average roughness Rz, where the ten-point average roughness of the surface in contact with the conductive adhesive film is Rz (μm) and the maximum height is Ry (μm). The conductive adhesive film has a thickness t (μm) equal to or greater than the maximum height Ry.

上述の本発明の接続方法は、導電性接着フィルムに含まれる導電性粒子の平均粒子径rが、太陽電池セルの表面電極の導電性接着フィルムと接する面における十点平均粗さRz以上であることを特徴の一つとしている。これにより、導電性接着フィルムに含まれる導電性粒子は、十分確実に、太陽電池セルの表面電極と配線部材とを電気的に接続することができる。   In the connection method of the present invention described above, the average particle diameter r of the conductive particles contained in the conductive adhesive film is equal to or greater than the ten-point average roughness Rz on the surface in contact with the conductive adhesive film of the surface electrode of the solar battery cell. This is one of the characteristics. Thereby, the electroconductive particle contained in an electroconductive adhesive film can electrically connect the surface electrode and wiring member of a photovoltaic cell sufficiently reliably.

また、本発明の接続方法は、導電性接着フィルムの厚さtが、太陽電池セルの表面電極の導電性接着フィルムと接する面における最大高さRy以上であることを別の特徴の一つとしている。これにより、導電性接着フィルムが太陽電池セルの表面電極と第配線部材とを十分強力に接着することができる。   Further, the connection method of the present invention has another feature that the thickness t of the conductive adhesive film is equal to or greater than the maximum height Ry on the surface of the surface electrode of the solar battery cell in contact with the conductive adhesive film. Yes. Thereby, a conductive adhesive film can adhere | attach the surface electrode of a photovoltaic cell and a 1st wiring member sufficiently powerfully.

そして、これらの電気的接続性及び接着性の効果が複合的に作用して、本発明の接続方法は、その接続信頼性を十分に高めることが可能となる。   And the effect of these electrical connectivity and adhesiveness acts in a complex manner, and the connection method of the present invention can sufficiently enhance the connection reliability.

また、本発明の接続方法は、はんだを用いて太陽電池の表面電極と配線部材とを接続する必要がないため、部材の加熱及び導電性接着フィルムの体積収縮に基づく影響を十分に低減することができる。   In addition, since the connection method of the present invention does not require the use of solder to connect the surface electrode of the solar cell and the wiring member, the effect of heating the member and volume shrinkage of the conductive adhesive film should be sufficiently reduced. Can do.

ここで、十点平均粗さRz及び最大高さRyは、JIS−B0604−1994に準拠して導出される値であり、超深度形状測定顕微鏡による観察と、画像計測・解析ソフトによる算出とにより導出される。また、導電性粒子の平均粒子径rは、走査型電子顕微鏡(SEM)により導電性粒子を観察し、20個を無作為に抽出して、それらの粒子の粒子径を測定した後、それらの粒子径の相加平均として算出した値である。また、導電性接着フィルムの厚さtは、マイクロメータにより測定される値である。   Here, the ten-point average roughness Rz and the maximum height Ry are values derived in accordance with JIS-B0604-1994, and are obtained by observation with an ultradeep shape measurement microscope and calculation with image measurement / analysis software. Derived. The average particle diameter r of the conductive particles is determined by observing the conductive particles with a scanning electron microscope (SEM), randomly extracting 20 particles, measuring the particle diameters of these particles, It is a value calculated as an arithmetic average of particle diameters. Further, the thickness t of the conductive adhesive film is a value measured by a micrometer.

また、導電性接着フィルムの弾性率は、下記のようにして測定される値である。まず、剥離性の基材フィルム上に絶縁性接着剤を塗布してその塗膜を形成する。次いで、その塗膜をオーブンにより170℃で20分間加熱する。その後、基材フィルムを剥離して塗膜の加熱生成物からなるフィルムを得る。そのフィルムを幅5mm、長さ35mmの短冊状に切り出して試験片を得る。その試験片について、動的粘弾性測定装置を用いて25℃における貯蔵弾性率を測定し、その値を導電性接着フィルムの弾性率とする。   The elastic modulus of the conductive adhesive film is a value measured as follows. First, an insulating adhesive is applied on a peelable substrate film to form a coating film. The coating is then heated in an oven at 170 ° C. for 20 minutes. Then, a base film is peeled and the film which consists of a heating product of a coating film is obtained. The film is cut into strips having a width of 5 mm and a length of 35 mm to obtain test pieces. About the test piece, the storage elastic modulus in 25 degreeC is measured using a dynamic viscoelasticity measuring apparatus, and let the value be an elastic modulus of a conductive adhesive film.

本発明において、太陽電池セルの配線部材がフィルム状の導電部材であると好ましい。これにより、接続時の太陽電池セルの表面電極と配線部材との間の距離が制御しやすくなるため、パッケージングの際の寸法精度が更に向上する。   In the present invention, the wiring member of the solar battery cell is preferably a film-like conductive member. Thereby, since the distance between the surface electrode of the solar battery cell and the wiring member at the time of connection can be easily controlled, the dimensional accuracy at the time of packaging is further improved.

本発明において、フィルム状の導電部材が、Cu、Ag、Au、Fe、Ni、Pb、Zn、Co、Ti及びMgからなる群より選ばれる1種以上の金属を主成分として含むことが好ましい。これらの金属を含むことにより配線部材の導電性が一層向上するため、接続信頼性の更なる向上に繋がる。   In the present invention, the film-like conductive member preferably contains one or more metals selected from the group consisting of Cu, Ag, Au, Fe, Ni, Pb, Zn, Co, Ti, and Mg as a main component. By including these metals, the conductivity of the wiring member is further improved, which leads to further improvement in connection reliability.

本発明において、太陽電池セルの表面電極が、単結晶シリコンウエハ、多結晶シリコンウエハ、非結晶シリコンウエハ及び化合物半導体ウエハからなる群より選ばれる1種以上のウエハの表面上に設けられた電極であってもよい。表面電極としてこのような部材を用いることで、本発明の上記作用効果が一層有効に発揮される。   In the present invention, the surface electrode of the solar battery cell is an electrode provided on the surface of one or more wafers selected from the group consisting of a single crystal silicon wafer, a polycrystalline silicon wafer, an amorphous silicon wafer, and a compound semiconductor wafer. There may be. By using such a member as the surface electrode, the above-described effects of the present invention are more effectively exhibited.

また、従来の太陽電池セルは電極の表面が他の電子デバイス部材と比較して粗い傾向にあるため、本発明によると、接続信頼性を更に有意に向上させることができ、その結果、長期に亘ってフィルファクタ(Fill factor;以下、「F.F.」と表記する。)の高い数値を維持することができる。   In addition, since the surface of the conventional solar battery cell tends to be rough compared to other electronic device members, according to the present invention, the connection reliability can be further improved significantly, and as a result, for a long time. A high numerical value of the fill factor (hereinafter referred to as “FF”) can be maintained.

本発明によれば、はんだの代替となる接続部材を用い、かつ、十分に優れた接続信頼性を有する太陽電池セルの表面電極と配線部材との接続方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the connection method of the surface electrode of a photovoltaic cell and wiring member which has the connection reliability used as a substitute of solder and has the sufficiently excellent connection reliability can be provided.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

図1は、本発明の導電性接着フィルムの一実施形態を示す模式断面図である。図1に示すように、本実施形態の導電性接着フィルム10は、導電性粒子1と接着剤成分2とを少なくとも含有してなるものである。   FIG. 1 is a schematic cross-sectional view showing an embodiment of the conductive adhesive film of the present invention. As shown in FIG. 1, the conductive adhesive film 10 of this embodiment contains at least conductive particles 1 and an adhesive component 2.

また、図2は、本発明の導電性接着フィルムを用いて太陽電池セルの表面電極と配線部材とを接続する接続方法により得られた接続構造の一部を示す模式断面図である。この接続構造200は、太陽電池セルの表面電極3と、導電性接着フィルム10と、配線部材4とが、この順に積層されてなるものである。   FIG. 2 is a schematic cross-sectional view showing a part of a connection structure obtained by a connection method for connecting a surface electrode of a solar battery cell and a wiring member using the conductive adhesive film of the present invention. This connection structure 200 is obtained by laminating a surface electrode 3 of a solar battery cell, a conductive adhesive film 10 and a wiring member 4 in this order.

本実施形態の導電性接着フィルム10は、太陽電池セルの表面電極3と太陽電池セルを直列及び/又は並列に繋ぐための配線部材(配線ワイヤー)4とを接続するためのものである。太陽電池セルには、その表面及び裏面に電気を取り出す為の電極(表面電極)が形成されている。   The conductive adhesive film 10 of this embodiment is for connecting the surface electrode 3 of a photovoltaic cell and the wiring member (wiring wire) 4 for connecting a photovoltaic cell in series and / or in parallel. An electrode (surface electrode) for taking out electricity is formed on the front and back surfaces of the solar battery cell.

ここで表面電極3としては、電気的導通を得ることができる公知の材質のものが挙げられる。その具体例としては、例えば、一般的な銀を含有したガラスペーストや接着剤樹脂に各種の導電性粒子を分散した銀ペースト、金ペースト、カーボンペースト、ニッケルペースト、アルミニウムペースト、並びに、焼成や蒸着によって形成されるITOなどが挙げられる。これらの中では、耐熱性、導電性及び安定性に優れている点、及び低コストの観点から、銀を含有したガラスペースト電極が好適に用いられる。   Here, as the surface electrode 3, a known material capable of obtaining electrical continuity can be used. Specific examples thereof include, for example, a general silver-containing glass paste, a silver paste in which various conductive particles are dispersed in an adhesive resin, a gold paste, a carbon paste, a nickel paste, an aluminum paste, and firing and vapor deposition. ITO formed by the above. In these, the glass paste electrode containing silver is used suitably from the point which is excellent in heat resistance, electroconductivity, and stability, and a low-cost viewpoint.

太陽電池セルの場合、Siの単結晶、多結晶及び非結晶うちの少なくとも一つ以上からなる基板上に、スクリーン印刷などによって銀ペースト及びアルミニウムペーストを塗布し、それらを必要に応じて乾燥及び焼成することによって、Ag電極とAl電極とが表面電極3としてそれぞれ設けられることが主である。   In the case of a solar battery cell, a silver paste and an aluminum paste are applied to a substrate made of at least one of Si single crystal, polycrystal and amorphous by screen printing or the like, and dried and fired as necessary. By doing so, an Ag electrode and an Al electrode are mainly provided as the surface electrodes 3 respectively.

導電性接着フィルム10は、接着剤成分2と、その中に分散した導電性粒子1とを少なくとも備えている。接着剤成分2は接着性を示すものであれば特に限定されない。ただし、接続信頼性を一層高める観点から、接着剤成分2が熱硬化性樹脂を含有する組成物であることが好ましい。   The conductive adhesive film 10 includes at least an adhesive component 2 and conductive particles 1 dispersed therein. The adhesive component 2 is not particularly limited as long as it exhibits adhesiveness. However, from the viewpoint of further improving connection reliability, the adhesive component 2 is preferably a composition containing a thermosetting resin.

熱硬化性樹脂としては、公知のものであってもよく、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂が挙げられる。これらの熱硬化性樹脂は1種を単独で又は2種以上を組み合わせて用いられる。これらの中では、接続信頼性を更に向上させる観点から、エポキシ樹脂、フェノキシ樹脂及びアクリル樹脂からなる群より選ばれる1種以上の熱硬化性樹脂が好ましい。   The thermosetting resin may be a known one, and examples thereof include an epoxy resin, a phenoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, and a polycarbonate resin. These thermosetting resins are used singly or in combination of two or more. Among these, from the viewpoint of further improving the connection reliability, one or more thermosetting resins selected from the group consisting of epoxy resins, phenoxy resins, and acrylic resins are preferable.

本実施形態に係る接着剤成分2は、熱硬化性樹脂以外に任意成分として、公知の硬化剤及び硬化促進剤を含有する組成物であってもよい。また、この接着剤成分2は、表面電極3や配線部材4との接着性及び濡れ性を改善するために、シラン系カップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等の改質材料を含有してもよく、導電性粒子1の均一分散性を向上させるために、リン酸カルシウムや、炭酸カルシウム等の分散剤を含有してもよい。さらにこの接着剤成分2は、弾性率やタック性を制御するために、アクリルゴム、シリコンゴム、ウレタン等のゴム成分を含有してもよく、表面電極3、配線部材4、導電性粒子1に含まれる銀や銅のマイグレーションを抑制するために、キレート材料等を含有してもよい。   The adhesive component 2 according to the present embodiment may be a composition containing a known curing agent and curing accelerator as optional components in addition to the thermosetting resin. In addition, this adhesive component 2 is modified with a silane coupling agent, a titanate coupling agent, an aluminate coupling agent or the like in order to improve adhesion and wettability with the surface electrode 3 or the wiring member 4. In order to improve the uniform dispersibility of the conductive particles 1, a dispersant such as calcium phosphate or calcium carbonate may be contained. Further, the adhesive component 2 may contain a rubber component such as acrylic rubber, silicon rubber, urethane, etc. in order to control the elastic modulus and tackiness. The surface electrode 3, the wiring member 4, and the conductive particles 1 In order to suppress migration of contained silver and copper, a chelate material or the like may be contained.

導電性接着フィルム10の弾性率は、接着後の表面電極3の反りや接着時の圧縮応力を緩和する観点から、0.5GPa〜4.0GPaが好ましく、0.9GPa〜3.5GPaがより好ましい。導電性接着フィルム10の弾性率が0.5GPa以上であれば、その膜強度が劣ることによる接着強度の低下を一層防止することができ、4.0GPa以下であれば、応力緩和性に優れ、表面電極3の反りや破損の発生を更に抑制できる。   The elastic modulus of the conductive adhesive film 10 is preferably 0.5 GPa to 4.0 GPa, more preferably 0.9 GPa to 3.5 GPa, from the viewpoint of relaxing warpage of the surface electrode 3 after bonding and compressive stress during bonding. . If the elastic modulus of the conductive adhesive film 10 is 0.5 GPa or more, it is possible to further prevent a decrease in adhesive strength due to inferior film strength, and if it is 4.0 GPa or less, the stress relaxation property is excellent. The warpage and breakage of the surface electrode 3 can be further suppressed.

なお、導電性接着フィルム10の弾性率は下記のようにして測定される。まず、シリコーン処理したポリエチレンテレフタレートフィルムの表面上に、導電性接着フィルム10の前駆体となる接着剤成分をマニュピレータ(YOSHIMISU社製)により塗布して塗膜を形成する。次いで、オーブンを用いて170℃で20分間、塗膜を乾燥する。その後、ポリエチレンテレフタレートフィルムを剥離して、膜厚25μm又は35μmの導電性接着フィルム10を得る。得られた導電性接着フィルム10を幅5mm、長さ35mmの短冊状に切り出し、動的粘弾性測定装置(Rheometric Scientific社製、商品名「SOLIDS ANALYZER」、チャック間距離:2cm)により、25℃での貯蔵弾性率を測定し、導電性接着フィルム10の弾性率とする。   The elastic modulus of the conductive adhesive film 10 is measured as follows. First, on the surface of the polyethylene-terephthalate film treated with silicone, an adhesive component that becomes a precursor of the conductive adhesive film 10 is applied by a manipulator (manufactured by YOSHIMISU) to form a coating film. The coating is then dried using an oven at 170 ° C. for 20 minutes. Thereafter, the polyethylene terephthalate film is peeled off to obtain a conductive adhesive film 10 having a film thickness of 25 μm or 35 μm. The obtained conductive adhesive film 10 was cut into a strip having a width of 5 mm and a length of 35 mm, and a dynamic viscoelasticity measuring apparatus (manufactured by Rheometric Scientific, trade name “SOLIDS ANALYZER”, distance between chucks: 2 cm) at 25 ° C. The storage elastic modulus is measured to obtain the elastic modulus of the conductive adhesive film 10.

導電性粒子1は、導電性を有し、接続構造200の製造環境及び使用環境において固体状のものであれば、その材料は特に限定されない。導電性粒子1としては、例えば、金粒子、銀粒子、銅粒子及びニッケル粒子などの金属粒子、あるいは、金めっき粒子、銅めっき粒子及びニッケルめっき粒子などの、導電性又は絶縁性の核粒子の表面を金属層などの導電層で被覆してなる導電性粒子が挙げられる。   The conductive particles 1 are not particularly limited as long as they have conductivity and are solid in the manufacturing environment and use environment of the connection structure 200. Examples of the conductive particles 1 include metal particles such as gold particles, silver particles, copper particles, and nickel particles, or conductive or insulating core particles such as gold plating particles, copper plating particles, and nickel plating particles. The electroconductive particle which coat | covers the surface with electroconductive layers, such as a metal layer, is mentioned.

これらの中では、接続時の導電性粒子の圧縮応力を緩和し、接続信頼性を向上させる観点から、核粒子の表面が導電層に被覆されてなる粒子が好ましく、核粒子がプラスチック粒子であり、導電層が金属めっきであるものがより好ましい。すなわち、プラスチック粒子の表面を金属層が被覆してなる導電性粒子は、接続後の振動や膨張などの変動に対して粒子自体の追随性が高いため好適である。   Among these, from the viewpoint of relaxing the compressive stress of the conductive particles at the time of connection and improving the connection reliability, particles in which the surface of the core particles is coated with a conductive layer are preferable, and the core particles are plastic particles. More preferably, the conductive layer is metal plating. That is, conductive particles formed by coating the surface of plastic particles with a metal layer are preferable because the particles themselves have high followability to fluctuations such as vibration and expansion after connection.

導電性接着フィルム10中に分散された導電性粒子1の配合量は、接着剤成分2が硬化した後の接続信頼性の観点から、導電性接着フィルム10の全体積に対して、0.5〜20体積%であると好ましく、2.0〜12体積%であるとより好ましい。導電性粒子1の配合量が0.5体積%を下回ると、表面電極3との物理的な接点が減少する傾向にあり、しかも、信頼性試験雰囲気下(85℃85%RH)における接続構造200の接続抵抗が低下する傾向にある。また、導電性粒子1の配合量が20体積%を超えると、接着剤成分2の相対量が低減するため、信頼性試験雰囲気(85℃85%RH)において、接続構造200の接着強度が低下する傾向にある。   From the viewpoint of connection reliability after the adhesive component 2 is cured, the blending amount of the conductive particles 1 dispersed in the conductive adhesive film 10 is 0.5% with respect to the total volume of the conductive adhesive film 10. It is preferable in it being -20 volume%, and it is more preferable in it being 2.0-12 volume%. When the blending amount of the conductive particles 1 is less than 0.5% by volume, the physical contact with the surface electrode 3 tends to decrease, and the connection structure in a reliability test atmosphere (85 ° C. and 85% RH). The connection resistance of 200 tends to decrease. Moreover, since the relative amount of the adhesive component 2 is reduced when the blending amount of the conductive particles 1 exceeds 20% by volume, the adhesive strength of the connection structure 200 is reduced in the reliability test atmosphere (85 ° C. and 85% RH). Tend to.

次に、表面電極3と導電性接着フィルム10との関係について詳細に説明する。導電性粒子1の平均粒子径をr(μm)とすると、その平均粒子径rは、表面電極3の表面Seの十点平均粗さRz(μm)以上である。また、導電性接着フィルム10の膜厚をt(μm、図1参照。)とすると、その膜厚tは、表面電極3の表面Seの最大高さRy(μm)以上である。   Next, the relationship between the surface electrode 3 and the conductive adhesive film 10 will be described in detail. When the average particle diameter of the conductive particles 1 is r (μm), the average particle diameter r is equal to or greater than the ten-point average roughness Rz (μm) of the surface Se of the surface electrode 3. When the film thickness of the conductive adhesive film 10 is t (μm, see FIG. 1), the film thickness t is equal to or greater than the maximum height Ry (μm) of the surface Se of the surface electrode 3.

表面電極3の表面Seは、その用途によって、一般的に高低差3〜30μmの凹凸を有している場合がある。特に太陽電池セルに設けられる場合の表面電極3は、上記凹凸の高低差が8〜18μmと粗くなる傾向にある。本発明者らは、鋭意検討の結果、この凹凸に起因して従来の太陽電池では接続信頼性が十分ではないことを見出した。   The surface Se of the surface electrode 3 may generally have unevenness with a height difference of 3 to 30 μm depending on the application. In particular, the surface electrode 3 in the case of being provided in a solar battery cell tends to be rough, with the height difference of the unevenness being 8 to 18 μm. As a result of intensive studies, the present inventors have found that connection reliability is not sufficient in the conventional solar cell due to the unevenness.

本発明者らは更に検討した結果、表面電極3と配線部材4とを接続する層として、接着剤成分2中に導電性粒子1を分散させた導電性接着フィルム10を採用すると、接続信頼性の向上が可能となることを明らかにした。そして、表面電極3の表面Seの表面粗さと導電性粒子1の平均粒子径及び導電性接着フィルム10の膜厚との関係が、接続信頼性に影響を与えることを突き止めた。具体的には、導電性粒子1の平均粒子径rと表面電極3の表面Seの十点平均粗さRzとの相関性、並びに、導電性接着フィルム10の膜厚tと表面電極3の表面Seの最大高さRyとの相関性が、接続信頼性に影響を与えることを見出した。接続信頼性を向上させるためには、表面電極3の表面Seにおける高低差の大きな部分の平均粗さが導電性粒子1の平均粒子径rを決める要因となり、表面電極3の表面Seにおける高低差の最も大きな部分の粗さが導電性接着フィルム10の膜厚tを決める要因になると考えられる。   As a result of further study, the present inventors have found that when a conductive adhesive film 10 in which conductive particles 1 are dispersed in the adhesive component 2 is used as a layer for connecting the surface electrode 3 and the wiring member 4, connection reliability It was clarified that improvement of And it discovered that the relationship between the surface roughness of the surface Se of the surface electrode 3, the average particle diameter of the conductive particles 1 and the film thickness of the conductive adhesive film 10 affects the connection reliability. Specifically, the correlation between the average particle diameter r of the conductive particles 1 and the ten-point average roughness Rz of the surface Se of the surface electrode 3, and the film thickness t of the conductive adhesive film 10 and the surface of the surface electrode 3 It has been found that the correlation with the maximum height Ry of Se affects the connection reliability. In order to improve the connection reliability, the average roughness of the portion with a large height difference on the surface Se of the surface electrode 3 becomes a factor that determines the average particle diameter r of the conductive particles 1, and the height difference on the surface Se of the surface electrode 3. It is considered that the roughness of the largest part of the thickness is a factor that determines the film thickness t of the conductive adhesive film 10.

すなわち、導電性粒子1の平均粒子径rが表面電極3の表面Seの十点平均粗さRzよりも小さくなると、導電性粒子1が表面Seにおける凹部に埋もれてしまい、表面電極3及び後に詳述する配線部材4間の電気的接続に寄与し難くなる。その結果、接続構造200における接続信頼性が十分ではなくなる。また、導電性接着フィルム10の膜厚tが表面電極3の表面Seの最大高さRyよりも薄くなると、導電性接着フィルム10が、表面電極3及び配線部材4間に隙間なく充填されることが困難となり、表面電極3及び配線部材4間の接着性が十分でなくなる。その結果、接続構造200における接続信頼性が十分ではなくなる。   That is, when the average particle diameter r of the conductive particles 1 is smaller than the ten-point average roughness Rz of the surface Se of the surface electrode 3, the conductive particles 1 are buried in the recesses on the surface Se, and the surface electrode 3 and the details will be described later. It becomes difficult to contribute to the electrical connection between the wiring members 4 to be described. As a result, connection reliability in the connection structure 200 is not sufficient. Moreover, when the film thickness t of the conductive adhesive film 10 becomes thinner than the maximum height Ry of the surface Se of the surface electrode 3, the conductive adhesive film 10 is filled between the surface electrode 3 and the wiring member 4 without a gap. Becomes difficult, and adhesion between the surface electrode 3 and the wiring member 4 becomes insufficient. As a result, connection reliability in the connection structure 200 is not sufficient.

導電性粒子1の平均粒子径rは、表面電極3の表面Seの十点平均粗さRzよりも、1μm以上大きいことが好ましく、3μm以上大きいことがより好ましく、5μm以上大きいことが更に好ましい。これにより、表面電極3及び配線部材4間の接続不良をより十分に抑制することができる。また、上記平均粒子径rと上記十点平均粗さRzとの差の上限は、Rzμmであることが好ましく、2/3Rzμmであることがより好ましい。これらの差がRzμm以下、特に2/3Rzμm以下であると、導電性粒子1が物理的に凹部に安定配置するため、接続抵抗を低下させるという利点が得られる。   The average particle diameter r of the conductive particles 1 is preferably 1 μm or more, more preferably 3 μm or more, and further preferably 5 μm or more larger than the ten-point average roughness Rz of the surface Se of the surface electrode 3. Thereby, the connection failure between the surface electrode 3 and the wiring member 4 can be suppressed more fully. The upper limit of the difference between the average particle diameter r and the ten-point average roughness Rz is preferably Rz μm, and more preferably 2/3 Rz μm. When these differences are Rz μm or less, particularly 2/3 Rz μm or less, the conductive particles 1 are physically and stably disposed in the recesses, so that an advantage of reducing connection resistance is obtained.

導電性粒子1の平均粒子径rは、接着剤成分2への均一分散性の向上の観点から、3〜30μmであることが好ましく、8〜25μmであることがより好ましい。   The average particle diameter r of the conductive particles 1 is preferably 3 to 30 μm and more preferably 8 to 25 μm from the viewpoint of improving uniform dispersibility in the adhesive component 2.

導電性接着フィルム10の膜厚tは、表面電極3の表面Seの最大高さRyよりも、1μm以上大きいことが好ましく、3μm以上大きいことがより好ましく、5μm以上大きいことが特に好ましい。これにより、導電性接着フィルム10の充填が更に十分となり、接続不良をより十分に抑制することができる。また、上記膜厚tと上記最大高さRyとの差の上限は、20μmであることが好ましく、10μmであることがより好ましい。これらの差が20μm以下、特に10μm以下であると、加熱圧着時における接着剤成分2中の樹脂の流動性及び樹脂の硬化性が更に向上し、接続強度が増大するという利点が得られる。   The film thickness t of the conductive adhesive film 10 is preferably 1 μm or more, more preferably 3 μm or more, and particularly preferably 5 μm or more larger than the maximum height Ry of the surface Se of the surface electrode 3. Thereby, the filling of the conductive adhesive film 10 becomes further sufficient, and poor connection can be more sufficiently suppressed. The upper limit of the difference between the film thickness t and the maximum height Ry is preferably 20 μm, and more preferably 10 μm. When these differences are 20 μm or less, particularly 10 μm or less, the fluidity of the resin in the adhesive component 2 and the curability of the resin during thermocompression bonding are further improved, and the advantage that the connection strength is increased is obtained.

配線部材4はフィルム状、すなわち、その断面が長方形であると好ましい。これにより、表面電極3との距離を容易に制御可能となるので、パッケージングの際の寸法精度が向上する。   The wiring member 4 is preferably film-shaped, that is, its cross section is rectangular. As a result, the distance from the surface electrode 3 can be easily controlled, so that the dimensional accuracy during packaging is improved.

配線部材4は、金属を主成分として含むものであれば特に限定されない。配線部材4の材料である金属としては、例えば、金、銀、銅、鉄、ステンレス綱、42アロイ及びはんだめっき銅が挙げられる。導電性を更に向上させる観点から、配線部材4は、Cu、Ag、Au、Fe、Ni、Pb、Zn、Co、Ti及びMgからなる群より選ばれる1種以上の金属を含むことがより好ましい。また、可とう性を更に向上させて上記寸法精度を高める観点から、配線部材4は、絶縁フィルム(図示せず)の表面上に設けられた金属めっき層又は金属電着層であると好ましい。ただし、その用途によっては金属箔であってもよい。   The wiring member 4 will not be specifically limited if it contains a metal as a main component. Examples of the metal that is the material of the wiring member 4 include gold, silver, copper, iron, stainless steel, 42 alloy, and solder-plated copper. From the viewpoint of further improving the electrical conductivity, the wiring member 4 preferably contains one or more metals selected from the group consisting of Cu, Ag, Au, Fe, Ni, Pb, Zn, Co, Ti, and Mg. . Moreover, it is preferable that the wiring member 4 is a metal plating layer or a metal electrodeposition layer provided on the surface of an insulating film (not shown) from the viewpoint of further improving flexibility and increasing the dimensional accuracy. However, metal foil may be used depending on the application.

上記絶縁フィルムの材料は絶縁性を示すものであれば特に限定されないが、可とう性をより向上させて上記寸法精度を高める観点から、樹脂を主成分とするものであることが好ましい。この樹脂としては、例えば、ポリイミド樹脂、ガラスエポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリエステル樹脂が挙げられる。   The material of the insulating film is not particularly limited as long as it exhibits insulating properties. However, from the viewpoint of improving flexibility and improving the dimensional accuracy, it is preferable that the material of the insulating film is a resin as a main component. Examples of this resin include polyimide resin, glass epoxy resin, bismaleimide triazine resin, and polyester resin.

次に、好適な実施形態に係る接続方法、すなわち接続構造200の製造方法について説明する。この接続方法は以下の第1工程、第2工程、第3工程及び第4工程を有するものである。   Next, a connection method according to a preferred embodiment, that is, a method for manufacturing the connection structure 200 will be described. This connection method has the following first step, second step, third step and fourth step.

第1工程では、シリコンウエハ等の基材上に表面電極3を形成してなる第1積層体を準備する。   In the first step, a first laminate formed by forming the surface electrode 3 on a base material such as a silicon wafer is prepared.

第2工程では、絶縁フィルム上に形成された配線部材4の表面上に、導電性接着フィルム10を形成して第2積層体を得る。導電性接着フィルム10は、導電性粒子1を分散させたペースト状の接着剤成分(以下、導電性粒子とペースト状の接着剤成分との配合物を「ペースト状導電性接着剤」ともいう。)を、配線部材2の表面上に塗布した後に溶剤等を揮発してフィルム状にする工程を経て得られてもよい。あるいは、導電性接着フィルム10は、ペースト状導電性接着剤から予め溶剤等を揮発させてフィルム状に成形した後に、配線部材4の表面上に載置される工程を経て得られてもよい。   In the second step, a conductive adhesive film 10 is formed on the surface of the wiring member 4 formed on the insulating film to obtain a second laminate. In the conductive adhesive film 10, a paste-like adhesive component in which the conductive particles 1 are dispersed (hereinafter, a combination of conductive particles and a paste-like adhesive component is also referred to as a “paste-like conductive adhesive”. ) May be obtained through a process of volatilizing the solvent and the like to form a film after coating on the surface of the wiring member 2. Alternatively, the conductive adhesive film 10 may be obtained through a process of being placed on the surface of the wiring member 4 after previously forming a film from a paste-like conductive adhesive by volatilizing a solvent or the like.

これらのうち、導電性接着フィルム10の膜厚寸法精度、及び/又は、後述する第4工程において、導電性接着フィルム10を圧着する際の圧力配分の観点から、後者であることが好ましい。この場合、導電性接着フィルム10を配線部材4の表面上に載置した後、それらを積層方向に加圧して仮圧着することが好ましい。   Among these, the latter is preferable from the viewpoint of the film thickness dimensional accuracy of the conductive adhesive film 10 and / or the pressure distribution when the conductive adhesive film 10 is pressure-bonded in the fourth step described later. In this case, after placing the conductive adhesive film 10 on the surface of the wiring member 4, it is preferable to press-bond them in the laminating direction and temporarily press-bond them.

ペースト状の接着剤成分は、上述の熱硬化性樹脂及びその他の任意成分を含む組成物から得られるものであり、常温(25℃)で液状である場合にはそのままで使用することができる。上記組成物が室温で固体である場合には、加熱してペースト化する他、溶剤を使用してペースト化してもよい。使用できる溶剤としては、上述の組成物と反応せず、かつ十分な溶解性を示すものであれば、特に制限は受けない。   The paste-like adhesive component is obtained from a composition containing the above-mentioned thermosetting resin and other optional components, and can be used as it is when it is liquid at room temperature (25 ° C.). When the composition is a solid at room temperature, it may be pasted by using a solvent in addition to heating to make a paste. The solvent that can be used is not particularly limited as long as it does not react with the above-described composition and exhibits sufficient solubility.

また、ペースト状導電性接着剤を予めフィルム状に成形する場合、そのペースト状導電性接着剤を、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、離型紙等の剥離性基材上に塗布し、又は不織布等の基材に上記接着剤を含浸させて剥離性基材上に載置し、溶剤等を除去することによって得ることができる。このようにペースト状導電性接着剤を予めフィルム状に成形すると、取扱性に優れ一層便利である。また、この場合、導電性接着フィルム10を配線部材4の表面上に載置する直前又は載置した後、剥製基材を剥離除去する。   Also, when the paste-like conductive adhesive is previously formed into a film shape, the paste-like conductive adhesive is applied on a peelable substrate such as a fluororesin film, a polyethylene terephthalate film, a release paper, or a nonwoven fabric. It can be obtained by impregnating the above-mentioned base material with the adhesive and placing it on a peelable base material and removing the solvent and the like. Thus, when the paste-like conductive adhesive is previously formed into a film shape, it is excellent in handleability and more convenient. In this case, the detachable substrate is peeled and removed immediately before or after the conductive adhesive film 10 is placed on the surface of the wiring member 4.

ペースト状導電性接着剤は、アプリケータ、ロールコータ、コンマコータ、ナイフコータ、ドクタープレードフローコータ、密閉コータ、ダイコータ、リップコータ等を用いて塗布される。この際、導電性接着フィルム10の膜厚tは、アプリケータやリップコータのギャップ調整によって制御することができる。また、導電性接着フィルム10の膜厚tは、ペースト状導電性接着剤に含まれる熱硬化性樹脂等の不揮発分の量を調整することによっても制御することができる。   The paste-like conductive adhesive is applied using an applicator, roll coater, comma coater, knife coater, doctor blade flow coater, hermetic coater, die coater, lip coater, or the like. At this time, the film thickness t of the conductive adhesive film 10 can be controlled by adjusting the gap of the applicator or the lip coater. The film thickness t of the conductive adhesive film 10 can also be controlled by adjusting the amount of nonvolatile components such as a thermosetting resin contained in the paste-like conductive adhesive.

第3工程では、第1積層体における表面電極3の表面Seと第2積層体における導電性接着フィルム10の表面とを接触させるようにして、第1積層体と第2積層体とを更に積層した第3積層体を得る。この際、第1積層体と第2積層体とを位置合わせして積層した後、その位置を固定するために、積層方向に加圧して仮圧着してもよい。   In the third step, the first laminate and the second laminate are further laminated such that the surface Se of the surface electrode 3 in the first laminate and the surface of the conductive adhesive film 10 in the second laminate are brought into contact with each other. The obtained third laminated body is obtained. At this time, after the first stacked body and the second stacked body are aligned and stacked, in order to fix the position, the first stacked body and the second stacked body may be pressurized in the stacking direction and temporarily pressed.

第4工程では、第3積層体を積層方向に加熱及び加圧して、少なくとも表面電極3、導電性接着フィルム10及び配線部材4がこの順に積層されてなる接続構造200を得る。この第4工程により、表面電極3及び配線部材4が導電性接着フィルム10により接着されると共に、それらの間の電気的接続が導電性接着フィルム10を介して確保される。   In the fourth step, the third laminated body is heated and pressed in the laminating direction to obtain a connection structure 200 in which at least the surface electrode 3, the conductive adhesive film 10, and the wiring member 4 are laminated in this order. By this fourth step, the surface electrode 3 and the wiring member 4 are bonded by the conductive adhesive film 10, and electrical connection between them is ensured through the conductive adhesive film 10.

加熱温度及び加圧圧力の条件は、上記電気的接続が確保でき、表面電極3及び配線部材4が導電性接着フィルム10により接着される範囲であれば、特に制限されない。なお、この加圧及び加熱の諸条件は、使用する用途、接着剤成分中の各成分、接続構造200の材料によって適宜選択される。例えば、加熱温度は、熱硬化性樹脂が硬化する温度であればよい。また、加圧圧力は、表面電極3及び導電性接着フィルム10間が十分に密着され、かつ表面電極3や配線部材4等が損傷しない範囲であればよい。さらに、加熱・加圧時間は、表面電極3や配線部材4等に過剰に熱が伝搬して、それらの材料が損傷したり変質したりしないような時間であればよい。具体的には、導電性接着フィルム10の到達温度が、1MPa〜3MPaの加圧条件下で、15秒〜20秒の間に150℃〜180℃に到達する条件が、電気的接続及び接着力の向上の観点から好ましい。   The conditions of the heating temperature and the pressurizing pressure are not particularly limited as long as the electrical connection can be ensured and the surface electrode 3 and the wiring member 4 are bonded by the conductive adhesive film 10. The various conditions for pressurization and heating are appropriately selected depending on the intended use, each component in the adhesive component, and the material of the connection structure 200. For example, the heating temperature may be a temperature at which the thermosetting resin is cured. Further, the pressurizing pressure may be in a range where the surface electrode 3 and the conductive adhesive film 10 are sufficiently in close contact with each other and the surface electrode 3, the wiring member 4 and the like are not damaged. Furthermore, the heating / pressurizing time may be a time such that heat is excessively propagated to the surface electrode 3, the wiring member 4, etc., and those materials are not damaged or deteriorated. Specifically, the condition that the temperature reached by the conductive adhesive film 10 reaches 150 ° C. to 180 ° C. for 15 seconds to 20 seconds under the pressurized condition of 1 MPa to 3 MPa is the electrical connection and adhesive force. It is preferable from the viewpoint of improvement.

こうして得られる接続構造200は、導電性接着フィルム10中に分散した導電性粒子1が表面電極3及び配線部材4間の電気的接続を十分なものとする。更に、導電性接着フィルム10が表面電極3と配線部材4とを十分な接着強度で接着する。これらの結果、接続構造200は、接続信頼性に十分優れたものとなる。また、電気的接続を確保するためにはんだを用いなくてもよいため、接続構造200の特性劣化が十分に抑制され、パッケージングに起因する製品の歩留低下も防止できる。   In the connection structure 200 thus obtained, the conductive particles 1 dispersed in the conductive adhesive film 10 ensure sufficient electrical connection between the surface electrode 3 and the wiring member 4. Further, the conductive adhesive film 10 bonds the surface electrode 3 and the wiring member 4 with sufficient adhesive strength. As a result, the connection structure 200 is sufficiently excellent in connection reliability. Moreover, since it is not necessary to use solder to ensure electrical connection, the deterioration of the characteristics of the connection structure 200 can be sufficiently suppressed, and a decrease in product yield due to packaging can also be prevented.

本実施形態の導電性接着フィルム10は、上述のとおり太陽電池セルに最も好適に用いることができる。太陽電池は、太陽電池セルを複数個、直列及び/又は並列に接続し、耐環境性のために強化ガラスなどで挟み込み、間隙を透明性のある樹脂によって埋められた外部端子を備えた太陽電池モジュールとして用いられる。本実施形態の導電性接着フィルム10は、複数の太陽電池セルを直列及び/又は並列に接続するための配線部材と、太陽電池セルの表面電極とを接続する用途に好適に用いられる。   As described above, the conductive adhesive film 10 of the present embodiment can be most suitably used for solar cells. A solar cell includes a plurality of solar cells connected in series and / or in parallel, sandwiched with tempered glass or the like for environmental resistance, and provided with external terminals whose gaps are filled with a transparent resin. Used as a module. The conductive adhesive film 10 of the present embodiment is suitably used for the purpose of connecting a wiring member for connecting a plurality of solar cells in series and / or in parallel with the surface electrode of the solar cells.

本実施形態の太陽電池モジュールは、上記のように表面電極を有する複数の太陽電池セルが、表面電極に電気的に接続された配線部材を介して接続された構造を有してなるものであり、表面電極と配線部材とが、本実施形態の導電性接着フィルムにより接続されてなるものである。   The solar cell module of the present embodiment has a structure in which a plurality of solar cells having a surface electrode are connected via a wiring member electrically connected to the surface electrode as described above. The surface electrode and the wiring member are connected by the conductive adhesive film of this embodiment.

ここで、図3は、本実施形態の太陽電池モジュールの要部を示す模式図であり、複数の太陽電池セルが相互に配線接続された構造の概略を示している。図3(a)は太陽電池モジュールの表面側を示し、図3(b)は裏面側を示し、図3(c)は側面側を示す。   Here, FIG. 3 is a schematic diagram showing a main part of the solar cell module of the present embodiment, and shows an outline of a structure in which a plurality of solar cells are connected to each other by wiring. 3A shows the front side of the solar cell module, FIG. 3B shows the back side, and FIG. 3C shows the side.

図3(a)〜(c)に示すように、太陽電池モジュール100は、半導体ウエハ6の表面側にグリッド電極7及びバス電極(表面電極)3aが、裏面側に裏面電極8及びバス電極(表面電極)3bがそれぞれ形成された太陽電池セルが、配線部材4により複数相互に接続されている。そして、配線部材4は、その一端が表面電極としてのバス電極3aと、他端が表面電極としてのバス電極3bと、それぞれ本発明の導電性接着フィルム10を介して接続されている。   As shown in FIGS. 3A to 3C, the solar cell module 100 includes a grid electrode 7 and a bus electrode (front electrode) 3a on the front side of the semiconductor wafer 6, and a back electrode 8 and a bus electrode (front electrode) on the back side. A plurality of solar cells each having a surface electrode 3 b are connected to each other by a wiring member 4. The wiring member 4 has one end connected to the bus electrode 3a as the surface electrode and the other end connected to the bus electrode 3b as the surface electrode via the conductive adhesive film 10 of the present invention.

かかる構成を有する太陽電池モジュール100は、上述した本実施形態の導電性接着フィルムにより表面電極と配線部材とが接続されているため、太陽電池セルへの悪影響がなく、且つ、十分な接続信頼性を得ることができる。これにより、太陽電池モジュール100は、その優れた接続信頼性に起因して、高いF.F.を長時間確保することができる。   In the solar cell module 100 having such a configuration, since the surface electrode and the wiring member are connected by the conductive adhesive film of the present embodiment described above, there is no adverse effect on the solar cell and sufficient connection reliability is achieved. Can be obtained. Thereby, the solar cell module 100 has high F.D. due to its excellent connection reliability. F. Can be secured for a long time.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.

本発明の接続方法は、上述の太陽電池を作製する際のみでなく、例えば、タンタルコンデンサ、アルミ電解コンデンサ、セラミックコンデンサ、パワートランジスタ、各種センサ、MEMS関連材料、ディスプレイ材料の引き出し配線部材等を作製する際にも好適に使用することができる。   The connection method of the present invention is not only used for manufacturing the above-described solar cell, but also, for example, a tantalum capacitor, an aluminum electrolytic capacitor, a ceramic capacitor, a power transistor, various sensors, a MEMS-related material, a display wiring member for a display material, and the like. In this case, it can be suitably used.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
まず、多結晶性シリコンウエハの表面上に、銀ガラスペーストから形成される表面電極(幅2mm×長さ15cm、Rz:10μm、Ry:14μm)を設けてなる太陽電池セル(MOTECH社製、商品名「125角セル多結晶MOT T1」、厚さ:250μm×幅12.5cm×長さ12.5cm)を準備した。
Example 1
First, a solar battery cell (manufactured by MOTECH, manufactured by a surface electrode (width 2 mm × length 15 cm, Rz: 10 μm, Ry: 14 μm) formed from a silver glass paste on the surface of a polycrystalline silicon wafer. The name “125 square cell polycrystalline MOT T1”, thickness: 250 μm × width 12.5 cm × length 12.5 cm) was prepared.

次に、ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、及びグリシジルメタクリレート3質量部を共重合してなるアクリルゴム(日立化成工業社製、商品名「KS8200H」、分子量:85万)を準備した。   Next, an acrylic rubber obtained by copolymerizing 40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate (manufactured by Hitachi Chemical Co., Ltd., trade name “KS8200H”, molecular weight: 85 Prepared).

フェノキシ樹脂(ユニオンカーバイド社製、商品名「PKHC」、重量平均分子量:45000)50g、及び上記アクリルゴム125gを酢酸エチル400gに溶解し、固形分30質量%の溶液を得た。次いで、マイクロカプセル型潜在性硬化剤を含有する液状のエポキシ樹脂(旭化成ケミカルズ社製、商品名「ノバキュアHX−3941HP」、エポキシ当量:185g/eq)325gを上記溶液に添加し、更に溶液を撹拌して、ペースト状の接着剤成分を得た。   50 g of phenoxy resin (trade name “PKHC” manufactured by Union Carbide Corporation, weight average molecular weight: 45000) and 125 g of the acrylic rubber were dissolved in 400 g of ethyl acetate to obtain a solution having a solid content of 30% by mass. Next, 325 g of a liquid epoxy resin containing a microcapsule type latent curing agent (manufactured by Asahi Kasei Chemicals, trade name “Novacure HX-3941HP”, epoxy equivalent: 185 g / eq) is added to the above solution, and the solution is further stirred. Thus, a paste-like adhesive component was obtained.

次に、上述の接着剤成分に対して平均粒子径が12μmの導電性粒子であるニッケル粒子(見掛け密度:3.36g/cm)を添加して分散させた。こうして接着剤成分及び導電性粒子の合計体積に対して5体積%の導電性粒子を配合するペースト状導電性接着剤を得た。なお、導電性粒子の平均粒子径は走査型電子顕微鏡(SEM、日立製作所社製、商品名「S−510」)での観察を経て、上述の方法により導出された。また、導電性粒子の配合量は、導電性粒子の形状を平均粒子径が直径である球状とみなして算出した粒子体積、及び、導電性粒子の見掛け密度から算出した。 Next, nickel particles (apparent density: 3.36 g / cm 3 ), which are conductive particles having an average particle diameter of 12 μm, were added to the adhesive component described above and dispersed. Thus, a paste-like conductive adhesive containing 5% by volume of conductive particles with respect to the total volume of the adhesive component and the conductive particles was obtained. The average particle diameter of the conductive particles was derived by the method described above through observation with a scanning electron microscope (SEM, manufactured by Hitachi, Ltd., trade name “S-510”). The blending amount of the conductive particles was calculated from the particle volume calculated by regarding the shape of the conductive particles as a sphere having an average particle diameter of the diameter, and the apparent density of the conductive particles.

上記ペースト状導電性接着剤を、ロールコータ(テスター産業社製、商品名「PI−1210」)を用いて、配線部材である幅20cm×長さ30cm×厚さ175μmの電解銅箔の光沢面に塗布して塗膜を得た。ロールコータのギャップは、塗膜から溶媒等を揮発させた後の厚さ、すなわち導電性接着フィルムの厚さが25μmとなるよう調整した。この調整は、予めギャップを変更して、溶媒等を除去した後の膜厚が異なる3種のフィルムを作製し、ギャップと膜厚との関係式を導出して、その関係式に基づいて行った。   Glossy surface of electrolytic copper foil having a width of 20 cm, a length of 30 cm, and a thickness of 175 μm, which is a wiring member, using a roll coater (trade name “PI-1210” manufactured by Tester Sangyo Co., Ltd.) Was applied to obtain a coating film. The gap of the roll coater was adjusted so that the thickness after the solvent was volatilized from the coating film, that is, the thickness of the conductive adhesive film was 25 μm. This adjustment is performed in advance by changing the gap to produce three types of films having different film thicknesses after removing the solvent, etc., and deriving a relational expression between the gap and the film thickness. It was.

次に、塗膜をホットプレート上に載置して、70℃で3分間加熱することにより、溶媒等を揮発させた。その後、スリッター(東洋刃物社製、商品名「高精度ギャングユニット」)により2mm幅に裁断して、導電性粒子を分散し厚さ25μmである導電性接着フィルムを電解銅箔の光沢面上に設けた積層体を得た。この積層体を20cm長さに裁断して、幅2mm×長さ20cmの矩形にした。   Next, the solvent was volatilized by placing the coating film on a hot plate and heating at 70 ° C. for 3 minutes. After that, the conductive adhesive film having a thickness of 25 μm is dispersed on the glossy surface of the electrolytic copper foil by cutting into a width of 2 mm by a slitter (trade name “High Precision Gang Unit” manufactured by Toyo Knife Co., Ltd.). The provided laminate was obtained. This laminate was cut to a length of 20 cm to form a rectangle with a width of 2 mm and a length of 20 cm.

次いで、導電性接着フィルムの電解銅箔側とは反対側の表面と、上記太陽電池セルの表面電極の表面とが接するように、それらを積層して積層体を得た。続いて、その積層体に対して、圧着ツール(日化設備エンジニアリング社製、商品名「AC−S300」)を用いて、加熱温度170℃、加圧圧力2MPa、加熱・加圧時間20秒間の条件で、積層方向に加熱及び加圧を施した。こうして、太陽電池セルの表面電極に電解銅箔による配線部材が導電性接着フィルムを介して接続した接続構造を得た。   Subsequently, they were laminated so that the surface opposite to the electrolytic copper foil side of the conductive adhesive film and the surface of the surface electrode of the solar battery cell were in contact with each other to obtain a laminate. Subsequently, using a crimping tool (trade name “AC-S300”, manufactured by Nikka Equipment Engineering Co., Ltd.), a heating temperature of 170 ° C., a pressing pressure of 2 MPa, and a heating and pressing time of 20 seconds are applied to the laminate. Under the conditions, heating and pressurization were performed in the stacking direction. Thus, a connection structure was obtained in which the wiring member made of electrolytic copper foil was connected to the surface electrode of the solar battery cell via the conductive adhesive film.

(実施例2)
電解銅箔に代えて、絶縁フィルムである樹脂フィルムの主面上に銅めっきを施した銅めっきフィルム(銅めっき厚さ:40μm)を用いた以外は実施例1と同様にして、接続構造を得た。
(Example 2)
The connection structure was made in the same manner as in Example 1 except that instead of the electrolytic copper foil, a copper plating film (copper plating thickness: 40 μm) obtained by performing copper plating on the main surface of the resin film as an insulating film was used. Obtained.

(実施例3)
ニッケル粒子に代えて、プラスチック粒子の表面を金めっきで被覆してなる金めっきプラスチック粒子(平均粒子径:20μm、金めっき厚さ:平均200Å、見掛け密度:2.8g/cm)を用い、Rz:10μm、Ry:14μmの表面粗さを有する銀ガラスペーストから形成される表面電極を設けてなる太陽電池セルに代えて、Rz:15μm、Ry:18μmの表面粗さを有する銀ガラスペーストから形成される表面電極を設けてなる太陽電池セル(MOTECH社製、商品名「125角セル多結晶MOT T1」、厚さ:250μm×幅12.5cm×長さ12.5cm)を用いた以外は実施例1と同様にして、接続構造を得た。
(Example 3)
Instead of nickel particles, gold-plated plastic particles (average particle diameter: 20 μm, gold plating thickness: average 200 mm, apparent density: 2.8 g / cm 3 ) formed by coating the surface of plastic particles with gold plating, Rz: 10 μm, Ry: instead of a solar cell provided with a surface electrode formed from a silver glass paste having a surface roughness of 14 μm, Rz: 15 μm, Ry: from a silver glass paste having a surface roughness of 18 μm Except for using a solar cell provided with a surface electrode to be formed (manufactured by MOTECH, trade name “125 square cell polycrystalline MOT T1”, thickness: 250 μm × width 12.5 cm × length 12.5 cm) A connection structure was obtained in the same manner as in Example 1.

(比較例1)
まず、実施例1と同様の太陽電池セルを準備した。次に、はんだめっき銅線(幅2mm×厚さ250μm)を準備し、上記太陽電池セルの電極とはんだめっき銅線とをはんだ接続した。こうして接続構造を得た。
(Comparative Example 1)
First, the same photovoltaic cell as in Example 1 was prepared. Next, a solder-plated copper wire (width 2 mm × thickness 250 μm) was prepared, and the solar cell electrode and the solder-plated copper wire were solder-connected. A connection structure was thus obtained.

(比較例2、3)
導電性粒子の平均粒子径を表4に記載のとおりに代えた以外は実施例1と同様にして、接続構造を得た。
(Comparative Examples 2 and 3)
A connection structure was obtained in the same manner as in Example 1 except that the average particle diameter of the conductive particles was changed as shown in Table 4.

(比較例4)
導電性接着フィルムの厚さを表6に記載のとおりに代えた以外は実施例1と同様にして、接続構造を得た。
(Comparative Example 4)
A connection structure was obtained in the same manner as in Example 1 except that the thickness of the conductive adhesive film was changed as shown in Table 6.

以上、各実施例及び比較例に係る接着剤成分における各物質の配合を表1、2に、導電性粒子及び配線部材の種類を表3、4に、表面電極の表面粗さ及び導電性接着フィルムの種類を表5、6にそれぞれ示す。なお、導電性接着フィルムの厚さ、表面電極の表面粗さについては、下記のようにして測定した。また、導電性接着フィルムの弾性率(貯蔵弾性率)は上述のようにして測定した。   Tables 1 and 2 show the composition of each substance in the adhesive components according to each Example and Comparative Example, Tables 3 and 4 show the types of conductive particles and wiring members, and surface roughness and conductive adhesion of the surface electrodes. The types of film are shown in Tables 5 and 6, respectively. The thickness of the conductive adhesive film and the surface roughness of the surface electrode were measured as follows. The elastic modulus (storage elastic modulus) of the conductive adhesive film was measured as described above.

[導電性接着フィルムの厚さ測定]
導電性接着フィルムの厚さについては、マイクロメータ(Mitutoyo Corp.社製、商品名「ID−C112C」)により測定した。
[Measurement of thickness of conductive adhesive film]
The thickness of the conductive adhesive film was measured with a micrometer (trade name “ID-C112C” manufactured by Mitutoyo Corp.).

[表面電極の表面粗さ測定]
表面電極の十点平均粗さRz及び最大高さRyについては、JIS−B0604−1994に準拠して導出した。電極表面は、超深度形状測定顕微鏡(KEYENCE社製、商品名「VK−8510」)により観察し、画像計測・解析ソフト(KEYENCE社製、商品名「VK−H1A7」によりRz及びRyを導出した。
[Measurement of surface roughness of surface electrode]
The 10-point average roughness Rz and the maximum height Ry of the surface electrode were derived based on JIS-B0604-1994. The electrode surface was observed with an ultra-deep shape measuring microscope (manufactured by KEYENCE, trade name “VK-8510”), and Rz and Ry were derived by image measurement / analysis software (manufactured by KEYENCE, trade name “VK-H1A7”). .

Figure 0005323310
Figure 0005323310

Figure 0005323310
Figure 0005323310

Figure 0005323310
Figure 0005323310

Figure 0005323310
Figure 0005323310

Figure 0005323310
Figure 0005323310

Figure 0005323310
Figure 0005323310

<各特性の評価>
上記実施例1〜3及び比較例1〜4の接続構造について、ピール強度、ウエハ(基材)の反り、F.F.(1000h)/F.F.(0h)、太陽電池セルの歩留を下記のようにして測定した。結果を表7、8に示す。
<Evaluation of each characteristic>
Regarding the connection structures of Examples 1 to 3 and Comparative Examples 1 to 4, peel strength, warpage of the wafer (base material), F.R. F. (1000h) / F. F. (0h) The yield of solar cells was measured as follows. The results are shown in Tables 7 and 8.

[ピール強度測定]
得られた接続構造におけるタブ電極(電解銅箔又は銅めっきフィルム)の端部を垂直に折り曲げ、ピール強度測定装置(ORIENTEC社製、商品名「STA−1150」)のチャックに固定した。その後、引っ張り速度2cm/秒でタブ電極を引き上げて、ピール強度を測定した。なお、表中「ウエハ割れ」とは、ピール強度が高いために、タブ電極を完全にピール(剥離)する前にウエハが割れてしまい、ピール強度が測定できなかったことを意味する。
[Peel strength measurement]
The edge part of the tab electrode (electrolytic copper foil or copper plating film) in the obtained connection structure was bent vertically, and fixed to a chuck of a peel strength measuring device (trade name “STA-1150” manufactured by ORIENTEC). Thereafter, the tab electrode was pulled up at a pulling speed of 2 cm / second, and the peel strength was measured. In the table, “wafer cracking” means that the peel strength was not measured because the peel strength was high, and the wafer was cracked before completely peeling (peeling) the tab electrode.

[ウエハの反り測定]
得られた接続構造を、そのウエハを下側にして平滑面上に載置し、矩形のウエハの一端(一辺)を平滑面に固定した。ウエハは電極側とは反対側の面が凸状になっているため、矩形のウエハの一端を平滑面に固定すると、それと対向する一端が浮き上がった状態になった。その浮き上がった一端の平滑面からの距離を、焦点深度計を用いて5点測定し、相加平均値を算出した。ウエハの一辺長さに対する上記相加平均値の割合(%)を反り量として導出した。なお、測定限界下限値が0.3%であるため、それよりも小さい場合は表中「<0.3」と示した。
[Wafer warpage measurement]
The obtained connection structure was placed on a smooth surface with the wafer facing down, and one end (one side) of the rectangular wafer was fixed to the smooth surface. Since the wafer has a convex surface on the side opposite to the electrode side, when one end of a rectangular wafer is fixed to a smooth surface, one end facing the surface is raised. The distance from the smooth surface of the one end which floated up was measured 5 points | pieces using the focal depth meter, and the arithmetic mean value was computed. The ratio (%) of the arithmetic average value to the length of one side of the wafer was derived as the amount of warpage. In addition, since the measurement limit lower limit is 0.3%, when it is smaller than that, it is indicated as “<0.3” in the table.

[F.F.(1000h)/F.F.(0h)の測定]
得られた接続構造のIV曲線を、ソーラシミュレータ(ワコム電創社製、商品名「WXS−155S−10」、AM:1.5G)を用いて測定した。また、接続構造を85℃、85%RHの高温高湿雰囲気下で1000時間静置した後、同様にIV曲線を測定した。それぞれのIV曲線からF.Fを各々導出し、高温高湿雰囲気下に静置した後のF.Fを、高温高湿条件下に静置する前のF.F.で割った値であるF.F.(1000h)/F.F.(0h)を評価指標として用いた。なお、一般にF.F.(1000h)/F.F.(0h)の値が0.95以下となると接続信頼性が低いと判断される。
[F. F. (1000h) / F. F. (Measurement of (0h)]
The IV curve of the obtained connection structure was measured using a solar simulator (trade name “WXS-155S-10”, AM: 1.5G, manufactured by Wacom Denso Co., Ltd.). In addition, after the connection structure was allowed to stand for 1000 hours in a high-temperature and high-humidity atmosphere at 85 ° C. and 85% RH, the IV curve was measured in the same manner. From each IV curve, F.R. F after each was derived and left in a high temperature and high humidity atmosphere. F. F. before standing under high temperature and high humidity conditions. F. F. divided by. F. (1000h) / F. F. (0h) was used as an evaluation index. In general, F.I. F. (1000h) / F. F. When the value of (0h) is 0.95 or less, it is determined that the connection reliability is low.

[太陽電池セルの歩留測定]
まず、接続構造を10個作製した。それぞれの接続構造の状態を観察し、10個のうち、割れや剥離が認められるものを除いた個数を歩留(%)として評価した。
[Solar cell yield measurement]
First, 10 connection structures were produced. The state of each connection structure was observed, and the number of ten pieces excluding those in which cracking or peeling was observed was evaluated as a yield (%).

Figure 0005323310
Figure 0005323310

Figure 0005323310
Figure 0005323310

実施形態に係る導電性接着フィルムの一部を示す模式断面図である。It is a schematic cross section which shows a part of electroconductive adhesive film which concerns on embodiment. 実施形態に係る接続構造の一部を示す模式断面図である。It is a schematic cross section which shows a part of connection structure which concerns on embodiment. 実施形態に係る太陽電池モジュールの要部を示す模式図である。It is a schematic diagram which shows the principal part of the solar cell module which concerns on embodiment.

符号の説明Explanation of symbols

1…導電性粒子、2…接着剤成分、3…表面電極、3a…バス電極(表面電極)、3b…バス電極(表面電極)、4…配線部材、6…半導体ウエハ、7…グリッド電極、8…裏面電極、10…導電性接着フィルム、100…太陽電池モジュール、200…接続構造。   DESCRIPTION OF SYMBOLS 1 ... Conductive particle, 2 ... Adhesive component, 3 ... Surface electrode, 3a ... Bus electrode (surface electrode), 3b ... Bus electrode (surface electrode), 4 ... Wiring member, 6 ... Semiconductor wafer, 7 ... Grid electrode, 8 ... back electrode, 10 ... conductive adhesive film, 100 ... solar cell module, 200 ... connection structure.

Claims (12)

太陽電池セルのバス電極と配線部材とを、導電性接着フィルムを介して電気的に接続する方法であって、
前記導電性接着フィルムは絶縁性接着剤と導電性粒子とを含有し、
前記バス電極の前記導電性接着フィルムと接する面の十点平均粗さをRz(μm)、最大高さをRy(μm)として、
前記導電性粒子は、その平均粒子径r(μm)が前記十点平均粗さRz以上であり、かつ、前記導電性接着フィルムの厚さt(μm)は前記最大高さRy以上であり、
前記厚さtと前記最大高さRyとの差が17μm以下であり、
前記十点平均粗さRzが10〜15μmである、接続方法。
A method of electrically connecting a bus electrode of a solar battery cell and a wiring member through a conductive adhesive film,
The conductive adhesive film contains an insulating adhesive and conductive particles,
The ten-point average roughness of the surface of the bus electrode in contact with the conductive adhesive film is Rz (μm), and the maximum height is Ry (μm).
The conductive particles have an average particle diameter r (μm) equal to or greater than the ten-point average roughness Rz, and a thickness t (μm) of the conductive adhesive film is equal to or greater than the maximum height Ry.
The difference between the between the thickness t and the maximum height Ry is Ri der less 17 .mu.m,
The connection method , wherein the ten-point average roughness Rz is 10 to 15 μm .
前記配線部材がフィルム状の導電部材である、請求項1記載の接続方法。   The connection method according to claim 1, wherein the wiring member is a film-like conductive member. 前記配線部材が、Cu、Ag、Au、Fe、Ni、Pb、Zn、Co、Ti及びMgからなる群より選ばれる1種以上の金属を主成分として含む、請求項1又は2に記載の接続方法。   The connection according to claim 1 or 2, wherein the wiring member contains, as a main component, one or more metals selected from the group consisting of Cu, Ag, Au, Fe, Ni, Pb, Zn, Co, Ti, and Mg. Method. 前記バス電極が、単結晶シリコンウエハ、多結晶シリコンウエハ、非結晶シリコンウエハ及び化合物半導体ウエハからなる群より選ばれる1種以上のウエハの表面上に設けられた電極である、請求項1〜3のいずれか一項に記載の接続方法。   The bus electrode is an electrode provided on the surface of one or more wafers selected from the group consisting of a single crystal silicon wafer, a polycrystalline silicon wafer, an amorphous silicon wafer, and a compound semiconductor wafer. The connection method according to any one of the above. 前記平均粒子径rが前記十点平均粗さRzより1μm以上大きい、請求項1〜4のいずれか一項に記載の接続方法。   The connection method according to claim 1, wherein the average particle diameter r is 1 μm or more larger than the ten-point average roughness Rz. 前記平均粒子径rが前記十点平均粗さRzよりも大きく、前記平均粒子径rと前記十点平均粗さRzとの差がRz以下である、請求項1〜5のいずれか一項に記載の接続方法。   The average particle diameter r is larger than the ten-point average roughness Rz, and the difference between the average particle diameter r and the ten-point average roughness Rz is equal to or less than Rz. The connection method described. 前記平均粒子径rが3〜30μmである、請求項1〜6のいずれか一項に記載の接続方法。   The connection method as described in any one of Claims 1-6 whose said average particle diameter r is 3-30 micrometers. 前記厚さtが前記最大高さRyより1μm以上大きい、請求項1〜7のいずれか一項に記載の接続方法。   The connection method according to claim 1, wherein the thickness t is 1 μm or more larger than the maximum height Ry. 前記バス電極上に前記導電性接着フィルムを積層する工程を含む、請求項1〜8のいずれか一項に記載の接続方法。   The connection method according to claim 1, comprising a step of laminating the conductive adhesive film on the bus electrode. 前記バス電極は、銀を含有したガラスペーストをウエハの表面上に塗布し、乾燥及び焼成することにより得られる、請求項1〜のいずれか一項に記載の接続方法。 The bus electrode, a glass paste containing silver is applied to the surface of the wafer is obtained by drying and firing, the connection method according to any one of claims 1-9. 前記絶縁性接着剤が熱硬化性樹脂を含有する、請求項1〜10のいずれか一項に記載の接続方法。 The insulating adhesive contains a thermosetting resin, the connection method according to any one of claims 1-10. 前記熱硬化性樹脂がエポキシ樹脂を含む、請求項11記載の接続方法。 The connection method according to claim 11 , wherein the thermosetting resin includes an epoxy resin.
JP2006276785A 2005-11-10 2006-10-10 Connection structure and manufacturing method thereof Expired - Fee Related JP5323310B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006276785A JP5323310B2 (en) 2005-11-10 2006-10-10 Connection structure and manufacturing method thereof
CN2010102920077A CN101997059B (en) 2006-10-10 2007-04-27 Connection structure and method of manufacturing same
EP07742645A EP2086023A4 (en) 2006-10-10 2007-04-27 Connected structure and method for manufacture thereof
PCT/JP2007/059210 WO2008044357A1 (en) 2006-10-10 2007-04-27 Connected structure and method for manufacture thereof
KR1020097009555A KR101081163B1 (en) 2006-10-10 2007-04-27 Connected structure and method for manufacture thereof
CA 2666404 CA2666404A1 (en) 2006-10-10 2007-04-27 Connected structure and method for manufacture thereof
CN2007800377699A CN101529603B (en) 2006-10-10 2007-04-27 Connected structure and method for manufacture thereof
US12/445,227 US9123835B2 (en) 2006-10-10 2007-04-27 Connected structure and method for manufacture thereof
TW096115751A TW200818525A (en) 2005-11-10 2007-05-03 Connected structure and method for manufacture thereof
US14/813,644 US20160035925A1 (en) 2006-10-10 2015-07-30 Connected structure and method for manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005326050 2005-11-10
JP2005326050 2005-11-10
JP2006276785A JP5323310B2 (en) 2005-11-10 2006-10-10 Connection structure and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010277327A Division JP2011055008A (en) 2005-11-10 2010-12-13 Connection structure and method of manufacturing the same

Publications (3)

Publication Number Publication Date
JP2007158302A JP2007158302A (en) 2007-06-21
JP2007158302A5 JP2007158302A5 (en) 2010-10-28
JP5323310B2 true JP5323310B2 (en) 2013-10-23

Family

ID=38242184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276785A Expired - Fee Related JP5323310B2 (en) 2005-11-10 2006-10-10 Connection structure and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5323310B2 (en)
TW (1) TW200818525A (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697194B2 (en) 2006-10-13 2011-06-08 日立化成工業株式会社 Solar cell connection method and solar cell module
JP2008135654A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module
JP5384004B2 (en) * 2007-03-19 2014-01-08 三洋電機株式会社 Solar cell module
KR101157771B1 (en) 2007-05-09 2012-06-25 히다치 가세고교 가부시끼가이샤 Conductor connection member, connection structure, and solar cell module
KR101081706B1 (en) * 2007-05-09 2011-11-09 히다치 가세고교 가부시끼가이샤 Method for connecting conductor, member for connecting conductor, connecting structure and solar cell module
JP5116363B2 (en) * 2007-05-29 2013-01-09 デクセリアルズ株式会社 Manufacturing method of conductor wire
TWI438916B (en) * 2007-07-13 2014-05-21 Sanyo Electric Co Method for making a solar battery module set
JP5288790B2 (en) * 2007-08-02 2013-09-11 三洋電機株式会社 Solar cell module and manufacturing method thereof
JP5380810B2 (en) * 2007-09-28 2014-01-08 三洋電機株式会社 Solar cell module
CN102751343A (en) * 2007-11-15 2012-10-24 日立化成工业株式会社 Solar battery cell
JP2009158858A (en) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Solar cell module, and its manufacturing method
TWI438915B (en) * 2008-02-21 2014-05-21 Sanyo Electric Co Solar cell module
JP5183257B2 (en) * 2008-03-10 2013-04-17 三洋電機株式会社 Solar cell module
JP5509542B2 (en) * 2008-05-21 2014-06-04 日立化成株式会社 Wiring member connection structure and wiring member connection method
TW201030992A (en) * 2009-02-06 2010-08-16 Xin-Le Chen Solar cell
MY157233A (en) * 2009-03-11 2016-05-13 Shinetsu Chemical Co Connection sheet for solar battery cell electrode, process for manufacturing solar cell module, and solar cell module
CN104241445B (en) * 2009-05-26 2017-01-18 株式会社Lg化学 Method for preparation of front electrode for solar cell of high efficiency
JP5602498B2 (en) * 2009-07-30 2014-10-08 三洋電機株式会社 Solar cell module
JP5293779B2 (en) * 2010-07-20 2013-09-18 日立化成株式会社 Adhesive composition, circuit connection structure, semiconductor device and solar cell module
JP2012164954A (en) * 2011-01-20 2012-08-30 Sony Chemical & Information Device Corp Solar cell module and manufacturing method of the solar cell module
JP2016001765A (en) * 2011-01-20 2016-01-07 デクセリアルズ株式会社 Solar cell module and manufacturing method of the solar cell module
WO2012101869A1 (en) * 2011-01-27 2012-08-02 日立化成工業株式会社 Conductive binder composition and method for producing the same, bonded unit, and solar cell module and method for producing the same
JP2012204388A (en) * 2011-03-23 2012-10-22 Sony Chemical & Information Device Corp Solar cell module, manufacturing method of solar cell module, reel with tab line wound thereabout
KR101234160B1 (en) 2011-04-13 2013-02-18 엘지이노텍 주식회사 Connection member for solar cell module and solar cell module comprising the same
JP2012253279A (en) * 2011-06-06 2012-12-20 Mitsubishi Electric Corp Photovoltaic power generation module and manufacturing method thereof
WO2013114555A1 (en) * 2012-01-31 2013-08-08 三洋電機株式会社 Solar cell module, and method for manufacturing solar cell module
JPWO2013114555A1 (en) * 2012-01-31 2015-05-11 三洋電機株式会社 Solar cell module and method for manufacturing solar cell module
JP2012160769A (en) * 2012-05-31 2012-08-23 Sanyo Electric Co Ltd Solar cell module
JP6361881B2 (en) * 2012-12-13 2018-07-25 パナソニックIpマネジメント株式会社 Manufacturing method of solar cell
CN103928077B (en) 2013-01-10 2017-06-06 杜邦公司 Electroconductive binder containing co-blending elastic body
JPWO2015105119A1 (en) * 2014-01-08 2017-03-23 積水化学工業株式会社 Conductive particles for back contact type solar cell module, conductive material, and solar cell module
JP2015164171A (en) * 2014-01-31 2015-09-10 日立化成株式会社 Solar battery, solar battery module, component with electrodes, semiconductor device, and electronic component
JP6362932B2 (en) * 2014-06-19 2018-07-25 株式会社カネカ Solar cell module and manufacturing method thereof
US10483410B2 (en) * 2015-10-20 2019-11-19 Alta Devices, Inc. Forming front metal contact on solar cell with enhanced resistance to stress

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448924B2 (en) * 1993-11-25 2003-09-22 富士電機株式会社 Method for manufacturing thin-film solar cell module
JP3487562B2 (en) * 1994-01-31 2004-01-19 三井金属鉱業株式会社 Printed wiring board and method of manufacturing the same
JP3646890B2 (en) * 1995-06-06 2005-05-11 日立化成工業株式会社 Metal body with insulating adhesive material and manufacturing method thereof
JP3449889B2 (en) * 1997-08-08 2003-09-22 住友ベークライト株式会社 Anisotropic conductive adhesive
JP2003082318A (en) * 2001-09-13 2003-03-19 Three M Innovative Properties Co Cationically polymerizable adhesive composition and anisotropically electroconductive adhesive composition
JP2005101519A (en) * 2003-09-05 2005-04-14 Hitachi Chem Co Ltd Solar cell unit and solar cell module
JP2005252062A (en) * 2004-03-05 2005-09-15 Sanyo Electric Co Ltd Solar cell device
JP4816871B2 (en) * 2004-04-20 2011-11-16 日立化成工業株式会社 Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI339902B (en) 2011-04-01
JP2007158302A (en) 2007-06-21
TW200818525A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP5323310B2 (en) Connection structure and manufacturing method thereof
US9123835B2 (en) Connected structure and method for manufacture thereof
JP4697194B2 (en) Solar cell connection method and solar cell module
US9173302B2 (en) Conductive adhesive film and solar cell module
JP2007214533A (en) Conductive bonding film and solar cell module
TW201802209A (en) Conductor connection member, connection structure, and solar cell module
JPWO2009041526A1 (en) Conductor connecting member, method for manufacturing the same, connection structure, and solar cell module
JP2010258006A (en) Solar cell module and method of manufacturing the same
JP2019024097A (en) Conductive adhesive film and solar battery module
JP2013239726A (en) Conductive adhesive film
JP5692347B2 (en) Conductive adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees