JP3448924B2 - Method for manufacturing thin-film solar cell module - Google Patents

Method for manufacturing thin-film solar cell module

Info

Publication number
JP3448924B2
JP3448924B2 JP29372793A JP29372793A JP3448924B2 JP 3448924 B2 JP3448924 B2 JP 3448924B2 JP 29372793 A JP29372793 A JP 29372793A JP 29372793 A JP29372793 A JP 29372793A JP 3448924 B2 JP3448924 B2 JP 3448924B2
Authority
JP
Japan
Prior art keywords
solar cell
film
conductive
adhesive resin
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29372793A
Other languages
Japanese (ja)
Other versions
JPH07147424A (en
Inventor
清雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29372793A priority Critical patent/JP3448924B2/en
Publication of JPH07147424A publication Critical patent/JPH07147424A/en
Application granted granted Critical
Publication of JP3448924B2 publication Critical patent/JP3448924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
等を主成分とする半導体薄膜を用いた薄膜太陽電池サブ
モジュールの複数個を接続してなる薄膜太陽電池モジュ
ールの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell module in which a plurality of thin film solar cell submodules using a semiconductor thin film containing amorphous silicon as a main component are connected.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、気相成長法
で形成できるために、大面積化が容易であること、ま
た、形成温度が低いために樹脂のような可とう性を有す
る基板に形成できるという特徴を有している。こうした
アモルファス薄膜を用いた太陽電池モジュールは、アモ
ルファス太陽電池のサブモジュールを直列または並列に
電気的に接続し、太陽電池を屋外において劣化せず且つ
湿気を通さないようなガラス等の耐候性材料よりなる保
護基板により挟み、この保護基板と太陽電池との間をエ
チレンビニルアセテート (EVA) 等の接着樹脂にて封
止している。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo-CVD can be formed by a vapor phase growth method, so that it is easy to increase the area and the formation temperature is low. It has a feature that it can be formed on a substrate having flexibility such as resin. A solar cell module using such an amorphous thin film is made of a weather-resistant material such as glass that electrically connects sub-modules of an amorphous solar cell in series or in parallel and does not allow the solar cell to deteriorate outdoors and prevent moisture from passing. It is sandwiched between the protective substrates and the solar cell is sealed with an adhesive resin such as ethylene vinyl acetate (EVA).

【0003】[0003]

【発明が解決しようとする課題】モジュールを作製する
ために太陽電池を直列または並列に接続する方法とし
て、導電性フィルムを用いることが従来行われている。
すなわち、はんだを太陽電池電極部に融着させ、さらに
その上に導電性フィルムを載せて、はんだと導電性フィ
ルムを熱融着させる。これにより、導電性フィルムと太
陽電池電極部とを電気的に接続していた。しかし、この
方法では、電極面積が小さく、有効面積の大きい薄膜太
陽電池や、融点の低い合成樹脂基板を用いた薄膜太陽電
池のモジュール化は困難であった。
As a method of connecting solar cells in series or in parallel to manufacture a module, it is conventional to use a conductive film.
That is, the solder is fused to the solar cell electrode portion, a conductive film is further placed thereon, and the solder and the conductive film are thermally fused. Thereby, the conductive film and the solar cell electrode portion were electrically connected. However, with this method, it was difficult to modularize a thin film solar cell having a small electrode area and a large effective area, or a thin film solar cell using a synthetic resin substrate having a low melting point.

【0004】本発明の目的は、上述の問題を解決し、電
極面積が小さく、有効面積の大きい薄膜太陽電池や、融
点の低い基板を用いた薄膜太陽電池を相互に接続して作
製することのできる薄膜太陽電池モジュールの製造方法
を提供することにある。
An object of the present invention is to solve the above problems and to fabricate a thin film solar cell having a small electrode area and a large effective area, and a thin film solar cell using a substrate having a low melting point, which are connected to each other. An object of the present invention is to provide a method of manufacturing a thin film solar cell module that can be used.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の薄膜太陽電池モジュールの製造方法の参
考手段は、絶縁性基板上に両端に帯状取出し電極を備え
た太陽電池構造を有するサブモジュールの複数個を取出
し電極の設けられない側で隣接させて一つの保護基板の
上に接着樹脂層を介して載せ、上面の両取出し電極の上
には、その幅よりやや狭い幅を有する、両端面が露出す
る金属片を分散して含む接着樹脂フィルムと、両端が端
部のサブモジュールの上より突出する導電性フィルム
を、取出し電極の上以外の部分には金属片を含まない接
着樹脂フィルムを積層し、さらにそれらの上に他の保護
基板を載せ、加熱圧着することにより、太陽電池サブモ
ジュールの両面を保護基板と接着すると共に、取出し電
極を導電性フィルムと電気的に接続するものとする。金
属片が銅よりなる柱状体であるか、金めっきした金属粉
よりなることが良い。
In order to achieve the above object, the reference means of the method for producing a thin film solar cell module of the present invention is a solar cell structure having strip-shaped extraction electrodes on both ends on an insulating substrate. Place a plurality of sub-modules that are adjacent to each other on the side where the extraction electrodes are not provided, and place them on a single protective substrate with an adhesive resin layer between them. Having an adhesive resin film containing dispersed metal pieces whose both end surfaces are exposed, and a conductive film protruding from above the sub module whose both ends are ends, and not including metal pieces other than above the extraction electrode. Adhesive resin films are laminated, another protective substrate is placed on them, and both sides of the solar cell submodule are bonded to the protective substrate by heating and pressure bonding, and the extraction electrode is made of a conductive film. It shall be electrically connected to each other. The metal piece is preferably a columnar body made of copper or gold-plated metal powder.

【0006】本発明の薄膜太陽電池モジュールの製造方
法は、絶縁性基板上に両端に帯状取出し電極を備えた太
陽電池構造を有するサブモジュールの取出し電極上に導
電性の突起を形成し、そのサブモジュールの複数個を取
出し電極の設けられない側で隣接させて一つの保護基板
の上に接着樹脂層を介して載せ、各モジュールの上を接
着樹脂フィルムで覆い、両取出し電極上には両端がサブ
モジュールの上により突出する導電性フィルムを載せ、
さらにその導電性フィルムおよび接着樹脂フィルムの露
出面上に他の保護基板を載せ、加熱圧着することにより
太陽電池モジュールの両面を保護基板と接着すると共
に、取出し電極を接着樹脂フィルムを突き破った導電性
突起を介して導電性フィルムと電気的に接続するものと
する。別の本発明は、絶縁性基板上に両端に帯状取出し
電極を備えた太陽電池構造を有するサブモジュールの複
数個を取出し電極の設けられない側で隣接させて一つの
保護基板の上に接着樹脂層を介して載せ、各モジュール
の上を接着樹脂フィルムで覆い、両取出し電極の上には
一面に突起を形成した導電性フィルムを突起を取出し電
極に対向させて載せ、さらにその導電性フィルムおよび
接着樹脂フィルムの露出面上に他の保護基板を載せ、加
熱圧着することにより太陽電池モジュールの両面を保護
基板と接着すると共に、取出し電極を接着樹脂フィルム
を突き破った導電性突起を介して導電性フィルムと電気
的に接続するものとする。導電性突起が、はんだよりな
ることが良い。いずれの方法でも、接着樹脂がエチレン
ビニルアセテートであることが有効である。
According to the method of manufacturing a thin film solar cell module of the present invention, a conductive protrusion is formed on the extraction electrode of a sub module having a solar cell structure having strip-shaped extraction electrodes on both ends on an insulating substrate, Plural modules are placed adjacent to each other on the side where the extraction electrodes are not provided, and placed on one protective substrate via an adhesive resin layer, and each module is covered with an adhesive resin film. Place the protruding conductive film on the sub module,
Furthermore, another protective substrate is placed on the exposed surface of the conductive film and the adhesive resin film, and both sides of the solar cell module are adhered to the protective substrate by thermocompression bonding, and the extraction electrode is electrically conductive through the adhesive resin film. It shall be electrically connected to the conductive film through the protrusion. Another aspect of the present invention is that a plurality of sub-modules having a solar cell structure having strip-shaped extraction electrodes at both ends on an insulating substrate are taken out, and a plurality of sub-modules are adjacent to each other on the side where the extraction electrodes are not provided, and an adhesive resin is formed on one protective substrate. The module is covered with a layer, each module is covered with an adhesive resin film, and a conductive film having protrusions formed on one surface is placed on both extraction electrodes so as to face the extraction electrodes and the conductive film and Place another protective substrate on the exposed surface of the adhesive resin film and bond it to both sides of the solar cell module by heating and pressure bonding, and at the same time make the extraction electrode conductive through the conductive protrusion that pierces the adhesive resin film. It shall be electrically connected to the film. The conductive protrusions are preferably made of solder. In either method, it is effective that the adhesive resin is ethylene vinyl acetate.

【0007】[0007]

【作用】薄膜太陽電池サブモジュールを両面の保護基板
と接着樹脂で接着する際に、サブモジュール相互間の接
続および外部への発電電力の取出しに用いる導電性フィ
ルムとサブモジュールと端部電極との間を、接着樹脂に
含ませた金属片もしくは端部電極上あるいは導電性フィ
ルム上に形成され接着樹脂フィルムを突き破る導電性突
起により電気的に接続する。これによりはんだ付けによ
る導電性フィルムとの接続が回避される。
When the thin-film solar cell submodule is bonded to the protective substrates on both sides with the adhesive resin, the conductive film, the submodule, and the end electrodes are used to connect the submodules to each other and take out the generated power to the outside. The spaces are electrically connected to each other by conductive projections formed on the metal pieces or the end electrodes included in the adhesive resin or on the conductive film and penetrating the adhesive resin film. This avoids soldering to the conductive film.

【0008】[0008]

【実施例】次に、本発明の参考例と実施例を図面に基づ
いて説明する。図1(a) 、(b) に示す参考例では、薄膜
太陽電池と耐候性基板間の接着樹脂に金属片を含有させ
ている。太陽電池の基板1に可とう性を有する膜厚50μ
mのポリエチレンナフタレートフィルムを用いた。この
基板の表面上にスパッタ法によりITO膜を1000Åの厚
さに形成し、このITO膜をレーザスクライブ法により
短冊状に分離した。その後に、プラズマCVD法により
アモルファスシリコン (以下a−Siと記す) 膜を形成
し、これを再びレーザスクライブ法により短冊状に分離
した。さらにこの上に、スパッタ法により銀を2000Åの
厚さに形成し、レーザスクライブ法により短冊状に分離
することにより、a−Si太陽電池サブモジュール2を作
製した。そして、透明な耐候性保護基板であるガラス板
31の上に接着樹脂であるEVA4のフィルムを介してa
−Si太陽電池サブモジュール2を実装した基板1を乗せ
た。そして、各サブモジュールの電極部の上には、金属
片5として銅片を含有したEVA4のフィルム、例えば
日立化成 (株) 商品名異方導電フィルムアニソルムおよ
び透明電極部と同じ幅の銅箔の片面に導電性接着剤を塗
布した導電性フィルム6、それ以外の部分にはEVA4
のみのフィルムを載せ、その上にさらにガラス板32を載
せ熱圧着した。熱圧着した時の熱により、接着樹脂であ
るEVA4が溶け、a−Si太陽電池サブモジュール2と
ガラス板31、32が接着する。同時に、銅片5を介して、
a−Si太陽電池サブモジュール2の取出し電極と導電性
フィルム6が電気的に接続され、a−Si太陽電池サブモ
ジュール2相互間の接続が行われ、また端部61から外部
への発電電力の取出しを行うことができる。このよう
に、a−Si太陽電池サブモジュール2の出力は、各サブ
モジュールの取出し電極をEVA4の中に分散した銅片
5を介して、導電性フィルム6と接続することにより外
部に取り出されている。この各サブモジュールの接続
は、必要電圧に応じて直列および並列に行う。EVA4
の中に分散した銅片5は、ここでは、直径50μm、高さ
100 μmの円柱状で50μm程度のピッチでランダムに分
散しているが、銅片の形状が球状やリベット状の物も同
様の効果がある。銅片5により、a−Si太陽電池セル間
を短絡させないために、銅片5を含有するEVAフィル
ム6の幅は、サブモジュール2の裏面電極である銀電極
のパターニング幅よりもやや狭いことが重要である。E
VA4の中に分散させる金属片5の材料としては、銅に
限定されず、太陽電池サブモジュール2の取出し電極お
よび導電性フィルム6との接続を良好にするものであれ
ばよく、例えば金属粉の表面に金をコーティングしたも
のも有効である。また、金属粉を含有するEVA4のフ
ィルムの膜厚は、金属粉がEVAフィルムから露出し、
太陽電池サブモジュール2の取出し電極および導電性フ
ィルム6と十分に接触するように薄くする必要がある。
このことから今回の試作では、EVA4のフィルムの膜
厚を100 μmとした。またこの参考例では、片側に導電
性接着剤を塗布した導電性フィルム6を用いたが、これ
は、導電性フィルム6を導電性接着剤により、EVA4
のフィルムまたはガラス板32に固定することにより、熱
圧着時の導電性フィルム6の位置ずれを防ぐためであ
る。本構造にすることにより、太陽電池サブモジュール
2の取出し電極にはんだ付けすることなく、簡単に、太
陽電池サブモジュール2相互間の直列または並列接続お
よび外部への電力の取出しが行える。また、導電性フィ
ルム6の幅を太陽電池サブモジュール2の裏面電極幅よ
り小さくすることによって、精密な位置合わせが必要な
くなるので、取出し電極面積が小さく面積効率の高いa
−Si太陽電池モジュールが作製できるということがあ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, reference examples and embodiments of the present invention will be described with reference to the drawings. In the reference example shown in FIGS. 1 (a) and 1 (b), a metal piece is contained in the adhesive resin between the thin film solar cell and the weather resistant substrate. Flexible film thickness 50μ on the substrate 1 of the solar cell
m polyethylene naphthalate film was used. An ITO film having a thickness of 1000 Å was formed on the surface of this substrate by a sputtering method, and this ITO film was separated into strips by a laser scribing method. After that, an amorphous silicon (hereinafter referred to as a-Si) film was formed by the plasma CVD method, and this was again separated into strips by the laser scribing method. Further, silver was formed thereon to a thickness of 2000 Å by a sputtering method and separated into strips by a laser scribing method, whereby an a-Si solar cell submodule 2 was produced. And a glass plate which is a transparent weatherproof protective substrate
31 via EVA4 film which is an adhesive resin
The substrate 1 on which the -Si solar cell submodule 2 was mounted was placed. An EVA4 film containing a copper piece as the metal piece 5, for example, an anisotropic conductive film Anisolm under the trade name of Hitachi Chemical Co., Ltd. and a copper foil having the same width as the transparent electrode section is formed on the electrode section of each sub-module. Conductive film 6 coated with a conductive adhesive on one side, EVA4 on the other parts
The chisel film was placed, and the glass plate 32 was further placed thereon and thermocompression bonded. EVA 4 which is an adhesive resin is melted by the heat generated by thermocompression bonding, and the a-Si solar cell submodule 2 and the glass plates 31 and 32 are adhered to each other. At the same time, through the copper piece 5,
The extraction electrode of the a-Si solar cell sub-module 2 and the conductive film 6 are electrically connected, the a-Si solar cell sub-modules 2 are connected to each other, and the generated power from the end 61 to the outside is connected. It can be taken out. In this way, the output of the a-Si solar cell submodule 2 is extracted to the outside by connecting the extraction electrode of each submodule to the conductive film 6 through the copper piece 5 dispersed in the EVA 4. There is. The submodules are connected in series and in parallel according to the required voltage. EVA4
Here, the copper pieces 5 dispersed in the
It is a column of 100 μm and randomly dispersed at a pitch of about 50 μm, but a copper piece having a spherical shape or a rivet shape also has the same effect. In order to prevent short circuit between the a-Si solar cells by the copper piece 5, the width of the EVA film 6 containing the copper piece 5 may be slightly narrower than the patterning width of the silver electrode which is the back surface electrode of the submodule 2. is important. E
The material of the metal piece 5 to be dispersed in the VA 4 is not limited to copper and may be any material as long as the connection between the extraction electrode of the solar cell submodule 2 and the conductive film 6 is good, for example, metal powder. It is also effective to coat the surface with gold. Further, the film thickness of the EVA4 film containing the metal powder is such that the metal powder is exposed from the EVA film,
It must be thin enough to make sufficient contact with the extraction electrode of the solar cell submodule 2 and the conductive film 6.
From this, the film thickness of the EVA4 film was set to 100 μm in this trial production. Further, in this reference example, the conductive film 6 coated with a conductive adhesive on one side was used.
This is to prevent the conductive film 6 from being displaced during thermocompression bonding by fixing it to the film or the glass plate 32. With this structure, it is possible to easily connect the solar cell submodules 2 in series or in parallel with each other and take out the electric power to the outside without soldering to the extraction electrodes of the solar cell submodules 2. Further, by making the width of the conductive film 6 smaller than the width of the back surface electrode of the solar cell sub-module 2, it is not necessary to perform precise alignment, so that the extraction electrode area is small and the area efficiency is high.
-Si solar cell module can be manufactured in some cases.

【0009】同じ効果を有する構造として、本発明の実
施例による図2(a) 、(b) の構造がある。本実施例で
は、基板1に可とう性を有する膜厚50μmのポリレチレ
ンナフタレートフィルムを用いた。この基板にスパッタ
法によりITO膜を1000Åの厚さに形成し、このITO
膜をレーザスクライブ法により短冊状に分離した。その
後に、プラズマCVD法により、a−Si膜を形成し、こ
れを再びレーザスクライブ法により短冊状に分離した。
さらにこの上に、スパッタ法により銀を2000Åの厚さに
形成し、レーザスクライブ法により短冊状に分離するこ
とにより裏面電極とし、a−Si太陽電池サブモジュール
2を形成した。ここで、裏面電極である銀電極の電極取
出し部へ、超音波はんだ付けにより、導電性突起7を形
成した。この導電性突起は、導電性ペーストをスクリー
ン印刷する方法やディスペンダにてはんだや導電性ペー
ストを滴下する方法でも同様に行える。そして、このよ
うな加工を施した太陽電池サブモジュール2を透明な耐
候性保護基板であるガラス板31の上に、接着樹脂である
EVA4を介して載せた。その上にEVA4のフィル
ム、銅箔の片面に導電性接着剤を塗布した導電性フィル
ム6、ガラス板32を載せ熱圧着した。熱圧着した時の熱
により、接着樹脂であるEVA4が溶け、太陽電池サブ
モジュール2とガラス板31、32が接着する。この時、太
陽電池サブモジュール2の銀電極部に形成された導電性
突起7が、上に乗ったEVA4のフィルムを突き破り、
その上の導電性フィルム6と電気的に接続するので、太
陽電池サブモジュール2相互間の接続を行い、外部への
発電電力の取出しに用いられる。この構造で重要なこと
は、導電性突起7の先端を尖らせ、EVA4のフィルム
を突き破れるようにすることである。この実施例では、
はんだが円錐状になるようにはんだ付けを行った。ま
た、導電性突起52および導電性フィルム6に低融点はん
だを塗布することにより、熱圧着時に低融点はんだが溶
け、導電性突起7と導電性フィルム6をはんだ付けする
方法も有効である。
As a structure having the same effect, there is a structure shown in FIGS. 2 (a) and 2 (b) according to an embodiment of the present invention. In this example, a flexible polyretylene naphthalate film having a film thickness of 50 μm was used as the substrate 1. An ITO film is formed on this substrate by a sputtering method to a thickness of 1000 Å.
The film was separated into strips by the laser scribing method. After that, an a-Si film was formed by the plasma CVD method, and this was again separated into strips by the laser scribing method.
Further, silver was formed thereon to a thickness of 2000 Å by a sputtering method and separated into strips by a laser scribing method to form a back electrode, thereby forming an a-Si solar cell submodule 2. Here, the conductive protrusion 7 was formed by ultrasonic soldering on the electrode extraction portion of the silver electrode which is the back surface electrode. This conductive protrusion can be similarly formed by a method of screen-printing a conductive paste or a method of dropping solder or a conductive paste with a dispenser. Then, the solar cell sub-module 2 thus processed was placed on the glass plate 31 which is a transparent weatherproof protective substrate via the EVA 4 which is an adhesive resin. A film of EVA 4, a conductive film 6 in which a conductive adhesive was applied to one surface of a copper foil, and a glass plate 32 were placed thereon and thermocompression bonded. EVA 4 which is an adhesive resin is melted by the heat generated by thermocompression bonding, and the solar cell submodule 2 and the glass plates 31 and 32 are adhered to each other. At this time, the conductive protrusion 7 formed on the silver electrode portion of the solar cell sub-module 2 pierces the EVA 4 film on the top,
Since it is electrically connected to the conductive film 6 thereon, the solar cell sub-modules 2 are connected to each other and used for taking out the generated power to the outside. What is important in this structure is to sharpen the tips of the conductive protrusions 7 so that the EVA 4 film can be pierced. In this example,
Soldering was performed so that the solder had a conical shape. Further, a method of applying the low melting point solder to the conductive protrusions 52 and the conductive film 6 to melt the low melting point solder during thermocompression bonding and soldering the conductive protrusions 7 and the conductive film 6 is also effective.

【0010】図3は、本発明の別の実施例により製造さ
れた、薄膜太陽電池サブモジュールを直列または並列に
接続する導電性フィルム6に導電性突起を形成した薄膜
太陽電池モジュールを示している。この場合は、太陽電
池の基板1に可とう性を有する膜厚50μmのポリエチレ
ンナフタレートフィルムを用いた。この基板にスパッタ
法によりITO膜を1000Åの厚さに形成し、このITO
膜をレーザスクライブ法により短冊状に分離した。その
後に、プラズマCVD法により、a−Si膜を形成し、こ
れを再びレーザスクライブ法により短冊状に分離した。
さらにこの上に、スパッタ法により銀を2000Åの厚さに
形成し、レーザスクライブ法により短冊状に分離するこ
とにより、a−Si太陽電池サブモジュール2を作製し
た。そして、この太陽電池サブモジュール2を透明な耐
候性保護基板であるガラス板31、接着樹脂であるEVA
4の上に載せた。その上に、EVA4のフィルム、導電
性突起7のついた導電性フィルム6を突起7を下側にし
て載せ、さらにガラス板32を載せ、熱圧着した。導電性
フィルム6に導電性突起7を付ける方法としては、図2
に示した実施例と同様に超音波はんだ付けによる方法
や、導電性ペーストをスクリーン印刷する方法あるいは
ディスペンダにてはんだや導電性ペーストを滴下する方
法により行える。熱圧着した時の熱により、接着樹脂で
あるEVA4が溶け、太陽電池サブモジュール2とガラ
ス板31、32が接着する。この時、導電性フィルム6の下
面に形成された導電性突起7が下地のEVA4のフィル
ムを突き破り、太陽電池サブモジュール2の取出し電極
と電気的に接続するのでa−Si太陽電池モジュール2相
互間の接続を行い、また外部への発電電力の取出しに用
いられる。この構造で重要なことは、導電性突起7の先
端を尖らせ、EVA4のフィルムを突き破れるようにす
ることである。本実施例では、はんだが円錐状になるよ
うにはんだ付けを行った。また、導電性突起に低融点は
んだを塗布することにより、熱圧着時に低融点はんだが
溶け、導電性突起7と導電性フィルム6をはんだ付けす
る方法も有効である。
FIG. 3 shows a thin film solar cell module manufactured according to another embodiment of the present invention, in which conductive protrusions are formed on a conductive film 6 for connecting thin film solar cell submodules in series or in parallel. . In this case, a flexible polyethylene naphthalate film having a thickness of 50 μm was used for the substrate 1 of the solar cell. An ITO film is formed on this substrate by a sputtering method to a thickness of 1000 Å.
The film was separated into strips by the laser scribing method. After that, an a-Si film was formed by the plasma CVD method, and this was again separated into strips by the laser scribing method.
Further, silver was formed thereon to a thickness of 2000 Å by a sputtering method and separated into strips by a laser scribing method, whereby an a-Si solar cell submodule 2 was produced. Then, the solar cell sub-module 2 is provided with a glass plate 31 which is a transparent weatherproof protective substrate and an EVA which is an adhesive resin.
Placed on top of 4. A film of EVA 4 and a conductive film 6 having conductive projections 7 were placed thereon, with the projections 7 on the lower side, and a glass plate 32 was further placed thereon, followed by thermocompression bonding. As a method for attaching the conductive protrusions 7 to the conductive film 6, a method shown in FIG.
Similar to the embodiment shown in the above, the method can be performed by ultrasonic soldering, a method of screen-printing a conductive paste, or a method of dropping solder or a conductive paste with a dispenser. EVA 4 which is an adhesive resin is melted by the heat generated by thermocompression bonding, and the solar cell submodule 2 and the glass plates 31 and 32 are adhered to each other. At this time, the conductive protrusions 7 formed on the lower surface of the conductive film 6 pierce the EVA 4 film as the base and electrically connect to the extraction electrodes of the solar cell sub-module 2, so that the a-Si solar cell modules 2 are connected to each other. It is also used for connecting the power supply and taking out the generated power to the outside. What is important in this structure is to sharpen the tips of the conductive protrusions 7 so that the EVA 4 film can be pierced. In this example, the soldering was performed so that the solder had a conical shape. Further, a method of applying low melting point solder to the conductive protrusions to melt the low melting point solder during thermocompression bonding and soldering the conductive protrusions 7 and the conductive film 6 is also effective.

【0011】[0011]

【発明の効果】本発明によれば、太陽電池サブモジュー
ルの端部電極あるいは導電性フィルム上に形成した導電
性突起の圧接により導電性フィルムと端部電極を電気的
に接続することにより、はんだ付け工程を必要とせず、
電極面積が小さいものや合成樹脂基板を用いた薄膜太陽
電池の接続が行えるという利点を有している。この方法
を用いることにより、薄膜太陽電池モジュールの単位面
積当たりの発電電力を容易に増加させることができる。
また、複雑な配線プロセスを必要としないため薄膜太陽
電池モジュールの製造コストを低減できる。
According to the present invention, the solder is formed by electrically connecting the conductive film and the end electrode by pressure contact of the conductive electrode formed on the end electrode of the solar cell sub-module or the conductive film. No need for attachment process,
It has an advantage that a thin film solar cell using a small electrode area or a synthetic resin substrate can be connected. By using this method, the generated power per unit area of the thin film solar cell module can be easily increased.
Moreover, since a complicated wiring process is not required, the manufacturing cost of the thin film solar cell module can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の参考例による薄膜太陽電池モジュール
を示し、(a) が断面図、(b) が平面図
FIG. 1 shows a thin film solar cell module according to a reference example of the present invention, (a) is a sectional view, and (b) is a plan view.

【図2】本発明の一実施例による薄膜太陽電池モジュー
ルを示し、(a) が断面図、(b)が平面図
FIG. 2 shows a thin-film solar cell module according to an embodiment of the present invention, (a) is a sectional view and (b) is a plan view.

【図3】本発明の別の一実施例による薄膜太陽電池モジ
ュールを示し、(a) が断面図、(b) が平面図
FIG. 3 shows a thin film solar cell module according to another embodiment of the present invention, in which (a) is a sectional view and (b) is a plan view.

【符号の説明】[Explanation of symbols]

1 太陽電池基板 2 太陽電池サブモジュール 31、32 ガラス板 4 EVA 5 銅片 6 導電性フィルム 7 導電性突起 1 solar cell substrate 2 Solar cell sub-module 31, 32 glass plate 4 EVA 5 Copper pieces 6 Conductive film 7 Conductive protrusion

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 31/00 - 31/12 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 31/00-31/12

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁性基板上に両端に帯状取出し電極を備
えた太陽電池構造を有するサブモジュールの取出し電極
上に導電性の突起を形成し、そのサブモジュールの複数
個を取出し電極の設けられない側で隣接させて一つの保
護基板の上に接着樹脂層を介して載せ、各モジュールの
上を接着樹脂フィルムで覆い、両取出し電極上には両端
がサブモジュールの上により突出する導電性フィルムを
載せ、さらにその導電性フィルムおよび接着樹脂フィル
ムの露出面上に他の保護基板を載せ、加熱圧着すること
により太陽電池モジュールの両面を保護基板と接着する
と共に、取出し電極を接着樹脂フィルムを突き破った導
電性突起を介して導電性フィルムと電気的に接続するこ
とを特徴とする薄膜太陽電池モジュールの製造方法。
1. A conductive protrusion is formed on a take-out electrode of a sub-module having a solar cell structure having strip-like take-out electrodes at both ends on an insulating substrate, and a plurality of the sub-modules are provided with take-out electrodes. Adjacent to the other side, it is placed on one protective substrate via an adhesive resin layer, each module is covered with an adhesive resin film, and both ends of both extraction electrodes project above the submodule. On the exposed surface of the conductive film and the adhesive resin film, and by thermocompression bonding, both sides of the solar cell module are bonded to the protective substrate, and the extraction electrode pierces the adhesive resin film. A method for manufacturing a thin-film solar cell module, which comprises electrically connecting to a conductive film via a conductive protrusion.
【請求項2】絶縁性基板上に両端に帯状取出し電極を備
えた太陽電池構造を有するサブモジュールの複数個を取
出し電極の設けられない側で隣接させて一つの保護基板
の上に接着樹脂層を介して載せ、各モジュールの上を接
着樹脂フィルムで覆い、両取出し電極の上には一面に突
起を形成した導電性フィルムを突起を取出し電極に対向
させて載せ、さらにその導電性フィルムおよび接着樹脂
フィルムの露出面上に他の保護基板を載せ、加熱圧着す
ることにより太陽電池モジュールの両面を保護基板と接
着すると共に、取出し電極を接着樹脂フィルムを突き破
った導電性突起を介して導電性フィルムと電気的に接続
することを特徴とする薄膜太陽電池モジュールの製造方
法。
2. An adhesive resin layer on one protective substrate, wherein a plurality of sub-modules having a solar cell structure having strip-shaped extraction electrodes at both ends on an insulating substrate are adjacent to each other on the side where the extraction electrodes are not provided. The module, cover each module with an adhesive resin film, and place a conductive film with a protrusion on one side of both extraction electrodes facing the extraction electrode. Put another protective substrate on the exposed surface of the resin film, and bond both sides of the solar cell module to the protective substrate by heating and pressure bonding, and at the same time, take out the electrode from the conductive resin through the conductive protrusion that penetrates the adhesive resin film. And a method for manufacturing a thin-film solar cell module, which is characterized in that the thin-film solar cell module is electrically connected to.
【請求項3】導電性突起がはんだよりなる請求項1ある
いは2記載の薄膜太陽電池モジュールの製造方法。
3. The method for manufacturing a thin-film solar cell module according to claim 1, wherein the conductive protrusion is made of solder.
【請求項4】接着樹脂がエチレンビニルアセテートであ
る請求項1ないし3のいずれかに記載の薄膜太陽電池モ
ジュールの製造方法。
4. The method for manufacturing a thin film solar cell module according to claim 1, wherein the adhesive resin is ethylene vinyl acetate.
JP29372793A 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module Expired - Fee Related JP3448924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29372793A JP3448924B2 (en) 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29372793A JP3448924B2 (en) 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module

Publications (2)

Publication Number Publication Date
JPH07147424A JPH07147424A (en) 1995-06-06
JP3448924B2 true JP3448924B2 (en) 2003-09-22

Family

ID=17798466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29372793A Expired - Fee Related JP3448924B2 (en) 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module

Country Status (1)

Country Link
JP (1) JP3448924B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026356A1 (en) 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2008044696A1 (en) 2006-10-13 2008-04-17 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
WO2008044357A1 (en) 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
DE102011081551A1 (en) 2010-08-26 2012-03-01 Hitachi Chemical Co., Ltd. Adhesive film for solar cell electrode and method of manufacturing a solar cell module with its use
KR101514844B1 (en) * 2007-12-27 2015-04-23 산요덴키가부시키가이샤 Solar cell module and method for producing the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340812A (en) * 1999-05-28 2000-12-08 Kyocera Corp Solar battery
JP4009891B2 (en) * 1999-11-17 2007-11-21 富士電機ホールディングス株式会社 Method for manufacturing thin film solar cell module
JP2001237444A (en) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd Wiring connection method for thin-film photoelectric conversion device
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2011055008A (en) * 2005-11-10 2011-03-17 Hitachi Chem Co Ltd Connection structure and method of manufacturing the same
JP5323310B2 (en) * 2005-11-10 2013-10-23 日立化成株式会社 Connection structure and manufacturing method thereof
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
CN103360976B (en) 2006-04-26 2016-08-03 日立化成株式会社 Splicing tape and use its solar module
JPWO2008152865A1 (en) * 2007-06-12 2010-08-26 シャープ株式会社 Thin film solar cell and manufacturing method thereof
CN101755341A (en) * 2007-09-26 2010-06-23 日立化成工业株式会社 Conductor connection member and manufacture method thereof, syndeton and solar module
JP5380810B2 (en) * 2007-09-28 2014-01-08 三洋電機株式会社 Solar cell module
TWI438915B (en) * 2008-02-21 2014-05-21 Sanyo Electric Co Solar cell module
JP4974301B2 (en) * 2008-04-04 2012-07-11 昭和シェル石油株式会社 Manufacturing method of solar cell module
JP5512221B2 (en) * 2009-10-13 2014-06-04 ナミックス株式会社 Solar cell module and manufacturing method thereof
KR101110826B1 (en) 2010-08-17 2012-02-24 엘지전자 주식회사 Solar cell panel
JP2012079838A (en) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd Solar cell module and method for manufacturing the same
KR101279975B1 (en) 2010-10-05 2013-07-05 제일모직주식회사 Electrical connecting material between conductors
WO2012169856A2 (en) * 2011-06-09 2012-12-13 주식회사 에스에너지 Back contact solar cell module and method for manufacturing same
JP5516566B2 (en) * 2011-12-19 2014-06-11 三洋電機株式会社 Solar cell module and manufacturing method thereof
JP2022098674A (en) * 2020-12-22 2022-07-04 セイコーエプソン株式会社 Electronic watch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026356A1 (en) 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2008044357A1 (en) 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
US9123835B2 (en) 2006-10-10 2015-09-01 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
WO2008044696A1 (en) 2006-10-13 2008-04-17 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
KR101514844B1 (en) * 2007-12-27 2015-04-23 산요덴키가부시키가이샤 Solar cell module and method for producing the same
US9059358B2 (en) 2007-12-27 2015-06-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell module and method of manufacturing the same
DE102011081551A1 (en) 2010-08-26 2012-03-01 Hitachi Chemical Co., Ltd. Adhesive film for solar cell electrode and method of manufacturing a solar cell module with its use
DE202011110111U1 (en) 2010-08-26 2013-01-10 Hitachi Chemical Company, Ltd. Adhesive film for solar cell electrode

Also Published As

Publication number Publication date
JPH07147424A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
JP3448924B2 (en) Method for manufacturing thin-film solar cell module
US6531653B1 (en) Low cost high solar flux photovoltaic concentrator receiver
US5248345A (en) Integrated photovoltaic device
US5180888A (en) Conductive bonding agent and a conductive connecting method
TWI390747B (en) Photovoltaic modules manufactured using monolithic module assembly techniques
US4609770A (en) Thin-film solar cell array
JP4989549B2 (en) Solar cell and solar cell module
JP5380810B2 (en) Solar cell module
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
US4999460A (en) Conductive connecting structure
US20120132251A1 (en) Solar cell, solar module comprising said solar cell and method for producing the same and for producing a contact foil
US5017243A (en) Solar cell and a production method therefor
US20090308427A1 (en) Solar cell module
CN101645470A (en) Solar cell module
JPS60240171A (en) Solar electric generator
CN110707167B (en) Back contact solar cell module production method and back contact solar cell module
US5123986A (en) Conductive connecting method
JPH06275858A (en) Photovoltaic module and its manufacture
US20160020349A1 (en) Solar cell module and solar cell module manufacturing method
JP2003133570A (en) Method of manufacturing solar battery module
JPH0629564A (en) Manufacture of solar battery apparatus
JP3133269B2 (en) Solar panel
JP2000223728A (en) Thin film solar battery module
JP2006060028A (en) Solar cell module
JP3111813B2 (en) Method for manufacturing flexible solar cell module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees