JPH0629564A - Manufacture of solar battery apparatus - Google Patents

Manufacture of solar battery apparatus

Info

Publication number
JPH0629564A
JPH0629564A JP4178710A JP17871092A JPH0629564A JP H0629564 A JPH0629564 A JP H0629564A JP 4178710 A JP4178710 A JP 4178710A JP 17871092 A JP17871092 A JP 17871092A JP H0629564 A JPH0629564 A JP H0629564A
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
solder
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4178710A
Other languages
Japanese (ja)
Other versions
JP3024367B2 (en
Inventor
Kiyoo Saito
清雄 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4178710A priority Critical patent/JP3024367B2/en
Publication of JPH0629564A publication Critical patent/JPH0629564A/en
Application granted granted Critical
Publication of JP3024367B2 publication Critical patent/JP3024367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a flexible solar battery apparatus possible to connect a plurality of those solar batteries by covering with a solder layer extending from the top of the electrode layer of one solar battery onto the rear face of the battery and by bringing the covering solder layer into contact with the electrode layer of another solar battery and welding them together. CONSTITUTION:The ends of two solar batteries 11, 12 are made to overlap each other. A solder layer 7 extending from the surface of a metal electrode 4 to the rear face 16 of a flexible insulating substrate 1 along the end face 15 of the substrate 1 is formed at the end of the solar battery 11 and made to adhere to the metal electrode 4 of the solar battery 12 by heating. At the time of adhesion, an ultrasonic solder-covering device is used to immerse the end of the solar battery 11 in solder and to perform the adhesion by an ultrasonic vibrator. Thus, it is possible to improve the area efficiency of a series- connected thin-film solar battery module to also improve the electrical and mechanism reliability at high temperature and high humidity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
等を主成分とする薄膜半導体を用い、可とう性を持たせ
た太陽電池の複数個を接続してなる太陽電池装置の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a solar cell device in which a plurality of flexible solar cells are connected using a thin film semiconductor containing amorphous silicon as a main component.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、膜を低温で
形成するため、高分子材料等の可とう性基板上に容易に
形成することができる。このため、住宅建材や自動車の
サンルーフ等の曲面を有する物の上へ設置する太陽電池
の材料として期待されている。こうしたアモルファス太
陽電池で大きな電力を得るには、電気的に複数個接続す
る必要がある。そのために従来は、各太陽電池を同一平
面上に配置し、端部にある電極部相互を導電性テープで
接続していた。図2は導電性テープを用いた太陽電池装
置を示し、透光性を有する高分子材料等の可とう性絶縁
基板1上に、SnO2 やZnO等からなる太陽電池の発電波
長領域に対して透光性と導電性を有する透明電極2を形
成し、その上に光起電力発生部であるアモルファス半導
体薄膜3、次いで金属電極4を順に積層する。このよう
な構造の太陽電池11および12を同一平面上に配置し、隣
接太陽電池を順次直列に接続する。この場合、可とう性
絶縁基板1ははんだの濡れ性が悪く、また融点が低いた
め、はんだ付けによる接続は困難であり、隣接する金属
電極41、42を接着性を有する導電性テープ5により電気
的に接続する。しかし、導電性テープで接着される電極
41、42の部分は等電位となるために発電に寄与せず、装
置の面積当たりの発電効率が低くなる。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo CVD is formed at a low temperature, so that it can be easily formed on a flexible substrate such as a polymer material. Therefore, it is expected as a material for a solar cell to be installed on a building material, an automobile sunroof, or any other object having a curved surface. In order to obtain a large electric power with such an amorphous solar cell, it is necessary to electrically connect a plurality of cells. Therefore, conventionally, the solar cells are arranged on the same plane, and the electrode portions at the ends are connected to each other by a conductive tape. FIG. 2 shows a solar cell device using a conductive tape, which is formed on a flexible insulating substrate 1 such as a polymer material having a light-transmitting property with respect to a power generation wavelength range of a solar cell made of SnO 2 or ZnO. A transparent electrode 2 having translucency and conductivity is formed, and an amorphous semiconductor thin film 3 which is a photovoltaic generation part, and then a metal electrode 4 are sequentially laminated on the transparent electrode 2. The solar cells 11 and 12 having such a structure are arranged on the same plane, and adjacent solar cells are sequentially connected in series. In this case, since the flexible insulating substrate 1 has poor solder wettability and a low melting point, connection by soldering is difficult, and the adjacent metal electrodes 41, 42 are electrically connected by the conductive tape 5 having adhesiveness. Connect to each other. However, the electrodes glued with conductive tape
Since the portions 41 and 42 have the same potential, they do not contribute to power generation, and the power generation efficiency per unit area is low.

【0003】特開昭60−123073号公報に記載された図3
に示す太陽電池装置は、端部電極を重ね合わせることに
より発電に対する無効面積を減らしたものである。この
太陽電池装置は、図2について述べたように可とう性基
板1を用いた太陽電池11、12、13、14を一方の端部が前
の太陽電池の他方の端部に重なるようにして順次ガラス
基板10の上に接着剤ではりつけたものである。そして一
つの太陽電池、例えば太陽電池11の基板10に接する端部
電極とその上に重ねられた隣接太陽電池12の端部電極と
を、両太陽電池の可とう性絶縁基板1を通じて明けられ
た穴の位置を合わせ、その穴に導電性接着剤を流しこむ
ことにより電気的接続を行う。そしてその上を保護膜6
によって被覆する。
FIG. 3 described in Japanese Patent Laid-Open No. 60-123073
The solar cell device shown in (1) has a reduced effective area for power generation by overlapping end electrodes. In this solar cell device, as described with reference to FIG. 2, the solar cells 11, 12, 13, and 14 using the flexible substrate 1 are arranged so that one end thereof overlaps with the other end of the previous solar cell. It is sequentially attached onto the glass substrate 10 with an adhesive. Then, one solar cell, for example, an end electrode in contact with the substrate 10 of the solar cell 11 and an end electrode of the adjacent solar cell 12 overlaid thereon are exposed through the flexible insulating substrate 1 of both solar cells. An electrical connection is made by aligning the positions of the holes and pouring a conductive adhesive into the holes. And the protection film 6
To cover.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3の
ように導電性接着剤を用いて複数の太陽電池を直列接続
する場合、接続部の連結強度が十分でなく、特に高温、
高湿下での接着の信頼性が低いため、可とう性基板のみ
で太陽電池装置を構成することができず、ガラス基板10
を用いて保持しなければならない。従って可とう性基板
を用いながら、曲面を有する物への設置は不可能であ
る。強度が高く、かつ低抵抗で電気的接続のできる連結
を行うのにははんだ付けのようなろう付けを利用できる
ことが望ましい。前記特許公開公報に記載されている表
面に金属電極を有する可とう性基板を180 ℃折り曲げて
端部の裏面側に金属電極を延在させた太陽電池を用いれ
ば、金属電極同志のはんだ付けにより可とう性基板を連
結することが可能であるが、連結部の厚さは基板の3倍
ないし4倍となるため、その部分を曲面に沿って曲げる
ことが困難になる。
However, when a plurality of solar cells are connected in series by using a conductive adhesive as shown in FIG. 3, the connection strength of the connecting portion is not sufficient, especially at high temperature.
Due to the low reliability of adhesion under high humidity, it is not possible to construct a solar cell device with only a flexible substrate, and the glass substrate 10
Must be held using. Therefore, it is impossible to install on a material having a curved surface while using a flexible substrate. It is desirable to be able to utilize brazing, such as soldering, to make a connection that has high strength and low resistance and can be electrically connected. If a solar cell in which a flexible substrate having a metal electrode on its surface is bent at 180 ° C. and a metal electrode is extended to the back side of the end portion described in the patent publication, the metal electrodes can be soldered together. Although it is possible to connect a flexible substrate, since the thickness of the connecting portion is 3 to 4 times that of the substrate, it is difficult to bend that portion along a curved surface.

【0005】本発明の目的は、上述の問題を解決し、可
とう性絶縁基板を用いて可とう性を有する太陽電池の複
数個を連結し、直列接続した場合になお十分の可とう性
を有する太陽電池装置の製造方法を提供することにあ
る。
The object of the present invention is to solve the above-mentioned problems and to provide a sufficient flexibility even when a plurality of flexible solar cells are connected using a flexible insulating substrate and connected in series. It is to provide a method for manufacturing the solar cell device having the above.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の太陽電池装置の製造方法は、1枚の可と
う性絶縁基板表面上に第一電極層、半導体層および第二
電極層を積層してなる太陽電池素子を1個形成してなる
かあるいは複数個形成して第二電極層を隣接素子の第一
電極層と接続することにより直列接続してなる太陽電池
の複数個が直列接続される太陽電池装置の製造方法にお
いて、一つの太陽電池の第一端部の第二電極層上から基
板の端面上を経て裏面上に延びるはんだ層を超音波印加
のもとで被覆し、基板裏面を被覆するはんだ層を別の太
陽電池の第二端部の第二電極層と接触させ、加熱しては
んだと接触する第二電極層に融着させるものとする。あ
るいは、一つの太陽電池の第一端部の第二電極層上から
基板の端面上を経て裏面上に延びるはんだ層を超音波印
加のもとで被覆し、基板裏面を被覆するはんだ層を別の
太陽電池の第二端部の少なくとも第二電極層を被覆する
はんだ層と接触させ、基板裏面を被覆するはんだ層を別
の太陽電池の第二端部の少なくとも第二電極層を被覆す
るはんだ層と接触させ、加熱して両はんだ層を融着させ
るものとする。あるいはまた、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の少なくとも
第二電極層を被覆するはんだ層と接触させ、両はんだ層
の表面相互を圧接させるものとする。その圧接が、両端
部にそれぞれ明けられた貫通孔を通るコンタクトピンの
両端をかしめることにより行われることが有効である。
In order to achieve the above object, a method of manufacturing a solar cell device according to the present invention comprises a first electrode layer, a semiconductor layer and a second layer on the surface of one flexible insulating substrate. A plurality of solar cells formed by forming one solar cell element formed by stacking electrode layers or forming a plurality of solar cell elements and connecting a second electrode layer with a first electrode layer of an adjacent element in series connection. In the method for manufacturing a solar cell device in which pieces are connected in series, a solder layer extending from the second electrode layer at the first end of one solar cell to the back surface through the end surface of the substrate is applied under ultrasonic waves. The solder layer that covers and covers the back surface of the substrate is brought into contact with the second electrode layer at the second end of another solar cell, and heated to be fused to the second electrode layer that comes into contact with the solder. Alternatively, a solder layer extending from the second electrode layer at the first end of one solar cell to the back surface through the end surface of the substrate is coated under ultrasonic waves, and the solder layer that covers the back surface of the substrate is separated. Of the solar cell is contacted with a solder layer that covers at least the second electrode layer of the second end, and a solder layer that covers the back surface of the substrate is a solder that covers at least the second electrode layer of the second end of another solar cell. It should be in contact with the layers and heated to fuse both solder layers. Alternatively, a solder layer that extends from the second electrode layer of the first end of one solar cell to the back surface of the substrate through the end surface of the substrate is applied under ultrasonic waves, and a solder layer that covers the back surface of the substrate is formed. The solder layer covering at least the second electrode layer at the second end of another solar cell is brought into contact with each other, and the surfaces of both solder layers are pressed against each other. It is effective that the pressure contact is performed by caulking both ends of the contact pin that passes through the through holes formed at both ends.

【0007】そして、太陽電池の第一端部を溶融はんだ
浴に浸漬し、そのはんだ浴に超音波を印加することによ
りはんだ層を被覆することが有効である。また太陽電池
の第二端部の少なくとも裏面にテープをはりつけてその
端部を溶融はんだ浴に浸漬し、そのはんだ浴に超音波を
印加することによりはんだ層を被覆したのち、テープを
剥離することが有効である。
Then, it is effective to cover the solder layer by immersing the first end of the solar cell in a molten solder bath and applying ultrasonic waves to the solder bath. Also, a tape is attached to at least the back surface of the second end of the solar cell, the end is immersed in a molten solder bath, ultrasonic waves are applied to the solder bath to cover the solder layer, and then the tape is peeled off. Is effective.

【0008】[0008]

【作用】順次連結して電気的に直列接続する複数個の太
陽電池の少なくとも一方の端部に上層の第二電極層表面
上から可とう性絶縁基板の裏面に延びるはんだ層を超音
波はんだ被覆法を用いて形成することにより、その端部
に別の太陽電池の端部を重ね合わせて、裏面上のはんだ
層を別の太陽電池の第二電極層と直接あるいはその電極
層の上に形成したはんだ層と融着させることにより、あ
るいは別の太陽電池の第二電極層上に形成したはんだ層
と圧接させることにより、導電性接着剤による場合に比
して強度が高い連結ができ、接続抵抗も低い。そして、
重なり部では基板2枚分の厚さになるだけであるから可
とう性も十分残り、基板をどのような曲面に沿って曲げ
ることも可能になる。
Operation: At least one end of a plurality of solar cells that are sequentially connected and electrically connected in series is covered with a solder layer extending from the upper surface of the upper second electrode layer to the rear surface of the flexible insulating substrate by ultrasonic soldering. Method, the edge of another solar cell is overlaid on that edge, and the solder layer on the back surface is formed either directly on the second electrode layer of another solar cell or on that electrode layer. By fusion-bonding with the solder layer formed or by pressure contact with the solder layer formed on the second electrode layer of another solar cell, connection with higher strength can be achieved as compared with the case where a conductive adhesive is used. Resistance is also low. And
Since the thickness of the overlapping portion is only the thickness of two substrates, the flexibility is sufficient and the substrates can be bent along any curved surface.

【0009】[0009]

【実施例】以下、図2、図3と共通の部分に同一の符号
を付した図を引用して本発明の実施例について説明す
る。図1に示す実施例では、図(a) の平面図および図
(b) の断面図に示すように二つの太陽電池11、12の端部
を重ね合わせる。そして、その接合部Aを拡大して図
(c) の断面図に示すように、太陽電池11の端部に金属電
極4の表面から可とう性絶縁基板1の端面15に沿って裏
面16に達するはんだ層7が形成され、加熱によりこのは
んだ層7を太陽電池12の金属電極4に融着させている。
この結果、図2に示した太陽電池装置と同様な接続が行
われる。そして、図2の場合の導電性テープ5に覆われ
た部分の面積ロスが半減し、太陽電池装置の面積効率が
向上した。基板1の厚さは数十μmであるので、接合部
における厚さの増加はわずかであり、可とう性の減少も
わずかであった。
Embodiments of the present invention will be described below with reference to the drawings in which the same parts as those in FIGS. In the embodiment shown in FIG. 1, the plan view of FIG.
As shown in the sectional view of (b), the ends of the two solar cells 11 and 12 are overlapped. And an enlarged view of the joint A
As shown in the cross-sectional view of (c), a solder layer 7 is formed at the end of the solar cell 11 from the surface of the metal electrode 4 to the back surface 16 along the end surface 15 of the flexible insulating substrate 1. The solder layer 7 is fused to the metal electrode 4 of the solar cell 12.
As a result, the same connection as the solar cell device shown in FIG. 2 is made. Then, the area loss of the portion covered with the conductive tape 5 in the case of FIG. 2 was halved, and the area efficiency of the solar cell device was improved. Since the thickness of the substrate 1 was several tens of μm, the increase in the thickness at the bonded portion was slight and the decrease in flexibility was also slight.

【0010】図4ははんだ層7の形成に用いる超音波は
んだ被覆装置を示す。この装置のはんだ槽81の中に低融
点はんだ70を入れ、ヒータ82により溶融させる。この溶
融はんだ70をポンプ83によりはんだ導管84の中に上昇さ
せ、太陽電池11の端部をそのはんだ中に浸漬し、はんだ
導管84に超音波振動子85により超音波を印加する。その
結果、金属電極層の表面上ばかりでなく、図1(c) に示
すように高分子材料からなる可とう性絶縁基板1の端面
15、裏面16にもはんだ層が形成できる。
FIG. 4 shows an ultrasonic solder coating apparatus used for forming the solder layer 7. The low melting point solder 70 is put in the solder bath 81 of this apparatus, and is melted by the heater 82. The molten solder 70 is moved up into the solder conduit 84 by the pump 83, the end of the solar cell 11 is immersed in the solder, and ultrasonic waves are applied to the solder conduit 84 by the ultrasonic vibrator 85. As a result, not only on the surface of the metal electrode layer, but also on the end surface of the flexible insulating substrate 1 made of a polymer material as shown in FIG. 1 (c).
15, the solder layer can be formed on the back surface 16 as well.

【0011】図5に示す本発明の別の実施例では、太陽
電池12の端部の図示しない金属電極層上にもはんだ層7
が形成されている。このはんだ層は超音波を印加しない
ではんだ槽に端部を浸漬してもできるが、図4に示した
装置を用いるときには、端面15および裏面16にテープを
接着し、はんだ層7形成後そのテープをはがすことによ
り、金属電極層の表面上だけにはんだ層7が残る。これ
は、太陽電池12の可とう性絶縁基板1の端面および裏面
にはんだ層7が存在しても何の役にも立たず、かえって
接合部の厚さの増加あるいは他の導電部材との接触によ
る短絡の発生等のおそれがあるからである。そして、太
陽電池11、12の端部を重ね合わせ、はんだ層7同志を接
触させてから、ヒータ86を用いてはんだを接触面71で融
着させることにより、両太陽電池11、12を連結する。
In another embodiment of the present invention shown in FIG. 5, the solder layer 7 is formed on the metal electrode layer (not shown) at the end of the solar cell 12.
Are formed. This solder layer can be immersed in the solder bath without applying ultrasonic waves, but when the device shown in FIG. 4 is used, the tape is adhered to the end face 15 and the back face 16 and the solder layer 7 is formed. By peeling off the tape, the solder layer 7 remains only on the surface of the metal electrode layer. This is of no use even if the solder layer 7 is present on the end surface and the back surface of the flexible insulating substrate 1 of the solar cell 12, and on the contrary, the thickness of the joint is increased or the contact with other conductive members is made. This is because a short circuit may occur due to Then, the ends of the solar cells 11 and 12 are overlapped with each other, the solder layers 7 are brought into contact with each other, and then the heater 86 is used to fuse the solder at the contact surface 71 to connect the solar cells 11 and 12. .

【0012】図6に示す本発明のさらに別の実施例で
は、図5におけると同様にはんだ層7を形成した太陽電
池11、12の端部を重ね合わせ、重ね合わせた部分に複数
のコンタクトピン9を貫通させ、両端をかしめることに
より、はんだ層7同志は圧接され、両太陽電池11、12の
金属電極層の電気的接続および基板の機械的連結ができ
る。
In yet another embodiment of the present invention shown in FIG. 6, the ends of the solar cells 11 and 12 having the solder layer 7 formed thereon are overlapped with each other in the same manner as in FIG. By penetrating 9 and crimping both ends, the solder layers 7 are pressed against each other, so that the metal electrode layers of both solar cells 11 and 12 can be electrically connected and the substrates can be mechanically connected.

【0013】[0013]

【発明の効果】本発明によれば、太陽電池の一方の端部
を表面から裏面にまたがって超音波はんだ被覆法によっ
てはんだ層を形成することにより、その端部を別の太陽
電池に重ね合わせ、裏面のはんだ層を別の太陽電池の表
面上の金属電極層に直接融着するか、あるいは金属電極
層上に形成したはんだ層と融着あるいは圧接させること
により、複数の太陽電池を順次端部で重ね合わせて連結
し、直列接続することが可能になった。これにより、太
陽電池装置としての直列接続型薄膜太陽電池モジュール
の面積効率を向上させ、同じ面積のモジュールとしては
高効率の、可とう性直列接続型薄膜太陽電池モジュール
が得られる。また、太陽電池の連結をはんだ付けで行う
ことにより、作業が簡単になり、接着強度の向上、特に
高温、高湿下での電気的接続、機械的連結の信頼性の向
上が達せられた。
According to the present invention, a solder layer is formed by the ultrasonic solder coating method over one end of a solar cell from the front surface to the back surface, thereby superimposing the end portion on another solar cell. , By directly fusing the solder layer on the back surface to the metal electrode layer on the surface of another solar cell, or by fusing or pressure contacting with the solder layer formed on the metal electrode layer It became possible to connect them in series by overlapping them with each other. Thereby, the area efficiency of the series connection type thin film solar cell module as a solar cell device is improved, and a flexible series connection type thin film solar cell module having the same area and high efficiency can be obtained. Further, by connecting the solar cells by soldering, the work is simplified, and the adhesion strength is improved, and particularly the reliability of electrical connection and mechanical connection under high temperature and high humidity is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による太陽電池装置の一部を
示し、(a) は平面図、(b) は断面図、(c) は(b) の接合
部Aの拡大断面図
FIG. 1 shows a part of a solar cell device according to an embodiment of the present invention, (a) is a plan view, (b) is a cross-sectional view, and (c) is an enlarged cross-sectional view of a junction A in (b).

【図2】可とう性絶縁基板太陽電池を連結した従来の太
陽電池装置の接合部の断面図
FIG. 2 is a cross-sectional view of a joint portion of a conventional solar cell device in which flexible insulating substrate solar cells are connected.

【図3】別の従来の太陽電池装置の断面図FIG. 3 is a sectional view of another conventional solar cell device.

【図4】本発明の実施例に用いる超音波はんだ被覆装置
の断面図
FIG. 4 is a sectional view of an ultrasonic solder coating device used in an embodiment of the present invention.

【図5】本発明の別の実施例による太陽電池装置の接合
部の断面図
FIG. 5 is a sectional view of a joint portion of a solar cell device according to another embodiment of the present invention.

【図6】本発明のさらに別の実施例による太陽電池装置
の接合部の断面図
FIG. 6 is a sectional view of a joint portion of a solar cell device according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 可とう性絶縁基板 2 透明電極 3 アモルファス半導体薄膜 4 金属電極 7 はんだ層 70 溶融半田 81 はんだ槽 82 ヒータ 85 超音波振動子 86 ヒータ 9 コンタクトピン 1 Flexible Insulating Substrate 2 Transparent Electrode 3 Amorphous Semiconductor Thin Film 4 Metal Electrode 7 Solder Layer 70 Molten Solder 81 Solder Bath 82 Heater 85 Ultrasonic Transducer 86 Heater 9 Contact Pin

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】1枚の可とう性絶縁基板表面上に第一電極
層、半導体層および第二電極層を積層してなる太陽電池
素子を1個形成してなるかあるいは複数個形成して第二
電極層を隣接素子の第一電極層と接続することにより直
列接続してなる太陽電池の複数個が直列接続される太陽
電池装置の製造方法において、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の第二電極層
と接触させ、加熱してはんだと接触する第二電極層に融
着させることを特徴とする太陽電池装置の製造方法。
1. A solar cell element having a first electrode layer, a semiconductor layer, and a second electrode layer laminated on the surface of a single flexible insulating substrate, or a plurality of solar cell elements. In a method for manufacturing a solar cell device in which a plurality of solar cells connected in series by connecting the second electrode layer to the first electrode layer of an adjacent element are connected in series, the first end portion of one solar cell The solder layer that extends from the second electrode layer on the end face of the substrate to the back face is coated under ultrasonic waves, and the solder layer that covers the back face of the substrate is the second electrode at the second end of another solar cell. A method for manufacturing a solar cell device, which comprises bringing the second electrode layer into contact with a layer and heating the second electrode layer to contact with the solder to fuse the second electrode layer.
【請求項2】1枚の可とう性絶縁基板表面上に第一電極
層、半導体層および第二電極層を積層してなる太陽電池
素子を1個形成してなるかあるいは複数個形成して第二
電極層を隣接素子の第一電極層と接続することにより直
列接続してなる太陽電池の複数個が直列接続される太陽
電池装置の製造方法において、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の少なくとも
第二電極層を被覆するはんだ層と接触させ、加熱して両
はんだ層を融着させることを特徴とする太陽電池装置の
製造方法。
2. A solar cell element comprising a first electrode layer, a semiconductor layer and a second electrode layer laminated on the surface of a single flexible insulating substrate, or a plurality of solar cell elements. In a method for manufacturing a solar cell device in which a plurality of solar cells connected in series by connecting the second electrode layer to the first electrode layer of an adjacent element are connected in series, the first end portion of one solar cell A solder layer that extends from the second electrode layer on the end surface of the substrate to the back surface is coated under ultrasonic waves, and the solder layer that covers the back surface of the substrate is at least the second end portion of the second solar cell. A method for manufacturing a solar cell device, which comprises contacting a solder layer covering an electrode layer and heating to fuse both solder layers.
【請求項3】1枚の可とう性絶縁基板表面上に第一電極
層、半導体層および第二電極層を積層してなる太陽電池
素子を1個形成してなるかあるいは複数個形成して第二
電極層を隣接素子の第一電極層と接続することにより直
列接続してなる太陽電池の複数個が直列接続される太陽
電池装置の製造方法において、一つの太陽電池の第一端
部の第二電極層上から基板の端面上を経て裏面上に延び
るはんだ層を超音波印加のもとで被覆し、基板裏面を被
覆するはんだ層を別の太陽電池の第二端部の少なくとも
第二電極層を被覆するはんだ層と接触させ、両はんだ層
の表面相互を圧接させることを特徴とする太陽電池装置
の製造方法。
3. A single solar cell element comprising a first electrode layer, a semiconductor layer and a second electrode layer laminated on the surface of a single flexible insulating substrate, or a plurality of solar cell elements. In a method for manufacturing a solar cell device in which a plurality of solar cells connected in series by connecting the second electrode layer to the first electrode layer of an adjacent element are connected in series, the first end portion of one solar cell A solder layer that extends from the second electrode layer on the end surface of the substrate to the back surface is coated under ultrasonic waves, and the solder layer that covers the back surface of the substrate is at least the second end portion of the second solar cell. A method for manufacturing a solar cell device, which comprises contacting a solder layer covering an electrode layer and pressing the surfaces of both solder layers against each other.
【請求項4】圧接が両端部にそれぞれ明けられた貫通孔
を通るコンタクトピンの両端をかしめることにより行わ
れる請求項3記載の太陽電池装置の製造方法。
4. The method for manufacturing a solar cell device according to claim 3, wherein the pressure contact is performed by caulking both ends of the contact pin passing through the through holes formed at both ends.
【請求項5】太陽電池の第一端部を溶融はんだ浴に浸漬
し、そのはんだ浴に超音波を印加することによりはんだ
層を被覆する請求項1ないし4のいずれかに記載の太陽
電池装置の製造方法。
5. The solar cell device according to claim 1, wherein the first end portion of the solar cell is immersed in a molten solder bath, and ultrasonic waves are applied to the solder bath to coat the solder layer. Manufacturing method.
【請求項6】太陽電池の第二端部の少なくとも裏面にテ
ープをはりつけてその端部を溶融はんだ浴に超音波を印
加することによりはんだ層を被覆したのち、テープを剥
離する請求項2ないし5のいずれかに記載の太陽電池装
置の製造方法。
6. The tape is peeled off after applying a tape to at least the back surface of the second end of the solar cell and applying ultrasonic waves to the molten solder bath at the end to cover the solder layer. 5. The method for manufacturing the solar cell device according to any one of 5 above.
JP4178710A 1992-07-07 1992-07-07 Method of manufacturing solar cell device Expired - Fee Related JP3024367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4178710A JP3024367B2 (en) 1992-07-07 1992-07-07 Method of manufacturing solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178710A JP3024367B2 (en) 1992-07-07 1992-07-07 Method of manufacturing solar cell device

Publications (2)

Publication Number Publication Date
JPH0629564A true JPH0629564A (en) 1994-02-04
JP3024367B2 JP3024367B2 (en) 2000-03-21

Family

ID=16053215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178710A Expired - Fee Related JP3024367B2 (en) 1992-07-07 1992-07-07 Method of manufacturing solar cell device

Country Status (1)

Country Link
JP (1) JP3024367B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006035626A1 (en) * 2006-07-31 2008-02-07 Zentrum für Material- und Umwelttechnik GmbH Method for attaching a connection conductor to a photovoltaic solar cell
DE102007052971A1 (en) 2007-11-07 2009-06-10 Solarion Ag Contacting and module interconnection of thin-film solar cells on polymeric substrates
WO2009133688A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
US7772484B2 (en) * 2004-06-01 2010-08-10 Konarka Technologies, Inc. Photovoltaic module architecture
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
CN102714249A (en) * 2009-05-18 2012-10-03 太阳离子股份公司 Arrangement and circuit, and method for interconnecting flat solar cells
CN110246919A (en) * 2012-02-15 2019-09-17 奥塔装置公司 Photovoltaic module and its manufacturing process comprising lapping photovoltaic tiles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772484B2 (en) * 2004-06-01 2010-08-10 Konarka Technologies, Inc. Photovoltaic module architecture
US7777128B2 (en) 2004-06-01 2010-08-17 Konarka Technologies, Inc. Photovoltaic module architecture
US7781672B2 (en) 2004-06-01 2010-08-24 Konarka Technologies, Inc. Photovoltaic module architecture
US7829781B2 (en) 2004-06-01 2010-11-09 Konarka Technologies, Inc. Photovoltaic module architecture
DE102006035626A1 (en) * 2006-07-31 2008-02-07 Zentrum für Material- und Umwelttechnik GmbH Method for attaching a connection conductor to a photovoltaic solar cell
DE102007052971A1 (en) 2007-11-07 2009-06-10 Solarion Ag Contacting and module interconnection of thin-film solar cells on polymeric substrates
WO2009133688A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2009289735A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric conversion element, photoelectric conversion element manufactured thereby, manufacturing method for photoelectric conversion element module, and photoelectric conversion element module manufactured thereby
AU2009241138B2 (en) * 2008-04-28 2012-02-02 Fujikura Ltd. Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2010198834A (en) * 2009-02-24 2010-09-09 Fujikura Ltd Method for manufacturing photoelectric conversion element module
CN102714249A (en) * 2009-05-18 2012-10-03 太阳离子股份公司 Arrangement and circuit, and method for interconnecting flat solar cells
CN110246919A (en) * 2012-02-15 2019-09-17 奥塔装置公司 Photovoltaic module and its manufacturing process comprising lapping photovoltaic tiles

Also Published As

Publication number Publication date
JP3024367B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US6531653B1 (en) Low cost high solar flux photovoltaic concentrator receiver
US5580509A (en) Method for electrically contacting thin-film solar modules
EP1811576B1 (en) Photovoltaic module
US4542258A (en) Bus bar interconnect for a solar cell
JP4024161B2 (en) Manufacturing method of solar cell module
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
JP3448924B2 (en) Method for manufacturing thin-film solar cell module
US6133521A (en) Solar battery output section and its method of manufacture
JP3747096B2 (en) Solar cell module and manufacturing method thereof
JP2001077385A (en) Thin film solar cell module and its manufacturing method
JPH07202241A (en) Solar battery, mounting method and manufacture thereof
JPH07231015A (en) Semiconductor device and its manufacture
JPH02181475A (en) Solar battery cell and manufacture thereof
JP4958525B2 (en) Solar cell module and method for manufacturing solar cell module
JP3024367B2 (en) Method of manufacturing solar cell device
GB2107928A (en) Solar cell assembly
JPH05259487A (en) Manufacture of solar cell
JP2004031646A (en) Solar cell module
WO2014132282A1 (en) Solar cell module
JP2003133570A (en) Method of manufacturing solar battery module
JPH07263733A (en) Thin film photoelectric conversion device and manufacture thereof
JPH08264819A (en) Semiconductor device and manufacturing method thereof
JP2004079823A (en) Sealing structure, solar cell module using the same, sealing method and the same for solar cell module
JPH07263738A (en) Thin-film solar cell module
JP3111813B2 (en) Method for manufacturing flexible solar cell module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees