JP2003133570A - Method of manufacturing solar battery module - Google Patents

Method of manufacturing solar battery module

Info

Publication number
JP2003133570A
JP2003133570A JP2001326347A JP2001326347A JP2003133570A JP 2003133570 A JP2003133570 A JP 2003133570A JP 2001326347 A JP2001326347 A JP 2001326347A JP 2001326347 A JP2001326347 A JP 2001326347A JP 2003133570 A JP2003133570 A JP 2003133570A
Authority
JP
Japan
Prior art keywords
solar cell
lead wire
module
manufacturing
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001326347A
Other languages
Japanese (ja)
Inventor
Shinji Hayashi
伸二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP2001326347A priority Critical patent/JP2003133570A/en
Publication of JP2003133570A publication Critical patent/JP2003133570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a solar battery module which assures connection work between internal leads and solar cells in a comparatively lower working temperature where there is no deformation and no change of color of substrate and enables automatic work and reduction in cost. SOLUTION: In the solar battery module where a solar battery 1 connecting in series or parallel a plurality of solar cells between a surface protective member 2 and a rear surface protective member 3 is sealed with an adhesive resin sealing material 4 and the internal lead wire 12 of the solar battery is electrically connected with an external lead wire, a conductive bonding agent 14 is applied by a printing process in a predetermined pattern to a part connecting the solar battery 1 and the internal lead wire 12. Thereafter, the internal lead wire 12 is bonded to a print-coated surface and both the conductive bonding agent 14 and the adhesive resin sealing material 4 are heated for being cured with a simultaneous heating process for simultaneously fixing by bonding and resin-sealing the solar battery 1 and internal lead wire 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、太陽電池モジユ
ールの製造方法、特に薄膜太陽電池と内部リード線との
接続方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solar cell module, and more particularly to a method for connecting a thin film solar cell and an internal lead wire.

【0002】[0002]

【従来の技術】同一基板上に形成された複数の太陽電池
素子が、直列接続されてなる太陽電池(光電変換装置)
の代表例は、薄膜太陽電池である。
2. Description of the Related Art A solar cell (photoelectric conversion device) in which a plurality of solar cell elements formed on the same substrate are connected in series.
A typical example of is a thin film solar cell.

【0003】薄膜太陽電池は、薄型で軽量、製造コスト
の安さ、大面積化が容易であることなどから、今後の太
陽電池の主流となると考えられ、電力供給用以外に、建
物の屋根や窓などにとりつけて利用される業務用,一般
住宅用にも需要が広がってきている。一般住宅用とし
て、太陽電池付き屋根瓦なども開発されている。
Thin-film solar cells are considered to become the mainstream of solar cells in the future because they are thin and lightweight, have low manufacturing costs, and can easily be made large in area. In addition to supplying power, roofs and windows of buildings are also considered. Demand is also expanding for commercial and residential use, which are used by attaching to such things. Roof tiles with solar cells have also been developed for general housing.

【0004】近年では、プラスチックフィルムを用いた
フレキシブルタイプの太陽電池の研究開発がすすめられ
ており、このフレキシブル性を生かし、ロールツーロー
ル方式やステップロール方式の製造方法により大量生産
が可能となっている。
In recent years, research and development of a flexible solar cell using a plastic film has been promoted, and by utilizing this flexibility, mass production becomes possible by a roll-to-roll system or a step roll system manufacturing method. There is.

【0005】上記薄膜太陽電池モジュールとして、電気
絶縁性を有するフィルム基板上に形成された太陽電池
を、電気絶縁性の保護材により封止するために、太陽電
池の受光面側および非受光面側の双方に保護層を設けた
ものが知られている。
As the above-mentioned thin film solar cell module, in order to seal a solar cell formed on an electrically insulating film substrate with an electrically insulating protective material, a light receiving surface side and a non-light receiving surface side of the solar cell are provided. It is known that a protective layer is provided on both sides.

【0006】図5は、従来の太陽電池モジュールの構造
の一例の模式的側断面図を示す。
FIG. 5 is a schematic side sectional view showing an example of the structure of a conventional solar cell module.

【0007】図5において、太陽電池1は、複数個の太
陽電池素子が直列または並列接続されており、その受光
面側にガラス板などの表面保護部材2、裏面側に金属箔
入り樹脂、例えばアルミ箔の両面に一弗化エチレンを接
着してなる裏面保護部材3が設けられ、接着封止性に優
れかつ安価なEVA(エチレン−酢酸ビニル共重合樹
脂)などの接着性樹脂封止材4により熱融着封止されて
いる。
In FIG. 5, a solar cell 1 has a plurality of solar cell elements connected in series or in parallel, a light-receiving surface side of which is a surface protection member 2 such as a glass plate, and a back surface side of which is a resin containing metal foil, for example. Adhesive resin encapsulant 4 such as EVA (ethylene-vinyl acetate copolymer resin), which is provided with a back surface protection member 3 formed by adhering ethylene monofluoride on both sides of an aluminum foil and has excellent adhesive encapsulation and is inexpensive Is heat-sealed and sealed.

【0008】また太陽電池1は、そのプラス(+)極とマ
イナス(−)極に、内部リード線の引き出し線5、6が電
気的に接続され、この内部リード線の引き出し線5、6
は、裏面保護部材3に接着固定された接続端子ボックス
7に、裏面保護部材3を貫通して導かれ、接続端子ボッ
クス7の内部で外部リード線としてのケーブル8の芯線
9、10と電気接続され、これら全体として太陽電池モ
ジュール11を形成している。
Further, in the solar cell 1, the lead wires 5 and 6 of the internal lead wires are electrically connected to the plus (+) pole and the minus (−) pole thereof, and the lead wires 5 and 6 of the internal lead wires are connected.
Is guided through the back surface protection member 3 to the connection terminal box 7 that is adhesively fixed to the back surface protection member 3, and is electrically connected to the core wires 9 and 10 of the cable 8 as an external lead wire inside the connection terminal box 7. The solar cell module 11 is formed as a whole.

【0009】なお、前記表面保護部材2としては、ガラ
ス板などの無機系材料の外に、透明アクリル板などの有
機系材料を用いることもある。また、裏面保護部材3と
しては、上記金属箔入り樹脂以外に、フッ素系フィルム
などの有機系フィルム単体、有機系フィルムと金属箔を
貼り合せた複合材料、もしくは金属板やガラス板などの
金属・無機系材料を用いることもある。
As the surface protection member 2, in addition to an inorganic material such as a glass plate, an organic material such as a transparent acrylic plate may be used. Further, as the back surface protecting member 3, in addition to the resin containing the metal foil, a single organic film such as a fluorine-based film, a composite material obtained by bonding an organic film and a metal foil, or a metal such as a metal plate or a glass plate. Inorganic materials may also be used.

【0010】図3および図4は、表面保護部材と裏面保
護部材との間に、複数個の太陽電池素子を直列または並
列接続した太陽電池を接着性樹脂封止材により封止して
なる太陽電池モジュールに関し、この発明の説明の便宜
上、前記太陽電池と内部リード線とを接続する部分に着
目した模式的構成図を示し、図3は、内部リード線部分
の平面図、図4は図3におけるA−A断面を含む太陽電
池モジュールの部分側断面図を示す。
FIG. 3 and FIG. 4 show a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a front surface protection member and a back surface protection member and are sealed with an adhesive resin sealing material. Regarding the battery module, for convenience of explanation of the present invention, a schematic configuration diagram focusing on a portion connecting the solar cell and the internal lead wire is shown. FIG. 3 is a plan view of the internal lead wire portion, and FIG. FIG. 4 is a partial side sectional view of the solar cell module including the AA cross section in FIG.

【0011】図3および図4において、図5に示す太陽
電池モジュールと同一機能部材には、同一番号を付して
詳細説明を省略する。図3および図4に示す太陽電池モ
ジュールは、複数個の太陽電池素子1aが直列に接続さ
れ、内部リード線12が端部の太陽電池素子1aに接続
されて引き出される典型的な構成を示している。然し
て、複数個の太陽電池素子1aからなる太陽電池1と内
部リード線12との接続体の上下面には、それぞれ接着
性樹脂封止材4を介して、表面保護部材2と裏面保護部
材3とが設けられている。
3 and 4, the same functional members as those of the solar cell module shown in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted. The solar cell module shown in FIG. 3 and FIG. 4 shows a typical configuration in which a plurality of solar cell elements 1a are connected in series and the internal lead wire 12 is connected to the solar cell element 1a at the end and pulled out. There is. However, the front surface protection member 2 and the back surface protection member 3 are provided on the upper and lower surfaces of the connected body of the solar cell 1 composed of a plurality of solar cell elements 1a and the internal lead wire 12 via the adhesive resin sealing material 4, respectively. And are provided.

【0012】太陽電池素子1と内部リード線12との電
気的接続は、通常、はんだ付けまたは導電性粘着テープ
により行なわれる。なお、内部リード線12の形状や個
数、ならびに太陽電池モジュール全体における配置等
は、太陽電池モジュールに対する要求仕様によって異な
り、かならずしも図3および図4に示すような単純な構
成とは限らない。しかしながら、要求仕様が決まれば、
前記電気的接続部分は、通常、所定のパターンを備え
る。
The electrical connection between the solar cell element 1 and the internal lead wire 12 is usually made by soldering or a conductive adhesive tape. The shape and number of the internal lead wires 12 and the arrangement in the entire solar cell module differ depending on the required specifications for the solar cell module, and are not always the simple configurations shown in FIGS. 3 and 4. However, if the required specifications are decided,
The electrical connection portion usually has a predetermined pattern.

【0013】[0013]

【発明が解決しようとする課題】ところで、前記太陽電
池素子と内部リード線との電気的接続は、通常、手作業
で行なわれており、作業効率が悪く品質上も問題があ
り、製造コストの増大要因の1つとなっている。
By the way, the electrical connection between the solar cell element and the internal lead wire is usually performed manually, resulting in poor work efficiency and poor quality, which results in low manufacturing cost. It is one of the increasing factors.

【0014】太陽電池素子の電極と内部リード線の接続
にハンダ付けを使用する場合、自動化のためには、電子
機器のプリント回路基板表面実装技術にみられるよう
に、スクリーン印刷法を用いてハンダペーストを太陽電
池素子の電極に塗布しておき、内部リード線を接着して
加熱溶着する方法が考えられる。
When soldering is used to connect the electrodes of the solar cell element and the internal lead wires, for automation, the soldering is performed by using the screen printing method as seen in the printed circuit board surface mounting technology of electronic equipment. A method is considered in which the paste is applied to the electrodes of the solar cell element and the internal lead wires are adhered and heat-welded.

【0015】しかしながら、可撓性基板としてプラスチ
ックフィルムを用いるフレキシブルなa‐Si太陽電池
の場合、その基板の融点が低く、はんだ付けの際に必要
な300℃近い温度の熱によって、基板の変形ないし変
色が発生し、外観上および特性上の問題が生ずる。これ
を避けるためには、例えば局所的な加熱を行うためのレ
ーザハンダ付けやパルスヒート式ハンダ付け等の特殊な
設備が必要となるが、コスト高となる。
However, in the case of a flexible a-Si solar cell using a plastic film as the flexible substrate, the melting point of the substrate is low, and the substrate is not deformed or deformed by the heat of about 300 ° C. necessary for soldering. Discoloration occurs, causing problems in appearance and characteristics. In order to avoid this, special equipment such as laser soldering or pulse heat soldering for performing local heating is required, but the cost becomes high.

【0016】また、前記導電性粘着テープを使用する方
法は、内部リード線と太陽電池素子の電極との接続の際
の温度を下げる手段としては有効であるものの、導電性
粘着テープはハンドリング性が悪く自動化が困難であ
る。
Although the method using the conductive adhesive tape is effective as a means for lowering the temperature at the time of connecting the internal lead wire and the electrode of the solar cell element, the conductive adhesive tape is not easy to handle. Bad and difficult to automate.

【0017】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、内部リード
線と太陽電池素子との接続作業が、基板の変形ないし変
色がない比較的低い作業温度レベルで可能であって、作
業の自動化と低コスト化とを可能とする太陽電池モジュ
ールの製造方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to compare the internal lead wire and the solar cell element without deformation or discoloration of the substrate. An object of the present invention is to provide a method for manufacturing a solar cell module, which can be performed at an extremely low working temperature level and can be automated and cost-effective.

【0018】[0018]

【課題を解決するための手段】前述の課題を解決するた
め、この発明においては、表面保護部材と裏面保護部材
との間に、複数個の太陽電池素子を直列または並列接続
した太陽電池を接着性樹脂封止材により封止してなり、
前記太陽電池の内部リード線を、外部リード線に電気的
に接続してなる太陽電池モジュールの製造方法におい
て、前記太陽電池と内部リード線とを接続する部分に、
導電性接着剤を所定のパターンに印刷塗布した後、この
印刷塗布面に内部リード線を接着し、前記導電性接着剤
と接着性樹脂封止材とを、同時加熱処理工程にて加熱硬
化することにより、太陽電池と内部リード線とを、接着
固定と同時に封止する(請求項1の発明)。
In order to solve the above-mentioned problems, in the present invention, a solar cell having a plurality of solar cell elements connected in series or in parallel is bonded between a front surface protection member and a back surface protection member. It is sealed with a resin sealant,
An inner lead wire of the solar cell, in a method for manufacturing a solar cell module electrically connected to an outer lead wire, in a portion connecting the solar cell and the inner lead wire,
After a conductive adhesive is printed and applied in a predetermined pattern, an internal lead wire is adhered to the printed surface, and the conductive adhesive and the adhesive resin encapsulant are heated and cured in the simultaneous heat treatment step. As a result, the solar cell and the internal lead wire are sealed at the same time as being fixed by adhesion (the invention of claim 1).

【0019】上記製造方法により、導電性接着剤の所定
パターンの形成が印刷塗布により自動化可能となり、ま
た、面内部リード線の接続固定の工程とモジュールの樹
脂封止工程とを、同時に行なうことが可能となって工程
が短縮するので、全体として、作業の自動化と低コスト
化が図れる。
According to the above-mentioned manufacturing method, the formation of the predetermined pattern of the conductive adhesive can be automated by printing and the step of connecting and fixing the in-plane lead wire and the resin sealing step of the module can be simultaneously performed. Since it becomes possible and the process is shortened, the work can be automated and the cost can be reduced as a whole.

【0020】さらに、ハンドリングを容易にしかつ作業
の自動化をより向上させて低コスト化を図る観点から、
下記請求項2の発明が好ましい。即ち、表面保護部材と
裏面保護部材との間に、複数個の太陽電池素子を直列ま
たは並列接続した太陽電池を接着性樹脂封止材により封
止してなり、前記太陽電池の内部リード線を、外部リー
ド線に電気的に接続してなる太陽電池モジュールの製造
方法において、予め、前記表面保護部材と接着性樹脂封
止材および太陽電池とを順次重ねて一体化し、太陽電池
表面の内部リード線接続部分に、導電性接着剤を所定の
パターンに印刷塗布してなる第1のサブモジュールと、
さらに、前記裏面保護部材と接着性樹脂封止材および内
部リード線とを順次重ねて一体化してなる第2のサブモ
ジュールとを作成し、前記第1のサブモジュールと第2
のサブモジュールとを重ねた後、前記導電性接着剤と接
着性樹脂封止材とを、同時加熱処理工程にて加熱硬化す
ることにより、太陽電池と内部リード線とを、接着固定
と同時に封止する(請求項2の発明)。
Further, from the viewpoint of facilitating the handling and improving the automation of the work to reduce the cost,
The invention of claim 2 is preferable. That is, between the front surface protection member and the back surface protection member, a solar cell in which a plurality of solar cell elements are connected in series or in parallel is sealed with an adhesive resin sealing material, and an internal lead wire of the solar cell is formed. In the method for manufacturing a solar cell module electrically connected to an external lead wire, the surface protection member, the adhesive resin encapsulant, and the solar cell are sequentially stacked in advance and integrated, and an internal lead on the surface of the solar cell is formed. A first sub-module in which a conductive adhesive is printed and applied in a predetermined pattern on the line connecting portion,
Further, a second sub-module in which the back surface protection member, the adhesive resin sealing material, and the internal lead wire are sequentially overlapped and integrated is created, and the first sub-module and the second sub-module are formed.
Then, the solar cell and the internal lead wires are sealed at the same time as the adhesive fixing by heating and curing the conductive adhesive and the adhesive resin encapsulant in the simultaneous heat treatment step. Stop (the invention of claim 2).

【0021】前記請求項1または2の発明の実施態様と
しては、下記請求項3ないし5の発明が好ましい。即
ち、請求項1または2に記載の製造方法において、前記
導電性接着剤の印刷塗布は、スクリーン印刷法による
(請求項3の発明)。この発明によれば、前記導電性接
着剤の印刷塗布作業が容易となる。
As an embodiment of the invention of claim 1 or 2, the inventions of claims 3 to 5 below are preferable. That is, in the manufacturing method according to claim 1 or 2, the conductive coating of the conductive adhesive is performed by screen printing (the invention of claim 3). According to this invention, the print application work of the conductive adhesive is facilitated.

【0022】また、請求項1ないし3のいずれかに記載
の製造方法において、前記導電性接着剤は、エポキシ樹
脂を接着成分とし、銀または銅を導電性フィラーとする
(請求項4の発明)。この発明によれば、前記導電性接
着剤は、例えばEVAなどの接着性樹脂封止材の封止処
理条件で加熱硬化でき、また、硬化後の比抵抗を十分小
さくすることができる。上記加熱硬化温度や比抵抗に関
わり、下記請求項5の発明が好適である。即ち、請求項
1ないし4のいずれかに記載の製造方法において、前記
導電性接着剤は、抵抗率を10-4Ω・cm以下とし、硬
化温度を100〜150℃とする。
Further, in the manufacturing method according to any one of claims 1 to 3, the conductive adhesive comprises an epoxy resin as an adhesive component and silver or copper as a conductive filler (invention of claim 4). . According to the present invention, the conductive adhesive can be heat-cured under the sealing treatment condition of the adhesive resin sealing material such as EVA, and the specific resistance after curing can be sufficiently reduced. The invention of claim 5 below is suitable for the heat curing temperature and the specific resistance. That is, in the manufacturing method according to any one of claims 1 to 4, the conductive adhesive has a resistivity of 10 -4 Ω · cm or less and a curing temperature of 100 to 150 ° C.

【0023】[0023]

【発明の実施の形態】図面に基づき、本発明の実施例に
ついて以下に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1および図2は、この発明の太陽電池モ
ジュールの製造方法を説明する模式的構成図を示し、図
1は太陽電池モジュールを、予め前記2つの太陽電池サ
ブモジュールを製作後に組み立てて製造する方法を説明
する側断面図、図2は導電性接着剤のスクリーン印刷工
程を説明する太陽電池サブモジュールの側断面図であ
る。図1および図2において、図3ないし5に示す太陽
電池モジュールの各部材と同一機能を有する部材には、
同一番号を付して詳細説明を省略する。
FIGS. 1 and 2 are schematic structural views for explaining a method for manufacturing a solar cell module according to the present invention. FIG. 1 shows a solar cell module assembled in advance after the two solar cell submodules have been manufactured. FIG. 2 is a side sectional view illustrating a method of manufacturing, and FIG. 2 is a side sectional view of a solar cell sub-module illustrating a screen printing process of a conductive adhesive. In FIGS. 1 and 2, members having the same functions as those of the solar cell module shown in FIGS.
The same numbers are assigned and detailed description is omitted.

【0025】図1に示す太陽電池モジュールは、図1
(a)に示すように、予め、表面保護部材2と接着性樹
脂封止材4および太陽電池1とを順次重ねて一体化し、
太陽電池表面の内部リード線接続部分に、導電性接着剤
14を所定のパターンに印刷塗布してなる第1のサブモ
ジュール21と、さらに、図1(b)に示すように、裏
面保護部材3と接着性樹脂封止材4および内部リード線
12とを順次重ねて一体化してなる第2のサブモジュー
ル22とを作成し、前記第1のサブモジュール21と第
2のサブモジュール22とを重ねた後、前記導電性接着
剤14と接着性樹脂封止材4とを、同時加熱処理工程に
て加熱硬化することにより、太陽電池1と内部リード線
12とを接着固定すると同時に樹脂封止することにより
製造される。なお、接着性樹脂封止材4としては、EV
Aを用いる。
The solar cell module shown in FIG.
As shown in (a), the surface protection member 2, the adhesive resin sealing material 4, and the solar cell 1 are sequentially stacked in advance and integrated,
A first sub-module 21 obtained by printing and applying a conductive adhesive 14 in a predetermined pattern on the internal lead wire connecting portion on the surface of the solar cell, and further, as shown in FIG. And the adhesive resin sealing material 4 and the internal lead wire 12 are sequentially stacked to form a second sub-module 22, and the first sub-module 21 and the second sub-module 22 are stacked. After that, the conductive adhesive 14 and the adhesive resin encapsulant 4 are heat-cured in the simultaneous heat treatment step, so that the solar cell 1 and the inner lead wire 12 are adhesively fixed and simultaneously resin-encapsulated. It is manufactured by In addition, as the adhesive resin sealing material 4, EV
A is used.

【0026】太陽電池1と内部リード線12との接着面
としての導電性接着剤のパターンは、図2に示すよう
に、導電性接着剤をスクリーン印刷法により塗布して形
成する。即ち、導電性接着剤母材14aを乗せたスクリ
ーンマスク30を、太陽電池素子1の電極部分に重ね、
スキージ(へら)31で導電性接着剤母材14aを押し
つけながらスキージ31を移動し、マスク開口部30a
を通過させることにより、電極上に導電性接着剤母材1
4aを塗布する。これにより、内部リード線の接着面に
対向する部分のみに導電性接着剤14を形成することが
できる。
As shown in FIG. 2, the pattern of the conductive adhesive as the bonding surface between the solar cell 1 and the internal lead wire 12 is formed by applying the conductive adhesive by the screen printing method. That is, the screen mask 30 on which the conductive adhesive base material 14a is placed is laid on the electrode portion of the solar cell element 1,
The squeegee 31 moves the squeegee 31 while pressing the conductive adhesive base material 14a with the squeegee 31 to open the mask opening 30a.
Of the conductive adhesive base material 1 on the electrode by passing
Apply 4a. As a result, the conductive adhesive 14 can be formed only on the portion of the inner lead wire that faces the bonding surface.

【0027】導電性接着剤は、スクリーン印刷に適した
粘度を持っていること、加熱して硬化すること、硬化後
の抵抗率が十分低いことが望ましい。これに適したもの
としては、導電性成分に銀または銅のフィラーを用い、
接着成分にエポキシ樹脂を用いた熱硬化性導電性接着剤
がある。ニホンハンダ株式会社製のNH−070Aは、
銀のフィラーを用いた好適な例である。この導電性接着
剤は、印刷性がよく、硬化後の抵抗率は5×10-5Ω・
cmである。また、150℃10分で硬化し、接着性樹
脂封止材としてのEVAによる封止の条件の150℃1
5分と同等であるため、同一加熱工程で処理できる。
It is desirable that the conductive adhesive have a viscosity suitable for screen printing, be cured by heating, and have a sufficiently low resistivity after curing. Suitable for this is to use silver or copper filler as the conductive component,
There is a thermosetting conductive adhesive that uses an epoxy resin as an adhesive component. NH-070A manufactured by Nihon Handa Co., Ltd.
This is a preferable example using a silver filler. This conductive adhesive has good printability and has a resistivity of 5 × 10 -5 Ω after curing.
cm. Further, it is cured at 150 ° C. for 10 minutes, and is 150 ° C. under the condition of sealing with EVA as an adhesive resin sealing material.
Since it is equivalent to 5 minutes, it can be processed in the same heating step.

【0028】前述のように、第1のサブモジュール21
と第2のサブモジュール22とを治具を用いて重ねた
後、前記導電性接着剤14と接着性樹脂封止材4とを、
同時加熱処理工程にて加熱硬化することにより、工程の
短縮化および自動化が容易となり、製造コストが低減で
きる。
As mentioned above, the first sub-module 21
And the second sub-module 22 are stacked using a jig, and then the conductive adhesive 14 and the adhesive resin sealing material 4 are
By heat-curing in the simultaneous heat treatment step, the steps can be shortened and automated easily, and the manufacturing cost can be reduced.

【0029】[0029]

【発明の効果】この発明によれば前述のように、表面保
護部材と裏面保護部材との間に、複数個の太陽電池素子
を直列または並列接続した太陽電池を接着性樹脂封止材
により封止してなり、前記太陽電池の内部リード線を、
外部リード線に電気的に接続してなる太陽電池モジュー
ルの製造方法において、前記太陽電池と内部リード線と
を接続する部分に、導電性接着剤を所定のパターンに印
刷塗布した後、この印刷塗布面に内部リード線を接着
し、前記導電性接着剤と接着性樹脂封止材とを、同時加
熱処理工程にて加熱硬化することにより、太陽電池と内
部リード線とを、接着固定と同時に封止すること(請求
項1の発明)とし、あるいは、予め、前記表面保護部材
と接着性樹脂封止材および太陽電池とを順次重ねて一体
化し、太陽電池表面の内部リード線接続部分に、導電性
接着剤を所定のパターンに印刷塗布してなる第1のサブ
モジュールと、さらに、前記裏面保護部材と接着性樹脂
封止材および内部リード線とを順次重ねて一体化してな
る第2のサブモジュールとを作成し、前記第1のサブモ
ジュールと第2のサブモジュールとを重ねた後、前記導
電性接着剤と接着性樹脂封止材とを、同時加熱処理工程
にて加熱硬化することにより、太陽電池と内部リード線
とを、接着固定と同時に封止すること(請求項2の発
明)としたことにより、内部リード線と太陽電池素子と
の接続作業を、基板の変形ないし変色がない比較的低い
作業温度レベルで可能ならしめ、作業の自動化と低コス
ト化を図ることができる。
As described above, according to the present invention, a solar cell having a plurality of solar cell elements connected in series or in parallel is sealed by an adhesive resin sealing material between the front surface protection member and the back surface protection member. Stop the internal lead wires of the solar cell,
In a method for manufacturing a solar cell module electrically connected to an external lead wire, a conductive adhesive is printed and applied in a predetermined pattern on a portion connecting the solar cell and the internal lead wire, and then this print application is performed. The inner lead wire is adhered to the surface, and the conductive adhesive and the adhesive resin encapsulant are heat-cured in the simultaneous heat treatment step to seal the solar cell and the inner lead wire at the same time as adhesive fixing. Alternatively, the surface protection member, the adhesive resin encapsulant, and the solar cell are sequentially stacked in advance and integrated, and the inner lead wire connecting portion on the surface of the solar cell is electrically conductive. First sub-module obtained by printing and applying a conductive adhesive in a predetermined pattern, and a second sub-module in which the back surface protecting member, the adhesive resin encapsulant, and the inner lead wire are sequentially laminated and integrated. By stacking the first sub-module and the second sub-module on top of each other, and then heat-curing the conductive adhesive and the adhesive resin sealing material in the simultaneous heat treatment step. Since the solar cell and the internal lead wire are sealed at the same time as the adhesive fixing and fixing (the invention of claim 2), the connection work between the internal lead wire and the solar cell element does not cause deformation or discoloration of the substrate. If possible at a relatively low working temperature level, automation of work and cost reduction can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に関わり、太陽電池モジュール
を2つの太陽電池サブモジュールから組み立てて製造す
る方法を説明する模式的構成の側断面図
FIG. 1 is a side sectional view of a schematic configuration illustrating a method for assembling and manufacturing a solar cell module from two solar cell submodules according to an embodiment of the present invention.

【図2】本発明の実施例に関わり、導電性接着剤のスク
リーン印刷工程を説明する太陽電池サブモジュールの側
断面図
FIG. 2 is a side sectional view of a solar cell submodule illustrating a screen printing process of a conductive adhesive according to an embodiment of the present invention.

【図3】太陽電池と内部リード線とを接続する部分に着
目した従来の太陽電池モジュールの模式的構成の平面図
FIG. 3 is a plan view of a schematic configuration of a conventional solar cell module focusing on a portion connecting a solar cell and an internal lead wire.

【図4】図3におけるA−A断面を含む太陽電池モジュ
ールの部分側断面図
FIG. 4 is a partial side cross-sectional view of the solar cell module including the AA cross section in FIG.

【図5】従来の太陽電池モジュールの一例を示す模式的
構成の側断面図
FIG. 5 is a side sectional view of a schematic configuration showing an example of a conventional solar cell module.

【符号の説明】[Explanation of symbols]

1:太陽電池、1a:太陽電池素子、2:表面保護部
材、3:裏面保護部材、4:接着性樹脂封止材、12:
内部リード線、14:導電性接着剤、14a:導電性接
着剤母材、21:第1のサブモジュール、22:第2の
サブモジュール、30:スクリーンマスク、30a:マ
スク開口部、31:スキージ。
1: solar cell, 1a: solar cell element, 2: front surface protection member, 3: back surface protection member, 4: adhesive resin sealing material, 12:
Internal lead wire, 14: conductive adhesive, 14a: conductive adhesive base material, 21: first submodule, 22: second submodule, 30: screen mask, 30a: mask opening, 31: squeegee .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面保護部材と裏面保護部材との間に、
複数個の太陽電池素子を直列または並列接続した太陽電
池を接着性樹脂封止材により封止してなり、前記太陽電
池の内部リード線を、外部リード線に電気的に接続して
なる太陽電池モジュールの製造方法において、 前記太陽電池と内部リード線とを接続する部分に、導電
性接着剤を所定のパターンに印刷塗布した後、この印刷
塗布面に内部リード線を接着し、 前記導電性接着剤と接着性樹脂封止材とを、同時加熱処
理工程にて加熱硬化することにより、太陽電池と内部リ
ード線とを、接着固定と同時に封止することを特徴とす
る太陽電池モジュールの製造方法。
1. Between the front surface protection member and the back surface protection member,
A solar cell in which a solar cell in which a plurality of solar cell elements are connected in series or in parallel is sealed with an adhesive resin sealing material, and an inner lead wire of the solar cell is electrically connected to an outer lead wire. In the method for manufacturing a module, a conductive adhesive is printed and applied in a predetermined pattern on a portion connecting the solar cell and the internal lead wire, and then the internal lead wire is adhered to the print applied surface, and the conductive adhesive is applied. A method for manufacturing a solar cell module, characterized in that a solar cell and an internal lead wire are sealed at the same time as adhesive fixing by heat-curing an agent and an adhesive resin sealing material in a simultaneous heat treatment step. .
【請求項2】 表面保護部材と裏面保護部材との間に、
複数個の太陽電池素子を直列または並列接続した太陽電
池を接着性樹脂封止材により封止してなり、前記太陽電
池の内部リード線を、外部リード線に電気的に接続して
なる太陽電池モジュールの製造方法において、 予め、前記表面保護部材と接着性樹脂封止材および太陽
電池とを順次重ねて一体化し、太陽電池表面の内部リー
ド線接続部分に、導電性接着剤を所定のパターンに印刷
塗布してなる第1のサブモジュールと、さらに、前記裏
面保護部材と接着性樹脂封止材および内部リード線とを
順次重ねて一体化してなる第2のサブモジュールとを作
成し、 前記第1のサブモジュールと第2のサブモジュールとを
重ねた後、前記導電性接着剤と接着性樹脂封止材とを、
同時加熱処理工程にて加熱硬化することにより、太陽電
池と内部リード線とを、接着固定と同時に封止すること
を特徴とする太陽電池モジュールの製造方法。
2. Between the front surface protection member and the back surface protection member,
A solar cell in which a solar cell in which a plurality of solar cell elements are connected in series or in parallel is sealed with an adhesive resin sealing material, and an inner lead wire of the solar cell is electrically connected to an outer lead wire. In the method for manufacturing a module, in advance, the surface protection member, the adhesive resin encapsulant, and the solar cell are sequentially overlapped and integrated, and a conductive adhesive is formed into a predetermined pattern on the inner lead wire connection portion of the solar cell surface. A first sub-module formed by printing and coating, and a second sub-module formed by sequentially superimposing the back surface protecting member, the adhesive resin sealing material, and the internal lead wire on each other to form an integrated body, After stacking the first sub-module and the second sub-module, the conductive adhesive and the adhesive resin sealing material,
A method of manufacturing a solar cell module, wherein the solar cell and the internal lead wire are sealed at the same time as adhesive fixing by heat curing in a simultaneous heat treatment step.
【請求項3】 請求項1または2に記載の製造方法にお
いて、前記導電性接着剤の印刷塗布は、スクリーン印刷
法によることを特徴とする太陽電池モジュールの製造方
法。
3. The method for manufacturing a solar cell module according to claim 1, wherein the conductive adhesive is applied by printing by a screen printing method.
【請求項4】 請求項1ないし3のいずれかに記載の製
造方法において、前記導電性接着剤は、エポキシ樹脂を
接着成分とし、銀または銅を導電性フィラーとすること
を特徴とする太陽電池モジュールの製造方法。
4. The solar cell according to claim 1, wherein the conductive adhesive contains an epoxy resin as an adhesive component and silver or copper as a conductive filler. Module manufacturing method.
【請求項5】 請求項1ないし4のいずれかに記載の製
造方法において、前記導電性接着剤は、抵抗率を10-4
Ω・cm以下とし、硬化温度を100〜150℃とする
ことを特徴とする太陽電池モジュールの製造方法。
5. The manufacturing method according to claim 1, wherein the conductive adhesive has a resistivity of 10 −4.
A method for manufacturing a solar cell module, which comprises: Ω · cm or less and a curing temperature of 100 to 150 ° C.
JP2001326347A 2001-10-24 2001-10-24 Method of manufacturing solar battery module Pending JP2003133570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326347A JP2003133570A (en) 2001-10-24 2001-10-24 Method of manufacturing solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326347A JP2003133570A (en) 2001-10-24 2001-10-24 Method of manufacturing solar battery module

Publications (1)

Publication Number Publication Date
JP2003133570A true JP2003133570A (en) 2003-05-09

Family

ID=19142746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326347A Pending JP2003133570A (en) 2001-10-24 2001-10-24 Method of manufacturing solar battery module

Country Status (1)

Country Link
JP (1) JP2003133570A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011209A1 (en) * 2007-07-13 2009-01-22 Sanyo Electric Co., Ltd. Solar cell module manufacturing method
JP2011023577A (en) * 2009-07-16 2011-02-03 Hitachi Chem Co Ltd Conductive adhesive composition, connector using the same, method of manufacturing solar cell, and solar cell module
WO2011046176A1 (en) 2009-10-15 2011-04-21 日立化成工業株式会社 Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
WO2012043539A1 (en) * 2010-09-30 2012-04-05 シャープ株式会社 Thin-film solar cell and method for manufacturing thin-film solar cell
US9443995B2 (en) 2012-07-26 2016-09-13 Hitachi Chemical Company, Ltd. Solar battery cell and solar battery module
US9455359B2 (en) 2011-05-31 2016-09-27 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module and method of making solar battery module
JP2016187061A (en) * 2010-12-01 2016-10-27 デクセリアルズ株式会社 Thin film solar cell module and manufacturing method of the same
US9837560B2 (en) 2011-03-08 2017-12-05 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
EP2793275B1 (en) 2013-04-16 2020-04-08 teamtechnik Maschinen und Anlagen GmbH Application of conductive adhesive on solar cells

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011209A1 (en) * 2007-07-13 2009-01-22 Sanyo Electric Co., Ltd. Solar cell module manufacturing method
US8298363B2 (en) 2007-07-13 2012-10-30 Sanyo Electric Co., Ltd. Method of manufacturing solar cell module
JP5367569B2 (en) * 2007-07-13 2013-12-11 三洋電機株式会社 Manufacturing method of solar cell module
JP2011023577A (en) * 2009-07-16 2011-02-03 Hitachi Chem Co Ltd Conductive adhesive composition, connector using the same, method of manufacturing solar cell, and solar cell module
US8962986B2 (en) 2009-10-15 2015-02-24 Hitachi Chemical Company, Ltd. Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
WO2011046176A1 (en) 2009-10-15 2011-04-21 日立化成工業株式会社 Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
JP5875867B2 (en) * 2009-10-15 2016-03-02 日立化成株式会社 Conductive adhesive, solar cell, manufacturing method thereof, and solar cell module
JPWO2011046176A1 (en) * 2009-10-15 2013-03-07 日立化成株式会社 Conductive adhesive, solar cell, manufacturing method thereof, and solar cell module
JP2012079730A (en) * 2010-09-30 2012-04-19 Sharp Corp Thin film solar cell and method for manufacturing the same
US9040815B2 (en) 2010-09-30 2015-05-26 Sharp Kabushiki Kaisha Thin-film solar cell and method of fabricating thin-film solar cell
WO2012043539A1 (en) * 2010-09-30 2012-04-05 シャープ株式会社 Thin-film solar cell and method for manufacturing thin-film solar cell
JP2016187061A (en) * 2010-12-01 2016-10-27 デクセリアルズ株式会社 Thin film solar cell module and manufacturing method of the same
US9837560B2 (en) 2011-03-08 2017-12-05 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module, method of making solar battery cell and method of making solar battery module
US9455359B2 (en) 2011-05-31 2016-09-27 Hitachi Chemical Company, Ltd. Solar battery cell, solar battery module and method of making solar battery module
US9443995B2 (en) 2012-07-26 2016-09-13 Hitachi Chemical Company, Ltd. Solar battery cell and solar battery module
EP2793275B1 (en) 2013-04-16 2020-04-08 teamtechnik Maschinen und Anlagen GmbH Application of conductive adhesive on solar cells

Similar Documents

Publication Publication Date Title
TWI390747B (en) Photovoltaic modules manufactured using monolithic module assembly techniques
KR101476478B1 (en) Solar cell module manufacturing method
CN103474493B (en) Encapsulated layer is applied to the photovoltaic module backboard comprising back-contact battery
EP2216827A1 (en) Solar battery module and method for manufacturing solar battery module
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
WO2009148078A1 (en) Terminal box and solar cell module
JP2000068542A (en) Laminated thin film solar battery module
EP2109150A1 (en) Solar cell module, wiring member for solar cell, and method for manufacturing solar cell module
JP2014504040A (en) Photovoltaic module and method
WO2013106896A1 (en) Photovoltaic module with cell assemblies bearing adhesive for securing the assemblies in the module
JP2000286436A (en) Manufacture of output region of solar battery
JP2009302327A (en) Connection structure of wiring member, solar-battery module comprising the same, and its manufacturing method
JP2009130020A (en) Solar cell panel and method of manufacturing the same
JP2006294646A (en) Method of attaching terminal box for solar cell
JP2003133570A (en) Method of manufacturing solar battery module
JP2006310745A (en) Solar cell module and its manufacturing method
JP5089548B2 (en) Solar cell module and method for manufacturing solar cell module
JP2007201291A (en) Solar battery module and method of reproducing same
JP2010283231A (en) Solar cell module and method of manufacturing the same
WO2011099228A1 (en) Solar cell module and production method therefor
JP4461607B2 (en) Method for pulling out power leads of solar cell module
JP3605998B2 (en) Solar cell module and method of manufacturing the same
JP2004079823A (en) Sealing structure, solar cell module using the same, sealing method and the same for solar cell module
JP4883891B2 (en) Solar cell module
JP2003282922A (en) Method of manufacturing solar cell module

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061102