JP3747096B2 - Solar cell module and manufacturing method thereof - Google Patents

Solar cell module and manufacturing method thereof Download PDF

Info

Publication number
JP3747096B2
JP3747096B2 JP16389896A JP16389896A JP3747096B2 JP 3747096 B2 JP3747096 B2 JP 3747096B2 JP 16389896 A JP16389896 A JP 16389896A JP 16389896 A JP16389896 A JP 16389896A JP 3747096 B2 JP3747096 B2 JP 3747096B2
Authority
JP
Japan
Prior art keywords
solar cell
film
adhesive layer
cover film
lead wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16389896A
Other languages
Japanese (ja)
Other versions
JPH09326497A (en
Inventor
敦夫 石川
淳 竹中
正隆 近藤
英雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP16389896A priority Critical patent/JP3747096B2/en
Publication of JPH09326497A publication Critical patent/JPH09326497A/en
Application granted granted Critical
Publication of JP3747096B2 publication Critical patent/JP3747096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質太陽電池モジュール及びその製造方法に係り、特に、非晶質太陽電池の電極取り出し構成及びその組み付け方法に関するものである。
【0002】
【従来の技術】
従来、非晶質太陽電池モジュールの作製手順は以下のような方法で行われていた。先ず、絶縁ガラス基板上に透明導電膜、非晶質半導体層、裏面金属電極を順次形成し、その都度、レーザー等によりパターニングを行い、列状に並んだ複数個のユニットセルに集積化を行っていた。その後、モジュール両端の正負の電極部分に銅箔などのリード線を接触させることにより電極とし、さらに、これら電極を太陽電池の端子箱(以下、端子ボックスと言う)にリード線を用いて電気的に結線しなければならない。
【0003】
この際、リード線を太陽電池の端子ボックスまで導くには、端子ボックスが一般的にモジュールの中心線上に配置されているため、太陽電池上にリード線をはわせることになるが、これによりユニットセル(素子)間で短絡が起きると、電池特性の大幅な低下につながるため、以下の工程を必要としていた。図7にその工程を示す。先ず、太陽電池モジュール101(ガラス基板102上に形成されている半導体層等は図示を省略)上に、モジュール両端の正負の電極に接続され電極となるリード線107,108が設けられ、この両リード線の間に端子ボックスの電極取り出し部が配置される位置に対応して絶縁フィルム110を敷き、一端をリード線107,108に各々接続した2本のリード線111,112を絶縁フィルム110の上にはわせて電極とする。続いて、その上に被せられるカバーフィルム115をガラス基板102に密着させるための接着性樹脂フィルム114と、該カバーフィルム115とをそれぞれこの順序で太陽電池モジュール101上に重ねていく。このカバーフィルム115には、端子ボックスへの電極取り出しのための開口部が設けられており、リード線111,112をこの開口部を通してガラス基板102と反対側つまり太陽電池の裏面側のカバーフィルム115上に導出した状態で、真空加熱融着装置(以下、真空ラミネーターと記す)にセットし、封止工程を行っていた。
【0004】
ところで、上記カバーフィルム115は一般に水蒸気の透湿を抑えるために、三層構造となっており、内部に金属薄膜がサンドイッチされた構造となっている。このため、リード線111,112をカバーフィルム115の太陽電池の裏面側に導出するには、リード線111,112をカバーフィルム115の開口部の端面に触れないようにする工夫が必要であった。そこで、この開口部の回りを絶縁物116で覆い、リード線111,112と開口部端面とが触れないようにする工程を施していた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような従来の太陽電池モジュールの構成乃至作製方法においては、ユニットセルの完成から真空ラミネートを行うまでの工程は、数多くの煩雑な作業が必要とされ、工程での不具合は太陽電池の特性低下、あるいは発電した電流が太陽電池の外郭の金属フレームにも導通する事態も起こり得るため、極めて慎重な作業が要求されていた。
本発明は、上述した問題点を解決するためになされたものであり、煩雑で数多くの作業を簡略化し、歩留まりの向上、製造コストの低減を図った太陽電池モジュール及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、絶縁基板上に、透明導電膜層、非晶質半導体層、裏面金属層が順次形成され、複数個のユニットセルが列状に並んで集積化され、かつ前記複数個のユニットセルが接着層とカバーフィルムとにより被覆された太陽電池モジュールの製造方法において、モジュールの両端に位置する正負の電極に、前記接着層及びカバーフィルムとは異なる絶縁フィルムにより被覆されたリード線の一端を接続し、前記接着層とカバーフィルムを被せると共に該リード線の他端を前記接着層及びカバーフィルムに設けられたスリットに通し、その後、前記接着層を溶融固化させ、前記絶縁フィルムは、前記接着層の溶融固化工程において加わる温度に耐えうる耐熱性を有し、前記リード線の少なくとも前記スリットに通す部分の全面を被覆していることを特徴とするものである。
【0007】
上記構成乃至方法においては、モジュールの両端に位置する正負の電極から導出するリード線として、モジュールの封止工程における加熱温度に耐えうる耐熱性を有するフィルムにより被覆されたものを用いているので、太陽電池との接触を防ぐための絶縁フィルムの下敷が不要となり、さらには、カバーフィルムで太陽電池を覆う封止工程において、カバーフィルム中に設けられている金属箔がリード線と短絡する恐れがなくなる。そのため、従来のようにカバーフィルムに開口部を設けその回りを絶縁物で覆う煩雑な作業は必要でなくなり、僅かにカバーフィルムにリード線導出用のスリットを設けるだけでよい。
【0008】
【発明の実施の形態】
以下、本発明を具体化した実施の一形態を図面を参照して説明する。
図1は太陽電池モジュールの断面図、図2は同モジュールの端部に設けられる電極としてのリード線部分の断面図、図3は同モジュールの平面図、図4は同モジュールの部分破断斜視図である。これらの図において、非晶質太陽電池モジュール1は、ガラス基板2上に透明導電膜層3、非晶質半導体層4、裏面金属層5が順次形成され、複数個のユニットセル6が列状に並んで集積化されている。太陽光はガラス基板2側(図1では下側)から入射される。モジュール1のユニットセル6並びの両端に位置する正負の電極からリード線7,8が導出され、このリード線7,8はガラス基板2に予備ハンダ9により固定される。
【0009】
太陽電池モジュール1は、例えば、基板サイズ800mm×400mm、厚み4tのガラス基板2上に熱CVD法により透明導電膜層3を形成し、波長0.53μmのYAGレーザーの第二高調波を用いて、膜面側からスクライブし、短冊状に電気的に分離した。その後、純水で超音波洗浄を行い、透明導電膜層3が被着された面側に基板温度200℃、反応圧力0.5から1.0Torrにてモノシラン、メタン、シボランから成る混合ガス、モノシラン、水素から成る混合ガス、モノシラン、水素、ホスフィンから成る混合ガスをこの順序にて容量結合型グロー放電分解装置内で分解することにより、P型、I型、N型の非晶質半導体層4(アモルファスシリコン等)を形成する。その後、上述のレーザーによるスクライブ線より僅かにずれた位置を、透明導電膜層3にダメージがないように波長0.53μmのYAGレーザーの第二高調波をガラス面側から入射させて分離する。引き続いて、裏面金属層5としてアルミニウムをスパッタリング法により、厚み300nm形成して、これを波長0.53μmのYAGレーザーの第二高調波を用いて、透明導電膜層3のスクライブ線とは反対方向で、非晶質半導体層4のスクライブ線より僅かにずれた位置にスクライブ線を入れ、電気的に分離し集積型非晶質シリコン太陽電池を作製した。
【0010】
この太陽電池の両端に設けられる正負の取り出し電極であるリード線7,8としては、半田メッキされた銅箔を用いており、ガラス基板2との接着は超音波半田付け法により、予備半田付けされた半田9によってガラス基板2との接着を行っている。
【0011】
本発明は、太陽電池のリード線の引き回し方法、特に、太陽電池両端の電極と中間付近に配置される不図示の端子ボックスまでを接続する方法に特徴がある。以下、モジュール1の両端のリード線7,8からモジュール1の中間付近に配置される端子ボックスまで電極を導出する構成及びその組み付け工程について図5、図6を参照して説明する。図5は電極を導出するために使用されるリード線11(12)を示し、図6はその組み付けの一連の工程を示す。リード線11(12)は、端子ボックスまで導出するために必要な距離以上の長さを持ち、しかも該リード線の中央部分は、後工程においてカバーフィルムを真空ラミネートする時の加熱温度、加熱時間に耐え得る耐熱特性を有する絶縁フィルム13で挟み込んだ構造を有する。
【0012】
リード線7,8及びリード線11,12をガラス基板2上に組み付ける工程を説明すると、まず、ガラス基板2上に作製された非晶質太陽電池モジュール1の両端にリード線7,8を取り付け、次に、上記の耐熱性の高いフィルム13で覆われたリード線11,12の各一端をリード線7,8に半田付けを行う。続いて、接着性樹脂シート(接着層)14とカバーフィルム15で太陽電池を覆う。この時に、リード線11,12がフィルム13で覆われているため、このリード線11,12とカバーフィルム15内部に含まれている金属箔とが短絡する恐れがない。従って、図7に示した従来のようにカバーフィルム115に開口部を設け、その回りを絶縁物116で覆う必要はなくなり、接着性樹脂シート14及びカバーフィルム15には僅かにリード線11,12を取り出すためのスリット16を設けておくだけで十分である。この様にして、カバーフィルム15の太陽電池の裏面側にリード線11,12を導出し、その後、真空ラミネートにより太陽電池の裏面を封止する。
【0013】
上記のリード線11,12は、太陽電池の封止の観点からできるだけ厚みの薄い、接着層と同じ程度かあるいはそれ以下の厚みを持つ被覆リード線が望ましい。また、このリード線自身の断面形状はフラットな平角銅線の形状でもよいし、撚線の形状をした銅線でもよい。但し、これらのリード線は、太陽電池の電流が流れるため、この電流以上の許容電流値を有することが必要である。さらに、上記リード線11,12を覆うフィルム13は真空ラミネート工程を経ても、溶出あるいは変形等が起こらない材質が必要であり、ここで特に要求される特性はフィルム13の耐熱性である。一般的に真空ラミネート法による接着層の硬化温度は150℃前後であるため、この温度に耐え得る樹脂でなければならない。例えば耐熱ポリエステルフィルム、ポリフェニレンサルファイドフィルム、ポリイミドフィルム、ポリ塩化ビニルフィルム、ポリカーボネート、ポリフェニレンオキシド、ポリスルフォン、ポリエーテルスルフォン等が高分子材料として挙げられる。その他にはクレープ紙等が挙げられる。ただし、フィルム13は耐熱温度が封止プロセス温度以上であれば、上記樹脂に限られるものではない。これらのフィルム13を用いてリード線11,12を挟み込むか、または撚線の場合は上記樹脂で銅線を被覆すればよい。
【0014】
また、フィルム13の絶縁破壊電圧は、太陽電池発電システムから要求される値として1.5KV以上であることが望ましい。さらに好ましくは、3KV以上の破壊電圧であればよい。これらリード線11,12を作製するに当たり、特に平角導線を用いた場合は粘着剤が必要となるが、粘着剤に要求される特性は耐熱性が高いことと、電触係数が0.75以上、さらに好ましくは0.90以上であることである。
【0015】
【発明の実施の形態】
さらに、リード線11,12の実施例を図5、図6を参照して詳細に説明する。リード線11,12は、長さ140mm、幅5mmの半田メッキを施した平角銅線に対してその両端をそれぞれ3mmと20mmを残して、ポリフェニレンサルファイドを基材とするフィルム13でこの銅線を挟み込んだ。このフィルム13の幅は9mm、長さは117mmである。また、このフィルム13の絶縁破壊電圧は5KVであり、粘着剤はアクリル系の粘着剤であり、電触係数は1.0である。また、基材、粘着剤ともにこの後の真空ラミネートの工程を通過しても何ら変化はなかった。
【0016】
リード線11,12の各一方の被覆されていない長さ3mmの銅線部分を、太陽電池のガラス基板2の両端に位置する正負両方の電極であるリード線7,8に半田付けを行う。この後、端子ボックスの電極取り出し部分にスリット16の入った接着性樹脂シート14とカバーフィルム15を被せ、このスリット16部分にリード線11,12を通し、カバーフィルム上に折り返す。この様にしてできたサンプルを真空ラミネート装置にセットし、接着層を溶融固化させる。ここでは真空ラミネートの温度は145℃である。約30分後、真空ラミネート装置より取り出す。このような構成により、ガラス基板2の両端の正負の電極7,8から端子ボックスまでのリード線11,12は半田付けという工程だけになり、従来方法での工程に比べて大幅に作業時間を短縮することができる。しかも、従来の工程で必要とされたカバーフィルム115に開口部を設け、その回りを絶縁物116で保護する工程も省略することができる。その後、このサンプルにはアルミフレームを取り付け、さらに端子ボックスを取り付ける。この際、端子ボックス内の電極と該リード線11,12の被覆されていない20mmの部分を半田付けすることで太陽電池モジュールが完成する。
【0017】
【発明の効果】
以上のように本発明によれば、太陽電池モジュールの両端に位置する正負の電極から端子を導出するに、モジュール表面の封止工程における加熱温度に耐えうる耐熱性を有するフィルムにより被覆されたリード線を用いているので、カバーフィルムで太陽電池を覆うラミネート封止工程において、カバーフィルム中に設けられている金属箔がリード線と短絡する恐れがなくなる。そのため、従来のようにカバーフィルムに開口部を設けその回りを絶縁物で覆うといった多くの煩雑な作業が必要でなくなる。従って、作業工程が簡素化されると共に、太陽電池の特性低下、あるいは発電した電流が太陽電池の外郭の金属フレームに導通するといった事態が起きることがなくなり、歩留まりの向上、製造コストの低減が図れる。
【図面の簡単な説明】
【図1】本発明の実施の一形態による太陽電池モジュールの断面図である。
【図2】同モジュールの端部に設けられる電極としてのリード線部分の断面図である。
【図3】同モジュールの平面図である。
【図4】同モジュールの部分破断斜視図である。
【図5】電極を導出するために使用されるリード線の斜視図である。
【図6】リード線の組み付け工程を示す斜視図である。
【図7】従来のリード線の組み付け工程を示す斜視図である。
【符号の説明】
1 非晶質太陽電池モジュール
2 ガラス基板
3 透明導電膜層
4 非晶質半導体層
5 裏面金属層
6 ユニットセル
7,8 リード線(電極)
11,12 リード線
13 絶縁フィルム
14 接着性樹脂シート(接着層)
15 カバーフィルム
16 スリット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an amorphous solar cell module and a method for manufacturing the same, and more particularly to an electrode extraction configuration for an amorphous solar cell and a method for assembling the same.
[0002]
[Prior art]
Conventionally, a procedure for producing an amorphous solar cell module has been performed by the following method. First, a transparent conductive film, an amorphous semiconductor layer, and a back metal electrode are sequentially formed on an insulating glass substrate, and each time patterning is performed with a laser or the like, and integration is performed on a plurality of unit cells arranged in a line. It was. After that, lead wires such as copper foil are brought into contact with positive and negative electrode portions at both ends of the module, and these electrodes are further electrically connected to a solar cell terminal box (hereinafter referred to as a terminal box) using lead wires. Must be connected to.
[0003]
At this time, in order to lead the lead wire to the terminal box of the solar cell, since the terminal box is generally arranged on the center line of the module, the lead wire is put on the solar cell. When a short circuit occurs between unit cells (elements), battery characteristics are significantly deteriorated, and thus the following steps are required. FIG. 7 shows the process. First, on the solar cell module 101 (semiconductor layers and the like formed on the glass substrate 102 are not shown), lead wires 107 and 108 which are connected to positive and negative electrodes at both ends of the module and serve as electrodes are provided. The insulating film 110 is laid in correspondence with the position where the electrode lead-out part of the terminal box is arranged between the lead wires, and the two lead wires 111 and 112 having one ends connected to the lead wires 107 and 108, respectively, are connected to the insulating film 110. The electrodes are placed on top. Subsequently, an adhesive resin film 114 for closely attaching the cover film 115 placed thereon to the glass substrate 102 and the cover film 115 are stacked on the solar cell module 101 in this order. The cover film 115 is provided with an opening for taking out the electrode to the terminal box, and the lead wires 111 and 112 are passed through the opening to the opposite side of the glass substrate 102, that is, the cover film 115 on the back side of the solar cell. In the state derived | led-out above, it set to the vacuum heat-fusion apparatus (henceforth a vacuum laminator), and the sealing process was performed.
[0004]
By the way, the cover film 115 generally has a three-layer structure in order to suppress moisture permeation of water vapor, and has a structure in which a metal thin film is sandwiched inside. For this reason, in order to lead out the lead wires 111 and 112 to the back surface side of the solar cell of the cover film 115, it is necessary to devise a method for preventing the lead wires 111 and 112 from touching the end face of the opening of the cover film 115. . Therefore, a process for covering the periphery of the opening with an insulator 116 so that the lead wires 111 and 112 and the end face of the opening are not touched has been performed.
[0005]
[Problems to be solved by the invention]
However, in the configuration and manufacturing method of the conventional solar cell module as described above, the process from the completion of the unit cell to the vacuum lamination requires a lot of complicated work, and the problem in the process is the solar cell. Therefore, a very cautious work has been required, because there is a possibility that the characteristics deteriorated or the generated current may be conducted to the metal frame outside the solar cell.
The present invention has been made in order to solve the above-described problems, and provides a solar cell module and a method for manufacturing the same that are complicated and simplify many operations, improve yield, and reduce manufacturing costs. With the goal.
[0006]
[Means for Solving the Problems]
To accomplish the above object, on the insulation substrate, a transparent conductive film layer, an amorphous semiconductor layer, the backside metal layer are sequentially formed, a plurality of unit cells are integrated side by side in rows In the method for manufacturing a solar cell module in which the plurality of unit cells are covered with an adhesive layer and a cover film, the positive and negative electrodes located at both ends of the module are made of an insulating film different from the adhesive layer and the cover film. Attach one end of the coated lead wire, the other end of the adhesive layer and the lead wire with putting the cover film through a slit formed in the adhesive layer and the cover film, then, is melted and solidified the adhesive layer The insulating film has heat resistance capable of withstanding the temperature applied in the melting and solidifying step of the adhesive layer, and is a portion that passes through at least the slit of the lead wire. And it is characterized in that it is the entire surface of the coating.
[0007]
In the above-described configuration or method, since the lead wire led out from the positive and negative electrodes located at both ends of the module is one that is covered with a heat-resistant film that can withstand the heating temperature in the module sealing step, There is no need to lay an insulating film to prevent contact with the solar cell. Furthermore, in the sealing step of covering the solar cell with the cover film, the metal foil provided in the cover film may be short-circuited with the lead wire. Disappear. Therefore, the conventional trouble of providing an opening in the cover film and covering the periphery with an insulating material is not necessary, and it is only necessary to provide a slight lead-out slit on the cover film.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
1 is a sectional view of a solar cell module, FIG. 2 is a sectional view of a lead wire portion as an electrode provided at an end of the module, FIG. 3 is a plan view of the module, and FIG. 4 is a partially broken perspective view of the module. It is. In these drawings, an amorphous solar cell module 1 is formed by sequentially forming a transparent conductive film layer 3, an amorphous semiconductor layer 4, and a back metal layer 5 on a glass substrate 2, and a plurality of unit cells 6 are arranged in a row. Are integrated side by side. Sunlight enters from the glass substrate 2 side (lower side in FIG. 1). Lead wires 7 and 8 are led out from the positive and negative electrodes located at both ends of the unit cell 6 array of the module 1, and the lead wires 7 and 8 are fixed to the glass substrate 2 by the spare solder 9.
[0009]
In the solar cell module 1, for example, a transparent conductive film layer 3 is formed by a thermal CVD method on a glass substrate 2 having a substrate size of 800 mm × 400 mm and a thickness of 4 t, and a second harmonic of a YAG laser having a wavelength of 0.53 μm is used. The film was scribed from the film surface side and electrically separated into strips. Thereafter, ultrasonic cleaning is performed with pure water, and a mixed gas composed of monosilane, methane, and siborane at a substrate temperature of 200 ° C. and a reaction pressure of 0.5 to 1.0 Torr on the surface on which the transparent conductive film layer 3 is deposited, P-type, I-type and N-type amorphous semiconductor layers are obtained by decomposing a mixed gas comprising monosilane and hydrogen, and a mixed gas comprising monosilane, hydrogen and phosphine in this order in a capacitively coupled glow discharge decomposition apparatus. 4 (amorphous silicon or the like) is formed. Thereafter, the second harmonic of a YAG laser having a wavelength of 0.53 μm is incident from the glass surface side so as to be separated from the position slightly shifted from the scribe line by the laser so that the transparent conductive film layer 3 is not damaged. Subsequently, as the back surface metal layer 5, aluminum is formed by sputtering to a thickness of 300 nm, and this is opposite to the scribe line of the transparent conductive film layer 3 using the second harmonic of a YAG laser having a wavelength of 0.53 μm. Thus, a scribe line was inserted at a position slightly shifted from the scribe line of the amorphous semiconductor layer 4 and electrically separated to produce an integrated amorphous silicon solar cell.
[0010]
As the lead wires 7 and 8 which are positive and negative take-out electrodes provided at both ends of the solar cell, solder-plated copper foil is used, and adhesion to the glass substrate 2 is pre-soldered by an ultrasonic soldering method. The solder 9 is adhered to the glass substrate 2.
[0011]
The present invention is characterized by a method of routing a lead wire of a solar cell, particularly a method of connecting an electrode at both ends of the solar cell and a terminal box (not shown) arranged near the middle. Hereinafter, a configuration for leading electrodes from the lead wires 7 and 8 at both ends of the module 1 to a terminal box disposed near the middle of the module 1 and an assembly process thereof will be described with reference to FIGS. 5 and 6. FIG. 5 shows the lead 11 (12) used to derive the electrode, and FIG. 6 shows a series of steps for its assembly. The lead wire 11 (12) has a length longer than the distance necessary to lead out to the terminal box, and the central portion of the lead wire has a heating temperature and a heating time when the cover film is vacuum-laminated in a subsequent process. The structure is sandwiched between insulating films 13 having heat resistance characteristics that can withstand heat.
[0012]
The process of assembling the lead wires 7 and 8 and the lead wires 11 and 12 onto the glass substrate 2 will be described. First, the lead wires 7 and 8 are attached to both ends of the amorphous solar cell module 1 fabricated on the glass substrate 2. Next, one end of each of the lead wires 11 and 12 covered with the high heat-resistant film 13 is soldered to the lead wires 7 and 8. Subsequently, the solar cell is covered with an adhesive resin sheet (adhesive layer) 14 and a cover film 15. At this time, since the lead wires 11 and 12 are covered with the film 13, there is no possibility that the lead wires 11 and 12 and the metal foil contained in the cover film 15 are short-circuited. Accordingly, it is no longer necessary to provide an opening in the cover film 115 as in the prior art shown in FIG. 7 and cover the periphery with the insulator 116, and the lead wires 11 and 12 are slightly formed on the adhesive resin sheet 14 and the cover film 15. It is sufficient to provide a slit 16 for taking out. In this way, the lead wires 11 and 12 are led out to the back surface side of the solar cell of the cover film 15, and then the back surface of the solar cell is sealed by vacuum lamination.
[0013]
The lead wires 11 and 12 are preferably coated lead wires that are as thin as possible from the viewpoint of sealing the solar cell and have a thickness that is the same as or less than that of the adhesive layer. The cross-sectional shape of the lead wire itself may be a flat rectangular copper wire shape or a stranded wire shape copper wire. However, since the current of the solar cell flows through these lead wires, it is necessary to have an allowable current value greater than this current. Further, the film 13 covering the lead wires 11 and 12 needs to be made of a material that does not dissolve or deform even after the vacuum laminating process, and the characteristic particularly required here is the heat resistance of the film 13. Generally, since the curing temperature of the adhesive layer by the vacuum laminating method is around 150 ° C., it must be a resin that can withstand this temperature. Examples of the polymer material include heat-resistant polyester film, polyphenylene sulfide film, polyimide film, polyvinyl chloride film, polycarbonate, polyphenylene oxide, polysulfone, and polyether sulfone. Other examples include crepe paper. However, the film 13 is not limited to the above resin as long as the heat resistant temperature is equal to or higher than the sealing process temperature. These films 13 may be used to sandwich the lead wires 11 and 12, or in the case of a stranded wire, a copper wire may be covered with the resin.
[0014]
The dielectric breakdown voltage of the film 13 is desirably 1.5 KV or more as a value required from the solar cell power generation system. More preferably, the breakdown voltage may be 3 KV or more. In producing these lead wires 11 and 12, an adhesive is required particularly when a flat wire is used, but the properties required for the adhesive are high heat resistance and an electrical contact coefficient of 0.75 or more. More preferably, it is 0.90 or more.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Further, embodiments of the lead wires 11 and 12 will be described in detail with reference to FIGS. The lead wires 11 and 12 are 140 mm long and 5 mm wide solder-plated flat copper wire, leaving both ends at 3 mm and 20 mm respectively, and using a film 13 based on polyphenylene sulfide to connect the copper wire. I caught it. The film 13 has a width of 9 mm and a length of 117 mm. Moreover, the dielectric breakdown voltage of this film 13 is 5 KV, an adhesive is an acrylic adhesive, and an electrical contact coefficient is 1.0. Moreover, there was no change even if it passed through the process of the subsequent vacuum lamination for both a base material and an adhesive.
[0016]
The uncovered 3 mm long copper wire part of each one of the lead wires 11 and 12 is soldered to the lead wires 7 and 8 which are both positive and negative electrodes located at both ends of the glass substrate 2 of the solar cell. Thereafter, the adhesive resin sheet 14 with the slit 16 and the cover film 15 are placed on the electrode extraction portion of the terminal box, and the lead wires 11 and 12 are passed through the slit 16 portion and folded back onto the cover film. The sample thus prepared is set in a vacuum laminator, and the adhesive layer is melted and solidified. Here, the temperature of the vacuum laminating is 145 ° C. After about 30 minutes, it is removed from the vacuum laminator. With such a configuration, the lead wires 11 and 12 from the positive and negative electrodes 7 and 8 on both ends of the glass substrate 2 to the terminal box are only soldered, and the working time is greatly reduced compared to the conventional method. It can be shortened. In addition, the step of providing an opening in the cover film 115 required in the conventional process and protecting the periphery with the insulator 116 can be omitted. Then, an aluminum frame is attached to this sample, and a terminal box is attached. At this time, the solar cell module is completed by soldering the electrode in the terminal box and the 20 mm uncovered portion of the lead wires 11 and 12.
[0017]
【The invention's effect】
As described above, according to the present invention, in order to derive terminals from the positive and negative electrodes located at both ends of the solar cell module, the lead covered with the heat-resistant film that can withstand the heating temperature in the sealing process of the module surface. Since the wire is used, there is no possibility that the metal foil provided in the cover film is short-circuited with the lead wire in the laminate sealing step of covering the solar cell with the cover film. Therefore, many troublesome operations such as providing an opening in the cover film and covering the periphery with an insulator as in the prior art are not necessary. Therefore, the work process is simplified, and the situation where the characteristics of the solar cell are deteriorated or the generated current is not conducted to the metal frame outside the solar cell does not occur, so that the yield can be improved and the manufacturing cost can be reduced. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a solar cell module according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a lead wire portion as an electrode provided at an end of the module.
FIG. 3 is a plan view of the module.
FIG. 4 is a partially broken perspective view of the module.
FIG. 5 is a perspective view of a lead used to derive an electrode.
FIG. 6 is a perspective view showing a lead wire assembling step.
FIG. 7 is a perspective view showing a conventional lead wire assembling process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Amorphous solar cell module 2 Glass substrate 3 Transparent conductive film layer 4 Amorphous semiconductor layer 5 Back surface metal layer 6 Unit cell 7, 8 Lead wire (electrode)
11, 12 Lead wire 13 Insulating film 14 Adhesive resin sheet (adhesive layer)
15 Cover film 16 Slit

Claims (1)

絶縁基板上に、透明導電膜層、非晶質半導体層、裏面金属層が順次形成され、複数個のユニットセルが列状に並んで集積化され、かつ前記複数個のユニットセルが接着層とカバーフィルムとにより被覆された太陽電池モジュールの製造方法において、
モジュールの両端に位置する正負の電極に、前記接着層及びカバーフィルムとは異なる絶縁フィルムにより被覆されたリード線の一端を接続し、前記接着層とカバーフィルムを被せると共に該リード線の他端を前記接着層及びカバーフィルムに設けられたスリットに通し、その後、前記接着層を溶融固化させ
前記絶縁フィルムは、前記接着層の溶融固化工程において加わる温度に耐えうる耐熱性を有し、前記リード線の少なくとも前記スリットに通す部分の全面を被覆していることを特徴とする太陽電池モジュールの製造方法。
A transparent conductive film layer, an amorphous semiconductor layer, and a back metal layer are sequentially formed on an insulating substrate, and a plurality of unit cells are integrated in a line , and the plurality of unit cells are formed as an adhesive layer. In the method for manufacturing a solar cell module covered with a cover film ,
The positive and negative electrodes positioned at both ends of the module, the other end of the adhesive layer and connecting one end of a lead wire covered by different the dielectric film from the cover film, the adhesive layer and the lead wire together covered with the cover film Pass through the slit provided in the adhesive layer and the cover film , then melt and solidify the adhesive layer ,
The insulating film has heat resistance capable of withstanding the temperature applied in the melting and solidifying step of the adhesive layer, and covers at least the entire portion of the lead wire that passes through the slit . Production method.
JP16389896A 1996-06-03 1996-06-03 Solar cell module and manufacturing method thereof Expired - Lifetime JP3747096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16389896A JP3747096B2 (en) 1996-06-03 1996-06-03 Solar cell module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16389896A JP3747096B2 (en) 1996-06-03 1996-06-03 Solar cell module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09326497A JPH09326497A (en) 1997-12-16
JP3747096B2 true JP3747096B2 (en) 2006-02-22

Family

ID=15782918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16389896A Expired - Lifetime JP3747096B2 (en) 1996-06-03 1996-06-03 Solar cell module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3747096B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443029B2 (en) * 1999-03-30 2003-09-02 鐘淵化学工業株式会社 Solar cell module, power generation device, and method of manufacturing solar cell module
DE60041568D1 (en) * 1999-09-01 2009-04-02 Kaneka Corp Thin-film solar cell module and corresponding manufacturing method
JP4451950B2 (en) * 1999-12-16 2010-04-14 株式会社カネカ Solar cell lead wire automatic soldering method and apparatus
AU767276B2 (en) 1999-09-29 2003-11-06 Kaneka Corporation Method and apparatus for automatically soldering a lead wire to a solar battery
JP4588831B2 (en) * 2000-03-21 2010-12-01 株式会社カネカ Output lead line mounting device for photoelectric conversion module
JP4783500B2 (en) * 2000-12-25 2011-09-28 株式会社カネカ Pre-sealing preparation sheet setting device, pre-sealing preparation output line set device, and automatic pre-sealing preparation device
JP4883891B2 (en) * 2004-08-20 2012-02-22 京セラ株式会社 Solar cell module
JP5016835B2 (en) * 2006-03-31 2012-09-05 株式会社カネカ Photoelectric conversion device and method of manufacturing photoelectric conversion device
JP2007294866A (en) * 2006-03-31 2007-11-08 Sanyo Electric Co Ltd Photovoltaic module
WO2008093563A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Solar cell module, wiring member for solar cell, and method for manufacturing solar cell module
JP2008270648A (en) * 2007-04-24 2008-11-06 Honda Motor Co Ltd Solar cell module
JP4558070B2 (en) 2008-06-04 2010-10-06 シャープ株式会社 Solar cell module
JP5268596B2 (en) 2008-11-28 2013-08-21 シャープ株式会社 Solar cell module and manufacturing method thereof
JPWO2011016483A1 (en) * 2009-08-07 2013-01-10 シャープ株式会社 Solar cell module
JP5136700B2 (en) * 2010-01-12 2013-02-06 三菱電機株式会社 Thin film solar cell module
WO2011086975A1 (en) * 2010-01-13 2011-07-21 株式会社アルバック Solar cell module
JP5920031B2 (en) 2011-06-06 2016-05-18 信越化学工業株式会社 Solar cell module and manufacturing method thereof
JP2011211249A (en) * 2011-07-29 2011-10-20 Sanyo Electric Co Ltd Solar cell module
JP5831159B2 (en) 2011-11-18 2015-12-09 信越化学工業株式会社 Solar cell module
KR200489603Y1 (en) * 2017-09-05 2019-07-09 김경주 solar cell modules
KR20210099071A (en) * 2018-12-04 2021-08-11 아토비무 유겐가이샤 discharge electrode plate

Also Published As

Publication number Publication date
JPH09326497A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JP3747096B2 (en) Solar cell module and manufacturing method thereof
AU766308B2 (en) Thin film solar cell module and method of manufacturing the same
US5133810A (en) Flexible photovoltaic device and manufacturing method thereof
JP3146203B1 (en) Thin film solar cell module and method of manufacturing the same
US5296043A (en) Multi-cells integrated solar cell module and process for producing the same
US8426726B2 (en) Solar cell module and method of manufacturing the same
WO2010116973A1 (en) Interconnect sheet, solar cell with interconnect sheet, solar module, and method of producing solar cell with interconnect sheet
JP5136700B2 (en) Thin film solar cell module
JP2000068542A (en) Laminated thin film solar battery module
EP1069624A2 (en) Solar cell module
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
JPH03239377A (en) Solar cell module
JP2001077383A (en) Thin film solar battery module and manufacturing method thereof
JP4314872B2 (en) Manufacturing method of solar cell module
JPH07263733A (en) Thin film photoelectric conversion device and manufacture thereof
WO2010150749A1 (en) Solar cell, solar cell with wiring sheet attached, and solar cell module
JP3676451B2 (en) Solar cell module and manufacturing method thereof
JP2012064729A (en) Solar cell module and laminating method
JP4461607B2 (en) Method for pulling out power leads of solar cell module
JP2002094087A (en) Solar cell module
JPH0883919A (en) Solar cell module and manufacture thereof
JPH0629564A (en) Manufacture of solar battery apparatus
JP3111813B2 (en) Method for manufacturing flexible solar cell module
JPH04218980A (en) Photovoltaic device and fabrication thereof
JPH06268241A (en) Thin-film solar cell and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term