JPH03239377A - Solar cell module - Google Patents
Solar cell moduleInfo
- Publication number
- JPH03239377A JPH03239377A JP2035271A JP3527190A JPH03239377A JP H03239377 A JPH03239377 A JP H03239377A JP 2035271 A JP2035271 A JP 2035271A JP 3527190 A JP3527190 A JP 3527190A JP H03239377 A JPH03239377 A JP H03239377A
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- conductive
- cell elements
- wiring
- cell module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 18
- 229910000679 solder Inorganic materials 0.000 claims description 18
- 239000006071 cream Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 17
- 230000010354 integration Effects 0.000 abstract description 4
- 230000035939 shock Effects 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 21
- 229910021417 amorphous silicon Inorganic materials 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000011810 insulating material Substances 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229920005549 butyl rubber Polymers 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- BLBNEWYCYZMDEK-UHFFFAOYSA-N $l^{1}-indiganyloxyindium Chemical compound [In]O[In] BLBNEWYCYZMDEK-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 101100349149 Schizosaccharomyces pombe (strain 972 / ATCC 24843) nse2 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GHEZEZPMRBDFOI-UHFFFAOYSA-L [Se](=O)([O-])[O-].[In+3].[Cu+2] Chemical compound [Se](=O)([O-])[O-].[In+3].[Cu+2] GHEZEZPMRBDFOI-UHFFFAOYSA-L 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
- H01L31/046—PV modules composed of a plurality of thin film solar cells deposited on the same substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1884—Manufacture of transparent electrodes, e.g. TCO, ITO
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、複数の導電性基板上に形成した太陽電池素子
を集積化した太陽電池モジュールに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solar cell module in which solar cell elements formed on a plurality of conductive substrates are integrated.
[従来技術]
最近、CO2の増加による温室効果て地球の温暖化か生
しることが予測され、クリーンなエネルギーの要求かま
すます高まっている。また、CO□を排出しない原子力
発電も、安全性を疑問視する声もあり、より安全性の高
いクリーンなエネルギーか望まれている。[Prior Art] Recently, it has been predicted that the increase in CO2 will lead to global warming due to the greenhouse effect, and the demand for clean energy is increasing. Additionally, there are voices questioning the safety of nuclear power generation, which does not emit CO□, and there is a desire for safer, cleaner energy.
将来期待されているクリーンなエネルギーの中でも、特
に太陽電池はそのクリーンさと安全性と取扱い易さから
期待が大きい。Among the clean energy sources expected in the future, solar cells are particularly promising because of their cleanliness, safety, and ease of handling.
各種太陽電池の中で、非晶質シリコンや銅インシュウム
セレナイド等は大面積に製造てき、製造コストも安価で
あることから、熱心に研究されている。Among various types of solar cells, amorphous silicon, copper insium selenide, etc. have been actively researched because they can be manufactured in large areas and their manufacturing costs are low.
更に、太陽電池の中でも、耐衝撃性、可どう性か要求さ
れる場合、基板材にステンレス等の金属基板か用いられ
ている。基板に導電性基板を用いた太陽電池セルを所望
の起電力に集積化するためには、従来は複数の太陽電池
素子を直接、配線しなければならなかった。第4図は複
数個の太陽電池素子を配線材で直列配線した従来例の概
略構成図である。第4図に於て、400は導電性基板、
401は下部電極、402は半導体層、403は上部電
極、404は集積電極、405は配線材である。Furthermore, among solar cells, when impact resistance and flexibility are required, a metal substrate such as stainless steel is used as the substrate material. In order to integrate solar cells using conductive substrates to produce a desired electromotive force, it has conventionally been necessary to directly wire a plurality of solar cell elements. FIG. 4 is a schematic diagram of a conventional example in which a plurality of solar cell elements are wired in series using wiring materials. In FIG. 4, 400 is a conductive substrate;
401 is a lower electrode, 402 is a semiconductor layer, 403 is an upper electrode, 404 is an integrated electrode, and 405 is a wiring material.
L記集積化の方法として、太陽電池素子に直列配線を接
続する方法は、隣合った太陽電池素子表側の集電電極と
裏側の導電性基板を接続配線するので、表面接続と裏面
接続の工程かあり、そのため製造工程の自動化が複雑て
接続工程に時間がかかり、量産しても製造コストの低減
ができなかった。さらに、配線の接続部か表と裏の両面
にあるため表面の凹凸か大きくなり、表面被覆時に気泡
か発生し易かった。As an integration method, the method of connecting series wiring to solar cell elements connects and wires the current collecting electrode on the front side of adjacent solar cell elements and the conductive substrate on the back side, so it requires the process of front side connection and back side connection. As a result, automation of the manufacturing process was complicated and the connection process took time, making it impossible to reduce manufacturing costs even with mass production. Furthermore, since the wiring connections were on both the front and back sides, the surface became very uneven, and bubbles were likely to occur when the surface was coated.
また、特公昭58−21827号公報及び特公昭58−
54513号公報ては、同一絶縁性基板上にマスク蒸着
等の方法で太陽電池素子を集積化する方法が提案されて
いる。該提案方法の応用として、導電性基板上に絶縁層
を被覆した後、金属電極パターンをマスク蒸着等の方法
で順次形威し、同−基板上の隣あった太陽電池サブセル
の金属電極と透明電極を接続する方法がある。第5図は
マスク蒸着で同一基板上に太陽電池素子を集積化した従
来の構成図例で、(a)は平面図、(b)は(a)図A
−Bの断面構成図である。第5図に於て、500は導電
性基板、501は絶縁層、502は下部電極、503は
半導体層、504は−L部電極としての透明電極である
。Also, Japanese Patent Publication No. 58-21827 and Japanese Patent Publication No. 58-21827
No. 54513 proposes a method of integrating solar cell elements on the same insulating substrate by a method such as mask vapor deposition. As an application of the proposed method, after coating an insulating layer on a conductive substrate, a metal electrode pattern is sequentially formed using a method such as mask evaporation, and the transparent metal electrode of an adjacent solar cell subcell on the same substrate is formed. There are ways to connect the electrodes. Figure 5 is an example of a conventional configuration diagram in which solar cell elements are integrated on the same substrate by mask vapor deposition, (a) is a plan view, (b) is (a) Figure A
-B is a cross-sectional configuration diagram. In FIG. 5, 500 is a conductive substrate, 501 is an insulating layer, 502 is a lower electrode, 503 is a semiconductor layer, and 504 is a transparent electrode as a −L portion electrode.
またマスク蒸着等の方法て同一基板上に直列化をはかる
方法は、マスクの位置合わせか難しく、大面積のモジュ
ールの製造では歩留まりが悪く、要求される種々の電力
容量や任意の形状に対応するためには、多種類のマスク
を用意しなければならない。また、導電性基板を絶縁材
てピンホールなく被覆しなければばらす、製造工程数は
多くなり、必然的にコストは高くなっていた。In addition, methods such as mask evaporation to serially connect on the same substrate have difficulty in aligning the masks, resulting in poor yields when manufacturing large-area modules, and the ability to accommodate various required power capacities and arbitrary shapes. To do this, it is necessary to prepare many types of masks. In addition, unless the conductive substrate is covered with an insulating material without pinholes, the number of manufacturing steps required to take it apart increases, which inevitably increases costs.
[発明の目的]
本発明は、−L述の従来の欠点を解決し、対衝撃に強い
安価な集積化太陽電池モジュールを提供することを目的
とする。[Object of the Invention] An object of the present invention is to solve the conventional drawbacks mentioned in -L and to provide an inexpensive integrated solar cell module that is resistant to impact.
[発明の構成及び作用コ
本発明者らは、上記従来の欠点を解決すべく、鋭意研究
を重ねた結果、絶縁性基体上に、導電性基板に形成した
太陽電池素子を複数個配置し、導電性ペーストて集電電
極と接続を形成することに依って、安価な太陽電池モジ
ュールが得られることを見いだした。本発明は、導電性
基板上に金属電極層、半導体層、透明電極層を、順次形
威した複数個の太陽電池素子を接続して作製された太陽
電池モジュールに於て、複数個の大腸電池素子を絶縁性
期待−ヒに密に隣接配置して、太陽電池素子同士を電気
的に接続するための配置が通過する部分の該太陽電池素
子端面を絶縁樹脂で被覆し、導電性ペーストて、透明電
極上の集電電極及び隣合う上記太陽電池素子同士の接続
配線を、光入射側の面に形成したことを特徴とした太陽
電池モジュールであるる。[Structure and operation of the invention] As a result of intensive research in order to solve the above-mentioned conventional drawbacks, the present inventors arranged a plurality of solar cell elements formed on a conductive substrate on an insulating substrate, It has been found that inexpensive solar cell modules can be obtained by forming connections with current collecting electrodes using conductive pastes. The present invention relates to a solar cell module manufactured by connecting a plurality of solar cell elements in which a metal electrode layer, a semiconductor layer, and a transparent electrode layer are sequentially formed on a conductive substrate. The elements are arranged closely adjacent to each other with the expectation of insulation, and the end face of the solar cell element in the portion through which the arrangement for electrically connecting the solar cell elements passes is coated with an insulating resin, and a conductive paste is applied. This is a solar cell module characterized in that a current collecting electrode on a transparent electrode and connection wiring between the adjacent solar cell elements are formed on a light incident side surface.
前記導電性ペーストか導電性樹脂あるいはクリームハン
ダ、あるいは導電性樹脂とクリームハンダから構成され
ている。導電性樹脂は金属粉末、導電性カーボンブラッ
ク、炭素繊維等の導電性フィラーを高分子化合物に添加
したものである。クリームハンダは粉末−hハンダを粘
性の高いフラックスに混合してクリーム状にしたもので
ある。The conductive paste is composed of a conductive resin, a cream solder, or a conductive resin and a cream solder. The conductive resin is made by adding conductive fillers such as metal powder, conductive carbon black, and carbon fiber to a polymer compound. Cream solder is made by mixing powder-H solder with highly viscous flux to form a cream.
なお、前記導電性ペーストで形成された集電電極及び配
線は良導体て補強されてもよい。Note that the current collecting electrode and wiring formed of the conductive paste may be reinforced with a good conductor.
第1図は本発明により作製される太陽電池モジュールの
概略構成図の一例である。第1図(a)は太陽電池素子
を4個直列に配線接続した太陽電池モジュールの一例の
平面図、(b)と(c)はラミネート等の実装部分も含
めた断面図で、(b)は(a)におけるA−B間ての断
面図、(c)は(a)におけるC−D間での断面図であ
る。第1図に於て、100は絶縁性基体、102は露出
した絶縁性基板部分、103は絶縁性4!AII+r1
.104と105はツレツレ導電性ヘー ス1〜によっ
て主に形成された集電電極と配線、106は導電性基板
、107は透明電極層/半導体層/金属電極層、111
は充填材、112は表面保護層、113は金属箔、11
4は導電性接着剤あるいはハンダ、115はリード線、
116はシーリンク材、である。FIG. 1 is an example of a schematic configuration diagram of a solar cell module manufactured according to the present invention. Figure 1 (a) is a plan view of an example of a solar cell module in which four solar cell elements are wired in series, (b) and (c) are cross-sectional views including mounting parts such as laminate, and (b) is a cross-sectional view taken along line AB in (a), and (c) is a cross-sectional view taken along line CD in (a). In FIG. 1, 100 is an insulating substrate, 102 is an exposed insulating substrate portion, and 103 is an insulating material 4! AII+r1
.. 104 and 105 are current collecting electrodes and wiring mainly formed by the smooth conductive hairs 1~, 106 is a conductive substrate, 107 is a transparent electrode layer/semiconductor layer/metal electrode layer, 111
112 is a filler, 112 is a surface protective layer, 113 is a metal foil, 11
4 is conductive adhesive or solder, 115 is a lead wire,
116 is a sealing material.
第2図は、第1図に用いた太陽電池素子の概略構成図て
、(a)はその平面図で、(b)は(a)のE−F間の
断面図である。第2図に於て、101,102,105
は第1図に同して、108は下部電極としての金属電極
層、109は半導体層、110は上部電極としての透明
電極である。FIG. 2 is a schematic diagram of the solar cell element used in FIG. 1, in which (a) is a plan view thereof, and (b) is a sectional view taken along line E-F in (a). In Figure 2, 101, 102, 105
1, 108 is a metal electrode layer as a lower electrode, 109 is a semiconductor layer, and 110 is a transparent electrode as an upper electrode.
さらに、第3図には導電性基板上に形成した太陽電池素
子を多数個配列して、集電電極と直列配線を設けて作製
した本発明の太陽電池モジュールの概略構成図の例を示
した。第3図に於て、300は絶縁性基体、302は露
出した絶縁性基板部分、303ば絶縁性樹脂、304と
305はそれぞれ導電性ペーストによって主に形成され
た集電電極と配線である。Furthermore, FIG. 3 shows an example of a schematic configuration diagram of a solar cell module of the present invention, which is manufactured by arranging a large number of solar cell elements formed on a conductive substrate and providing series wiring with a current collecting electrode. . In FIG. 3, 300 is an insulating substrate, 302 is an exposed insulating substrate portion, 303 is an insulating resin, and 304 and 305 are current collecting electrodes and wiring, respectively, formed mainly of conductive paste.
なお、第1図と第3図は複数の太陽電池素子を直列化し
た場合のモジュールの構成図を示したか、本発明はこれ
に限定されず、並列化する場合にも適用できる。Although FIGS. 1 and 3 show the configuration of a module in which a plurality of solar cell elements are connected in series, the present invention is not limited thereto and can also be applied to cases in which they are connected in parallel.
本発明の第1図の太陽電池モジュールの作製方法の一例
を順次説明する。An example of a method for manufacturing the solar cell module of the present invention shown in FIG. 1 will be sequentially explained.
まず、導電性基板上に金属層、半導体層、透明電極層を
形成し、所望の面積の大きさに切断して、第2図の太陽
電池素子101を得る。第2図の太陽電池素子の端部の
一部の透明電極層/半導体層/金属層を取り除き、導電
性基板面102を露出させる。この時露出した基板面に
ば、金属層が残っていても問題はない。次に、絶縁性基
体100の表面に充填材l11を敷き、出力端子取り出
し部を設ける部分に穴を開け、穴を覆うように出力端子
となる金属箔113を設ける。太陽電池素子の導電性基
板が、真上に設けられる金属箔113には導電性接着剤
かあるいはハンダ114か付着されている。ついて、基
板面か一部露出した太陽電池素子を必要とされる起電力
の枚数(第1図の場合は4枚)、充填材が敷かれた絶縁
基体上に配列した後、太陽電池素子の端面の一部を絶縁
材103で覆う。配列前に、絶縁被覆してもかまわない
。その後、導電性ペーストて集電電力104及び直列配
線105を形成する。導電性ペーストで形成された集電
極104と配線105は良導体て補強されてもよい。First, a metal layer, a semiconductor layer, and a transparent electrode layer are formed on a conductive substrate and cut into a desired area size to obtain the solar cell element 101 shown in FIG. 2. A portion of the transparent electrode layer/semiconductor layer/metal layer at the end of the solar cell element shown in FIG. 2 is removed to expose the conductive substrate surface 102. There is no problem even if the metal layer remains on the exposed substrate surface at this time. Next, a filler l11 is spread on the surface of the insulating substrate 100, a hole is made in a portion where an output terminal extraction portion is to be provided, and a metal foil 113 that will become an output terminal is provided so as to cover the hole. A conductive adhesive or solder 114 is attached to a metal foil 113 provided directly above the conductive substrate of the solar cell element. Then, after arranging the solar cell elements with a part of the substrate surface exposed on the insulating substrate covered with the filling material, the required number of electromotive force (four in the case of Fig. 1) is applied. A part of the end face is covered with an insulating material 103. An insulating coating may be applied before arraying. Thereafter, a collected power 104 and a series wiring 105 are formed using a conductive paste. The collector electrode 104 and the wiring 105 formed of conductive paste may be reinforced with a good conductor.
良導体で補強することによって、集電電極と接続配線部
の曲げ強度は向」ニし、配線抵抗による電力損も少なく
なる。By reinforcing it with a good conductor, the bending strength of the current collecting electrode and the connecting wiring section are matched, and power loss due to wiring resistance is also reduced.
さらに、表面保護N112を形成し、出力端子113か
らリート線115を取り出し、リード線取り出し部をシ
ーリング材116てシールして太陽電池モジュールを得
る。Furthermore, a surface protection layer N112 is formed, the lead wire 115 is taken out from the output terminal 113, and the lead wire take-out portion is sealed with a sealing material 116 to obtain a solar cell module.
なお、絶縁材103を設けるのは太陽電池素子の導電性
基板106と接続配線105か接触して導通するのを防
止するためである。Note that the reason why the insulating material 103 is provided is to prevent the conductive substrate 106 of the solar cell element and the connection wiring 105 from coming into contact with each other and causing conduction.
上記作製方法では、直列化の方法として隣合う太陽電池
素子の集電電極と導電性基板の露出部分とを接続する方
法か用いられているか、別の方法として以下のような方
法もある。太陽電池素子の端部に一部島状に透明電極層
が分離された領域を設け、該領域に隣の太陽電池素子の
集電電極から接続配線を導電ベーストで形成する。その
後、前記領域に形成された配線に、レーサー光を照射し
溶融して、下部電極との接合を取り、集積化することも
てきる。In the above manufacturing method, a method of connecting the collector electrodes of adjacent solar cell elements and the exposed portion of the conductive substrate is used as a serialization method, or the following method is also available as another method. A region in which the transparent electrode layer is separated into an island shape is provided at the end of the solar cell element, and a connection wiring from the current collecting electrode of the adjacent solar cell element is formed in this region using a conductive base. Thereafter, the wiring formed in the area can be irradiated with laser light to melt it and connect it to the lower electrode for integration.
上記作製方法の説明から、本発明の構成の太陽電池モジ
ュールては、複雑な配線工程を使用することなく、大面
積モジュールも歩留まりよく、安価に製造できることが
わかる。From the above description of the manufacturing method, it can be seen that the solar cell module having the structure of the present invention can be manufactured at a high yield and at low cost even with a large area without using a complicated wiring process.
本発明で用いられる導電性ペーストとしての導電性樹脂
は、微粉末状の銀、金、銅、ニッケル、カーボン等をパ
インターポリマーと分散させたものか使用される。上記
バインダーポリマーとしては、ポリエステル、エポキシ
、アクリル、アルキド、ポリビニルアセテート、ゴム、
ウレタン、フェノール等の樹脂かある。導電性ペースト
に導電性樹脂とクリームハンダを用いる場合、たとえば
導電性樹脂の上にハンダを積層した構成にする場合には
In基ハンダや導電性樹脂中の金属を含有するハンダが
適当である。これはハンダによる導電性樹脂中の金属元
素の溶食を防止するためである。つまり導電性樹脂に銀
ペーストを用いる場合にはIn基ハンダ、銀含有ハンダ
か適当である。The conductive resin used as the conductive paste used in the present invention is prepared by dispersing finely powdered silver, gold, copper, nickel, carbon, etc. with a pinter polymer. The above binder polymers include polyester, epoxy, acrylic, alkyd, polyvinyl acetate, rubber,
There are resins such as urethane and phenol. When a conductive resin and cream solder are used as the conductive paste, for example, when the solder is laminated on the conductive resin, In-based solder or solder containing metal in the conductive resin is suitable. This is to prevent the metal elements in the conductive resin from being corroded by the solder. In other words, when using silver paste for the conductive resin, In-based solder or silver-containing solder is suitable.
集電電極と配線は、導電性ペーストをスクリーン印刷機
あるいはデイスペンサーで所定のパターンに塗布した後
、熱処理して形成する。The current collecting electrodes and wiring are formed by applying a conductive paste in a predetermined pattern using a screen printer or dispenser, and then heat-treating the paste.
多品種の集電電極と配線パターンに対処するためには、
スクリーン印刷機ではパターンに対応する印刷版を多種
用意する必要がある。デイスペンサーではNC制御が可
能なのて容易に対応できる。集電電極と接続配線の補強
に使用される良導体としては、銅、アルミニウム、ニッ
ケル、銀等の箔状または線状の金属やカーホンファイバ
ーかある。補強方法は、箔状または線状の金属を用いる
場合には導電性ペーストて形成された集電電極と接続配
線の上に箔状または線状の金属を導電性接着剤あるいは
ハンダで接着する。In order to deal with a wide variety of current collecting electrodes and wiring patterns,
Screen printing machines require a wide variety of printing plates that correspond to different patterns. Dispensers can be controlled easily by NC. Good conductors used for reinforcing the current collecting electrodes and connection wiring include foil-like or wire-like metals such as copper, aluminum, nickel, and silver, and carphone fibers. When a foil or wire metal is used, the reinforcing method is to bond the foil or wire metal onto the current collecting electrode and connection wiring formed of conductive paste using a conductive adhesive or solder.
本発明に使用される絶縁材としては、ポリエステル、ポ
リエステルイミド、ボリイくド、ポリウレタン、シリコ
ーン、エポキシ、アクリル樹脂等がある。絶縁材の被覆
方法としては、スプレー、スクリーン印刷、デイスペン
サー等で塗布する、あるいは粘着剤付き上記絶縁材の樹
脂フィルムを貼り付ける方法かある。Insulating materials used in the present invention include polyester, polyesterimide, polyurethane, silicone, epoxy, acrylic resin, and the like. The insulating material may be coated by spraying, screen printing, a dispenser, etc., or by pasting a resin film of the insulating material with an adhesive.
本発明に使用される充填材としてはエチレン−酢酸ビニ
ル共重合体、ポリビニルアセテート、シリコーン樹脂等
が挙げられる。Examples of the filler used in the present invention include ethylene-vinyl acetate copolymer, polyvinyl acetate, and silicone resin.
1
本発明に用いられる絶縁性基体には、ブチルゴム、絶縁
樹脂被覆したアルミニウム等の金属板、またはポリフッ
化ビニリデン等のフッ素樹脂フィルムやポリエステル、
ポリエチレン、ポリプロピレンの樹脂フィルムてラミネ
ートされたアルム箔等がある。1 The insulating substrate used in the present invention includes butyl rubber, a metal plate such as aluminum coated with an insulating resin, a fluororesin film such as polyvinylidene fluoride, polyester,
There are aluminum foils laminated with polyethylene and polypropylene resin films.
本発明に使用される表面保護層は、透光性があり紫外線
やオゾンに安定な耐候性があることが必要であり、フッ
素樹脂フィルム/エチレン−酢酸ビニル共重合体の二層
構造のもの(光入射側はフッ素樹脂フィルム)、シリコ
ーン樹脂、フッ素樹脂燈料等が挙げられる。The surface protective layer used in the present invention must be transparent, stable against ultraviolet rays and ozone, and have a two-layer structure of fluororesin film/ethylene-vinyl acetate copolymer ( On the light incident side, examples include a fluororesin film), silicone resin, and fluororesin lighting material.
本発明に用いられるシーリング材には、水分等を透過し
ないシリコーン樹脂やブチルゴム等がある。Sealing materials used in the present invention include silicone resins and butyl rubbers that do not allow moisture to pass through.
本発明で用いられる太陽電池素子の導電性基板には、ス
テンレス、アルミニウム、銅、カーボンシート等がある
。金属電極層の材質としては、Ti、Tr、Mo、W、
Ai、Ag。The conductive substrate of the solar cell element used in the present invention includes stainless steel, aluminum, copper, carbon sheet, and the like. The material of the metal electrode layer includes Ti, Tr, Mo, W,
Ai, Ag.
Ni等が用いられ、形成方法としては抵抗加熱 2 蒸着、電子ビーム蒸着、スパッタリンク法等がある。Ni etc. are used, and the forming method is resistance heating 2 Vapor deposition, electron beam evaporation, sputter link method, etc. are available.
本発明で用いられる太陽電池素子の光電変換部材として
の半導体層にはPin接合非晶質シリコン、Pn接合多
結晶シリコン、Cu1nse2/CdS等の化合物半導
体が挙げられる。上記半導体層は、非晶質シリコンの場
合、シランガス等のプラズマCVDにより、多結晶シリ
コンの場合、溶融シリコンのシート化により、(:ul
nse2/CdSの場合、電子ビーム蒸着、スパッタリ
ンク、電析(電解液の電気分解による析出)等の方法て
、形成される。Examples of the semiconductor layer as a photoelectric conversion member of the solar cell element used in the present invention include pin junction amorphous silicon, Pn junction polycrystalline silicon, and compound semiconductors such as Cu1nse2/CdS. In the case of amorphous silicon, the semiconductor layer is formed by plasma CVD using silane gas, etc. In the case of polycrystalline silicon, the semiconductor layer is formed by forming a sheet of molten silicon (:ul
In the case of nse2/CdS, it is formed by methods such as electron beam evaporation, sputter linking, and electrodeposition (deposition by electrolysis of an electrolytic solution).
本発明で用いられる太陽電池素子の透明電極に用いる材
料としては、In2(]+、 5nOz、 In2O
:+−3no2. ZnO,Tie□、 Cd2SnO
4,高濃度不純物ドープした結晶性半導体層等があり、
形成方法としては抵抗加熱蒸着、電子ビーム蒸着、スパ
ッタリング法、スプレー法、CVD法、不純物拡散等が
ある。Materials used for the transparent electrode of the solar cell element used in the present invention include In2(]+, 5nOz, In2O
:+-3no2. ZnO, Tie□, Cd2SnO
4. There is a crystalline semiconductor layer etc. doped with high concentration impurities,
Formation methods include resistance heating evaporation, electron beam evaporation, sputtering, spraying, CVD, and impurity diffusion.
[実施例]
以下、実施例に基すき本発明の詳細な説明する。なお、
本発明はこれらの実施例に限定されるものてはない。[Examples] Hereinafter, the present invention will be described in detail based on Examples. In addition,
The present invention is not limited to these examples.
本実施例ては導電性基板にステンレス基板を用いた非晶
質シリコン太陽電池の場合の、第1図と第2図の構成の
モジュール作製手順に付いて具体的に説明する。In this example, a procedure for manufacturing a module having the configuration shown in FIGS. 1 and 2 in the case of an amorphous silicon solar cell using a stainless steel substrate as a conductive substrate will be specifically explained.
ます、洗浄したロール状ステンレス基板上106に、ロ
ールツーロール法で、Siを1%含有するA I 10
8をスペッタ法により膜厚5000A蒸着し、SiH<
、 PH3,82116,H2ガス等のプラスVCVD
により、膜厚4000AのPinの非晶質シリコン層1
09を形成した後、膜厚800AのITOIIOを抵抗
加熱蒸着で形成した。更にITOのエツチング剤(Fe
C1,、、HCI)含有ペーストのスクリーン印刷によ
りITO層の一部を除去し各太陽電池素子に分離した。First, A I 10 containing 1% Si was deposited on the cleaned rolled stainless steel substrate 106 by a roll-to-roll method.
8 was deposited to a thickness of 5000A by sputtering, and SiH<
, PH3, 82116, H2 gas, etc. plus VCVD
As a result, a Pin amorphous silicon layer 1 with a film thickness of 4000A was formed.
After forming 09, ITOIIO with a thickness of 800 Å was formed by resistance heating vapor deposition. Furthermore, ITO etching agent (Fe
A portion of the ITO layer was removed by screen printing a paste containing C1,...HCI) and separated into each solar cell element.
次に、各太陽電池素子の配線接続部に位置するITOI
IO/Pinの非晶質シリコン層109をクラインター
て除去し基板面102を露出させた後、ITO除去部分
にYAGレーザー光を照射し切断して、複数の太陽電池
素子101を得た。ついて、ブチルゴム板100にEV
Aシート111を重ね、リード線取り出し部に穴を開け
、開口部−LにIn基ハンダを付着した銅箔113を配
置し、その]−、に太陽電池素子101を4枚、各太陽
電池素子が接触しないように並へてポリイミドテープ1
03て留めた。その後、デイスペンサーで銀ペーストを
塗r+ゴすることによって、直列配線パターン105と
集電電極パターン104を形成した。さらに、配線パタ
ーンと集電電極パターン上に、クリーム状銀含有ハンダ
をデイスペンサーで塗布し、熱処理した。最後に、EV
Aシートとポリフッ化ヒニリデンフイルムシートを重ね
(112) 、真空ラミネーターでうくネー1へして、
出力端子113にリード線115をハンダて接続し、取
り出し部をシリコーン樹脂116てシールして、非晶質
シリコン太陽電池モジュールを得た。Next, the ITOI located at the wiring connection part of each solar cell element
After the amorphous silicon layer 109 of the IO/Pin was removed using a clinter to expose the substrate surface 102, the ITO removed portion was irradiated with a YAG laser beam and cut to obtain a plurality of solar cell elements 101. Then, EV was applied to the butyl rubber plate 100.
The A sheets 111 are stacked, a hole is made in the lead wire extraction part, a copper foil 113 with In-based solder is placed in the opening -L, and four solar cell elements 101 are placed in the opening -L, and each solar cell element is Lay out the polyimide tape 1 so that they do not touch each other.
I kept it at 03. Thereafter, a series wiring pattern 105 and a current collecting electrode pattern 104 were formed by applying silver paste with a dispenser. Furthermore, creamy silver-containing solder was applied onto the wiring pattern and the current collecting electrode pattern using a dispenser, and heat-treated. Finally, EV
Layer the A sheet and the polyhynylidene fluoride film sheet (112), and place it in a vacuum laminator to form 1.
A lead wire 115 was connected to the output terminal 113 by soldering, and the lead-out portion was sealed with silicone resin 116 to obtain an amorphous silicon solar cell module.
以上の太陽電池モジュール作製方法では、片面で集電電
極と接続配線を同時に形成した構成 5
にすることによって、製造工程の簡略化かてき、配線材
料も削減できた。モジュール表面の凹凸も少なくなり、
ラミネート・時に気泡が入ることかなくなった。In the above solar cell module manufacturing method, the manufacturing process can be simplified and the amount of wiring material can be reduced by adopting a configuration in which the current collecting electrode and the connecting wiring are simultaneously formed on one side. The unevenness of the module surface is also reduced.
No more bubbles that sometimes appear in laminate.
」二記Pin構成の非晶質シリコン太陽電池素子を4個
直列に集積化した太陽電池モジュールのAMl、5 1
0Q、fiリワット/cI112の光照射時における開
放端電圧(Voc)は3.lポル1、であった。AMl, 5 1 of a solar cell module in which four amorphous silicon solar cell elements with a two-pin configuration are integrated in series
The open circuit voltage (Voc) during light irradiation of 0Q, fi rewatt/cI112 is 3. It was l por 1.
なお、Pin構威構成導体層105はPin/Pin。Note that the Pin configuration conductor layer 105 is Pin/Pin.
Pin/Pin/Pinの多層構造であってもよく、非
晶質シリコンカーバイドや非晶質シリコンゲルマニウム
の材料を半導体層に用いてもよい。A multilayer structure of Pin/Pin/Pin may be used, and materials such as amorphous silicon carbide or amorphous silicon germanium may be used for the semiconductor layer.
以上実施例では半導体層に非晶質シリコンを用いた場合
に関して説明してきたか、これに限定されるものではな
く、半導体層に多結晶シリコンや銅インジュムセレナイ
ト等の化合物半導体を使用した場合にも、本発明の構成
の太陽電池に適用できる。In the above embodiments, the case where amorphous silicon is used for the semiconductor layer has been explained, but the invention is not limited to this, but also when a compound semiconductor such as polycrystalline silicon or copper indium selenite is used for the semiconductor layer. , it can be applied to the solar cell having the structure of the present invention.
[発明の効果]
6
本発明によれば、片面て集電電極と集積化のための接続
配線を同時に形成した構成にすることによって、従来の
導電製基板上に形成した太陽電池モジュールの問題点を
解決し、製造工程の簡略化かてきる。また、本発明の太
陽電池モジュールの構成な採用することによって、集積
化した大面積太陽電池の製造工程の自動化も容易になり
、製造コストの大幅な削減か可能となる。[Effects of the Invention] 6. According to the present invention, problems of solar cell modules formed on conventional conductive substrates are solved by forming a current collecting electrode and connection wiring for integration on one side at the same time. This solves the problem and simplifies the manufacturing process. Further, by employing the configuration of the solar cell module of the present invention, it becomes easy to automate the manufacturing process of integrated large-area solar cells, and it becomes possible to significantly reduce the manufacturing cost.
第1図(a)、(b)、(c)は本発明による、太陽電
池セルを4個集積化した太陽電池モジュールの概略構成
図、
第2図(a)、(b)は第1図の太陽電池モジュールに
用いた太陽電池セルの概略構成図、第3図は本発明によ
る、複数個の太陽電池セルを集積化した太陽電池モジュ
ールの概略構成図、
第4図は従来の太陽電池モジュールの模式的断面図、
第5図(a)、(b)は従来の太陽電池モジュールの概
略構成図、である。
105.400,500・・・導電性基板、108.4
01,502・・・金属電極層、109.402,50
3・・・半導体層、110.403 、504・・・透
明電極層、104.404・・・集電電極、
105.405・・・接続配線、
103.501・・・絶縁材、
101・・・太陽電池素子、
100・・・絶縁基体、
111・・・充填材、
112・・・表面保護層、
113・・・出力端子、
115・・・リード線、
116・・・シーリンク材。
特開平3
239377 (7)Figures 1 (a), (b), and (c) are schematic configuration diagrams of a solar cell module in which four solar cells are integrated according to the present invention; Figures 2 (a) and (b) are Figure 1; 3 is a schematic diagram of a solar cell module used in a solar battery module according to the present invention, and FIG. 4 is a diagram of a conventional solar battery module. FIGS. 5(a) and 5(b) are schematic cross-sectional views of conventional solar cell modules. 105.400,500... Conductive substrate, 108.4
01,502...Metal electrode layer, 109.402,50
3...Semiconductor layer, 110.403, 504...Transparent electrode layer, 104.404...Collecting electrode, 105.405...Connection wiring, 103.501...Insulating material, 101... - Solar cell element, 100... Insulating base, 111... Filler, 112... Surface protective layer, 113... Output terminal, 115... Lead wire, 116... Sealink material. Unexamined Japanese Patent Publication No. 3 239377 (7)
Claims (3)
層が、順次形成された太陽電池素 子を複数個接続して作製される太陽電池モ ジュールに於て、複数個の太陽電池素子を 絶縁性基体上に密に隣接配置して、太陽電 池素子同士を電気的に接続するための配線 が通過する部分の該太陽電池素子の端面を 絶縁樹脂で被覆し、導電性ペーストで透明 電極上の集電電極及び隣合う上記太陽電池 素子同士の接続配線を光入射側に形成した ことを特徴とした太陽電池モジュール。(1) In a solar cell module manufactured by connecting a plurality of solar cell elements in which a metal electrode layer, a semiconductor layer, and a transparent electrode layer are sequentially formed on a conductive substrate, the plurality of solar cell elements are connected. The end faces of the solar cell elements are placed closely adjacent to each other on an insulating substrate, and the end faces of the solar cell elements are coated with an insulating resin at the portion through which wiring for electrically connecting the solar cell elements passes, and the transparent electrodes are coated with a conductive paste. A solar cell module characterized in that a current collecting electrode and connection wiring between the adjacent solar cell elements are formed on a light incident side.
ムハンダ、あるいは導電性樹脂と クリームハンダから成ることを特徴とする 特許請求範囲第1項の太陽電池モジュー ル。(2) The solar cell module according to claim 1, wherein the conductive paste is made of a conductive resin, a cream solder, or a conductive resin and a cream solder.
線の一部が良導体で補強されたこ とを特徴とする特許請求範囲第1項の太陽 電池モジュール。(3) The solar cell module according to claim 1, wherein a part of the current collecting electrode and the wiring formed of the conductive paste are reinforced with a good conductor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2035271A JPH03239377A (en) | 1990-02-16 | 1990-02-16 | Solar cell module |
DE4104713A DE4104713C2 (en) | 1990-02-16 | 1991-02-15 | Method of manufacturing a solar cell module |
US07/980,115 US5296043A (en) | 1990-02-16 | 1992-11-23 | Multi-cells integrated solar cell module and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2035271A JPH03239377A (en) | 1990-02-16 | 1990-02-16 | Solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03239377A true JPH03239377A (en) | 1991-10-24 |
Family
ID=12437129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2035271A Pending JPH03239377A (en) | 1990-02-16 | 1990-02-16 | Solar cell module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH03239377A (en) |
DE (1) | DE4104713C2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196741A (en) * | 1992-12-24 | 1994-07-15 | Canon Inc | Solar battery module, manufacture thereof, and installation structure thereof |
WO1995001655A1 (en) * | 1993-07-01 | 1995-01-12 | Canon Kabushiki Kaisha | Solar cell module having excellent weather resistance |
WO1998004005A1 (en) * | 1996-07-24 | 1998-01-29 | Tdk Corporation | Solar battery and method for manufacturing the same |
WO2007088851A1 (en) * | 2006-01-31 | 2007-08-09 | Showa Shell Sekiyu K.K. | In SOLDER COVERED COPPER FOIL RIBBON CONDUCTOR WIRE AND ITS CONNECTION METHOD |
JP2007224191A (en) * | 2006-02-24 | 2007-09-06 | Sanyo Electric Co Ltd | Electroconductive paste composition, solar battery cell using the paste composition, and solar battery module using the cell |
WO2009057951A3 (en) * | 2007-11-02 | 2009-07-16 | Jusung Eng Co Ltd | Thin film type solar cell and method for manufacturing the same |
WO2009097588A2 (en) * | 2008-01-30 | 2009-08-06 | Xunlight Corporation | Series interconnected thin-film photovoltaic module and method for preparation thereof |
JP2009194114A (en) * | 2008-02-14 | 2009-08-27 | Showa Shell Sekiyu Kk | Solar cell module |
JP2010087131A (en) * | 2008-09-30 | 2010-04-15 | Mitsubishi Materials Corp | Conductive ink composition and solar cell module formed using the composition |
JP2011044509A (en) * | 2009-08-20 | 2011-03-03 | Mitsubishi Materials Corp | Conductive ink composition, and solar cell module formed using the composition |
KR20110021715A (en) * | 2008-03-11 | 2011-03-04 | 쌩-고벵 글래스 프랑스 | Solar module |
JP2012238884A (en) * | 2005-09-30 | 2012-12-06 | Sanyo Electric Co Ltd | Manufacturing method of solar cell and manufacturing method of solar cell unit |
US8754325B2 (en) | 2007-11-02 | 2014-06-17 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
JP2014112711A (en) * | 2009-03-31 | 2014-06-19 | Lg Innotek Co Ltd | Solar cell and method of manufacturing the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3352252B2 (en) * | 1994-11-04 | 2002-12-03 | キヤノン株式会社 | Solar cell element group, solar cell module and method of manufacturing the same |
DE19758924B3 (en) * | 1996-07-24 | 2012-07-19 | Tdk Corp. | Solar battery device e.g. for wrist-watch - has photoelectric conversion elements connected in series, with electrode connections to each end of arrangement, which are brought out opposite to irradiation area of surface |
DE19928116C1 (en) | 1999-06-19 | 2000-09-07 | Webasto Vehicle Sys Int Gmbh | Solar panel for vehicle roof has contacting device mounted horizontally outside area of cover panel covered by internal cover; contact element extends horizontally to contacting device |
DE10261876B4 (en) * | 2002-12-20 | 2004-12-09 | Solarc Innovative Solarprodukte Gmbh | Manufacturing process for solar modules using conductive adhesive bonding and solar modules with conductive adhesive bridges |
DE102005031469A1 (en) * | 2005-07-04 | 2007-01-11 | Merck Patent Gmbh | Medium for the etching of oxidic, transparent, conductive layers |
DE102007052971A1 (en) * | 2007-11-07 | 2009-06-10 | Solarion Ag | Contacting and module interconnection of thin-film solar cells on polymeric substrates |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3973996A (en) * | 1974-03-04 | 1976-08-10 | The Boeing Company | Diffusion welded solar cell array |
US4243432A (en) * | 1978-09-25 | 1981-01-06 | Photon Power, Inc. | Solar cell array |
US4313022A (en) * | 1978-09-25 | 1982-01-26 | Photon Power, Inc. | Solar cell array |
DE3604917A1 (en) * | 1986-02-17 | 1987-08-27 | Messerschmitt Boelkow Blohm | METHOD FOR PRODUCING AN INTEGRATED ASSEMBLY OF SERIES THICK-LAYER SOLAR CELLS |
-
1990
- 1990-02-16 JP JP2035271A patent/JPH03239377A/en active Pending
-
1991
- 1991-02-15 DE DE4104713A patent/DE4104713C2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06196741A (en) * | 1992-12-24 | 1994-07-15 | Canon Inc | Solar battery module, manufacture thereof, and installation structure thereof |
WO1995001655A1 (en) * | 1993-07-01 | 1995-01-12 | Canon Kabushiki Kaisha | Solar cell module having excellent weather resistance |
US5578141A (en) * | 1993-07-01 | 1996-11-26 | Canon Kabushiki Kaisha | Solar cell module having excellent weather resistance |
WO1998004005A1 (en) * | 1996-07-24 | 1998-01-29 | Tdk Corporation | Solar battery and method for manufacturing the same |
US6225552B1 (en) | 1996-07-24 | 2001-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Planar solar cell array and production method of the same |
JP2012238884A (en) * | 2005-09-30 | 2012-12-06 | Sanyo Electric Co Ltd | Manufacturing method of solar cell and manufacturing method of solar cell unit |
WO2007088851A1 (en) * | 2006-01-31 | 2007-08-09 | Showa Shell Sekiyu K.K. | In SOLDER COVERED COPPER FOIL RIBBON CONDUCTOR WIRE AND ITS CONNECTION METHOD |
JP2007224191A (en) * | 2006-02-24 | 2007-09-06 | Sanyo Electric Co Ltd | Electroconductive paste composition, solar battery cell using the paste composition, and solar battery module using the cell |
WO2009057951A3 (en) * | 2007-11-02 | 2009-07-16 | Jusung Eng Co Ltd | Thin film type solar cell and method for manufacturing the same |
US8754325B2 (en) | 2007-11-02 | 2014-06-17 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
WO2009097588A2 (en) * | 2008-01-30 | 2009-08-06 | Xunlight Corporation | Series interconnected thin-film photovoltaic module and method for preparation thereof |
WO2009097588A3 (en) * | 2008-01-30 | 2009-11-05 | Xunlight Corporation | Series interconnected thin-film photovoltaic module and method for preparation thereof |
JP2009194114A (en) * | 2008-02-14 | 2009-08-27 | Showa Shell Sekiyu Kk | Solar cell module |
KR20110021715A (en) * | 2008-03-11 | 2011-03-04 | 쌩-고벵 글래스 프랑스 | Solar module |
JP2011514004A (en) * | 2008-03-11 | 2011-04-28 | サン−ゴバン グラス フランス エス アー | Solar module |
JP2010087131A (en) * | 2008-09-30 | 2010-04-15 | Mitsubishi Materials Corp | Conductive ink composition and solar cell module formed using the composition |
JP2014112711A (en) * | 2009-03-31 | 2014-06-19 | Lg Innotek Co Ltd | Solar cell and method of manufacturing the same |
JP2011044509A (en) * | 2009-08-20 | 2011-03-03 | Mitsubishi Materials Corp | Conductive ink composition, and solar cell module formed using the composition |
Also Published As
Publication number | Publication date |
---|---|
DE4104713C2 (en) | 1996-04-25 |
DE4104713A1 (en) | 1991-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03239377A (en) | Solar cell module | |
CN102354710B (en) | Photovoltaic module | |
US5296043A (en) | Multi-cells integrated solar cell module and process for producing the same | |
EP1939944B1 (en) | Solar cell and solar cell module | |
US5259891A (en) | Integrated type solar battery | |
US9024174B2 (en) | Solar cell module | |
KR101554045B1 (en) | Solar cell module | |
US20080236655A1 (en) | Solar module manufacturing processes | |
JP3323573B2 (en) | Solar cell module and method of manufacturing the same | |
US20060260673A1 (en) | Photovoltaic element and method of producing photovoltaic element | |
TW200840068A (en) | Roll-to-roll integration of thin film solar modules | |
JPH06196743A (en) | Solar battery module | |
KR20140105520A (en) | Automated flexible solar cell fabrication and interconnection utilizing rolls of expanded metallic mesh | |
JPWO2014002329A1 (en) | Solar cell module and manufacturing method thereof | |
WO2022247057A1 (en) | Back-contact solar cell string and preparation method therefor, and assembly and system | |
WO2012029651A1 (en) | Photoelectric conversion device and method for producing same | |
WO2016158299A1 (en) | Solar cell, method for manufacturing same, solar cell module and wiring sheet | |
JPH07302923A (en) | Photovoltaic device | |
JPS6146993B2 (en) | ||
JP2000049369A (en) | Thin-film solar battery module | |
JP2000349325A (en) | Thin film solar battery module | |
KR20100069354A (en) | Thin film type solar cell, method and system for manufacturing the same | |
JP2855299B2 (en) | Solar cell module | |
JP3006711B2 (en) | Solar cell module | |
JPH0519990B2 (en) |