JPH0519990B2 - - Google Patents

Info

Publication number
JPH0519990B2
JPH0519990B2 JP60053255A JP5325585A JPH0519990B2 JP H0519990 B2 JPH0519990 B2 JP H0519990B2 JP 60053255 A JP60053255 A JP 60053255A JP 5325585 A JP5325585 A JP 5325585A JP H0519990 B2 JPH0519990 B2 JP H0519990B2
Authority
JP
Japan
Prior art keywords
layer
electrode
metal
solar cell
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60053255A
Other languages
Japanese (ja)
Other versions
JPS61214483A (en
Inventor
Kenji Nakatani
Tetsuo Sato
Hiroshi Okaniwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP60053255A priority Critical patent/JPS61214483A/en
Priority to US06/828,197 priority patent/US4697041A/en
Priority to FR868602039A priority patent/FR2577716B1/en
Priority to DE19863604894 priority patent/DE3604894A1/en
Publication of JPS61214483A publication Critical patent/JPS61214483A/en
Publication of JPH0519990B2 publication Critical patent/JPH0519990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[利用分野] 本発明は集積型の非晶質シリコン薄膜太陽電池
の製造方法に関する。さらに詳しくは、同一基板
上に積層され、複数個の区画された金属電極層、
非晶質シリコン層、透明電極層からなるセルを接
続した集積型太陽電池の製造方法に関する。 [従来技術] 非晶質シリコン半導体膜はシランガス等のグロ
ー放電分解法によつて低い基板温度で、広い面積
に均一に堆積でき、基板もガラス、高分子フイル
ム、セラミツク板、金属フオイル等の各種基板が
選択できる為、太陽電池用半導体膜として広く研
究されている。 非晶質シリコン太陽電池の基本構造としては上
記各種基板上に設けられた金属電極層/非晶質シ
リコン半導体層/透明電極層の積層構造が用いら
れている。 非晶質シリコン層堆積の特徴を生かし特開昭59
−34668号公報に開示されたロールツーロール方
式やJapan Joarnal of Applied Physics誌21巻
3号413ページ(1982)に掲載されている3室分
離形成法などを用いて金属電極層を設けた大面積
の長尺基板上に非晶質シリコン層を堆積すること
は容易である。 又、もう一方の電流取り出し電極の透明電極層
を大面積に設ける事も容易である。しかしながら
太陽電池として上記積層体を働かす為には金属電
極層と透明電極層とにリード端子を取り付ける事
が必要である。さらに、実用化に必要な数十V以
上の出力電圧を得る為には、上記大面積基板上に
設けた太陽電池をレーザスクライブ法等で分割し
その後隣接し合う金属電極層と透明電極層とを直
列接続することが必要である。かかる場合、通常
最下層の金属電極層を露出させて、しかる後隣接
する上部電極層あるいはリード取り出し用電極と
接続する方法がとられている。この金属電極層を
露出させる方法として 非晶質シリコン層堆積時に金属マスクを用い
る方法、 非晶質シリコン層堆積後、湿式あるいは乾式
のエツチング法を用いシリコン層を除去する方
法、 非晶質シリコン層堆積後、レーザ照射によつ
てシリコン層のみを選択的に溶融、蒸発させて
除去する方法 などが用いられてきた。 これらの方法の中で、の方式は長尺、大面積
のロールツーロール方式に適さないばかりか3室
分離形成法においても、非晶質シリコン堆積時の
加熱過程において、基板とマスクの熱膨張率の違
いによる密着性の悪化の為、非晶質シリコン成分
の回り込みが生じ良好なパターンが得られず且
つ、電気的に良好な金属層表面を露出させること
がむつかしい。 の方法はレジスト塗付とエツチングの組み合
わせによつて可能であるが、レジスト塗付、露
光、洗浄、エツチング等の多数の工程が必要であ
り、安価に大量に太陽電池を製造するには適さな
い。又の方式においてはシリコン層溶融に必要
な高温発生の為、高融点金属を用いた金属電極層
においても損傷が生じ電気的に良好な金属層表面
を露出させる事が出来ないばかりか、Aのごと
き低融点金属ではシリコン層のみを選択的に除去
する事も出来ないのが実状である。 [発明の目的] 本発明は、上記欠点をなくした、大面積基板上
でのリード端子取り出し用あるいは、分割された
太陽電池セルの直列接続をする為の接続用電極を
金属電極面に接合させる簡便な集積型太陽電池の
製造方法を提供することを目的とするものであ
る。 [発明の構成及び作用] 上述の目的は以下の本発明により達成される。
すなわち、本発明は、同一基板上に積層され、複
数個の区画された金属電極層、光起電力層となる
非晶質シリコン半導体層及び透明電極層よりなる
セルを接続した集積型太陽電池の製造方法におい
て、各セル上又はそのリード取り出し電極部上に
所定のパターンで良導電性材の接続用電極を形成
した後、該接続用電極の接続部にレーザ光を照射
して該接続部の金属電極層、光起電力層となる非
晶質シリコン層、透明電極層及び接続用電極の全
層を溶融し、金属電極層と接続用電極とをオーミ
ツク接合させることを特徴とする薄膜太陽電池の
接続方法である。 なお、上述の接続用電極の接続部は、具体的に
は後述する隣接セルとの接続のため透明電極層を
分割して形成された接続用電極部又はリード取り
出し電極部である。 上述の本発明は、従来法の前述の欠点を解消す
るため種々検討の結果、非晶質シリコン半導体層
を挾んで設けた2つの金属層上にレーザ光を照射
し、非晶質シリコン半導体層を含めて、金属層を
溶融すると、照射中心部は若干蒸発するも両金属
層間に良好なオーミツク接合が形成されることを
見出し、なされたものである。本発明は、上述の
通り単に接続個所に接続用電極を形成しておき、
レーザー光を照射するのみで良いので、従来法の
如き金属電極面を露出させるためのステツプは不
要となり、非常に簡単に且つドライプロセスによ
り金属電極面との電気接続が形成できる。 なお、レーザ光により非晶質シリコン層更には
透明電極層を中に挾んだ金属層間を電気接続でき
る理由は定かでないが、溶融により非晶質シリコ
ンが結晶化すると共に金属層を形成する金属が全
層に混合し、レーザ光照射断面部の電気抵抗が低
下し良好なオーミツク接合が形成されたものと思
われる。 以下本発明の詳細を具体的に説明する。 本発明の電気絶縁性の基板としては電気絶縁材
からなる全ての基板が適用でき、具体的には高分
子フイルム、セラミツク板、ガラス板あるいは絶
縁性層を表面に設けた金属フオイル等が使用出来
るが、好ましくはロールツーロール法によつて構
成層を順次長尺の送行する基板上に堆積出来、大
量生産に適した高分子フイルムが使用される。高
分子フイルムとしては、非晶質シリコン堆積に必
要な耐熱性を有する高分子フイルムならどれでも
良いが、好ましくは機械的特性面の優れたポリエ
チレンテレフタレート(PET)フイルム、ポリ
エチレンナフタレートフイルム、ポリイミドフイ
ルムなどが用いられる。基板上に設けられる金属
電極層としては、A,Agなどの電気導電性の
良好な、1000℃以下の融点をもつ金属を主成分と
する層、またはこの層と電気導電性が良好で1000
℃以上の融点をもつTi,W,Pt,Co,Cr、ニク
ロム、ステンレスなどの単体金属、合金金属薄膜
との積層構造層が用いられる。 又、これらの金属電極層は、その電気抵抗の低
下及び機械的強度の観点から0.3μm以上の厚みが
望ましい。 非晶質シリコン層は、光起電力層として公知の
ものが全て適用でき、特に限定されないが、具体
的には既に公知のシランガス、ジシランガス等の
グロー放電分解を用いたプラズマCVD法を用い
て形成されたpin形の積層光起電力層等がある。
なお、かかる非晶質シリコン光起電力層として
は、pin/pin,pin/pin/pin等の多層タンデム
構造はもちろんのこと非晶質シリコンゲルマニウ
ム、非晶質シリコンカーバイトなどのナローバン
ドギヤツプあるいはワイドバンドギヤツプ半導体
層を適時用いる事も出来る。 又透明電極層も、特に限定されず、公知のもの
がそのまま適用でき、各種金属酸化物が好ましく
適用される。具体的には酸化インジウム、酸化ス
ズ、スズ酸化カドニウム、酸化インジウム・スズ
等の金属酸化物層あるいは金属薄膜と酸化物誘電
体の積層体等が適用される。 収集電極、セル間接続用電極層あるいはリード
取り出し電極層となる良導電性の接続用電極とし
ては金、銀、銅、A、ニツケルのいずれか又は
これらの合金を主体とする層が適用される。この
接続用電極は、真空蒸着法、スパツタリング法な
どの物理的方法を用いパターン化して透明電極層
上に形成される。なお、この際の薄膜は、0.5μm
以上が好ましい。又メツキ法などの化学的方法に
よつて接続用電極を設けることも出来、この場合
の膜厚は前述と同様である。さらに金、銀、銅、
A、ニツケル微粉末を用いた導電性樹脂をスク
リーン印刷法等で設ける方法が適用できる。この
スクリーン印刷法は連続生産性の点から望まし
い。印刷された良導電性層の厚みとしては5μm以
上が電気抵抗のために必要である。 レーザ光としては各構成層が吸収し得る波長域
の光なら良く0.2〜2μmの波長光が用いられるが、
好ましくは現在工業的にも広く利用されている
YAGレーザーが使用される。 レーザ光は接続のパターンに従つて形成された
前述の接続用電極上から照射されるが、基板がレ
ーザ光に対して透明な時には基板裏面から基板ご
しに前記パターンに従つて照射することも出来
る。レーザパワーは照射方向にも依存し、又良導
電性電極層厚み等によつても異なり、実際的に定
める必要があるが、基板を除き、金属電極層、非
晶質シリコン層、透明電極層、接続用電極層の全
層を溶融する範囲に選択する必要がある。なお、
金属電極層あるいは接続用電極層は、層全部を溶
融する必要がなく、非晶質シリコン層側の少なく
とも一部が溶融すれば十分である。 以上、本発明は下部の金属電極層に上部から接
続する必要がある個所の上に接続用電極を形成
し、レーザ光を照射するのみで上部から金属電極
層に良好な電気接続を形成するものであり、従来
法の如き金属電極面を露出させるためのステツプ
が不要となり、簡単なドライプロセスで金属電極
との電気接続ができるという生産性、信頼性等の
実用面で大きな効果を奏するものであり、その趣
旨から明らかな通り、かかる電気接続を必要とす
る全ての集積型太陽電池に広く適用できるもので
ある。 以下に本発明の実施例を示す。 [実施例] 高分子フイルム基板1として100μm厚のポリエ
チレンテレフタレートフイルム(PET)を用い
た。まず該フイルム基板1をDCマグネトロンス
パツタ装置に装着し、10-3torr台のAr雰囲気中で
アルミニウム層(A)0.4μm、及びステンレス
層(SS)100Åを連続して順次堆積し、金属電極
層2を長尺フイルム基板1上に設けた(第3図参
照)。さらにこのPET/A/SS堆積体上に非晶
質シリコンのpin型の光起電力層3を特開昭59−
34668号公報に開示されているロールツーロール
方式によつて長尺で大面積に連続的にホウ素
(B)ドープのP層300Å、i層0.5μm、燐(P)
ドープのn層200Åとなるように堆積した。同一
基板上で3個のセルCを直列接続した太陽電池を
形成する為に10cm×10cmの大面積のPET/A
/SS/非晶質シリコン層の積層体上にセル分
割パターンに従つてスクリーン印刷法で黒色絶縁
ペーストを印刷し、第1図に示した分割パターン
に従つて分割加工の際の分割溝周辺での電極間絶
縁不良防止のための電気絶縁層4を形成した。そ
の後、その上に電子ビーム蒸着法により酸化イン
ジユームからなる透明電極層5を厚さ600Åに均
一に堆積した。 次いで、YAGレーザを用いたレーザスクライ
ブ法により、第1図に示す3.3cm×10cmの3個の
セルCに以下のようにして分割した。すなわち、
YAGレーザをQスイツチ周波数2KHz、パワー
(尖頭値出力)1KW、ビーム径100μm、走査速度
3.2cm/secに調節して、電気絶縁層4に沿つてセ
ルCの分割のため基板1を除いた全層を蒸発させ
たセル分割溝6を形成し、電気絶縁層4aに沿つ
てYAGレーザをパワーのみ150Wとし、その他は
前記と同条件で透明電極層5のみを蒸発させて接
続用電極部5aを分離する電極分割溝7を形成し
て、セル分割した。 分割後、スクリーン印刷法で銀導電性樹脂を第
2図に示す以下のパターンに厚さ13μmに堆積し、
収集電極8及びリード取り出し電極9を形成し
た。すなわち、収集電極8のバスバー部8aが接
続電極となるように接続用電極部5a上に位置
し、バスバー部8aからその直角方向に所定間隔
でフインガー部8bを配設したパターンに設けて
ある。なお図で右側のセルCのバスバー部8aは
リード取り出し用の電極となる。 次いで、3つのセルCを直列接続する為、収集
電極8のバスバー8a上に第3図に示す通りパワ
ーが2KWでその他は前記と同条件のYAGレーザ
光Lを照射しつつその全長に亘り走査した。レー
ザ光の照射によつて第3図に示す通り基板を除く
全層が溶融混合し金属電極層2とバスバー部8a
及びリード取り出し電極9との間で良好なオーミ
ツク接続が形成された。これは、以上で得られた
3個のセルCを直列接続した太陽電池モジユール
を100mW/cm2、AM1のソーラシユミレーターの
下で測定した表1の結果から明らかである。比較
の為に全ての工程をマスク法を用いて作成した同
じ構成の太陽電池モジユールを作り測定した結果
も表1に示す。
[Field of Application] The present invention relates to a method for manufacturing an integrated amorphous silicon thin film solar cell. More specifically, a plurality of partitioned metal electrode layers stacked on the same substrate,
The present invention relates to a method for manufacturing an integrated solar cell in which a cell consisting of an amorphous silicon layer and a transparent electrode layer is connected. [Prior art] Amorphous silicon semiconductor films can be deposited uniformly over a wide area at low substrate temperatures by glow discharge decomposition using silane gas, etc., and can be deposited on various substrates such as glass, polymer films, ceramic plates, metal foils, etc. Because the substrate can be selected, it is widely studied as a semiconductor film for solar cells. The basic structure of an amorphous silicon solar cell is a laminated structure of metal electrode layer/amorphous silicon semiconductor layer/transparent electrode layer provided on the various substrates mentioned above. Utilizing the characteristics of amorphous silicon layer deposition, JP-A-59
A large area where a metal electrode layer is provided using the roll-to-roll method disclosed in Publication No. 34668 or the three-chamber separation formation method published in Japan Journal of Applied Physics, Vol. 21, No. 3, page 413 (1982). It is easy to deposit an amorphous silicon layer on a long substrate. Further, it is also easy to provide the transparent electrode layer of the other current extraction electrode over a large area. However, in order for the above-mentioned laminate to function as a solar cell, it is necessary to attach lead terminals to the metal electrode layer and the transparent electrode layer. Furthermore, in order to obtain an output voltage of several tens of volts or more, which is necessary for practical use, the solar cell provided on the large-area substrate is divided by a laser scribing method, etc., and then the adjacent metal electrode layer and transparent electrode layer are separated. It is necessary to connect them in series. In such a case, a method is usually used in which the lowest metal electrode layer is exposed and then connected to the adjacent upper electrode layer or lead extraction electrode. Methods for exposing this metal electrode layer include: using a metal mask during deposition of the amorphous silicon layer; removing the silicon layer using wet or dry etching after depositing the amorphous silicon layer; A method has been used in which after deposition, only the silicon layer is selectively melted and evaporated by laser irradiation to remove it. Among these methods, the method is not only unsuitable for long, large-area roll-to-roll methods, but also for the three-chamber separation method, thermal expansion of the substrate and mask occurs during the heating process during amorphous silicon deposition. Due to the deterioration of adhesion due to the difference in ratio, the amorphous silicon component wraps around, making it difficult to obtain a good pattern and making it difficult to expose the electrically good surface of the metal layer. This method is possible by combining resist coating and etching, but it requires many steps such as resist coating, exposure, cleaning, and etching, and is not suitable for manufacturing solar cells in large quantities at low cost. . In the other method, due to the high temperature required to melt the silicon layer, the metal electrode layer made of a high-melting point metal is also damaged, making it impossible to expose the electrically good metal layer surface. The reality is that it is not possible to selectively remove only the silicon layer with low melting point metals such as metals. [Object of the invention] The present invention eliminates the above-mentioned drawbacks and provides a method for bonding a connecting electrode to a metal electrode surface for taking out lead terminals on a large-area substrate or connecting divided solar cells in series. The purpose of this invention is to provide a simple method for manufacturing an integrated solar cell. [Structure and operation of the invention] The above-mentioned objects are achieved by the present invention as described below.
That is, the present invention provides an integrated solar cell in which cells are stacked on the same substrate and are made up of a plurality of partitioned metal electrode layers, an amorphous silicon semiconductor layer serving as a photovoltaic layer, and a transparent electrode layer. In the manufacturing method, after forming a connection electrode made of a highly conductive material in a predetermined pattern on each cell or its lead extraction electrode part, the connection part of the connection electrode is irradiated with laser light to remove the connection part. A thin film solar cell characterized by melting all layers of a metal electrode layer, an amorphous silicon layer serving as a photovoltaic layer, a transparent electrode layer, and a connecting electrode, and ohmic bonding the metal electrode layer and the connecting electrode. This is the connection method. In addition, the connection part of the above-mentioned connection electrode is specifically a connection electrode part or a lead extraction electrode part formed by dividing the transparent electrode layer for connection with an adjacent cell, which will be described later. As a result of various studies in order to eliminate the above-mentioned drawbacks of the conventional method, the present invention described above was developed by irradiating a laser beam onto two metal layers sandwiching an amorphous silicon semiconductor layer, thereby forming an amorphous silicon semiconductor layer. This was done based on the discovery that when the metal layers are melted, a good ohmic bond is formed between the two metal layers, although the irradiated center portion evaporates slightly. As mentioned above, the present invention simply forms connection electrodes at the connection points,
Since it is only necessary to irradiate the laser beam, there is no need for a step to expose the metal electrode surface as in the conventional method, and electrical connection with the metal electrode surface can be formed very simply and by a dry process. It is unclear why laser light can electrically connect an amorphous silicon layer and a metal layer with a transparent electrode layer sandwiched therein, but as the amorphous silicon crystallizes by melting, the metal forming the metal layer It is believed that this is because the electrical resistance of the cross-sectional area irradiated with the laser beam is reduced, and a good ohmic junction is formed. The details of the present invention will be specifically explained below. As the electrically insulating substrate of the present invention, any substrate made of an electrically insulating material can be used, and specifically, a polymer film, a ceramic plate, a glass plate, or a metal foil with an insulating layer provided on the surface can be used. Preferably, however, a polymeric film is used which allows the constituent layers to be deposited one after another by a roll-to-roll method on a long, moving substrate and is suitable for mass production. The polymer film may be any polymer film that has the heat resistance necessary for amorphous silicon deposition, but polyethylene terephthalate (PET) film, polyethylene naphthalate film, and polyimide film, which have excellent mechanical properties, are preferably used. etc. are used. The metal electrode layer provided on the substrate may be a layer mainly composed of a metal with good electrical conductivity such as A or Ag and a melting point of 1000°C or less, or a layer with good electrical conductivity of 1000°C or less with this layer.
Single metals such as Ti, W, Pt, Co, Cr, nichrome, and stainless steel having a melting point of 0.degree. Further, these metal electrode layers preferably have a thickness of 0.3 μm or more from the viewpoint of reducing electrical resistance and mechanical strength. The amorphous silicon layer can be formed using any known photovoltaic layer, and is not particularly limited. Specifically, it can be formed using a plasma CVD method using glow discharge decomposition of a known silane gas, disilane gas, etc. There are pin-shaped laminated photovoltaic layers, etc.
The amorphous silicon photovoltaic layer may include not only multilayer tandem structures such as pin/pin, pin/pin/pin, but also narrow band gap structures such as amorphous silicon germanium and amorphous silicon carbide. Alternatively, a wide band gap semiconductor layer can be used as appropriate. Further, the transparent electrode layer is not particularly limited, and any known material can be used as is, and various metal oxides are preferably used. Specifically, a metal oxide layer such as indium oxide, tin oxide, tin cadmium oxide, indium tin oxide, or a laminate of a metal thin film and an oxide dielectric material is applied. A layer mainly made of gold, silver, copper, A, nickel, or an alloy thereof is used as a highly conductive connection electrode that serves as a collector electrode, an intercell connection electrode layer, or a lead extraction electrode layer. . This connection electrode is formed on the transparent electrode layer by patterning using a physical method such as a vacuum evaporation method or a sputtering method. In addition, the thin film at this time is 0.5μm
The above is preferable. The connecting electrode can also be provided by a chemical method such as plating, and the film thickness in this case is the same as described above. In addition, gold, silver, copper,
A. A method of applying a conductive resin using fine nickel powder by screen printing or the like can be applied. This screen printing method is desirable from the viewpoint of continuous productivity. The printed conductive layer needs to have a thickness of 5 μm or more for electrical resistance. Laser light with a wavelength of 0.2 to 2 μm is often used as long as it is in a wavelength range that can be absorbed by each constituent layer.
Preferably, it is currently widely used industrially.
A YAG laser is used. The laser beam is irradiated from above the above-mentioned connection electrode formed according to the connection pattern, but if the substrate is transparent to the laser beam, it can also be irradiated from the back side of the substrate through the substrate according to the pattern. I can do it. The laser power depends on the irradiation direction and also depends on the thickness of the highly conductive electrode layer, so it needs to be determined practically. , it is necessary to select a range in which all layers of the connection electrode layer are melted. In addition,
It is not necessary to melt the entire metal electrode layer or the connection electrode layer, and it is sufficient to melt at least a portion of the amorphous silicon layer side. As described above, the present invention forms a connection electrode on the part where it is necessary to connect to the lower metal electrode layer from above, and forms a good electrical connection from the upper part to the metal electrode layer by simply irradiating laser light. This eliminates the need for a step to expose the metal electrode surface as in the conventional method, and allows electrical connection to the metal electrode with a simple dry process, which has great practical effects in terms of productivity, reliability, etc. As is clear from its purpose, it is broadly applicable to all integrated solar cells that require such electrical connections. Examples of the present invention are shown below. [Example] A 100 μm thick polyethylene terephthalate film (PET) was used as the polymer film substrate 1. First, the film substrate 1 was mounted on a DC magnetron sputtering device, and an aluminum layer (A) of 0.4 μm and a stainless steel layer (SS) of 100 Å were successively deposited in an Ar atmosphere of 10 -3 torr. Layer 2 was provided on the long film substrate 1 (see Figure 3). Furthermore, a pin-type photovoltaic layer 3 of amorphous silicon is deposited on this PET/A/SS deposited body.
A boron (B)-doped P layer of 300 Å, an i-layer of 0.5 μm, and a phosphorus (P) doped layer were continuously formed over a large area in a long length using the roll-to-roll method disclosed in Publication No. 34668.
A doped n-layer was deposited to a thickness of 200 Å. In order to form a solar cell with three cells C connected in series on the same substrate, a large area of 10cm x 10cm PET/A was used.
/SS/ A black insulating paste is printed on the laminate of amorphous silicon layers using a screen printing method according to the cell division pattern, and a black insulating paste is printed around the division grooves during division according to the division pattern shown in Figure 1. An electrical insulating layer 4 was formed to prevent poor insulation between electrodes. Thereafter, a transparent electrode layer 5 made of indium oxide was uniformly deposited to a thickness of 600 Å thereon by electron beam evaporation. Next, by a laser scribing method using a YAG laser, it was divided into three cells C of 3.3 cm x 10 cm as shown in FIG. 1 as follows. That is,
YAG laser Q switch frequency 2KHz, power (peak value output) 1KW, beam diameter 100μm, scanning speed
3.2 cm/sec, a cell dividing groove 6 is formed by evaporating all layers except the substrate 1 along the electrical insulating layer 4 in order to divide the cell C, and a YAG laser is applied along the electrical insulating layer 4a. Only the power was set to 150 W, and other conditions were the same as above, and only the transparent electrode layer 5 was evaporated to form electrode dividing grooves 7 that separate the connecting electrode portions 5a, and cells were divided. After dividing, silver conductive resin was deposited to a thickness of 13 μm in the following pattern shown in Figure 2 using a screen printing method.
A collection electrode 8 and a lead extraction electrode 9 were formed. That is, the busbar portion 8a of the collecting electrode 8 is positioned on the connection electrode portion 5a so as to serve as a connection electrode, and the finger portions 8b are arranged in a pattern at predetermined intervals from the busbar portion 8a in a direction perpendicular to the busbar portion 8a. Note that the bus bar portion 8a of the cell C on the right side in the figure serves as an electrode for lead extraction. Next, in order to connect the three cells C in series, a YAG laser beam L having a power of 2 KW and the same conditions as above is irradiated onto the bus bar 8a of the collecting electrode 8 as shown in FIG. 3, and scanned over its entire length. did. By irradiating the laser beam, all the layers except the substrate are melted and mixed, as shown in FIG. 3, to form the metal electrode layer 2 and the bus bar portion 8a.
A good ohmic connection was formed between the electrode and the lead extraction electrode 9. This is clear from the results shown in Table 1, in which the solar cell module in which the three cells C obtained above were connected in series was measured at 100 mW/cm 2 under an AM1 solar simulator. For comparison, a solar cell module with the same configuration was made using the mask method in all steps, and the results of measurements are also shown in Table 1.

【表】 表1から明らかなように本発明の製造方法を用
いたモジユールはマスク法に対して同等の効率、
曲線因子を示しており、これは本発明の製造方法
により良好なオーミツク接続が形成されている事
を示している。 またバスバー部8aの溶融接続部のレーザ光に
より蒸発した部分の断面の原子分布を電子プロー
ブ微小分析法(EPMA)で測定したところ、金
属電極層のみに含まれているはずのA原子と接
続用電極のみに含まれているはずのAg原子がレ
ーザ光照射によつて蒸発した部分の断面近傍の全
層に亘つて混在しており、金属電極と接続用電極
のオーミツク接合が形成されていることが確認さ
れた。 なお、本例と同じ構成で、基板のPETフイル
ム側からレーザ光を照射して接続した場合にも同
様な結果が得られた。この場合は、接続用電極の
バスバー部8aの銀層を全層溶融する必要がない
ため、レーザ光のパワーは500Wで充分であつた。
なお、この場合のレーザー光の他の条件は前述と
同様である。
[Table] As is clear from Table 1, the module using the manufacturing method of the present invention has the same efficiency and efficiency as the mask method.
The fill factor is shown, which indicates that a good ohmic connection is formed by the manufacturing method of the present invention. In addition, when we measured the atomic distribution in the cross section of the part of the fused connection part of the bus bar part 8a that was evaporated by the laser beam using electron probe microanalysis (EPMA), we found that the A atoms, which should be contained only in the metal electrode layer, and the connection Ag atoms, which should only be contained in the electrode, are mixed in the entire layer near the cross section of the part evaporated by laser beam irradiation, forming an ohmic junction between the metal electrode and the connection electrode. was confirmed. Note that similar results were obtained when using the same configuration as in this example and connecting by irradiating laser light from the PET film side of the substrate. In this case, since it was not necessary to melt the entire silver layer of the bus bar portion 8a of the connection electrode, the laser beam power of 500 W was sufficient.
Note that other conditions for the laser beam in this case are the same as described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の用いた太陽電池のセル分割パ
ターンを示す表面図、第2図は該太陽電池の収集
電極パターンを示す平面図、第3図は第2図AB
線における該太陽電池の構造を示す部分側断面図
である。 1……基板、2……金属電極層、3……非晶質
シリコン層、5……透明電極層、8……収集電
極、8a……接続用電極のバスバー部。
Figure 1 is a surface view showing the cell division pattern of the solar cell used in the example, Figure 2 is a plan view showing the collecting electrode pattern of the solar cell, and Figure 3 is Figure 2AB.
FIG. 2 is a partial side cross-sectional view showing the structure of the solar cell along lines. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Metal electrode layer, 3... Amorphous silicon layer, 5... Transparent electrode layer, 8... Collection electrode, 8a... Bus bar portion of connection electrode.

Claims (1)

【特許請求の範囲】 1 同一基板上に積層され、複数個の区画された
金属電極層、光起電力層となる非晶質シリコン層
及び透明電極層よりなるセルを接続した集積型太
陽電池の製造方法において、各セル上又はそのリ
ード取り出し電極部上に所定のパターンで良導電
性材の接続用電極を形成した後、該接続用電極の
接続部にレーザ光を照射して該接続部の金属電極
層、光起電力層となる非晶質シリコン層、透明電
極層及び接続用電極の全層を溶融し、金属電極層
と接続用電極とをオーミツク接合させることを特
徴とする集積型太陽電池の製造方法。 2 前記接続用電極が収集電極のバスバー部であ
る特許請求の範囲第1項記載の集積型太陽電池の
製造方法。 3 前記接続用電極が金、銀、銅、アルミニウ
ム、ニツケルのいずれか若しくはこれらの合金か
らなる特許請求の範囲第1項若しくは第2項記載
の集積型太陽電池の製造方法。 4 前記金属電極層が1000℃以下の融点を有する
良導電性金属を主とする層若しくは該良導電性金
属と1000℃以上の融点を有する金属薄膜との積層
体からなる特許請求の範囲第1項、第2項、若し
くは第3項記載の集積型太陽電池の製造方法。 5 前記基板が電気絶縁性材料である特許請求の
範囲第1項、第2項、第3項若しくは第4項記載
の集積型太陽電池の製造方法。 6 前記基板が長尺の高分子フイルムである特許
請求の範囲第5項記載の集積型太陽電池の製造方
法。
[Claims] 1. An integrated solar cell in which cells are stacked on the same substrate and are made up of a plurality of partitioned metal electrode layers, an amorphous silicon layer serving as a photovoltaic layer, and a transparent electrode layer. In the manufacturing method, after forming a connection electrode made of a highly conductive material in a predetermined pattern on each cell or its lead extraction electrode part, the connection part of the connection electrode is irradiated with laser light to remove the connection part. An integrated solar device characterized by melting all layers of a metal electrode layer, an amorphous silicon layer serving as a photovoltaic layer, a transparent electrode layer, and a connecting electrode, and ohmic bonding the metal electrode layer and the connecting electrode. How to manufacture batteries. 2. The method for manufacturing an integrated solar cell according to claim 1, wherein the connection electrode is a busbar portion of a collecting electrode. 3. The method for manufacturing an integrated solar cell according to claim 1 or 2, wherein the connection electrode is made of gold, silver, copper, aluminum, nickel, or an alloy thereof. 4. Claim 1, wherein the metal electrode layer is a layer mainly made of a highly conductive metal having a melting point of 1000°C or less, or a laminate of the highly conductive metal and a metal thin film having a melting point of 1000°C or more. 2. The method for manufacturing an integrated solar cell according to item 2, item 3, or item 3. 5. The method for manufacturing an integrated solar cell according to claim 1, 2, 3, or 4, wherein the substrate is an electrically insulating material. 6. The method for manufacturing an integrated solar cell according to claim 5, wherein the substrate is a long polymer film.
JP60053255A 1985-02-15 1985-03-19 Manufacture of integrated type solar cell Granted JPS61214483A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60053255A JPS61214483A (en) 1985-03-19 1985-03-19 Manufacture of integrated type solar cell
US06/828,197 US4697041A (en) 1985-02-15 1986-02-10 Integrated solar cells
FR868602039A FR2577716B1 (en) 1985-02-15 1986-02-14 INTEGRATED SOLAR CELLS AND THEIR MANUFACTURING METHOD
DE19863604894 DE3604894A1 (en) 1985-02-15 1986-02-15 INTEGRATED SOLAR CELLS AND METHOD FOR THEIR PRODUCTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60053255A JPS61214483A (en) 1985-03-19 1985-03-19 Manufacture of integrated type solar cell

Publications (2)

Publication Number Publication Date
JPS61214483A JPS61214483A (en) 1986-09-24
JPH0519990B2 true JPH0519990B2 (en) 1993-03-18

Family

ID=12937674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60053255A Granted JPS61214483A (en) 1985-02-15 1985-03-19 Manufacture of integrated type solar cell

Country Status (1)

Country Link
JP (1) JPS61214483A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719913B2 (en) * 1988-10-14 1995-03-06 富士電機株式会社 Thin film solar cell
JPH06132552A (en) * 1992-10-19 1994-05-13 Canon Inc Photovoltaic element and manufacture thereof
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Manufacture of thin-film solar cell and film-forming state monitoring device of thin film
JP2005101384A (en) 2003-09-26 2005-04-14 Sanyo Electric Co Ltd Photovoltaic device and its manufacturing method
JP5081389B2 (en) 2006-02-23 2012-11-28 三洋電機株式会社 Method for manufacturing photovoltaic device
US8207010B2 (en) * 2007-06-05 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing photoelectric conversion device
JP4425296B2 (en) 2007-07-09 2010-03-03 三洋電機株式会社 Photovoltaic device
JP2009283982A (en) * 2009-08-31 2009-12-03 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
JP2010093309A (en) * 2010-01-29 2010-04-22 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module
JP2010093308A (en) * 2010-01-29 2010-04-22 Sanyo Electric Co Ltd Method of manufacturing thin-film solar cell module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101540A (en) * 1983-11-07 1985-06-05 Nippon Kogaku Kk <Nikon> Projection optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101540A (en) * 1983-11-07 1985-06-05 Nippon Kogaku Kk <Nikon> Projection optical device

Also Published As

Publication number Publication date
JPS61214483A (en) 1986-09-24

Similar Documents

Publication Publication Date Title
US4697041A (en) Integrated solar cells
US4865999A (en) Solar cell fabrication method
KR100293132B1 (en) Electrode structure, process for production thereof and photo-electricity generating device including the electrode
US7095090B2 (en) Photoelectric conversion device
US5593901A (en) Monolithic series and parallel connected photovoltaic module
JP4796947B2 (en) Integrated thin film solar cell and manufacturing method thereof
US5821597A (en) Photoelectric conversion device
US6011215A (en) Point contact photovoltaic module and method for its manufacture
WO1993023880A1 (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
CN86102164A (en) Increase the photocell of effective area
JPH03239377A (en) Solar cell module
JPH0519990B2 (en)
JPH08330615A (en) Series solar cell and manufacture thereof
JP2000049369A (en) Thin-film solar battery module
JPH0851229A (en) Integrated solar battery and its manufacture
JPH06204529A (en) Solar cell
JPH0864850A (en) Thin film solar battery and fabrication thereof
JP2000196117A (en) Manufacture of photoelectric conversion device
JPH0546991B2 (en)
JPS61187377A (en) Dividing method for processing of amorphous solar battery
JP4220014B2 (en) Method for forming thin film solar cell
JPS61241981A (en) Manufacture of thin film solar battery
JPS6010788A (en) Substrate for solar cell
JPH0620149B2 (en) Method of manufacturing thin film solar cell
EP0962990A2 (en) Method of fabricating a solar cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees