JPH0851229A - Integrated solar battery and its manufacture - Google Patents
Integrated solar battery and its manufactureInfo
- Publication number
- JPH0851229A JPH0851229A JP6187216A JP18721694A JPH0851229A JP H0851229 A JPH0851229 A JP H0851229A JP 6187216 A JP6187216 A JP 6187216A JP 18721694 A JP18721694 A JP 18721694A JP H0851229 A JPH0851229 A JP H0851229A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- film
- transparent conductive
- conductive film
- conversion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Electrodes Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は集積型薄膜太陽電池の構
造および製造方法の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in the structure and manufacturing method of integrated thin film solar cells.
【0002】[0002]
【従来の技術】一般に集積型薄膜太陽電池は、受光面と
なるガラスのような透光性絶縁基板上に酸化錫(SnO
2 )や酸化インジウム錫(ITO)等の透明導電膜より
なる電極を形成し、その上に結晶または非晶質のような
半導体光電変換層および反射板を兼ねた金属薄膜裏面電
極を積層して形成される。2. Description of the Related Art Generally, an integrated type thin film solar cell has tin oxide (SnO) formed on a transparent insulating substrate such as glass as a light receiving surface.
2 ) or an electrode made of a transparent conductive film such as indium tin oxide (ITO) is formed, and a metal thin film back surface electrode which also functions as a semiconductor photoelectric conversion layer and a reflector such as crystal or amorphous is laminated on the electrode. It is formed.
【0003】非晶質半導体光電変換層は、原料ガスのグ
ロー放電分解によるプラズマCVD法や光CVD法等
の、気相成長により形成されるため、大面積の薄膜形成
が可能な利点を有する。Since the amorphous semiconductor photoelectric conversion layer is formed by vapor phase growth such as plasma CVD method or light CVD method by glow discharge decomposition of raw material gas, it has an advantage that a large area thin film can be formed.
【0004】また、1つの光電変換素子の金属薄膜裏面
電極が隣接する光電変換素子の受光面側の透明導電膜に
よる電極の端部と電気的に接触する直列接続構造により
集積型を形成する。各光電変換素子を分割する手段とし
てはフォトエッチング法やレーザスクライブ法等があ
る。Further, an integrated type is formed by a series connection structure in which a metal thin film back surface electrode of one photoelectric conversion element electrically contacts an end portion of an electrode formed of a transparent conductive film on the light receiving surface side of an adjacent photoelectric conversion element. Examples of means for dividing each photoelectric conversion element include a photoetching method and a laser scribing method.
【0005】フォトエッチング法は、レジスト膜塗布等
の工程数が多く、煩雑で、薄膜太陽電池基板が大面積と
なるにつれ、生産コストが高くなる。また、レジスト膜
除去液に浸漬する化学処理工程を経るときに、膜面が損
傷を受けて太陽電池の変換効率を低下させる要因とな
る。The photo-etching method involves many steps such as resist film coating and is complicated, and the production cost increases as the area of the thin-film solar cell substrate increases. In addition, the film surface is damaged during the chemical treatment step of immersing in the resist film removing liquid, which causes a reduction in conversion efficiency of the solar cell.
【0006】一方、レーザスクライブ法は、反射膜とな
る金属薄膜裏面電極のフォトエッチング工程がなくなる
ため生産工程が簡略化され、生産コストを低く抑えるこ
とができる。さらに、レーザスクライブにより、形成さ
れた素子分割の溝幅を狭く、たとえば100μm以下に
加工できるため、光電変換素子の電極接合部分の面積が
小さくてすみ、光電変換に関与しない面積が小さく、よ
って集積型薄膜太陽電池の発電有効面積を増大させるこ
とができる。On the other hand, in the laser scribing method, the photoetching process for the metal thin film rear surface electrode serving as the reflection film is eliminated, so that the production process is simplified and the production cost can be kept low. Furthermore, since the groove width of the element division formed by laser scribing can be narrowed, for example, it can be processed to 100 μm or less, the area of the electrode bonding portion of the photoelectric conversion element can be small, and the area not involved in photoelectric conversion is small, and thus the integrated The effective power generation area of the thin film solar cell can be increased.
【0007】[0007]
【発明が解決しようとする課題】前述のレーザスクライ
ブ法により薄膜太陽電池を集積化しようとする場合にお
いて、最も問題となるのは、反射板となる金属薄膜裏面
電極のパターニングである。When the thin film solar cell is to be integrated by the above-mentioned laser scribing method, the most problematic problem is the patterning of the metal thin film rear surface electrode which becomes the reflector.
【0008】図4(a),(b)および(c)は、金属
薄膜裏面電極のパターニングの説明のための集積型薄膜
太陽電池の一例の断面図である。透光性絶縁基板1の表
面に、一方の電極となる第1の透明導電膜2,光電変換
層3,第2の透明導電膜4および反射板となる金属薄膜
裏面電極8が積層されている。光電変換層3はこれを貫
通するスクライブ溝11を透明導電膜4の材料で埋める
ことにより光電変換層のプラス側とマイナス側が接続さ
れる。これをスクライブ溝12により各単位となる光電
変換素子ごとに分離し、各素子は直列に接続されたこと
になり集積化される。FIGS. 4A, 4B and 4C are sectional views of an example of an integrated type thin film solar cell for explaining the patterning of the metal thin film back electrode. On the surface of the translucent insulating substrate 1, a first transparent conductive film 2, a photoelectric conversion layer 3, a second transparent conductive film 4, which is one of the electrodes, and a metal thin film back electrode 8 which is a reflector are laminated. . In the photoelectric conversion layer 3, the scribe groove 11 penetrating the photoelectric conversion layer 3 is filled with the material of the transparent conductive film 4, so that the plus side and the minus side of the photoelectric conversion layer are connected. This is separated by the scribe groove 12 for each photoelectric conversion element, and each element is integrated because it is connected in series.
【0009】このとき、たとえば、QスイッチYAGレ
ーザビームを用いて金属薄膜裏面電極8側からスクライ
ブする場合、レーザビームのパワーが弱いと、図4
(a)に示すように、金属薄膜裏面電極8の表面はレー
ザビームを反射するため、切断不良となり、第2の透明
導電膜4は分割されず、隣接する発電素子間が短絡した
状態になる。At this time, for example, when the Q-switch YAG laser beam is used to scribe from the metal thin film rear surface electrode 8 side, if the power of the laser beam is weak, FIG.
As shown in (a), the surface of the metal thin film rear surface electrode 8 reflects the laser beam, resulting in cutting failure, the second transparent conductive film 4 is not divided, and adjacent power generating elements are short-circuited. .
【0010】また、レーザビームのパワーが強いと、図
4(b)に示すように、金属薄膜裏面電極8は切断され
るが、その下方に積層した非晶質半導体の光電変換層3
および第1および第2の透明導電膜2および4も切断し
てしまい、光電変換素子間の直列接続が絶縁遮断されて
しまい、集積化できない。Further, when the power of the laser beam is strong, the metal thin film back electrode 8 is cut as shown in FIG. 4B, but the photoelectric conversion layer 3 of an amorphous semiconductor laminated thereunder is cut off.
Also, the first and second transparent conductive films 2 and 4 are also cut, and the series connection between the photoelectric conversion elements is insulated and cut off, which makes integration impossible.
【0011】さらに、本来、レーザビームによるスクラ
イブは、局所的熱加工であるため、金属薄膜裏面電極8
の下に積層された非晶質半導体の光電変換層3や第1お
よび第2の透明導電膜2および4を切断しないまでも、
熱損傷を与え、金属膜の飛散物が最下層の透明導電膜と
接触したり、スクライブ溝に残留したりして、結果とし
て、電気的短絡を引起こすことになる。このように、反
射膜となる金属薄膜裏面電極8面からのレーザスクライ
ブは、レーザパワー、スクライブ加工スピードを極めて
微妙に制御しなければならず、熱伝導度,融点,昇華性
が異なる積層膜を選択的に加工することは、極めて難し
い。Further, since the scribe by the laser beam is originally a local thermal processing, the metal thin film rear surface electrode 8
Even if the amorphous semiconductor photoelectric conversion layer 3 and the first and second transparent conductive films 2 and 4 stacked below are not cut,
Thermal damage is caused, and the scattered substances of the metal film come into contact with the lowermost transparent conductive film or remain in the scribe groove, resulting in an electrical short circuit. As described above, in the laser scribing from the surface of the metal thin film rear surface electrode 8 serving as a reflective film, the laser power and the scribing processing speed must be controlled extremely delicately, and a laminated film having different thermal conductivity, melting point, and sublimation property is required. It is extremely difficult to selectively process.
【0012】これを解決するために、図4(c)に示す
ように、たとえばYAGレーザ第2高調波(波長:0.
53μm)を透光性絶縁基板1面から入射し、透光性絶
縁基板1とその上に積層した透明導電膜を損傷させずに
レーザビームを透過させて、光電変換層3で吸収させ、
昇華蒸発させると同時に、その上に積層した金属薄膜裏
面電極8も吹飛ばしてスクライブ加工する方法が提案さ
れているが、前述したように、この場合もレーザパワ
ー,スクライブ加工スピードの微妙な制御が必要で、金
属膜の飛散物が最下層の第1の透明導電膜2と接触した
り、金属薄膜裏面電極8が剥離して電気的短絡を引起こ
しやすい。In order to solve this, as shown in FIG. 4 (c), for example, a YAG laser second harmonic (wavelength: 0 ..
(53 μm) from the surface of the translucent insulating substrate 1 to allow the laser beam to pass through without damaging the translucent insulating substrate 1 and the transparent conductive film laminated on the translucent insulating substrate 1 to be absorbed by the photoelectric conversion layer 3,
A method has been proposed in which sublimation and evaporation are performed, and at the same time, the metal thin film rear surface electrode 8 laminated thereon is also blown away to perform scribing processing. If necessary, scattered matter of the metal film is likely to come into contact with the first transparent conductive film 2 of the lowermost layer, or the metal thin film rear surface electrode 8 is peeled off to cause an electrical short circuit.
【0013】また、太陽電池としての変換効率を向上さ
せる目的で、各積層膜がテクスチャ構造にされており、
さらに反射板となる金属薄膜裏面電極層の膜厚のばらつ
きなどにより、1つのスクライブ条件における加工再現
性や信頼性が低く、結果として、生産工程における歩留
りの低下につながるという懸念があった。In order to improve the conversion efficiency of the solar cell, each laminated film has a textured structure,
Furthermore, due to variations in the film thickness of the metal thin film back electrode layer that serves as a reflection plate, there is a concern that processing reproducibility and reliability under one scribe condition are low, resulting in a reduction in yield in the production process.
【0014】いずれにしても、従来の構造では、裏面の
反射膜となる金属薄膜が集電電極を兼ねているため、直
列集積化するためには、この裏面の金属薄膜電極をパタ
ーニングする必要があり、これにレーザスクライブ法に
よるパターニングを適用しようとする場合、加工形状不
良や電気的短絡を発生して、歩留りを上げることは困難
であった。In any case, in the conventional structure, since the metal thin film serving as the reflective film on the back surface also serves as the collector electrode, it is necessary to pattern this metal thin film electrode on the back surface for serial integration. However, when patterning by the laser scribing method is applied to this, it is difficult to raise the yield by causing a defective machining shape or an electrical short circuit.
【0015】[0015]
【課題を解決するための手段】本発明の太陽電池は、透
光性絶縁基板上に第1の透明導電膜を形成し、短冊状に
パターニングした後、その上に非晶質半導体光電変換層
を積層し、レーザ光照射によりスクライブ溝を形成して
パターニングし、その上に第2の透明導電膜を積層して
透光性絶縁基板の積層面の反対側からレーザ光を透過さ
せて照射し、スクライブ溝を形成して、光電変換層を複
数個の光電変換素子を直列接続した状態に加工した後、
その表面に透光性絶縁膜を形成し、さらにその上に反射
膜層を形成する。In the solar cell of the present invention, a first transparent conductive film is formed on a translucent insulating substrate, patterned into strips, and then an amorphous semiconductor photoelectric conversion layer is formed thereon. Laser light is applied to form a scribe groove for patterning, a second transparent conductive film is laminated on the scribe groove, and the laser light is transmitted from the opposite side of the laminated surface of the translucent insulating substrate for irradiation. After forming a scribe groove and processing the photoelectric conversion layer into a state in which a plurality of photoelectric conversion elements are connected in series,
A translucent insulating film is formed on the surface, and a reflective film layer is further formed thereon.
【0016】また、光電変換層を複数個電気的に直列接
続した状態に加工した後、各光電変換素子の表面の第2
の透明導電膜の上に金属電極を積層した後、透光性絶縁
膜を形成し、その上に反射膜を形成する。Further, after processing a plurality of photoelectric conversion layers electrically connected in series, the second photoelectric conversion layer on the surface of each photoelectric conversion element is processed.
After laminating the metal electrode on the transparent conductive film, the transparent insulating film is formed, and the reflective film is formed thereon.
【0017】[0017]
【作用】本発明によれば、第1および第2の透明導電膜
だけで直列集積化を行ない、透光性絶縁膜を介して裏面
反射膜を形成するから、反射膜となる金属薄膜裏面電極
をレーザスクライブする必要がないので、従来、金属薄
膜のパターニング工程において起こるような加工形状不
良がなくなり、また、これにより引起こされる金属薄膜
裏面電極の剥離や電気的短絡はなくなる。According to the present invention, since the back surface reflection film is formed by serially integrating only the first and second transparent conductive films and the translucent insulating film, the metal thin film back surface electrode serving as the reflection film is formed. Since it is not necessary to perform laser scribing on the metal thin film, there is no defect in the processed shape that has been conventionally caused in the patterning process of the metal thin film, and the peeling of the metal thin film rear surface electrode and the electrical short circuit caused thereby are eliminated.
【0018】さらに、光電変換層を複数個の光電変換素
子を電気的に直列接続した状態に加工した後、各光電変
換素子の第2の透明導電膜電極上に金属電極を積層した
後、その上に透光性絶縁膜を形成し、その上に反射膜を
形成する構造においては、第1および第2の透明導電膜
だけで直列集積化した場合に比べて、直列集積化方向
(スクライブ方向と直交する方向)のシリーズ抵抗を低
く抑えることができるとともに、金属電極の形状によっ
ては、光の散乱効果を得ることにより、光電変換効率の
向上に寄与する。Further, after processing the photoelectric conversion layer into a state in which a plurality of photoelectric conversion elements are electrically connected in series, a metal electrode is laminated on the second transparent conductive film electrode of each photoelectric conversion element, and then, In the structure in which the translucent insulating film is formed on the transparent insulating film and the reflective film is formed on the transparent insulating film, the direction of serial integration (scribing direction) is larger than that in the case of serial integration of only the first and second transparent conductive films. The series resistance in the direction (orthogonal direction to) can be suppressed low, and depending on the shape of the metal electrode, a light scattering effect can be obtained, which contributes to improvement of photoelectric conversion efficiency.
【0019】[0019]
【実施例】図1は本発明による集積型太陽電池の一部の
斜視図である。たとえば、ガラスのような透光性絶縁基
板1の表面に、第1の透明導電膜2,非晶質半導体によ
る光電変換層3,第2の透明導電膜4,透光性絶縁膜
6,金属による裏面反射膜7等が積層されている。1 is a perspective view of a part of an integrated solar cell according to the present invention. For example, on the surface of a transparent insulating substrate 1 such as glass, a first transparent conductive film 2, a photoelectric conversion layer 3 made of an amorphous semiconductor, a second transparent conductive film 4, a transparent insulating film 6, a metal. The back reflection film 7 and the like are laminated.
【0020】ここで、光電変換層3は第1の透明導電膜
2に形成されたスクライブ溝10の中に充填されて透光
性絶縁基板10に達しており、第2の透明導電膜4は光
電変換層3に形成されたスクライブ溝11の中に充填さ
れて、隣接する各光電変換素子を直列に接続する。透光
性絶縁膜6は、第2の透明導電膜4および光電変換層3
に形成されたスクライブ溝12に充填され、各光電変換
素子を完全に分離する。Here, the photoelectric conversion layer 3 is filled in the scribe groove 10 formed in the first transparent conductive film 2 and reaches the transparent insulating substrate 10, and the second transparent conductive film 4 is formed. The scribed grooves 11 formed in the photoelectric conversion layer 3 are filled with the adjacent photoelectric conversion elements, and the adjacent photoelectric conversion elements are connected in series. The transparent insulating film 6 includes the second transparent conductive film 4 and the photoelectric conversion layer 3.
The photoelectric conversion elements are completely separated by filling the scribe groove 12 formed in the above.
【0021】第2の透明導電膜4の表面には、たとえ
ば、櫛型の金属電極5を設けてある。これは省略するこ
ともできる。On the surface of the second transparent conductive film 4, for example, a comb-shaped metal electrode 5 is provided. This can be omitted.
【0022】このような装置は以下のようにして製造さ
れる。第1の実施例は第2の透明導電膜4の表面に金属
電極5を設けない場合である。Such a device is manufactured as follows. The first embodiment is a case where the metal electrode 5 is not provided on the surface of the second transparent conductive film 4.
【0023】まず、図2(a)に示すように、透光性絶
縁基板1として、たとえば、厚さ1mmのガラス基板を
用い、その片面に一方の電極となる第1の透明導電膜2
として、たとえば、SnO2 膜を1μmの厚さに常圧C
VDにより形成する。次に、レーザ光を第1の透明導電
膜2に照射して、パターニングを施す。より具体的に
は、ガラス基板上のSnO2 膜をNd−YAGレーザ
(波長:1.06μm)の基本波レーザ光でスクライブ
し、スクライブ溝10,10…を形成し、短冊状に分割
する。スクライブ幅30μm、深さ1μmで完全に絶縁
する。各短冊は各光電変換素子の受光面側の電極とな
る。各短冊の幅はたとえば1cmとする。このとき照射
するレーザ光は、Nd:YAGレーザ、エキシマレーザ
のいずれでもよいが、保守が簡便で、ランニングコスト
が安いYAGレーザが工業的に優位である。First, as shown in FIG. 2A, a glass substrate having a thickness of 1 mm, for example, is used as the translucent insulating substrate 1, and the first transparent conductive film 2 serving as one electrode is formed on one surface thereof.
As an example, a SnO 2 film having a thickness of 1 μm and atmospheric pressure C
It is formed by VD. Next, the first transparent conductive film 2 is irradiated with laser light to be patterned. More specifically, the SnO 2 film on the glass substrate is scribed with a fundamental laser beam of an Nd-YAG laser (wavelength: 1.06 μm) to form scribe grooves 10, 10 ... And divided into strips. Complete insulation with a scribe width of 30 μm and a depth of 1 μm. Each strip becomes an electrode on the light-receiving surface side of each photoelectric conversion element. The width of each strip is, for example, 1 cm. The laser light applied at this time may be either an Nd: YAG laser or an excimer laser, but the YAG laser is industrially superior because it is easy to maintain and the running cost is low.
【0024】次に、図2(b)に示すように、第1の透
明導電膜2の表面に、非晶質半導体の光電変換層のp層
を12nmの厚さに積層する。プラズマCVD装置中に
基板を置き、基板温度を200℃に昇温する。反応ガス
はモノシランガスを流量30 sccm、メタンガスを流量8
0sccm、キャリアガスは水素ガスを流量150sccm、ド
ーピングガスは1%の水素希釈のジボランガスを流量1
0sccmで流す。続いて、i層を400nmの厚さに積層
する。このとき、基板温度は200℃に保持し、反応ガ
スはモノシランガスを流量60sccm、キャリアガスは水
素ガスを流量20sccmで流す。続いてn層を100nm
の厚さに積層する。基板を200℃に保持し、反応ガス
はモノシランガスを流量60sccm、キャリアガスは水素
ガスを流量3sccm、ドーピングガスは0.3%水素希釈
のホスフィンガスを流量18sccmで流す。スクライブ溝
10は非晶質半導体で埋められる。このようにして、非
晶質半導体光電変換層を積層した後、レーザ光を透光性
絶縁基板面から照射してスクライブ溝11を形成しパタ
ーニングを施す。Next, as shown in FIG. 2B, the first transparent
On the surface of the bright conductive film 2, a p layer of an amorphous semiconductor photoelectric conversion layer is formed.
Is laminated to a thickness of 12 nm. In the plasma CVD equipment
The substrate is placed and the substrate temperature is raised to 200 ° C. Reaction gas
Is a monosilane gas flow rate of 30 sccm, Flow rate of methane gas 8
0sccmThe carrier gas is hydrogen gas with a flow rate of 150.sccm, De
The flow rate of diborane gas diluted with 1% hydrogen is 1
0sccmFlush with. Subsequently, an i layer is laminated to a thickness of 400 nm.
To do. At this time, the substrate temperature was kept at 200 ° C.
The flow rate of monosilane gas is 60sccm, The carrier gas is water
Flow rate of elementary gas is 20sccmFlush with. Then, n layer is 100 nm
To the thickness of. The substrate is kept at 200 ° C and the reaction gas
Is a monosilane gas flow rate of 60sccm, The carrier gas is hydrogen
Gas flow rate 3sccm, Doping gas is diluted with 0.3% hydrogen
Flow rate of 18 phosphine gassccmFlush with. Scribe groove
10 is filled with an amorphous semiconductor. In this way, non
After stacking a crystalline semiconductor photoelectric conversion layer, it transmits laser light
Irradiate from the surface of the insulating substrate to form the scribe groove 11, and
Give the training.
【0025】より具体的には、非晶質半導体の光電変換
層3を、前回のスクライブ溝10から溝中心線距離で1
00μm隔てた位置にNd−YAGレーザ第2高調波
(波長:0.53μm)のレーザ光で透光性絶縁基板1
面から照射し、スクライブしスクライブ溝11,11…
を形成する。スクライブ溝の幅40μmで、光電変換層
は完全に分割する。光電変換層3の厚さは合計で0.5
12μmとなる。スクライブ溝11を形成するとき、第
1の透明導電膜2の上部にも若干の溝が形成されるが、
これは後で第2の透明導電膜を形成するとき双方の透明
導電膜の上部および側面の接触を良好ならしめるのに役
立つ。More specifically, the photoelectric conversion layer 3 made of an amorphous semiconductor is separated from the previous scribe groove 10 by a groove center line distance of 1.
An insulating substrate 1 which is transparent to laser light of Nd-YAG laser second harmonic (wavelength: 0.53 μm) at positions separated by 00 μm
Irradiate from the surface, scribe and scribe grooves 11, 11 ...
To form. The photoelectric conversion layer is completely divided with the width of the scribe groove being 40 μm. The total thickness of the photoelectric conversion layer 3 is 0.5.
It becomes 12 μm. When the scribe groove 11 is formed, some grooves are formed on the first transparent conductive film 2 as well.
This helps make good contact between the upper and side surfaces of both transparent conductive films when the second transparent conductive film is formed later.
【0026】次に、図2(c)に示すように、光電変換
層3の上に第2の透明導電膜4として、ITOを60n
mの厚さでDCマグネトロンスパッタ法により積層す
る。スクライブ溝11はITOで埋められる。その後透
光性絶縁基板1の面からレーザ光照射によるパターニン
グを施して、光電変換素子を複数個電気的に直列に接続
した状態に加工することにより集積化を行なう。より具
体的には、ITOをスクライブ溝11から溝中心線距離
で150μm隔てた位置にNd−YAGレーザ第2高調
波(波長:0.53μm)のレーザ光で透光性絶縁基板
1の面から照射し、ITO層を光電変換層とともに吹飛
ばしてスクライブし、スクライブ溝12,12…を形成
する。スクライブ溝幅40μmでITO層および光電変
換層はそれぞれ完全に分割される。このとき第1の導電
膜2の上部は多少損傷されるが、損傷はなるべく少ない
方が望ましい。なお、スクライブ溝11と12との間隔
は短いほど望ましいが、加工精度,歩留りを考慮する必
要がある。Next, as shown in FIG. 2C, 60 n of ITO is formed as a second transparent conductive film 4 on the photoelectric conversion layer 3.
The thickness of m is laminated by the DC magnetron sputtering method. The scribe groove 11 is filled with ITO. Thereafter, patterning is performed by irradiating a laser beam from the surface of the translucent insulating substrate 1, and a plurality of photoelectric conversion elements are processed into a state in which they are electrically connected in series, whereby integration is performed. More specifically, the ITO is separated from the scribed groove 11 by a groove center line distance of 150 μm from the surface of the translucent insulating substrate 1 with Nd-YAG laser second harmonic (wavelength: 0.53 μm) laser light. By irradiation, the ITO layer is blown off together with the photoelectric conversion layer and scribed to form the scribe grooves 12, 12. The ITO layer and the photoelectric conversion layer are completely divided with the scribe groove width of 40 μm. At this time, the upper portion of the first conductive film 2 is slightly damaged, but it is desirable that the damage is as small as possible. The shorter the distance between the scribe grooves 11 and 12, the better, but it is necessary to consider the processing accuracy and the yield.
【0027】この後図2(d)に示されるように、透光
性絶縁膜6として、たとえば、セラミック前駆体熱硬化
型無機高分子ポリマーである有機シラザンをスピンコー
トで積層面に塗布させ、200℃大気雰囲気で焼成し
て、アモルファスSiO2 による透光性絶縁膜6を約1
μmの厚さで形成する。溝12は透光性絶縁膜の材料で
埋められる。Thereafter, as shown in FIG. 2D, as the translucent insulating film 6, for example, organic precursor silazane, which is a thermosetting inorganic high molecular polymer of a ceramic precursor, is applied to the laminated surface by spin coating, The transparent insulating film 6 made of amorphous SiO 2 is baked to about 1 by baking at 200 ° C. in the atmosphere.
It is formed with a thickness of μm. The groove 12 is filled with the material of the translucent insulating film.
【0028】この上に、図2(e)に示すように、DC
マグネトロンスパッタ法より銀を500nmの厚さで形
成して裏面反射膜7とし、集積型太陽電池を形成する。On top of this, as shown in FIG.
Silver is formed to a thickness of 500 nm by the magnetron sputtering method to form the back surface reflection film 7, and an integrated solar cell is formed.
【0029】第2の実施例は第2の透明導電膜の表面に
金属電極を設けた場合であって、その各工程は図3
(a)〜(f)に示される。図3(a)〜(c)の工程
は、図2(a)〜(c)の工程と全く同一であるからそ
の説明を省略する。The second embodiment is a case where a metal electrode is provided on the surface of the second transparent conductive film, and each step thereof is shown in FIG.
It is shown in (a) to (f). Since the steps of FIGS. 3A to 3C are exactly the same as the steps of FIGS. 2A to 2C, description thereof will be omitted.
【0030】図3(d)に示すように、スクライブ方向
と直交する方向に分岐延長する櫛型銀電極5を、第2の
透明導電膜4の上にスクリーン印刷により形成する。ス
クリーン印刷幅は、50μm、櫛型各電極間ピッチは
0.5cmとし、第2の透明導電膜4のスクライブ溝1
2上は櫛型銀電極が積層しないようにスクリーン印刷す
る。これにより、透明導電膜だけで直列接続する場合よ
りも、透明導電膜の面抵抗による直列接続時の集積化薄
膜太陽電池のシリーズ抵抗を低下させることができると
ともに、櫛型銀電極のスリット構造により入射光を散乱
させる効果により、さらに光電変換効率の向上を図るこ
とができる。As shown in FIG. 3D, a comb-shaped silver electrode 5 branching and extending in a direction orthogonal to the scribe direction is formed on the second transparent conductive film 4 by screen printing. The screen printing width was 50 μm, the pitch between the comb-shaped electrodes was 0.5 cm, and the scribed groove 1 of the second transparent conductive film 4 was used.
Screen printing is performed on the second layer so that the comb-shaped silver electrodes are not laminated. This makes it possible to reduce the series resistance of the integrated thin-film solar cells in series connection due to the surface resistance of the transparent conductive film, and to reduce the comb structure of the slit electrodes of the comb-shaped silver electrode, as compared with the case where the transparent conductive film alone is connected in series. The effect of scattering incident light can further improve the photoelectric conversion efficiency.
【0031】この金属電極の形状は、櫛型以外にスクラ
イブ溝に直交する方向のスリット状のもの、格子状のも
の、ハニカム構造状等がある。また、これらの金属電極
の積層方法としては、スクリーン印刷法以外にマスクパ
ターニングによる蒸着法等もある。The shape of the metal electrode is not limited to the comb shape, but may be a slit shape in a direction orthogonal to the scribe groove, a lattice shape, a honeycomb structure shape, or the like. Further, as a method for laminating these metal electrodes, there is a vapor deposition method by mask patterning in addition to the screen printing method.
【0032】図3(e)および(f)は櫛型銀電極5が
存在すること以外は図2(d)および(e)と同様であ
るから説明を省略する。3 (e) and 3 (f) are the same as FIGS. 2 (d) and 2 (e) except that the comb-shaped silver electrode 5 is present, and the description thereof is omitted.
【0033】[0033]
【発明の効果】本発明によれば、薄膜太陽電池の集積時
に、反射膜を兼ねる金属薄膜裏面電極をレーザビームで
パターニングする必要はなく、従来これにより引起こさ
れた電気的短絡や光電変換素子間の直列接続の絶縁不良
がなくなり、加工再現性と信頼性の向上により、生産工
程の歩留り向上に寄与することができる。According to the present invention, it is not necessary to pattern the metal thin film rear surface electrode also serving as a reflection film with a laser beam when integrating a thin film solar cell, and an electrical short circuit or a photoelectric conversion element caused by the conventional method is not required. Insulation defects in the series connection between the two are eliminated, and the reproducibility of processing and the improvement of reliability can contribute to the improvement of the yield of the production process.
【0034】また、第2の透明導電膜の上に、スクライ
ブ溝を除く部分に金属電極をスクライブ方向と直交する
方向に分岐して設けることにより、シリーズ抵抗を低く
抑えることができるとともに、金属電極の形状によって
は、光の散乱効果を得ることによりより光電変換効率の
向上に寄与する。Further, by providing the metal electrode on the second transparent conductive film in a portion excluding the scribe groove so as to be branched in the direction orthogonal to the scribe direction, the series resistance can be suppressed low and the metal electrode can be suppressed. Depending on the shape, the effect of scattering light is further contributed to the improvement of photoelectric conversion efficiency.
【図1】本発明による集積型太陽電池の要部斜視図であ
る。FIG. 1 is a perspective view of an essential part of an integrated solar cell according to the present invention.
【図2】(a)〜(e)は、本発明による第1の実施例
の各工程の断面図である。2A to 2E are cross-sectional views of respective steps of the first embodiment according to the present invention.
【図3】(a)〜(f)は、本発明による第2の実施例
の各工程の断面図である。3A to 3F are cross-sectional views of respective steps of the second embodiment according to the present invention.
【図4】(a)〜(c)は、従来方法による集積型太陽
電池の反射板を兼ねた金属薄膜裏面電極のパターニング
の説明図である。4 (a) to 4 (c) are explanatory views of patterning of a metal thin film rear surface electrode also serving as a reflector of an integrated solar cell according to a conventional method.
【符号の説明】 1 透光性絶縁基板 2 第1の透明導電膜 3 光電変換層 4 第2の透明導電膜 5 櫛型銀電極 6 透光性絶縁膜 7 裏面反射膜[Description of Reference Signs] 1 translucent insulating substrate 2 first transparent conductive film 3 photoelectric conversion layer 4 second transparent conductive film 5 comb-shaped silver electrode 6 translucent insulating film 7 back surface reflective film
フロントページの続き (72)発明者 三宮 仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内Front page continued (72) Inventor Hitoshi Sannomiya 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka
Claims (3)
され直列に接続されている複数個の非晶質半導体光電変
換素子と、前記の光電変換素子の受光面の反対側に透光
性絶縁膜を介して反射膜を設けたことを特徴とする集積
型太陽電池。1. A plurality of amorphous semiconductor photoelectric conversion elements which are formed on a light-transmissive insulating substrate which is a light-receiving surface and are connected in series, and a plurality of amorphous semiconductor photoelectric conversion elements, which are opposite to the light-receiving surface of the photoelectric conversion element. An integrated solar cell, wherein a reflective film is provided via an optical insulating film.
形成する工程と、 第1の透明導電膜を短冊状にパターニングしその上に非
晶質半導体光電変換層を形成する工程と、 レーザスクライブ法により非晶質半導体光電変換層およ
び第1の透明導電膜をスクライブする工程と、 非晶質半導体光電変換層の表面および前記のスクライブ
により形成されたスクライブ溝に第2の透明導電膜を形
成する工程と、 レーザスクライブ法により第2の透明導電膜および非晶
質半導体光電変換層をスクライブし、光電変換層を複数
個の光電変換素子が直列に接続された形態に加工する工
程と、 第2の透明導電膜の表面および前記のスクライブにより
形成されたスクライブ溝に透光性絶縁膜を形成する工程
と、 透光性絶縁膜の表面に反射膜を形成する工程とを有する
ことを特徴とする集積型太陽電池の製造方法。2. A step of forming a first transparent conductive film on a translucent insulating substrate, and a step of patterning the first transparent conductive film in a strip shape to form an amorphous semiconductor photoelectric conversion layer thereon. A step of scribing the amorphous semiconductor photoelectric conversion layer and the first transparent conductive film by a laser scribing method, and a second transparent film on the surface of the amorphous semiconductor photoelectric conversion layer and the scribe groove formed by the scribing. A step of forming a conductive film, and scribing the second transparent conductive film and the amorphous semiconductor photoelectric conversion layer by a laser scribing method to process the photoelectric conversion layer into a form in which a plurality of photoelectric conversion elements are connected in series. A step of forming a translucent insulating film on the surface of the second transparent conductive film and the scribe groove formed by the scribe, and a step of forming a reflective film on the surface of the translucent insulating film. A method for manufacturing an integrated solar cell, which comprises:
の第2の透明導電膜の表面にスクライブ溝と直交する方
向に延長する多数の分岐を有する金属電極を形成するこ
とを特徴とする請求項2記載の集積型太陽電池の製造方
法。3. A metal electrode having a large number of branches extending in a direction orthogonal to the scribe groove is formed on the surface of the second transparent conductive film on the surface of each photoelectric conversion element connected in series. The method for manufacturing the integrated solar cell according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6187216A JPH0851229A (en) | 1994-08-09 | 1994-08-09 | Integrated solar battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6187216A JPH0851229A (en) | 1994-08-09 | 1994-08-09 | Integrated solar battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0851229A true JPH0851229A (en) | 1996-02-20 |
Family
ID=16202109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6187216A Withdrawn JPH0851229A (en) | 1994-08-09 | 1994-08-09 | Integrated solar battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0851229A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004032274A1 (en) * | 2002-10-03 | 2004-04-15 | Fujikura Ltd. | Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell |
JP2004146425A (en) * | 2002-10-22 | 2004-05-20 | Fujikura Ltd | Electrode substrate, photoelectric converter, and dye-sensitized solar cell |
JP2004164970A (en) * | 2002-11-12 | 2004-06-10 | Fujikura Ltd | Electrode substrate and photoelectric conversion element |
CN100409459C (en) * | 2002-10-03 | 2008-08-06 | 株式会社藤仓 | Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell |
AU2007203274B2 (en) * | 2002-10-03 | 2009-06-18 | Fujikura Ltd. | Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell |
US20120031459A1 (en) * | 2009-03-31 | 2012-02-09 | Lg Innotek Co., Ltd. | Solar Cell and Method of Fabricating the Same |
WO2012017742A1 (en) * | 2010-08-06 | 2012-02-09 | 三菱電機株式会社 | Thin film solar battery and process for production thereof |
JP2012059886A (en) * | 2010-09-08 | 2012-03-22 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion device |
WO2012090650A1 (en) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | Solar cell |
JP2012151438A (en) * | 2011-01-14 | 2012-08-09 | Lg Electronics Inc | Thin film solar cell and manufacturing method of the same |
CN111838787A (en) * | 2019-04-26 | 2020-10-30 | 永德利硅橡胶科技(深圳)有限公司 | Variable transparent clothes |
EP4024477A4 (en) * | 2019-08-26 | 2022-10-12 | Hangzhou Microquanta Semiconductor Corporation Limited | Solar cell cutting and passivation integrated processing method, and solar cell |
WO2023190570A1 (en) * | 2022-03-31 | 2023-10-05 | 株式会社カネカ | Solar cell sub module and method for manufacturing solar cell sub module |
WO2024118782A1 (en) * | 2022-11-29 | 2024-06-06 | Alliance For Sustainable Energy, Llc | Passivation of photovoltaic devices |
-
1994
- 1994-08-09 JP JP6187216A patent/JPH0851229A/en not_active Withdrawn
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004032274A1 (en) * | 2002-10-03 | 2004-04-15 | Fujikura Ltd. | Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell |
AU2003275542B8 (en) * | 2002-10-03 | 2004-04-23 | Fujikura Ltd. | Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell |
AU2003275542B2 (en) * | 2002-10-03 | 2007-06-07 | Fujikura Ltd. | Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell |
CN100409459C (en) * | 2002-10-03 | 2008-08-06 | 株式会社藤仓 | Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell |
AU2007203274B2 (en) * | 2002-10-03 | 2009-06-18 | Fujikura Ltd. | Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell |
US8629346B2 (en) | 2002-10-03 | 2014-01-14 | Fujikura Ltd. | Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell |
JP2004146425A (en) * | 2002-10-22 | 2004-05-20 | Fujikura Ltd | Electrode substrate, photoelectric converter, and dye-sensitized solar cell |
JP2004164970A (en) * | 2002-11-12 | 2004-06-10 | Fujikura Ltd | Electrode substrate and photoelectric conversion element |
CN102449778A (en) * | 2009-03-31 | 2012-05-09 | Lg伊诺特有限公司 | Solar cell and manufacturing method thereof |
US20120031459A1 (en) * | 2009-03-31 | 2012-02-09 | Lg Innotek Co., Ltd. | Solar Cell and Method of Fabricating the Same |
US9893221B2 (en) | 2009-03-31 | 2018-02-13 | Lg Innotek Co., Ltd. | Solar cell and method of fabricating the same |
US9741884B2 (en) * | 2009-03-31 | 2017-08-22 | Lg Innotek Co., Ltd. | Solar cell and method of fabricating the same |
JP5430764B2 (en) * | 2010-08-06 | 2014-03-05 | 三菱電機株式会社 | Method for manufacturing thin film solar cell |
CN103053033A (en) * | 2010-08-06 | 2013-04-17 | 三菱电机株式会社 | Thin-film solar battery and manufacturing method thereof |
US9293618B2 (en) | 2010-08-06 | 2016-03-22 | Mitsubishi Electric Corporation | Thin-film solar battery and manufacturing method thereof |
WO2012017742A1 (en) * | 2010-08-06 | 2012-02-09 | 三菱電機株式会社 | Thin film solar battery and process for production thereof |
JP2012059886A (en) * | 2010-09-08 | 2012-03-22 | Mitsubishi Heavy Ind Ltd | Photoelectric conversion device |
WO2012090650A1 (en) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | Solar cell |
JP2012151438A (en) * | 2011-01-14 | 2012-08-09 | Lg Electronics Inc | Thin film solar cell and manufacturing method of the same |
CN111838787A (en) * | 2019-04-26 | 2020-10-30 | 永德利硅橡胶科技(深圳)有限公司 | Variable transparent clothes |
EP4024477A4 (en) * | 2019-08-26 | 2022-10-12 | Hangzhou Microquanta Semiconductor Corporation Limited | Solar cell cutting and passivation integrated processing method, and solar cell |
WO2023190570A1 (en) * | 2022-03-31 | 2023-10-05 | 株式会社カネカ | Solar cell sub module and method for manufacturing solar cell sub module |
WO2024118782A1 (en) * | 2022-11-29 | 2024-06-06 | Alliance For Sustainable Energy, Llc | Passivation of photovoltaic devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4796947B2 (en) | Integrated thin film solar cell and manufacturing method thereof | |
AU2004204637B2 (en) | Transparent thin-film solar cell module and its manufacturing method | |
US4754544A (en) | Extremely lightweight, flexible semiconductor device arrays | |
US5133809A (en) | Photovoltaic device and process for manufacturing the same | |
JP3510740B2 (en) | Manufacturing method of integrated thin-film solar cell | |
US4824488A (en) | Photovoltaic device | |
JPH0472392B2 (en) | ||
JPH0851229A (en) | Integrated solar battery and its manufacture | |
WO2019148774A1 (en) | Manufacturing method of thin film solar cell | |
JP3655025B2 (en) | Thin film photoelectric conversion device and manufacturing method thereof | |
JPH11126916A (en) | Integrated-type thin film solar cell and its manufacture | |
JP2586654B2 (en) | Manufacturing method of thin film solar cell | |
JP4112202B2 (en) | Method for manufacturing thin film solar cell | |
JPS62142368A (en) | Manufacture of thin film semiconductor device | |
JPH0243776A (en) | Manufacture of thin film solar cell | |
JP3655027B2 (en) | Integrated thin film photoelectric converter | |
JP3685964B2 (en) | Photoelectric conversion device | |
JPH0758351A (en) | Manufacture of thin film solar cell | |
JPH055194B2 (en) | ||
JPS62147784A (en) | Amorphous solar cell and manufacture thereof | |
JP2001237442A (en) | Solar cell and its manufacturing method | |
JP3195424B2 (en) | Solar cell and method of manufacturing the same | |
JPS62195184A (en) | Manufacture of solar battery device | |
JP2000261020A (en) | Integrated thin-film solar battery | |
JPH06112514A (en) | Manufacture of photoelectric conversion semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011106 |