JPS62142368A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS62142368A
JPS62142368A JP60283920A JP28392085A JPS62142368A JP S62142368 A JPS62142368 A JP S62142368A JP 60283920 A JP60283920 A JP 60283920A JP 28392085 A JP28392085 A JP 28392085A JP S62142368 A JPS62142368 A JP S62142368A
Authority
JP
Japan
Prior art keywords
amorphous silicon
thin film
silicon layer
film semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283920A
Other languages
Japanese (ja)
Inventor
Akihiko Asano
明彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60283920A priority Critical patent/JPS62142368A/en
Publication of JPS62142368A publication Critical patent/JPS62142368A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To omit a patterning process of a back surface electrode and to decrease man-hours in laser cutting machining, by ensuring the maintenance of an interval between a second electrode and a semiconductor layer in an adjacent region. CONSTITUTION:On the pattern of a surface electrode 2, which is formed on a glass substrate 1, an amorphous silicon layer 30 is formed. Thereafter, the amorphous silicon layer is cut into equal strip parts with YAG laser. At this time the laser light input direction 6 is set to that an incident angle of 45 deg. is provided with respect to the glass substrate 1 as shown by arrows 6. The shape of the cross section of a cutting region 7, which is shown by a shaded area in the amorphous silicon layer 30, is slanted by 45 deg. with respect to the substrate. Finally, aluminum is evaporated to a thickness of 300nm in an evaporating direction 5 so as to form a right angle with slant end surfaces 31 and 32 of divided amorphous silicon layer 3. Thus, the amorphous silicon solar battery can be manufactured without the laser cutting of a metal film.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分l′F】[Technical part l'F to which the invention pertains]

本発明は、同一基板上に複数個の薄膜半導体素子を形成
し、かつ電気的に接続した構造の薄膜半導体装置に関す
る。
The present invention relates to a thin film semiconductor device having a structure in which a plurality of thin film semiconductor elements are formed on the same substrate and are electrically connected.

【従来技術とその問題点】[Prior art and its problems]

この種の薄膜半導体装置として、従来第2図に示すよう
な断面横道を持つ非晶πシリコン太陽電池が知られてい
る。この非晶質シリコン太陽電池は、ガラス基板1の上
に透光性表面電極2.pin接合を有する非晶質シリコ
ン層3.金属製塩面を極4を積層してなる単位太陽電池
が隣接配置されており、表面電極2の延長部に裏面電極
4の延長部を重ねることにより各槍位太陽電池が直列接
続される。この場合、への範囲が有効発z al域であ
り、Bの範囲が接続領域である。このような太陽電池は
次のような工程で製造される。まず、ガラス基板l上に
、酸化錫(SnO□)被膜を、例えば200nmの厚さ
で化学気相堆積法(CV D法)により形成する。つづ
いて波長1.06mのヤグレーザをIり用し、酸化錫被
膜を等大の短冊形に切断し、表面電橿2とする0次にこ
の上に、p型、i型、n型の非晶質シリコン店を順に、
例えば10nm、 500n450nmの厚さで、既に
よく知られているシランガス(SiHa)のグロー放電
分解法により堆積する。引きつづき、ヤグレーザにより
非晶質シリコン層を、等大の短冊形に切断し、非晶質シ
リコン層3とする。この際、ヤグレーザの出力光エネル
ギー密度を制御し、切断部の下の透光性表面電橋2を傷
つけない、つまり電気的、化学的な性質を変化させない
ように注意する必要がある。さらに、矢印5に示す方向
からアルミニウム (kl)を電子ビーム蒸着法により
全面蒸着し、ヤグレーザにより、アルミニウム藩着膜を
等大の短冊形に切断し、裏面電極4とする。 しかしながら、上述の太V4電池においては、ヤグレー
ザによる切断工程が3回あるため、製造コストが高いと
いう欠点があった。さらに、金属製裏面電極4のレーザ
加工は、下部に透光性表面電極2が残るように切断しな
ければならないが、切断すべき裏面電極4の膜厚が不均
一な場合、このようなレーザ切断の制御が困難であると
いう欠点もあった。
As a thin film semiconductor device of this type, an amorphous π silicon solar cell having a transverse cross-section as shown in FIG. 2 is conventionally known. This amorphous silicon solar cell has a transparent surface electrode 2 on a glass substrate 1. Amorphous silicon layer with pin junction3. Unit solar cells formed by laminating metal salt surfaces with poles 4 are arranged adjacent to each other, and by overlapping the extension of the front electrode 2 with the extension of the back electrode 4, the solar cells are connected in series. In this case, the range to is the valid originating area, and the range to B is the connection area. Such solar cells are manufactured through the following steps. First, a tin oxide (SnO□) film is formed to a thickness of, for example, 200 nm on a glass substrate l by a chemical vapor deposition method (CVD method). Next, using a YAG laser with a wavelength of 1.06 m, the tin oxide film is cut into strips of equal size, and on top of this, p-type, i-type, and n-type non-containing strips are cut. Crystalline silicon stores in order,
For example, it is deposited to a thickness of 10 nm, 500 nm or 450 nm by the well-known glow discharge decomposition method of silane gas (SiHa). Subsequently, the amorphous silicon layer is cut into strips of equal size using a YAG laser to form an amorphous silicon layer 3. At this time, it is necessary to control the output light energy density of the YAG laser and be careful not to damage the transparent surface bridge 2 under the cut portion, that is, not to change its electrical or chemical properties. Furthermore, aluminum (kl) is deposited on the entire surface by electron beam evaporation from the direction shown by arrow 5, and the aluminum film is cut into equal-sized strips using a YAG laser to form the back electrode 4. However, in the above-mentioned thick V4 battery, there is a drawback that the manufacturing cost is high because the cutting process using the YAG laser is performed three times. Furthermore, when laser processing the metal back electrode 4, it must be cut so that the transparent surface electrode 2 remains at the bottom, but if the thickness of the back electrode 4 to be cut is uneven, such a laser Another drawback was that it was difficult to control the cutting.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除去して裏面電極のパターニン
グ工程が不要でレーザによる切断加工の工数を低減でき
る薄膜半導体装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film semiconductor device that eliminates the above-mentioned drawbacks, eliminates the need for a patterning process for back electrodes, and reduces the number of laser cutting steps.

【発明の要点】[Key points of the invention]

本発明によれば、基板上に分離形成された第一電極上に
一面に薄膜半導体層を被着したのち、その一部を平行に
線状に除去して分割し、その際除去部が半導体層の表面
から一方の側に入り込むようにし、次いで半導体層分割
線における基板に対する垂直面に対し前記の側に傾いた
方向から金属を蒸着して第二電極を形成することにより
、第二電極が切断工程なしに分離して形成されるので、
上記の目的を達成することができる。
According to the present invention, after a thin film semiconductor layer is deposited over the entire surface of a first electrode formed separately on a substrate, a part of the thin film semiconductor layer is removed in parallel lines and divided, and at that time, the removed portion is a semiconductor layer. The second electrode is formed by depositing metal so that it enters one side from the surface of the layer, and then from a direction tilted toward the side perpendicular to the substrate at the semiconductor layer dividing line. Because it is separated and formed without a cutting process,
The above objectives can be achieved.

【発明の実施例】[Embodiments of the invention]

以下、図を引用して実施例に従い説明する。第1図は本
発明の一実施例を示すもので、第2図と共通の部分には
同一の符号が付されている。前述の工程と同様に基板l
の上に形成した表面電極2のパターンの上に非晶質シリ
コン層30を形成したのち、ヤグレーザにより非晶質シ
リコン層を等大の短冊形に切断するが、この際第1図+
alに矢印6で示す方向からレーザ光をガラス基板lに
対して、45@の入射角をなすようにし、非晶質シリコ
ン層30の斜線を引いて示した切断領域7の断面の形状
が、基板に対して45”4’fM斜しているようにした
。 最後に、第1r2I(′blに示すように分v1非晶質
シリコン層3の傾斜端面31.32に直角となる蒸着方
向5より、アルミニウム、を300nII+の厚ざで蒸
着した。 こうすることによって、金属膜のレーザ切断なしに第1
図(blに示すような非晶質シリコン太陽電池を製造す
ることができる。しかも裏面電極4の端部の傾斜面41
と非晶質シリコン層の切断面31との間の間隔が保持さ
れ、接触することがなくなるので、接続領域Bにおける
一つの有効発電5■域^1の裏面電極4と表面電極3と
の間、あるいは隣接有効発電領域A2の事面電厖4との
間の短絡の発生が阻止される。 なお、本実施例においては、非晶質シリコン層断面が、
傾斜平面となるように切断したが、切断による非晶質シ
リコン層の除去部が表面から一方の側に入り込むように
切断すれば、斜め蒸着により分離された裏面電極が形成
できることは明らかである。また2)非晶質シリコン層
の切断方法としてヤグレーザの代わりに、回折格子製造
の際に任意の角度を持つ溝を機械的に形成するのに広く
使用されているルーリングエンジンを用いてもよい。 【発明の効果] 本発明は、基板上に積層された第一電極、yi膜膜厚導
体層分割領域上に斜め方向からの金属蒸着により切断工
程なしに分離された第二電極を形成すると共に薄膜半導
体層の分割のための除去部を表面から一方の側に入り込
むようにすることにより、第二1!極と隣接領域の半導
体層との間隔が確実に保持される。この結果、他、側に
おける第二電極の延長部と第一1!極の延長部との重な
りにより各薄膜半導体素子の直列接続される薄膜半導体
装置の製造のための切断工程を1回減らすことが高いイ
3頼性のもとで可能になるため、得られる効果は極めて
大きい。
Embodiments will be described below with reference to figures. FIG. 1 shows an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals. Similar to the above process, the substrate l
After forming an amorphous silicon layer 30 on the pattern of the surface electrode 2 formed thereon, the amorphous silicon layer is cut into strips of equal size using a YAG laser.
A laser beam is applied to the glass substrate l from the direction indicated by the arrow 6 at an incident angle of 45 @, and the shape of the cross section of the cutting region 7 shown by diagonal lines of the amorphous silicon layer 30 is as follows. It was made to be inclined by 45"4'fM with respect to the substrate. Finally, as shown in 1r2I ('bl), the evaporation direction 5 which is perpendicular to the inclined end faces 31 and 32 of the amorphous silicon layer 3 was set. Aluminum was deposited to a thickness of 300 nII+. By doing this, the first layer was deposited without laser cutting the metal film.
It is possible to manufacture an amorphous silicon solar cell as shown in FIG.
Since the distance between and the cut surface 31 of the amorphous silicon layer is maintained and there is no contact between the back electrode 4 and the front electrode 3 in one effective power generation area 5^1 in the connection area B. Alternatively, the occurrence of a short circuit between the adjacent effective power generation area A2 and the electric field 4 is prevented. Note that in this example, the cross section of the amorphous silicon layer is
Although cutting was performed to form an inclined plane, it is clear that a separated back electrode can be formed by oblique vapor deposition if the cut is made so that the removed portion of the amorphous silicon layer enters one side from the surface. 2) As a method for cutting the amorphous silicon layer, a ruling engine, which is widely used to mechanically form grooves having arbitrary angles during the manufacture of diffraction gratings, may be used instead of the Yag laser. [Effects of the Invention] The present invention forms a first electrode laminated on a substrate, a second electrode separated from the yi film thickness conductor layer dividing region by diagonal metal vapor deposition without a cutting process, and By making the removal part for dividing the thin film semiconductor layer penetrate into one side from the surface, the second 1! The distance between the pole and the semiconductor layer in the adjacent region is reliably maintained. This results in an extension of the second electrode on the other side and the first one! Effects obtained because it is possible to reduce the number of cutting steps by one for manufacturing thin film semiconductor devices in which thin film semiconductor elements are connected in series by overlapping with the extensions of the poles with high reliability. is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a〕、山)は本発明の一実施例の製造工程を示
す断面図、第2図は従来の太陽電池の製造方法を示す断
面図である。 lニガラス基板、2:通光性表面電極、3,3O:非晶
πシリコン層、4:裏面電極、5:金属蒸着方向、6:
レーザ光入射方向。 τ七;「人しル +b  XJ    Q’′−、。 ・    ! 第1図
FIG. 1(a) (mountain) is a cross-sectional view showing the manufacturing process of an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the conventional solar cell manufacturing method. 2: Light-transmitting surface electrode, 3,3O: Amorphous π silicon layer, 4: Back electrode, 5: Metal deposition direction, 6:
Laser beam incidence direction. τ7; "Hitoshiru +b XJ Q''-,. ・ ! Figure 1

Claims (1)

【特許請求の範囲】 1)同一基板上に基板側から第一電極、薄膜半導体層、
金属製第二電極を積層してなる複数の薄膜半導体素子を
形成し、第二電極の延長部を隣接素子の第一電極の延長
部に重ねることにより各素子を直列接続する際に、基板
上に分離形成された複数の第一電極上に薄膜半導体層を
一面に被着したのち該層の一部を平行に線状に除去して
分割し、その際除去部が半導体層の表面から一方の側に
入り込むようにし、次いで半導体層分割線における基板
に対する垂直面に対し前記の側に傾いた方向から金属を
蒸着して第二電極を形成することを特徴とする薄膜半導
体装置の製造方法。 2)特許請求の範囲第1項記載の方法において、薄膜半
導体層の一部の除去を基板に対する垂直面に対し傾いた
方向からのレーザ光の照射により行うことを特徴とする
薄膜半導体装置の製造方法。
[Claims] 1) A first electrode, a thin film semiconductor layer,
When a plurality of thin film semiconductor devices are formed by laminating metal second electrodes and the extensions of the second electrodes are overlapped with the extensions of the first electrodes of adjacent devices to connect each device in series, A thin film semiconductor layer is deposited over a plurality of first electrodes that are formed separately, and then a part of the layer is removed in parallel lines to divide the layer. A method for manufacturing a thin film semiconductor device, characterized in that the second electrode is formed by vapor-depositing metal from a direction tilted toward the side with respect to a plane perpendicular to the substrate at the semiconductor layer dividing line. 2) Manufacturing a thin film semiconductor device according to the method according to claim 1, characterized in that part of the thin film semiconductor layer is removed by irradiation with laser light from a direction oblique to a plane perpendicular to the substrate. Method.
JP60283920A 1985-12-17 1985-12-17 Manufacture of thin film semiconductor device Pending JPS62142368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283920A JPS62142368A (en) 1985-12-17 1985-12-17 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283920A JPS62142368A (en) 1985-12-17 1985-12-17 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS62142368A true JPS62142368A (en) 1987-06-25

Family

ID=17671912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283920A Pending JPS62142368A (en) 1985-12-17 1985-12-17 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS62142368A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355359A1 (en) * 2002-03-19 2003-10-22 Scheuten Glasgroep Self-adjusting series connection of thin and thick films and method of fabrication
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
JP2007165902A (en) * 2005-12-14 2007-06-28 Korea Advanced Inst Of Sci Technol Transmissive integrated thin-film solar cell and method of manufacturing same, and method for electrically connecting unit cell of transmissive integrated thin-film solar cell in series
JP2007165903A (en) * 2005-12-14 2007-06-28 Korea Advanced Inst Of Sci Technol Integrated thin-film solar cell and method of manufacturing same
JP2008533737A (en) * 2005-03-16 2008-08-21 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー INTEGRATED THIN FILM SOLAR CELL, METHOD FOR MANUFACTURING THE SAME, METHOD FOR PROCESSING TRANSPARENT ELECTRODE FOR INTEGRATED THIN FILM SOLAR CELL, ITS STRUCTURE AND TRANSPARENT SUBSTRATE PROVIDED WITH SAME
JP2011040746A (en) * 2009-08-06 2011-02-24 Korea Iron & Steel Co Ltd Photovoltaic device and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355359A1 (en) * 2002-03-19 2003-10-22 Scheuten Glasgroep Self-adjusting series connection of thin and thick films and method of fabrication
WO2003079432A3 (en) * 2002-03-19 2004-03-11 Scheuten Glasgroep Bv Automatically adjusting serial connections of thick and thin layers and method for the production thereof
JP2006060104A (en) * 2004-08-23 2006-03-02 Sony Corp Photoelectric conversion element and its manufacturing method
JP2008533737A (en) * 2005-03-16 2008-08-21 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー INTEGRATED THIN FILM SOLAR CELL, METHOD FOR MANUFACTURING THE SAME, METHOD FOR PROCESSING TRANSPARENT ELECTRODE FOR INTEGRATED THIN FILM SOLAR CELL, ITS STRUCTURE AND TRANSPARENT SUBSTRATE PROVIDED WITH SAME
JP2007165902A (en) * 2005-12-14 2007-06-28 Korea Advanced Inst Of Sci Technol Transmissive integrated thin-film solar cell and method of manufacturing same, and method for electrically connecting unit cell of transmissive integrated thin-film solar cell in series
JP2007165903A (en) * 2005-12-14 2007-06-28 Korea Advanced Inst Of Sci Technol Integrated thin-film solar cell and method of manufacturing same
JP4592676B2 (en) * 2005-12-14 2010-12-01 韓国科学技術院 Method for manufacturing transmission type integrated thin film solar cell and method for electrically connecting unit cells of transmission type integrated thin film solar cell in series
JP2011040746A (en) * 2009-08-06 2011-02-24 Korea Iron & Steel Co Ltd Photovoltaic device and method of manufacturing the same
US8802969B2 (en) 2009-08-06 2014-08-12 Kisco Photovoltaic device and method for manufacturing thereof

Similar Documents

Publication Publication Date Title
US10461208B2 (en) Solar cell and method for producing same
US4879251A (en) Method of making series-connected, thin-film solar module formed of crystalline silicon
US4824488A (en) Photovoltaic device
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US4542578A (en) Method of manufacturing photovoltaic device
US20060112987A1 (en) Transparent thin-film solar cell module and its manufacturing method
JPH09129904A (en) Photovoltaic element and its manufacture
WO2019148774A1 (en) Manufacturing method of thin film solar cell
US4140610A (en) Method of producing a PN junction type solar battery
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPH0851229A (en) Integrated solar battery and its manufacture
US4954181A (en) Solar cell module and method of manufacture
JPS62142368A (en) Manufacture of thin film semiconductor device
JPS616828A (en) Manufacture of semiconductor device
JP3026903B2 (en) Photoelectric conversion device
JP2586654B2 (en) Manufacturing method of thin film solar cell
US4645866A (en) Photovoltaic device and a method of producing the same
JPH11126916A (en) Integrated-type thin film solar cell and its manufacture
JPS62205668A (en) Manufacture of integrated type solar battery
JPS6213829B2 (en)
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
JPS6342180A (en) Manufacture of integrated type photovoltaic device
JP3278535B2 (en) Solar cell and method of manufacturing the same
JPS58196060A (en) Thin film semiconductor device
JPH0423364A (en) Photoelectromotive force device usable as mirror