JP2004146425A - Electrode substrate, photoelectric converter, and dye-sensitized solar cell - Google Patents

Electrode substrate, photoelectric converter, and dye-sensitized solar cell Download PDF

Info

Publication number
JP2004146425A
JP2004146425A JP2002306723A JP2002306723A JP2004146425A JP 2004146425 A JP2004146425 A JP 2004146425A JP 2002306723 A JP2002306723 A JP 2002306723A JP 2002306723 A JP2002306723 A JP 2002306723A JP 2004146425 A JP2004146425 A JP 2004146425A
Authority
JP
Japan
Prior art keywords
layer
metal wiring
substrate
electrode substrate
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002306723A
Other languages
Japanese (ja)
Other versions
JP4503226B2 (en
Inventor
Hiroshi Matsui
松井 浩志
Nobuo Tanabe
田辺 信夫
Kenichi Okada
岡田 顕一
Takuya Kawashima
川島 卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002306723A priority Critical patent/JP4503226B2/en
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to US10/529,818 priority patent/US8629346B2/en
Priority to EP03758711A priority patent/EP1548868A4/en
Priority to CN 200810126942 priority patent/CN101312096B/en
Priority to KR1020057005613A priority patent/KR100689229B1/en
Priority to TW092127615A priority patent/TWI326920B/en
Priority to PCT/JP2003/012738 priority patent/WO2004032274A1/en
Priority to AU2003275542A priority patent/AU2003275542B2/en
Publication of JP2004146425A publication Critical patent/JP2004146425A/en
Application granted granted Critical
Publication of JP4503226B2 publication Critical patent/JP4503226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode substrate having an excellent photoelectric conversion efficiency by suppressing a shielding fault on a surface of a metal wiring layer and suppressing circuit corrosion or reverse electron transfer due to the shielding fault, and to provide a photoelectric converter having the same and a dye-sensitized solar cell. <P>SOLUTION: The electrode substrate 1 includes the metal wiring layer 3 and a transparent electrode layer 4 on a transparent substrate 2. The layer 3 is formed along a wiring pattern formed with a groove on the substrate 2, or at least a part of the layer 3 reaches a height lower than the surface of the substrate 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電極基板、光電変換素子、並びに色素増感太陽電池に関する。
【0002】
【従来の技術】
環境問題・資源問題などを背景に、クリーンエネルギーとしての太陽電池が注目を集めている。しかしながら、従来のシリコン系太陽電池は、製造コストが高い、原料供給が不十分などの課題が残されており、大幅普及には至っていない。また、CIS系などの化合物系太陽電池は、極めて高い変換効率を示すなど優れた特徴を有しているが、コストや環境負荷などの問題がやはり大幅普及への障害となっている。
【0003】
一方、色素増感型太陽電池は、安価で高い変換効率を得られる光電変換素子として着目されている(例えば、非特許文献1参照。)。この光電変換素子の一般的な構造としては、透明な導電性基板の上に、二酸化チタンなどの酸化物半導体ナノ粒子を用いた多孔膜を形成し、これに増感色素を担持させた半導体電極と、白金スパッタした導電性ガラスなどの対極とを組み合わせ、両極間にヨウ素・ヨウ化物イオンなどの酸化・還元種を含む有機電解液を電荷移送層として充填したものなどを挙げることができる。半導体極をラフネスファクタ>1000という大きな比表面を有する多孔膜構造とすることで光吸収率を高め、10%以上の光電変換効率も報告されている。コスト面でも、現行のシリコン系太陽電池の1/2〜1/6程度と予想されており、必ずしも複雑・大規模な製造設備を必要とせず、更に有害物質も含まないため、大量普及に対応できる安価・大量生産型太陽電池として、高い可能性を有するといえる。
【0004】
ここで用いる透明基板としては、ガラス基板表面にスズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)などの透明導電膜を予め蒸着、スパッタなどの手法により被覆したものが一般的である。しかしながら、ITOやFTOの比抵抗は10−4〜10−3Ω・cm程度と、銀、金といった金属の比抵抗の約100倍もの値を示すことから、市販されている透明導電ガラスは抵抗値が高く、太陽電池に用いた場合、特に大面積セルとした場合に、光電変換効率の低下が著しくなる。
透明導電ガラスの抵抗を下げる手法としては、透明導電層(ITO、FTOなど)の形成厚さを厚くすることが考えられるが、十分な抵抗値を得られるほどの厚さで膜形成すると透明導電層による光吸収が大きくなって、入射光の窓材透過効率が著しく低下し、結果として、やはり太陽電池の光電変換効率が低下することになる。
【0005】
このような問題点に対する解決策として、例えば、太陽電池の窓極などとして使用する透明導電層付き基板の表面に開口率を著しく損なわない程度に金属配線層を設け、基板の抵抗を下げようとする検討がなされている(例えば、特願2001−400593号参照。)。また、このように基板表面に金属配線層を設ける場合には、電解液による金属配線の腐食、金属配線層からの電解液への逆電子移動を防止するため、少なくとも金属配線層表面部分が、何らかの遮蔽層により保護されている必要がある。この遮蔽層の厚さは、必ずしも要求されるものではないが、回路表面を緻密に被覆されていなければならない。
【0006】
【特許文献1】
特開平1−220380号
【非特許文献1】
ビー・オレガン(B.O’Regan)、エム・グラツェル(M.Graetzel)著、ネイチャー(nature)、vol.353、Oct.24、1991、p737
【0007】
【発明が解決しようとする課題】
しかしながら、製膜方向から見た際に、金属回路表面に影になる部分(例えば、回路壁面の潜り込みなど)がある場合には、遮蔽層により被覆されない部分が生じる可能性があり、これが回路腐食、電解液への逆電子移動などを引き起こすために、セル特性を著しく損ねることがある。特に、遮蔽層として一般的なFTO、ITO、TiOといった膜の形成法として、スパッタ法、スプレー熱分解(SPD)法が好適に用いられるが、このような手法では、影部への均一製膜は極めて困難である。例えば、アディティブめっき法により回路形成を行う場合、めっきレジストの特性によって回路壁面形状がテーパ状になるものがある。また、レジストパターン底部に裾引きがあれば回路形成後には潜り込み状の影部になる。このように、金属回路表面に緻密な遮蔽層薄膜を形成することは困難である。
【0008】
更に、光透過率を極力損なわないような開口率を維持し、且つ、十分な導電性を与えようとする場合、金属配線層はある程度の高さを有している必要があり、従って、金属配線層を形成すると、基板表面は多数の凹凸を有することになる。このため、例えば、色素太陽電池用の半導体多孔膜形成において膜厚均一性を損なう、凹凸部で膜の亀裂・剥離などの原因となり易いといった問題も生じる。
【0009】
【課題を解決するための手段】
本発明の電極基板は、透明基板上に金属配線層と透明導電層とを有する電極基板であって、金属配線層が透明基板に溝加工された配線パターンに沿って形成されており、該金属配線層の少なくとも一部が、透明基板表面以下の高さに達していることを特徴とする。
また、少なくとも金属配線層の表面が遮蔽層により被覆されて成ることが好ましい。
また、上記遮蔽層が、ガラス成分、金属酸化物成分、または電気化学的に不活性な樹脂成分のうち少なくとも1種を含有することが好ましい。
本発明の光電変換素子は、上記電極基板を有することを特徴とする。
本発明の色素増感太陽電池は、上記光電変換素子からなることを特徴とする。
【0010】
【発明の実施の形態】
本発明の電極基板は、透明基板上に金属配線層と透明導電層とを有するものであって、図1はその一実施形態を示す概略断面図である。
本発明に用いられる透明基板2は、レーザーやエッチング等により溝加工された配線パターンを有する。また、溝加工により形成された凹形部は、透明基板2表面下に達している状態を意味し、レンズ状、凹状、V谷状など形状に制限はない。ここで、表面と呼ぶのは、基材面のうち半導体多孔膜等を形成し、対極と対向して配置される面をいう。
また、上記透明基板2としては、耐熱ガラスなどのガラスを使用することが一般的であるが、ガラス以外にも、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリエーテルスルホン(PES)などの透明プラスチックや、酸化チタン、アルミナといったセラミクスの研磨板などを挙げることができ、光透過性の高いものが好ましい。
【0011】
本発明において、金属配線層3は透明基板2に溝加工された配線パターンに沿って形成されており、該金属配線層3の少なくとも一部が、透明基板2表面以下の高さに達している構造であれば特に制限はない。例えば、図1に示すように、金属配線層3の表面が透明基板2表面と同じ高さのもの、図2に示すように、金属配線層3の表面が透明基板2表面より高い位置に達しているもの、更には、金属配線層3が透明基板2表面下にて全て形成されているもの(図示略)でもよい。なお、いずれの実施形態においても遮蔽層5形成方向から見た場合に、顕著な凹凸、陰になる潜り込みやボイドなどが極力無い滑らかな形状であることが望ましい。また、金属配線層3の表面と透明基板2の表面との段差について、より小さいほうが好ましい。
【0012】
上記金属配線層3を形成する材料としては、特に制限はないが、例えば金、銀、白金、アルミニウム、ニッケル、チタンなどを用いることができる。
金属配線層3を形成する方法としては、例えば、スクリーン印刷、メタルマスク、インクジェットといった印刷法をはじめ、めっき法、スパッタ法、蒸着法など特に制限されることなく、種々の手法を用いることができる。特に好適には、めっき法、印刷法の少なくともいずれかを含む手法が選ばれる。また、金属配線層3の表面の高さは、研磨により透明基板2の表面高さと揃えるなど調整することができる。
【0013】
本発明において、金属配線層3と透明導電層4との位置関係は特に限定されるものではない。例えば図1に示すように、金属配線層3が配置された基板上に透明導電層4が形成された構造、或いは図3に示すように、透明導電層4が配置された基板上に金属配線層3が形成された構造、更には、図2に示すように、金属配線層3と透明導電層4とが並行している構造であってもよい。
【0014】
上記透明導電層4を形成する材料としては、特に制限されないが、例えばスズ添加酸化インジウム(ITO)、酸化スズ(SnO)、フッ素添加酸化スズ(FTO)などを挙げることができ、できるだけ光透過率が高いものを材料の組み合わせや用途に応して適宜選定することが好ましい。
また、透明導電層4を形成する方法としては、例えばスパッタ法、蒸着法などの公知の方法から、透明導電層4を形成する材料などに応じて、適切な方法を用いればよい。
【0015】
なお、本発明の電極基板1において、金属配線層3が配置された基板上に、透明導電層4を形成した構造のものでは、透明導電層4が遮蔽層5を兼ねていてもよい。
【0016】
金属配線層3及び/又は透明導電層4からなる導電層表面に形成される遮蔽層5としては、ガラス成分、金属酸化物成分、または電気化学的に不活性な樹脂成分のうち少なくとも1種を含有することが好ましい。ガラス成分としては、酸化鉛系やホウ酸鉛系をはじめとする低融点の非晶性、又は結晶性ガラス成分、金属酸化物成分としては、酸化チタン、酸化亜鉛、フッ素添加酸化スズ(FTO)、スズ添加酸化インジウム(ITO)など、電気化学的に不活性な樹脂成分としては、ポリオレフィン系樹脂、ポリイミド系樹脂、ポリベンゾオキサゾール系樹脂などを挙げることができ、これらを単独で又は2種以上を組み合わせて用いることが可能である。
【0017】
また、後段で遮蔽層5の形成範囲について述べるが、遮蔽層5の形成範囲が、金属配線層3表面及び透明導電層4が配置された透明部分を含むより広い範囲の場合には、光透過性、半導体多孔膜からの電子移動を著しく損ねることのない(つまり、セル特性を著しく低下させない)材質、厚みを選ぶ必要がある。ここで、金属酸化物成分(酸化物半導体)による遮蔽層5について更に詳しく述べれば、材質としては、色素増感太陽電池とした際に接触する、酸化還元種含有電解液との電子移動反応速度が遅く、光透過性に優れ、且つ発生した光電子の移動を妨げないといった特性が要求される。このような要求特性を満たしていれば、特に材料として限定されるものではないが、例えば、酸化チタン、酸化亜鉛、酸化ニオブ、酸化スズ、FTO、ITOなどを挙げることができる。
【0018】
遮蔽層5の形成範囲としては、少なくとも金属配線層3表面を含む範囲であれば特に制限はなく、金属配線層3表面のみに限定してもよいし、金属配線層3表面及び透明導電層4が配置された透明部分を含むより広い範囲でも構わない。なお、金属配線層3と比較すれば問題は小さいが、透明導電層4からの逆電子移動も指摘されているため、透明導電層4が配置された透明部分を含むより広い範囲に遮蔽層5を形成することによって、より厳密な遮蔽が可能である。
【0019】
遮蔽層5を形成する方法としては特に制限はなく、例えば、目的の化合物、或いは、その前駆体をスパッタ法、蒸着法、CVD法などの乾式法(気相法)により製膜する方法が挙げられる。また、金属などの前駆体を製膜した場合には、加熱処理または化学処理などにより酸化させることにより遮蔽層5を形成することができる。
【0020】
また、湿式法の場合、目的の化合物またはその前駆体を溶解、分散させた溶液をスピンコート法、ディッピング法、ブレードコート法などの方法により塗布した後、加熱処理や化学処理などにより目的の化合物に化学変化させることにより、遮蔽層5を形成することができる。前駆体としては、目的化合物の構成金属元素を有する塩類、錯体などが例示される。また、緻密な膜(遮蔽層5)を得るという目的から、分散状態より溶解状態であることが好ましい。
【0021】
また、スプレー熱分解法(SPD)などの場合、透明導電層4を有する透明基板2を加熱した状態で、これに向けて遮蔽層5の前駆体となる物質を噴霧し、熱分解させることにより、目的とする酸化物半導体に変化させて、遮蔽層5を形成することができる。
【0022】
以上説明したように、本発明によれば、金属配線層3の逆テーパ構造、底部潜り込み等、製膜時の影となる部分の遮蔽不良を抑え、これに起因するセル特性低下を抑制することができる。また、電極基板1表面の凹凸構造に関して、段差を大きくせずに回路厚を上げられるため、電極基板1の開口率(非配線部割合)を大きくし、且つ、低抵抗化を図ることができる。
【0023】
次に、上記電極基板1を用いた色素増感太陽電池について説明する。
本発明の色素増感太陽電池は、上述の電極基板1の上に、色素担持された酸化物半導体多孔膜を備える作用極と、この作用極に対向して配置された対極とを具備し、作用極と対極との間に、酸化還元対を含む電解質層が設けられている。
【0024】
半導体多孔膜の材料としては、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などが挙げられ、これらを単独で又は2種以上を組み合わせて用いることができる。また、市販の微粒子や、ゾル−ゲル法により得られるコロイド溶液などから得ることもできる。
【0025】
半導体多孔膜の製造方法としては、例えば、コロイド溶液や分散液(必要に応じて添加剤を含む)をスクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法、スプレー塗布など種々の塗布法を用いて塗布するほか、微粒子の泳動電着、発泡剤の併用、ポリマービーズなどと複合化(後に鋳型成分のみ除去)などを適用することができる。
【0026】
半導体多孔膜に担持される色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体をはじめ、エオシン、ローダミン、メロシアニンなどの有機色素なども用いることができ、用途、使用半導体に適した励起挙動をとるものを特に限定されることなく選択することができる。
【0027】
電解質層を形成する電解液としては、酸化還元対を含む有機溶媒、室温溶融塩などを用いることができ、例えば、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどの有機溶媒、四級化イミダゾリウム系カチオンとヨウ化物イオン、ビストリフルオロメチルスルホニルイミドアニオンなどからなる室温溶融塩などを挙げることができる。
また、このような電解液に適当なゲル化剤を導入することにより、疑似固体化したもの、いわゆるゲル電解質を用いても構わない。
【0028】
酸化還元対としては、特に制限されるものではなく、例えば、ヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどが挙げられ、例えば、前者の具体的としては、ヨウ化物塩(リチウム塩、四級化イミダゾリウム塩、テトラブチルアンモニウム塩などを単独で又は複合して用いることができる)とヨウ素との組み合わせが挙げられる。電解液には、更に、必要に応じて、tert−ブチルピリジンなど種々の添加物を添加することができる。
【0029】
電解液から形成される電解質層の代わりに、p型半導体などを電荷移送層として用いることも可能である。p型半導体としては、特に制限はないが、例えば、ヨウ化銅、チオシアン化銅などの1価銅化合物を好適に用いることができる。また、機能上、製膜上の必要に応じて、各種の添加剤を含有することができる。電荷移送層の形成方法としては、特に制限はなく、例えば、キャスティング法、スパッタ法、蒸着法などの製膜方法が挙げられる。
【0030】
対極としては、例えば、導電性又は非導電性の基板上に、各種炭素系材料や白金、金などを蒸着、スパッタなどの方法で形成することができる。
更に、固体系の電荷移送層を用いる場合は、その表面に、直接スパッタ、塗布するなどの手法を用いても構わない。
【0031】
本発明の色素増感太陽電池は、上述した電極基板1を有するため、電解液による金属配線の腐食や、金属配線層3から電解液への逆電子移動が抑制され、光電変換素子の出力効果が一層向上する。
【0032】
【実施例】
(実施例1)
100×100mmのFTO膜付きガラスの表面に、エッチング法により深さ5μmの溝を格子回路パターン状に形成した。エッチングは、フォトリソにてパターン形成した後に、フッ酸を用いて行った。これに、めっき形成を可能とするためにスパッタ法により金属導電層(シード層)を形成し、更にアディティブめっきにより金属配線層3を形成した。金属配線層3は、透明基板2表面から凸レンズ状に3μm高さまで形成した。回路巾は60μmとした。この上から、遮蔽層5としてFTO膜を400nmの厚さでSPD法により形成して、電極基板(i)とした。なお、電極基板(i)の断面形状は、図2に準ずるものとなっている。
電極基板(i)上に平均粒径25nmの酸化チタン分散液を塗布・乾燥し、450℃で1時間加熱・焼結した。これをルテニウムビピリジン錯体(N3色素)のエタノール溶液中に一晩浸漬して色素担持した。50μm厚の熱可塑性ポリオレフィン樹脂シートを介して白金スパッタFTO基板と対向して配置し、樹脂シート部を熱溶融させて両極板を固定した。予め、白金スパッタ極側に電解液の注液口を開けておき、電極間に0.5Mのヨウ化塩と0.05Mのヨウ素とを主成分に含むメトキシアセトニトリル溶液を注液した。更に、周辺部及び電解液注液口をエポキシ系封止樹脂を用いて本封止し、集電端子部に銀ペーストを塗布して試験セル(i)とした。AM1.5の疑似太陽光により、試験セル(i)の光電変換特性を評価したところ、変換効率は2.8%であった。
【0033】
(実施例2)
100×100mmの耐熱ガラス表面に、レーザー彫刻機を用いて回路パターンを彫刻し、実施例1と同様の金属配線層3を形成した。この上から、透明導電層4、兼遮蔽層5としてSPD法によりFTO膜を1000nm厚さで形成して、電極基板(ii)とした。なお、電極基板(ii)の断面形状は、透明導電層4が金属配線上まで達している以外は、図2に準ずるものとなっている。
電極基板(ii)を用い、実施例1と同様の要領で試験セル(ii)を作製した。AM1.5の疑似太陽光により試験セル(ii)の光電変換特性を評価したところ、変換効率は3.0%であった。
【0034】
(実施例3)
耐熱ガラス表面に、実施例1と同様の金属配線層3を形成した後、ウエハ研磨機を用いて概ね基板表面と同じ高さまで金属配線層3を研磨した。この上から、透明導電層4、兼遮蔽層5としてFTO膜を1000nm厚さでSPD法により形成した。更に、この上に酸化チタン膜をスパッタ法により30nm厚さで形成して遮蔽層5として、電極基板(iii)とした。なお、電極基板(iii)の断面形状は、図1に準ずるものとなっている。
電極基板(iii)を用い、実施例1と同様の要領で試験セル(iii)を作製した。AM1.5の疑似太陽光により試験セル(iii)の光電変換特性を評価したところ、変換効率は3.1%であった。
【0035】
(比較例1)
100mm角のFTOガラス基板上に、アディティブめっき法により金属配線層3(金回路)を形成した。金属配線層3(金回路)は基板表面に格子状に形成し、回路巾50μm、回路厚5μmとした。この表面に厚さ300nmのFTO膜を遮蔽層5としてSPD法により形成して電極基板(iv)とした。電極基板(iv)の断面をSEM、EDXを用いて確認したところ、配線底部でめっきレジストの裾引きに起因すると思われる潜り込みがあり、影部分にはFTOが被覆されていなかった。
電極基板(iv)を用い、実施例1と同様の要領で試験セル(iv)を作製した。AM1.5の疑似太陽光により試験セル(iv)の光電変換特性を評価したところ、変換効率は0.3%であった。
【0036】
(比較例2)
100mm角のFTOガラス基板を用い、比較として未配線のまま、実施例1と同様の手法により試験セル(v)を作製した。AM1.5の疑似太陽光により試験セル(v)の光電変換特性を評価したところ、変換効率は0.11%であった。
【0037】
以上の結果から、実施例1〜3で得られた試験セル(i)〜(iii)は、いずれも光電変換効率に優れるものであったのに対し、比較例1で得られた試験セル(iv)は、遮蔽層5による遮蔽が不十分であったため、電極基板の特性を引き出すことができず、変換効率が良くなかった。
また、比較例2との対比から、本発明の実施形態に係る電極基板を用いた試験セルによれば、100mm角級の大面積セルにて、光電変換効率を大幅に増大できることが判明した。
【0038】
【発明の効果】
本発明の電極基板によれば、金属配線層表面の遮蔽不良を抑えるため、これに起因する回路腐食や逆電子移動を抑制でき、更に、電極基板表面の凹凸段差を大きくせずに回路厚を上げる(電極基板の低抵抗化を図る)ことが可能となる。従って、高導電率透明基板としての機能を発揮させることが可能となるため、例えば、100mm角級の大面積セルにて、光電変換効率を大幅に増大できる。
【図面の簡単な説明】
【図1】本発明の電極基板の一実施形態を示す概略断面図である。
【図2】本発明の電極基板の一実施形態を示す概略断面図である。
【図3】本発明の電極基板の一実施形態を示す概略断面図である。
【符号の説明】
1・・・電極基板、2・・・透明基板、3・・・金属配線層、4・・・透明導電層、5・・・遮蔽層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode substrate, a photoelectric conversion element, and a dye-sensitized solar cell.
[0002]
[Prior art]
Background of the Invention Solar cells as clean energy have attracted attention due to environmental issues and resource issues. However, conventional silicon-based solar cells have not been widely used because they have problems such as high production cost and insufficient supply of raw materials. Compound-based solar cells such as CIS-based cells have excellent characteristics such as extremely high conversion efficiency. However, problems such as cost and environmental load still hinder the widespread use.
[0003]
On the other hand, dye-sensitized solar cells have attracted attention as photoelectric conversion elements that are inexpensive and can achieve high conversion efficiency (for example, see Non-Patent Document 1). As a general structure of this photoelectric conversion element, a porous film using oxide semiconductor nanoparticles such as titanium dioxide is formed on a transparent conductive substrate and a sensitizing dye is supported on the porous film. And a counter electrode such as platinum-sputtered conductive glass, in which an organic electrolyte containing an oxidized / reduced species such as iodine / iodide ions is filled between both electrodes as a charge transfer layer. It has been reported that the semiconductor electrode has a porous film structure having a large specific surface with a roughness factor of> 1000, thereby increasing the light absorption rate, and a photoelectric conversion efficiency of 10% or more. In terms of cost, it is expected to be about one-half to one-sixth of current silicon-based solar cells. It does not necessarily require complicated and large-scale manufacturing equipment and does not contain harmful substances, so it is compatible with mass diffusion. It can be said that it has high potential as an affordable and mass-produced solar cell.
[0004]
As the transparent substrate used here, a glass substrate surface is generally coated with a transparent conductive film such as tin-added indium oxide (ITO) or fluorine-added tin oxide (FTO) in advance by a method such as vapor deposition or sputtering. However, since the specific resistance of ITO or FTO is about 10 −4 to 10 −3 Ω · cm, which is about 100 times the specific resistance of metals such as silver and gold, commercially available transparent conductive glass has low resistance. The value is high, and when used for a solar cell, particularly when a large area cell is used, the photoelectric conversion efficiency is significantly reduced.
As a method of lowering the resistance of the transparent conductive glass, it is conceivable to increase the thickness of the transparent conductive layer (ITO, FTO, etc.), but if the film is formed with a thickness sufficient to obtain a sufficient resistance value, the transparent conductive layer is formed. The light absorption by the layer is increased, and the transmission efficiency of the incident light through the window material is significantly reduced. As a result, the photoelectric conversion efficiency of the solar cell is also reduced.
[0005]
As a solution to such a problem, for example, a metal wiring layer is provided on the surface of a substrate with a transparent conductive layer used as a window electrode of a solar cell or the like so as not to significantly impair the aperture ratio, and the resistance of the substrate is reduced. (For example, refer to Japanese Patent Application No. 2001-400593). Further, when the metal wiring layer is provided on the substrate surface in this way, at least the metal wiring layer surface portion is provided in order to prevent corrosion of the metal wiring by the electrolytic solution and transfer of reverse electrons from the metal wiring layer to the electrolytic solution. It must be protected by some kind of shielding layer. Although the thickness of this shielding layer is not always required, it must be densely covered on the circuit surface.
[0006]
[Patent Document 1]
JP-A 1-220380 [Non-Patent Document 1]
B. O'Regan, M. Graetzel, Nature, vol. 353, Oct. 24, 1991, p737
[0007]
[Problems to be solved by the invention]
However, when there is a shadowed portion on the metal circuit surface when viewed from the film forming direction (for example, sneaking into the circuit wall), there is a possibility that a portion not covered by the shielding layer may occur, which may cause circuit corrosion. In addition, the cell characteristics may be significantly impaired due to the reverse electron transfer to the electrolyte. In particular, a sputtering method or a spray pyrolysis (SPD) method is preferably used as a method for forming a general film such as FTO, ITO, and TiO 2 as a shielding layer. The membrane is extremely difficult. For example, when a circuit is formed by the additive plating method, the circuit wall shape may be tapered depending on the characteristics of a plating resist. Also, if there is a footing at the bottom of the resist pattern, it becomes a squat-shaped shadow after the circuit is formed. Thus, it is difficult to form a dense shielding layer thin film on a metal circuit surface.
[0008]
Further, in order to maintain an aperture ratio that does not impair light transmittance as much as possible and to provide sufficient conductivity, the metal wiring layer needs to have a certain height. When the wiring layer is formed, the surface of the substrate has many irregularities. For this reason, for example, in forming a semiconductor porous film for a dye solar cell, there is a problem that the uniformity of the film thickness is impaired, and the unevenness tends to cause cracking or peeling of the film.
[0009]
[Means for Solving the Problems]
The electrode substrate of the present invention is an electrode substrate having a metal wiring layer and a transparent conductive layer on a transparent substrate, wherein the metal wiring layer is formed along a wiring pattern grooved in the transparent substrate, At least a portion of the wiring layer has a height equal to or lower than the surface of the transparent substrate.
Preferably, at least the surface of the metal wiring layer is covered with a shielding layer.
It is preferable that the shielding layer contains at least one of a glass component, a metal oxide component, and an electrochemically inactive resin component.
A photoelectric conversion element according to the present invention includes the above electrode substrate.
The dye-sensitized solar cell of the present invention is characterized by comprising the above-mentioned photoelectric conversion element.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The electrode substrate of the present invention has a metal wiring layer and a transparent conductive layer on a transparent substrate, and FIG. 1 is a schematic sectional view showing one embodiment thereof.
The transparent substrate 2 used in the present invention has a wiring pattern that has been grooved by laser or etching. Further, the concave portion formed by the groove processing means a state reaching below the surface of the transparent substrate 2, and there is no limitation on the shape such as a lens shape, a concave shape, and a V-valley shape. Here, the term “surface” refers to the surface of the base material surface on which the semiconductor porous film or the like is formed and which is disposed to face the counter electrode.
As the transparent substrate 2, glass such as heat-resistant glass is generally used. In addition to glass, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), poly Examples thereof include a transparent plastic such as ether sulfone (PES), a polishing plate of ceramics such as titanium oxide and alumina, and a material having high light transmittance is preferable.
[0011]
In the present invention, the metal wiring layer 3 is formed along a wiring pattern grooved in the transparent substrate 2, and at least a part of the metal wiring layer 3 reaches a height below the surface of the transparent substrate 2. There is no particular limitation as long as it has a structure. For example, as shown in FIG. 1, the surface of the metal wiring layer 3 has the same height as the surface of the transparent substrate 2, and as shown in FIG. 2, the surface of the metal wiring layer 3 reaches a position higher than the surface of the transparent substrate 2. The metal wiring layer 3 may be formed entirely below the surface of the transparent substrate 2 (not shown). In any of the embodiments, when viewed from the direction in which the shielding layer 5 is formed, it is desirable that the shape be as smooth as possible with no noticeable unevenness, infiltration or voids. Further, it is preferable that the step between the surface of the metal wiring layer 3 and the surface of the transparent substrate 2 is smaller.
[0012]
The material for forming the metal wiring layer 3 is not particularly limited, but for example, gold, silver, platinum, aluminum, nickel, titanium, or the like can be used.
As a method of forming the metal wiring layer 3, various methods can be used without particular limitation, such as a printing method such as screen printing, a metal mask, and an inkjet method, such as a plating method, a sputtering method, and an evaporation method. . Particularly preferably, a method including at least one of a plating method and a printing method is selected. In addition, the height of the surface of the metal wiring layer 3 can be adjusted, for example, to be equal to the surface height of the transparent substrate 2 by polishing.
[0013]
In the present invention, the positional relationship between the metal wiring layer 3 and the transparent conductive layer 4 is not particularly limited. For example, as shown in FIG. 1, a structure in which a transparent conductive layer 4 is formed on a substrate on which a metal wiring layer 3 is disposed, or as shown in FIG. 3, a metal wiring on a substrate on which the transparent conductive layer 4 is disposed A structure in which the layer 3 is formed, or a structure in which the metal wiring layer 3 and the transparent conductive layer 4 are parallel as shown in FIG.
[0014]
The material for forming the transparent conductive layer 4 is not particularly limited, and examples thereof include tin-added indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-added tin oxide (FTO). It is preferable to select a material having a high rate as appropriate in accordance with the combination and use of the materials.
In addition, as a method for forming the transparent conductive layer 4, an appropriate method may be used according to a material for forming the transparent conductive layer 4 from a known method such as a sputtering method and an evaporation method.
[0015]
In the electrode substrate 1 of the present invention, in the case where the transparent conductive layer 4 is formed on the substrate on which the metal wiring layer 3 is arranged, the transparent conductive layer 4 may also serve as the shielding layer 5.
[0016]
As the shielding layer 5 formed on the surface of the conductive layer composed of the metal wiring layer 3 and / or the transparent conductive layer 4, at least one of a glass component, a metal oxide component, or an electrochemically inactive resin component is used. It is preferred to contain. The glass component is a low-melting amorphous or crystalline glass component such as lead oxide or lead borate, and the metal oxide component is titanium oxide, zinc oxide, or fluorine-added tin oxide (FTO). Examples of electrochemically inactive resin components such as tin-added indium oxide (ITO) include polyolefin-based resins, polyimide-based resins, and polybenzoxazole-based resins. These may be used alone or in combination of two or more. Can be used in combination.
[0017]
Although the formation range of the shielding layer 5 will be described later, in the case where the formation range of the shielding layer 5 is a wider range including the transparent portion where the surface of the metal wiring layer 3 and the transparent conductive layer 4 are arranged, the light transmission It is necessary to select a material and thickness that do not significantly impair the properties and electron transfer from the semiconductor porous film (that is, do not significantly lower the cell characteristics). Here, the shielding layer 5 made of a metal oxide component (oxide semiconductor) will be described in further detail. As a material, an electron transfer reaction rate with a redox species-containing electrolytic solution that comes into contact with a dye-sensitized solar cell Is required to be slow, excellent in light transmittance, and not hindering movement of generated photoelectrons. The material is not particularly limited as long as it satisfies such required characteristics, and examples thereof include titanium oxide, zinc oxide, niobium oxide, tin oxide, FTO, and ITO.
[0018]
The formation range of the shielding layer 5 is not particularly limited as long as it includes at least the surface of the metal wiring layer 3, and may be limited to only the surface of the metal wiring layer 3, or may be limited to the surface of the metal wiring layer 3 and the transparent conductive layer 4. May be wider than the area including the transparent portion where. Although the problem is small compared to the metal wiring layer 3, since the reverse electron transfer from the transparent conductive layer 4 has been pointed out, the shielding layer 5 has a wider area including the transparent portion where the transparent conductive layer 4 is disposed. By forming, more strict shielding is possible.
[0019]
The method for forming the shielding layer 5 is not particularly limited, and examples thereof include a method of forming a target compound or a precursor thereof by a dry method (vapor phase method) such as a sputtering method, an evaporation method, and a CVD method. Can be When a precursor such as a metal is formed into a film, the shielding layer 5 can be formed by oxidizing the film by a heat treatment or a chemical treatment.
[0020]
In the case of a wet method, a solution obtained by dissolving or dispersing a target compound or a precursor thereof is applied by a method such as spin coating, dipping, or blade coating, and then the target compound is subjected to heat treatment, chemical treatment, or the like. Thus, the shielding layer 5 can be formed. Examples of the precursor include salts and complexes having the constituent metal element of the target compound. Further, for the purpose of obtaining a dense film (shielding layer 5), it is preferable to be in a dissolved state rather than a dispersed state.
[0021]
In the case of the spray pyrolysis method (SPD) or the like, a substance serving as a precursor of the shielding layer 5 is sprayed toward the heated transparent substrate 2 having the transparent conductive layer 4 and thermally decomposed. The shielding layer 5 can be formed by changing to a target oxide semiconductor.
[0022]
As described above, according to the present invention, it is possible to suppress poor shielding of a shadowed portion at the time of film formation, such as an inverted tapered structure of the metal wiring layer 3 and a dive into the bottom portion, and to suppress a decrease in cell characteristics due to this. Can be. Further, regarding the uneven structure on the surface of the electrode substrate 1, the circuit thickness can be increased without increasing the level difference, so that the aperture ratio (non-wiring portion ratio) of the electrode substrate 1 can be increased and the resistance can be reduced. .
[0023]
Next, a dye-sensitized solar cell using the electrode substrate 1 will be described.
The dye-sensitized solar cell of the present invention includes, on the electrode substrate 1 described above, a working electrode including a dye-supported oxide semiconductor porous film, and a counter electrode disposed to face the working electrode, An electrolyte layer containing a redox couple is provided between the working electrode and the counter electrode.
[0024]
Examples of the material of the semiconductor porous film include titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and niobium oxide (Nb 2 O 5 ). They can be used alone or in combination of two or more. Moreover, it can also be obtained from commercially available fine particles or a colloid solution obtained by a sol-gel method.
[0025]
As a method for producing a semiconductor porous film, for example, a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, a spin coating method, a spray coating method, and the like, using a colloid solution or a dispersion liquid (including an additive as necessary). In addition to coating using various coating methods, electrophoretic deposition of fine particles, combined use of a foaming agent, and compounding with polymer beads or the like (only the template component is removed later) can be applied.
[0026]
As the dye supported on the semiconductor porous film, a ruthenium complex containing a bipyridine structure, a terpyridine structure, or the like as a ligand, a metal-containing complex such as porphyrin or phthalocyanine, or an organic dye such as eosin, rhodamine, or merocyanine may be used. A material having an excitation behavior suitable for the application and the semiconductor to be used can be selected without particular limitation.
[0027]
As the electrolyte for forming the electrolyte layer, an organic solvent containing a redox couple, a molten salt at room temperature, or the like can be used.For example, acetonitrile, methoxyacetonitrile, propionitrile, propylene carbonate, diethyl carbonate, γ-butyrolactone, etc. Examples thereof include an organic solvent, a room temperature molten salt composed of a quaternized imidazolium-based cation and an iodide ion, a bistrifluoromethylsulfonylimide anion, and the like.
Further, a pseudo-solidified material, that is, a so-called gel electrolyte may be used by introducing an appropriate gelling agent into such an electrolytic solution.
[0028]
The redox couple is not particularly limited, and examples thereof include iodine / iodide ion and bromine / bromide ion. For example, specific examples of the former include iodide salts (lithium salts, quaternized Imidazolium salts, tetrabutylammonium salts and the like can be used alone or in combination) and iodine. Various additives such as tert-butylpyridine can be further added to the electrolyte as needed.
[0029]
Instead of the electrolyte layer formed from the electrolytic solution, a p-type semiconductor or the like can be used as the charge transport layer. Although there is no particular limitation on the p-type semiconductor, for example, a monovalent copper compound such as copper iodide or copper thiocyanide can be suitably used. In addition, various additives can be contained as required in terms of function and film formation. The method for forming the charge transport layer is not particularly limited, and examples thereof include a film forming method such as a casting method, a sputtering method, and a vapor deposition method.
[0030]
As the counter electrode, for example, various carbon-based materials, platinum, gold, and the like can be formed on a conductive or non-conductive substrate by a method such as evaporation or sputtering.
Further, when a solid charge transfer layer is used, a technique such as direct sputtering or coating on the surface thereof may be used.
[0031]
Since the dye-sensitized solar cell of the present invention has the above-described electrode substrate 1, corrosion of metal wiring due to the electrolytic solution and reverse electron transfer from the metal wiring layer 3 to the electrolytic solution are suppressed, and the output effect of the photoelectric conversion element is reduced. Is further improved.
[0032]
【Example】
(Example 1)
Grooves having a depth of 5 μm were formed in a lattice circuit pattern on the surface of a 100 × 100 mm glass with an FTO film by an etching method. The etching was performed using hydrofluoric acid after forming a pattern by photolithography. On this, a metal conductive layer (seed layer) was formed by sputtering to enable plating, and a metal wiring layer 3 was formed by additive plating. The metal wiring layer 3 was formed in a convex lens shape from the surface of the transparent substrate 2 to a height of 3 μm. The circuit width was 60 μm. From above, an FTO film having a thickness of 400 nm was formed as a shielding layer 5 by an SPD method to obtain an electrode substrate (i). The cross-sectional shape of the electrode substrate (i) conforms to FIG.
A titanium oxide dispersion having an average particle size of 25 nm was applied onto the electrode substrate (i), dried, and heated and sintered at 450 ° C. for 1 hour. This was immersed overnight in an ethanol solution of a ruthenium bipyridine complex (N3 dye) to carry the dye. A 50 μm-thick thermoplastic polyolefin resin sheet was interposed therebetween to face the platinum sputtered FTO substrate, and the resin sheet portion was thermally melted to fix the bipolar plates. An electrolyte injection port was previously opened on the platinum sputtering electrode side, and a methoxyacetonitrile solution containing 0.5M iodide and 0.05M iodine as a main component was injected between the electrodes. Further, the peripheral portion and the electrolyte injection port were completely sealed using an epoxy-based sealing resin, and a silver paste was applied to the current collecting terminal portion to obtain a test cell (i). When the photoelectric conversion characteristics of the test cell (i) were evaluated using simulated sunlight of AM1.5, the conversion efficiency was 2.8%.
[0033]
(Example 2)
A circuit pattern was engraved on a 100 × 100 mm heat-resistant glass surface using a laser engraving machine to form a metal wiring layer 3 similar to that of Example 1. From above, an FTO film having a thickness of 1000 nm was formed as a transparent conductive layer 4 and a shielding layer 5 by an SPD method to obtain an electrode substrate (ii). Note that the cross-sectional shape of the electrode substrate (ii) is similar to that of FIG. 2 except that the transparent conductive layer 4 reaches over the metal wiring.
Using the electrode substrate (ii), a test cell (ii) was produced in the same manner as in Example 1. When the photoelectric conversion characteristics of the test cell (ii) were evaluated using simulated sunlight of AM1.5, the conversion efficiency was 3.0%.
[0034]
(Example 3)
After the same metal wiring layer 3 as in Example 1 was formed on the heat-resistant glass surface, the metal wiring layer 3 was polished using a wafer polisher to approximately the same height as the substrate surface. From above, an FTO film having a thickness of 1000 nm was formed as the transparent conductive layer 4 and the shielding layer 5 by the SPD method. Further, a titanium oxide film was formed thereon with a thickness of 30 nm by a sputtering method to form an electrode substrate (iii) as a shielding layer 5. The cross-sectional shape of the electrode substrate (iii) is similar to that of FIG.
Using the electrode substrate (iii), a test cell (iii) was produced in the same manner as in Example 1. When the photoelectric conversion characteristics of the test cell (iii) were evaluated using simulated sunlight of AM1.5, the conversion efficiency was 3.1%.
[0035]
(Comparative Example 1)
A metal wiring layer 3 (gold circuit) was formed on a 100 mm square FTO glass substrate by an additive plating method. The metal wiring layer 3 (gold circuit) was formed in a lattice pattern on the substrate surface, and had a circuit width of 50 μm and a circuit thickness of 5 μm. An FTO film having a thickness of 300 nm was formed on this surface as a shielding layer 5 by an SPD method to obtain an electrode substrate (iv). When the cross section of the electrode substrate (iv) was confirmed using SEM and EDX, there was a sneak in at the bottom of the wiring, which was thought to be caused by the footing of the plating resist, and the FTO was not covered in the shadow part.
Using the electrode substrate (iv), a test cell (iv) was produced in the same manner as in Example 1. When the photoelectric conversion characteristics of the test cell (iv) were evaluated using simulated sunlight of AM1.5, the conversion efficiency was 0.3%.
[0036]
(Comparative Example 2)
Using a 100 mm square FTO glass substrate, a test cell (v) was produced in the same manner as in Example 1 with no wiring as a comparison. When the photoelectric conversion characteristics of the test cell (v) were evaluated using simulated sunlight of AM1.5, the conversion efficiency was 0.11%.
[0037]
From the above results, the test cells (i) to (iii) obtained in Examples 1 to 3 were all excellent in the photoelectric conversion efficiency, whereas the test cells obtained in Comparative Example 1 ( In iv), since the shielding by the shielding layer 5 was insufficient, the characteristics of the electrode substrate could not be brought out, and the conversion efficiency was not good.
Further, from comparison with Comparative Example 2, it was found that the test cell using the electrode substrate according to the embodiment of the present invention can greatly increase the photoelectric conversion efficiency in a large-area cell of 100 mm square class.
[0038]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the electrode substrate of this invention, in order to suppress the poor shielding of the surface of a metal wiring layer, the circuit corrosion and reverse electron transfer resulting from this can be suppressed, and also the circuit thickness can be reduced without increasing the unevenness of the electrode substrate surface. (Reducing the resistance of the electrode substrate). Therefore, since the function as a transparent substrate having high conductivity can be exhibited, the photoelectric conversion efficiency can be significantly increased, for example, in a large area cell of a 100 mm square class.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing one embodiment of an electrode substrate of the present invention.
FIG. 2 is a schematic sectional view showing an embodiment of the electrode substrate of the present invention.
FIG. 3 is a schematic sectional view showing an embodiment of the electrode substrate of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrode substrate, 2 ... Transparent substrate, 3 ... Metal wiring layer, 4 ... Transparent conductive layer, 5 ... Shielding layer

Claims (5)

透明基板上に金属配線層と透明導電層とを有する電極基板であって、
金属配線層が透明基板に溝加工された配線パターンに沿って形成されており、該金属配線層の少なくとも一部が、透明基板表面以下の高さに達していることを特徴とする電極基板。
An electrode substrate having a metal wiring layer and a transparent conductive layer on a transparent substrate,
An electrode substrate, wherein a metal wiring layer is formed along a wiring pattern grooved in a transparent substrate, and at least a part of the metal wiring layer reaches a height equal to or lower than the surface of the transparent substrate.
少なくとも金属配線層の表面が遮蔽層により被覆されて成ることを特徴とする請求項1記載の電極基板。2. The electrode substrate according to claim 1, wherein at least a surface of the metal wiring layer is covered with a shielding layer. 前記遮蔽層が、ガラス成分、金属酸化物成分、または電気化学的に不活性な樹脂成分のうち少なくとも1種を含有することを特徴とする請求項1又は2に記載の電極基板。3. The electrode substrate according to claim 1, wherein the shielding layer contains at least one of a glass component, a metal oxide component, and an electrochemically inactive resin component. 請求項1〜3のいずれかに記載の電極基板を有することを特徴とする光電変換素子。A photoelectric conversion element comprising the electrode substrate according to claim 1. 請求項4記載の光電変換素子からなることを特徴とする色素増感太陽電池。A dye-sensitized solar cell comprising the photoelectric conversion element according to claim 4.
JP2002306723A 2002-10-03 2002-10-22 Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell Expired - Fee Related JP4503226B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002306723A JP4503226B2 (en) 2002-10-22 2002-10-22 Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
EP03758711A EP1548868A4 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
CN 200810126942 CN101312096B (en) 2002-10-03 2003-10-03 Electrode substrate and photoelectric conversion element
KR1020057005613A KR100689229B1 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
US10/529,818 US8629346B2 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell
TW092127615A TWI326920B (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric transducer, conductive glass substrate and manufacturing method thereof, and dye-sensitized solar cell
PCT/JP2003/012738 WO2004032274A1 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
AU2003275542A AU2003275542B2 (en) 2002-10-03 2003-10-03 Electrode substrate, photoelectric conversion element, conductive glass substrate and production method thereof, and pigment sensitizing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306723A JP4503226B2 (en) 2002-10-22 2002-10-22 Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2004146425A true JP2004146425A (en) 2004-05-20
JP4503226B2 JP4503226B2 (en) 2010-07-14

Family

ID=32453397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306723A Expired - Fee Related JP4503226B2 (en) 2002-10-03 2002-10-22 Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4503226B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109033A (en) * 2003-09-29 2005-04-21 Toshiba Corp Photosensitive solar cell and its manufacturing method
JP2006134827A (en) * 2004-11-09 2006-05-25 Nippon Oil Corp Electrode and dye-sensitized solar cell
JP2006324099A (en) * 2005-05-18 2006-11-30 Sekisui Jushi Co Ltd Dye sensitized solar cell and manufacturing method of electrode substrate thereof
JP2006331934A (en) * 2005-05-27 2006-12-07 Sekisui Jushi Co Ltd Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2009016174A (en) * 2007-07-04 2009-01-22 Fujikura Ltd Photoelectric conversion element
JP2009099435A (en) * 2007-10-18 2009-05-07 Oki Semiconductor Co Ltd Dye-sensitized solar battery
WO2009069551A1 (en) 2007-11-28 2009-06-04 Fujikura Ltd. Electrode substrate for photoelectric conversion element
WO2009108800A3 (en) * 2008-02-28 2009-11-05 Sunlight Photonics Inc. Method and appartus for fabricating composite substrates for thin film electro-optical devices
WO2009108801A3 (en) * 2008-02-28 2009-11-12 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
JP2010108684A (en) * 2008-10-29 2010-05-13 Konica Minolta Holdings Inc Transparent conductive substrate, and electrochemical display element
KR101001548B1 (en) 2004-06-29 2010-12-17 삼성에스디아이 주식회사 Dye-sensitive solar cell using photoelectric transformation electrode
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
JP5143136B2 (en) * 2007-09-18 2013-02-13 三菱電機株式会社 Method for manufacturing thin-film solar cell element
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
KR101621552B1 (en) * 2009-12-10 2016-05-17 엘지디스플레이 주식회사 Solar cell apparatus
CN107359212A (en) * 2017-05-26 2017-11-17 中国华能集团清洁能源技术研究院有限公司 Electrically conducting transparent substrate, its preparation method and solar cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050975A (en) * 1983-08-31 1985-03-22 Komatsu Ltd Amorphous solar battery
JPH06204529A (en) * 1992-12-28 1994-07-22 Canon Inc Solar cell
JPH0851229A (en) * 1994-08-09 1996-02-20 Sharp Corp Integrated solar battery and its manufacture
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2000285977A (en) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2001320068A (en) * 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd Transparent photoelectric converting element, photo cell using the same, optical sensor and window glass
JP2001319698A (en) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050975A (en) * 1983-08-31 1985-03-22 Komatsu Ltd Amorphous solar battery
JPH06204529A (en) * 1992-12-28 1994-07-22 Canon Inc Solar cell
JPH0851229A (en) * 1994-08-09 1996-02-20 Sharp Corp Integrated solar battery and its manufacture
JP2000243465A (en) * 1999-02-22 2000-09-08 Aisin Seiki Co Ltd Photoelectric conversion element
JP2000285977A (en) * 1999-03-31 2000-10-13 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell
JP2001320068A (en) * 2000-05-01 2001-11-16 Fuji Photo Film Co Ltd Transparent photoelectric converting element, photo cell using the same, optical sensor and window glass
JP2001319698A (en) * 2000-05-11 2001-11-16 Fuji Photo Film Co Ltd Photoelectric conversion element and photoelectric cell

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109033A (en) * 2003-09-29 2005-04-21 Toshiba Corp Photosensitive solar cell and its manufacturing method
KR101001548B1 (en) 2004-06-29 2010-12-17 삼성에스디아이 주식회사 Dye-sensitive solar cell using photoelectric transformation electrode
JP2006134827A (en) * 2004-11-09 2006-05-25 Nippon Oil Corp Electrode and dye-sensitized solar cell
JP2006324099A (en) * 2005-05-18 2006-11-30 Sekisui Jushi Co Ltd Dye sensitized solar cell and manufacturing method of electrode substrate thereof
JP2006331934A (en) * 2005-05-27 2006-12-07 Sekisui Jushi Co Ltd Electrode substrate for dye-sensitized solar cell and dye-sensitized solar cell
JP2009016174A (en) * 2007-07-04 2009-01-22 Fujikura Ltd Photoelectric conversion element
JP5143136B2 (en) * 2007-09-18 2013-02-13 三菱電機株式会社 Method for manufacturing thin-film solar cell element
JP2009099435A (en) * 2007-10-18 2009-05-07 Oki Semiconductor Co Ltd Dye-sensitized solar battery
WO2009069551A1 (en) 2007-11-28 2009-06-04 Fujikura Ltd. Electrode substrate for photoelectric conversion element
WO2009108801A3 (en) * 2008-02-28 2009-11-12 Sunlight Photonics Inc. Composite substrates for thin film electro-optical devices
US8187906B2 (en) 2008-02-28 2012-05-29 Sunlight Photonics Inc. Method for fabricating composite substances for thin film electro-optical devices
WO2009108800A3 (en) * 2008-02-28 2009-11-05 Sunlight Photonics Inc. Method and appartus for fabricating composite substrates for thin film electro-optical devices
JP2010108684A (en) * 2008-10-29 2010-05-13 Konica Minolta Holdings Inc Transparent conductive substrate, and electrochemical display element
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
KR101621552B1 (en) * 2009-12-10 2016-05-17 엘지디스플레이 주식회사 Solar cell apparatus
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
CN107359212A (en) * 2017-05-26 2017-11-17 中国华能集团清洁能源技术研究院有限公司 Electrically conducting transparent substrate, its preparation method and solar cell

Also Published As

Publication number Publication date
JP4503226B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4503226B2 (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP5150818B2 (en) Dye-sensitized solar cell and method for producing the same
WO2004032274A1 (en) Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
TWI401811B (en) Dye-sensitized solar cells and manufacturing method for thereof
US20070224464A1 (en) Dye-sensitized photovoltaic cells
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP5550540B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2005109033A (en) Photosensitive solar cell and its manufacturing method
JP2005285472A (en) Photoelectric conversion device
JP2004164950A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
US20120234381A1 (en) Dye-sensitized solar cell
KR100908243B1 (en) Dye-Sensitized Solar Cell Including Electron Recombination Blocking Layer and Manufacturing Method Thereof
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5284296B2 (en) Dye-sensitized solar cell
JP2007172916A (en) Photoelectric conversion element
JP5135520B2 (en) Dye-sensitized solar cell
JP2003331934A (en) Electrode plate for photoelectric conversion element, and photoelectric conversion element
JP4072891B2 (en) Method for manufacturing photoelectric conversion element and photovoltaic cell
JP2007280849A (en) Photoelectric conversion element
JP4776871B2 (en) Semiconductor fine particle film, photoelectric conversion element and photovoltaic cell
JP2006083036A (en) Glass etching method, manufacturing method of transparent conductive substrate and photoelectric transducer
WO2008032016A2 (en) Dye sensitized solar cell
JP4942919B2 (en) Photoelectric conversion element and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R151 Written notification of patent or utility model registration

Ref document number: 4503226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees