JP4969046B2 - Photoelectric conversion device and photovoltaic device using the same - Google Patents

Photoelectric conversion device and photovoltaic device using the same Download PDF

Info

Publication number
JP4969046B2
JP4969046B2 JP2005046475A JP2005046475A JP4969046B2 JP 4969046 B2 JP4969046 B2 JP 4969046B2 JP 2005046475 A JP2005046475 A JP 2005046475A JP 2005046475 A JP2005046475 A JP 2005046475A JP 4969046 B2 JP4969046 B2 JP 4969046B2
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
dye
porous
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005046475A
Other languages
Japanese (ja)
Other versions
JP2006236637A (en
Inventor
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005046475A priority Critical patent/JP4969046B2/en
Publication of JP2006236637A publication Critical patent/JP2006236637A/en
Application granted granted Critical
Publication of JP4969046B2 publication Critical patent/JP4969046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、高い光電変換効率が得られる新規な光電変換材料を用いた太陽電池や受光素子等の光電変換装置およびそれを用いた光発電装置に関するものである。   The present invention relates to a photoelectric conversion device such as a solar cell or a light receiving element using a novel photoelectric conversion material capable of obtaining high photoelectric conversion efficiency, and a photovoltaic device using the photoelectric conversion device.

光電変換装置の一つである色素増感型太陽電池は、高温処理や真空装置を必要としないことから低コスト化に有利であると考えられ、近年急速に研究開発が進められている。この色素増感型太陽電池は、例えば、導電性ガラス基板上に粒径20nm程度の微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層の粒子表面に色素を単分子吸着させた電極を光作用極として用い、白金層をスパッタリング法によってガラス基板上に成膜した対極との間に、ヨウ素/ヨウ化物レドックス対を含む電解質溶液を満たし、この電解質溶液を封止した構造を有する。このような多孔質化により光作用極の表面積を1000倍以上に高めて、吸着色素による光吸収を効率よく行ない光発電することができる。その結果、色素増感型太陽電池は、10%以上の光電変換効率が得られる。また、塗布プロセスで簡易に多孔質酸化チタン層を形成できるため、太陽電池の低コスト化が可能であるという利点があり、その実用化が検討されている。   A dye-sensitized solar cell, which is one of photoelectric conversion devices, is considered advantageous for cost reduction because it does not require high-temperature treatment or a vacuum device, and research and development have been promoted rapidly in recent years. In this dye-sensitized solar cell, for example, a porous titanium oxide layer obtained by sintering fine particles having a particle diameter of about 20 nm is provided on a conductive glass substrate, and the dye is applied to the particle surface of the porous titanium oxide layer. Using an electrode with monomolecular adsorption as a photo-active electrode, an electrolyte solution containing an iodine / iodide redox pair is filled between a counter electrode in which a platinum layer is formed on a glass substrate by sputtering, and this electrolyte solution is sealed. It has a stopped structure. By making such a porous structure, the surface area of the light working electrode can be increased by 1000 times or more, and light absorption by the adsorbing dye can be efficiently performed to generate photovoltaic power. As a result, the dye-sensitized solar cell has a photoelectric conversion efficiency of 10% or more. In addition, since the porous titanium oxide layer can be easily formed by a coating process, there is an advantage that the cost of the solar cell can be reduced, and its practical use is being studied.

上記のように高い光電変換効率と低コストに製造可能であるという利点を持つ色素増感型太陽電池であるが、実用化させるためには、まだ光電変換効率が十分と言えない。この光電変換効率を向上させるための方法として、色素が吸着した多孔質酸化チタン層である光吸収層を厚くする方法もある。
特開2000−285974号公報 特開2004−74609号公報
Although it is a dye-sensitized solar cell having the advantages of high photoelectric conversion efficiency and low-cost production as described above, it cannot be said that the photoelectric conversion efficiency is sufficient for practical use. As a method for improving the photoelectric conversion efficiency, there is also a method of increasing the thickness of the light absorption layer, which is a porous titanium oxide layer on which a dye is adsorbed.
JP 2000-285974 A Japanese Patent Laid-Open No. 2004-74609

ここで、図2に従来技術の光電変換装置1を示す。この光電変換装置1は、透明基板10上に形成された第1の導電層11上に、色素13を担持した多孔質の電子輸送体層12(多孔質酸化チタン層)を形成し、この電子輸送体12を埋めるように形成した逆導電型輸送体である電解質14、白金やカーボンを担持させた第2の導電層17および支持体18からなる。   Here, the photoelectric conversion apparatus 1 of a prior art is shown in FIG. In this photoelectric conversion device 1, a porous electron transporter layer 12 (porous titanium oxide layer) carrying a dye 13 is formed on a first conductive layer 11 formed on a transparent substrate 10, and this electron It comprises an electrolyte 14 which is a reverse conductivity type transporter formed so as to fill the transporter 12, a second conductive layer 17 carrying platinum or carbon, and a support 18.

しかしながら、この従来技術の光電変換装置1では、透明基板10として導電性ガラス基板や導電性プラスチック基板を用い、その上に多孔質酸化チタン層を形成すると、導電性ガラス基板等と多孔質酸化チタン層との熱膨張係数差により、多孔質酸化チタン層が剥離し(剥離部20として示す)、電流パスが途切れるので発電効率が低下するという問題がある。また、熱膨張係数差による応力により導電性ガラス基板等が反り、導電性ガラス基板等が割れたり変形するという問題がある。   However, in this conventional photoelectric conversion device 1, when a conductive glass substrate or a conductive plastic substrate is used as the transparent substrate 10 and a porous titanium oxide layer is formed thereon, the conductive glass substrate and the porous titanium oxide are formed. Due to the difference in thermal expansion coefficient from the layer, the porous titanium oxide layer is peeled off (shown as the peeled portion 20), and the current path is interrupted, resulting in a problem that power generation efficiency is lowered. Further, there is a problem that the conductive glass substrate or the like warps due to the stress due to the difference in thermal expansion coefficient, and the conductive glass substrate or the like is cracked or deformed.

また、クラックを抑制するために有機材料を添加して形成した電子輸送体層12の場合は、より空孔が多くなるが、電子輸送体層12の酸化チタンの部位の表面積が減少し、色素13の酸化チタンに対する吸着量が低下するので、発電効率が低下するという問題がある。   In addition, in the case of the electron transport layer 12 formed by adding an organic material in order to suppress cracks, the number of vacancies increases, but the surface area of the titanium oxide portion of the electron transport layer 12 decreases, and the dye Since the amount of adsorption of 13 on titanium oxide is reduced, there is a problem that power generation efficiency is reduced.

したがって、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、導電性ガラス基板や導電性プラスチック基板上に形成される多孔質酸化チタン層の剥離、および導電性ガラス基板や導電性プラスチック基板の反りを抑制することによって、光電変換装置の発電効率を向上させることであり、高光電変換効率の太陽電池や受光素子等の光電変換装置を提供することである。   Therefore, the present invention has been completed in view of the above-mentioned problems in the prior art, and its purpose is to peel off a porous titanium oxide layer formed on a conductive glass substrate or a conductive plastic substrate, and to conduct electricity. It is to improve the power generation efficiency of the photoelectric conversion device by suppressing the warpage of the conductive glass substrate and the conductive plastic substrate, and to provide a photoelectric conversion device such as a solar cell or a light receiving element with high photoelectric conversion efficiency. .

本発明の光電変換装置は、一方の電極として機能する導電性基板と、該導電性基板の主面に形成された複数の凸部と、前記導電性基板の主面に前記凸部と接するように形成された、光電変換を行なう光励起体が表面に多数付着した多孔質半導体層と、電解質と、他方の電極とを具備しており、前記多孔質半導体層は、前記凸部から表面に至る溝が複数形成されていることを特徴とするものである。 The photoelectric conversion device of the present invention includes a conductive substrate functioning as one electrode, a plurality of convex portions formed on the main surface of the conductive substrate, and the main surface of the conductive substrate in contact with the convex portions. The porous semiconductor layer is formed on the surface and has an electrolyte and the other electrode, and the porous semiconductor layer extends from the convex portion to the surface. A plurality of grooves are formed.

本発明の光電変換装置は好ましくは、前記溝は、前記多孔質半導体層の略全面にわたって連続的に形成されていることを特徴とするものである。   The photoelectric conversion device of the present invention is preferably characterized in that the groove is formed continuously over substantially the entire surface of the porous semiconductor layer.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とするものである。   The photovoltaic power generation apparatus of the present invention is characterized in that the photoelectric conversion apparatus of the present invention is used as a power generation means, and the generated power of the power generation means is supplied to a load.

本発明の光電変換装置は、一方の電極として機能する導電性基板と、導電性基板の主面に形成された凸部と、導電性基板の主面に凸部と接するように形成された、光電変換を行なう光励起体が表面に多数付着した多孔質半導体層と、電解質と、他方の電極とを具備しており、多孔質半導体層は、凸部から表面に至る溝が複数形成されているものであり、このような複数の溝により多孔質半導体層と導電性基板との間に生じる応力の緩和がなされ
るとともに多孔質半導体層の剥離を抑制することができるため、光電変換面積の損失が抑えられ、光電変換装置の高変換効率化と低コスト化の両立を達成するうえでも有利である。
The photoelectric conversion device of the present invention was formed so that the conductive substrate functioning as one electrode, the convex portion formed on the main surface of the conductive substrate, and the main surface of the conductive substrate in contact with the convex portion , It has a porous semiconductor layer with a large number of photoexciters that perform photoelectric conversion on the surface, an electrolyte, and the other electrode, and the porous semiconductor layer has a plurality of grooves extending from the convex portion to the surface. The loss of the photoelectric conversion area because such a plurality of grooves can relieve stress generated between the porous semiconductor layer and the conductive substrate and suppress the peeling of the porous semiconductor layer. This is advantageous in achieving both high conversion efficiency and low cost of the photoelectric conversion device.

本発明の光電変換装置は好ましくは、溝は、多孔質半導体層の略全面にわたって連続的に形成されていることから、多孔質半導体層の部分的な剥離も抑制することができるため、一方の電極として機能する導電性基板と他方の電極間の全面的な短絡やリークを抑制するため、光電変換装置の高変換効率化と低コスト化の両立を達成するうえでも有利である。   In the photoelectric conversion device of the present invention, preferably, since the groove is continuously formed over substantially the entire surface of the porous semiconductor layer, partial peeling of the porous semiconductor layer can also be suppressed. Since the entire short circuit and leakage between the conductive substrate functioning as an electrode and the other electrode are suppressed, it is advantageous in achieving both high conversion efficiency and low cost of the photoelectric conversion device.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、発電手段の発電電力を負荷へ供給するように成したことから、高効率で、耐久性のある光発電装置を低コストに提供することができる。   Since the photovoltaic device of the present invention uses the photoelectric conversion device of the present invention as a power generation means and supplies the generated power of the power generation means to a load, a highly efficient and durable photovoltaic power generation device is provided. It can be provided at low cost.

本発明の光電変換装置および光発電装置の実施の形態の例について図面を参照しつつ以下に詳細に説明する。なお、図面において同一部材には同一符号を付している。   Exemplary embodiments of a photoelectric conversion device and a photovoltaic device according to the present invention will be described in detail below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same member in drawing.

色素増感型太陽電池の基本構造をなす光電変換装置を模式的に説明する断面図を図1に示す。図1において、図中の矢印Lは光の入射する方向を示す。   FIG. 1 is a cross-sectional view schematically illustrating a photoelectric conversion device that forms the basic structure of a dye-sensitized solar cell. In FIG. 1, an arrow L in the figure indicates a direction in which light enters.

図1の光電変換装置1は、第1の導電層11(一方の電極)が形成された透光性基板10(導電性基板)上に、光励起体としての色素13を吸着させた金属酸化物半導体からなる一導電型輸送体である電子輸送体層(金属酸化物半導体層:多孔質半導体層)12を、他方導電型輸送体である電解質14中に存在する状態で配設したことを特徴とする。この構成は、色素13の増感作用により光電変換を行なう色素増感型光電変換体をなしており、この色素増感型光電変換体は、第1の導電層11上に形成され色素13を担持した多孔質の電子輸送体層12、この電子輸送体層12を埋めるように形成した逆導電型輸送体である電解質14、白金やカーボンを担持させた他方の電極としての第2の導電層17および支持体18からなる。この第2の導電層17および支持体18は白金やカーボンを担持させた金属基板でもよい。また、支持体18が透明な場合は図中の矢印Lの光入射する方向と逆方向からの光入射でも良い。   1 includes a metal oxide in which a dye 13 as a photoexciter is adsorbed on a translucent substrate 10 (conductive substrate) on which a first conductive layer 11 (one electrode) is formed. An electron transport layer (metal oxide semiconductor layer: porous semiconductor layer) 12 which is a one-conductivity type transporter made of a semiconductor is disposed in a state where it is present in an electrolyte 14 which is the other conductivity-type transporter. And This configuration forms a dye-sensitized photoelectric converter that performs photoelectric conversion by the sensitizing action of the dye 13, and this dye-sensitized photoelectric converter is formed on the first conductive layer 11 to form the dye 13. A porous electron transporter layer 12 that is supported, an electrolyte 14 that is a reverse conductivity type transporter formed so as to fill the electron transporter layer 12, and a second conductive layer as the other electrode that supports platinum or carbon. 17 and a support 18. The second conductive layer 17 and the support 18 may be a metal substrate carrying platinum or carbon. Further, when the support 18 is transparent, light incident from the direction opposite to the direction of light incidence indicated by the arrow L in the drawing may be used.

次に、上述した光電変換装置1の各構成について詳細に説明する。   Next, each structure of the photoelectric conversion apparatus 1 mentioned above is demonstrated in detail.

<透光性基板>
透光性基板10としては、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド,ポリカーボネート等から成る樹脂基板、白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等から成る無機質基板、有機無機ハイブリッドシート等がよい。
<Translucent substrate>
As the translucent substrate 10, resin substrates made of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polycarbonate, etc., inorganic substrates made of white plate glass, soda glass, borosilicate glass, ceramics, etc., organic-inorganic hybrids Sheets are good.

<導電層>
第1の導電層11および第2の導電層(他方の電極)17としては、低温成長のスパッタリング法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)等がよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛(ZnO)膜等がよく、これらを積層して用いてもよい。また、熱CVD法で形成したフッ素ドープの酸化スズ(SnO:F)膜等を用いてもよい。他に、不純物ドープの酸化インジウム(In)膜等が使える。他の成膜法としては、真空蒸着法,イオンプレーティング法,ディップコート法,ゾルゲル法等がある。これらの成膜法によって表面に入射光の波長オーダーの凹凸を形成すると、光閉じ込め効果を持たせることができ、より好ましいものとなる。また、第1の透明導電層15としては、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の薄い金属膜、あるいはTi/ITO/Ti等の多層積層体、あるいは金属メッシュ電極/ITO等の複合体でもよい。
<Conductive layer>
As the first conductive layer 11 and the second conductive layer (the other electrode) 17, a tin-doped indium oxide film (ITO film) or an impurity-doped indium oxide film produced by a low-temperature growth sputtering method or a low-temperature spray pyrolysis method (In 2 O 3 film) or the like is preferable. In addition, an impurity-doped zinc oxide (ZnO) film or the like produced by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin oxide (SnO 2 : F) film formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide (In 2 O 3 ) film or the like can be used. Examples of other film forming methods include a vacuum deposition method, an ion plating method, a dip coating method, and a sol-gel method. Forming irregularities in the order of the wavelength of incident light on the surface by these film forming methods can provide a light confinement effect, which is more preferable. The first transparent conductive layer 15 may be a thin metal film such as Au, Pd, or Al formed by vacuum deposition or sputtering, a multilayer laminate such as Ti / ITO / Ti, or a metal mesh electrode / A composite such as ITO may be used.

<多孔質半導体層としての電子輸送体層>
多孔質半導体層としての一方導電型輸送体である電子輸送体層12は、多孔質の酸化チタン等の電子輸送体層(n型金属酸化物半導体)であることが好ましい。また、電子輸送体層12は、粒状体、または針状体,チューブ状体,柱状体等の線状体、またはこれら種々の線状体が集合してなるものが好適である。
<Electron transporter layer as porous semiconductor layer>
The electron transport layer 12 which is a one-conductivity transporter as the porous semiconductor layer is preferably an electron transport layer (n-type metal oxide semiconductor) such as porous titanium oxide. Further, the electron transporter layer 12 is preferably a granular body, a linear body such as a needle-shaped body, a tube-shaped body, a columnar body, or a combination of these various linear bodies.

電子輸送体層12を多孔質体とすることにより、粒状体間または線状体間の接合面積が拡がり、色素13を担持する表面積が増えて、光電変換効率を高めることができる。また、電子輸送体層12を多孔質体とすることにより、色素増感型光電変換体の表面が凹凸形状となり、薄膜光電変換体や色素増感型光電変換体に光閉じ込め効果をもたらして、光電変換効率をより高めることができる。   By using a porous body for the electron transport layer 12, the bonding area between the granular bodies or between the linear bodies is expanded, the surface area for supporting the dye 13 is increased, and the photoelectric conversion efficiency can be increased. In addition, by making the electron transport layer 12 a porous body, the surface of the dye-sensitized photoelectric conversion body has an uneven shape, bringing a light confinement effect to the thin film photoelectric conversion body and the dye-sensitized photoelectric conversion body, Photoelectric conversion efficiency can be further increased.

電子輸送体層12を成す金属酸化物半導体の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料や組成としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V)等の金属元素の少なくとも1種以上からなる酸化物半導体がよい。また、窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有させてもよい。上記の酸化チタン等は、いずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。また、金属酸化物半導体は、電子エネルギー準位においてその伝導帯が色素13の伝導帯より低いn型半導体がよい。 Titanium oxide (TiO 2 ) is optimal as the material and composition of the metal oxide semiconductor forming the electron transport layer 12, and titanium (Ti), zinc (Zn), tin (Sn) are the other materials and compositions. ), Niobium (Nb), indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca) ), An oxide semiconductor composed of at least one metal element such as vanadium (V) is preferable. Moreover, you may contain 1 or more types of nonmetallic elements, such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), and phosphorus (P). All of the above titanium oxides and the like are preferable because the electronic energy band gap is in the range of 2 to 5 eV larger than the energy of visible light. Further, the metal oxide semiconductor is preferably an n-type semiconductor whose conduction band is lower than that of the dye 13 in the electron energy level.

この金属酸化物半導体は、空孔率が20〜80%であるのがよく、より好適には40〜60%の多孔質体であるのがよい。これは、この程度の空孔率の多孔質化により光作用極の表面積を1000倍以上に高めることができて、光吸収と発電と電子伝導とを効率よく行なうことができるからである。多孔質体の形状は、その表面積が大きくなり、かつ電気抵抗が小さい形状がよく、通常は、微細粒子もしくは微細線状からなるのがよい。その平均粒径もしくは平均線径は5〜500nmであるのがよく、より好適には10〜200nmであるのがよい。ここで、平均粒径もしくは平均線径の5〜500nmにおける下限値は、これ未満になると材料の微細化が困難になるからであり、上限値は、これを超えると接合面積が小さくなり光電流が著しく小さくなるからである。   This metal oxide semiconductor should have a porosity of 20 to 80%, more preferably a porous body of 40 to 60%. This is because the porosity of this degree of porosity can increase the surface area of the light working electrode by 1000 times or more, and light absorption, power generation and electron conduction can be performed efficiently. The shape of the porous body is preferably a shape having a large surface area and low electrical resistance, and is usually preferably composed of fine particles or fine lines. The average particle diameter or average wire diameter is preferably 5 to 500 nm, and more preferably 10 to 200 nm. Here, the lower limit of the average particle diameter or the average wire diameter in the range of 5 to 500 nm is that if it is less than this, it is difficult to refine the material. If the upper limit is exceeded, the junction area becomes smaller and the photocurrent is reduced. This is because is significantly reduced.

また、電子輸送体層12の厚さは0.1〜50μmがよく、より好適には1μm〜20μmがよい。電子輸送体層12の厚さ0.1〜50μmにおける下限値は、これより厚さが小さくなると光電変換作用が著しく小さくなって実用が困難となるからであり、上限値は、これを超えて膜厚が厚くなると、電子輸送体層12にクラックが入ったり、電子輸送体層12が透光性基板10から剥離したり、第1の導電層11との間の電気抵抗が大きくなったり、光が透過しなくなって光が入射しなくなり、光電変換作用が著しく小さくなって実用が困難となるからである。   Further, the thickness of the electron transporter layer 12 is preferably 0.1 to 50 μm, more preferably 1 μm to 20 μm. The lower limit of the thickness of the electron transporter layer 12 in the range of 0.1 to 50 μm is that if the thickness is smaller than this, the photoelectric conversion action becomes extremely small and practical use becomes difficult, and the upper limit exceeds this value. When the thickness becomes thicker, the electron transporter layer 12 is cracked, the electron transporter layer 12 is peeled off from the translucent substrate 10, the electrical resistance between the first conductive layer 11 is increased, This is because the light is not transmitted and light is not incident, and the photoelectric conversion action is remarkably reduced to make practical use difficult.

金属酸化物半導体としての酸化チタンの製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストをドクターブレード法によって、第1の導電層11の面上に一定の速度で塗布し、大気中において、2〜20℃/分で昇温させ、300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分の条件で加熱処理することにより、多孔質体の酸化チタンから成る電子輸送体層12を形成する。この手法は簡便であり、図1に示すように、耐熱性の透光性基板10および第1の導電層11上に予め形成できる場合に有効である。 In the manufacturing method of titanium oxide as a metal oxide semiconductor, first, acetylacetone is added to a TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste is applied onto the surface of the first conductive layer 11 at a constant speed by a doctor blade method, and heated at a rate of 2 to 20 ° C./min in the atmosphere to a temperature of 300 to 600 ° C., preferably 400 The electron transporter layer 12 composed of porous titanium oxide is formed by heat treatment at ˜500 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes. This technique is simple and effective when it can be formed in advance on the heat-resistant translucent substrate 10 and the first conductive layer 11 as shown in FIG.

この酸化チタン等の金属酸化物半導体の膜成長法としては、低温で処理できることから、電析法,泳動電着法,水熱合成法等がよく、後処理としてマイクロ波処理,プラズマ処理,UV照射処理等を行なうのがよい。これらの膜成長法を考慮した電子輸送体層12を成す金属酸化物半導体としては、電析法による多孔質ZnO,泳動電着法による多孔質TiO等がよい。 As the film growth method of the metal oxide semiconductor such as titanium oxide, since it can be processed at a low temperature, the electrodeposition method, electrophoretic electrodeposition method, hydrothermal synthesis method, etc. are preferable. An irradiation process or the like is preferably performed. As the metal oxide semiconductor forming the electron transport layer 12 in consideration of these film growth methods, porous ZnO by an electrodeposition method, porous TiO 2 by a migration electrodeposition method, or the like is preferable.

<電解質>
多孔質の電子輸送体層12を埋めるように形成された他方導電型輸送体である電解質14の材料としては、透明導電性酸化物,電解質溶液,ゲル電解質や固体電解質等の電解質,有機正孔輸送剤,極薄膜金属等が挙げられる。特には、正孔輸送体(p型半導体)である、ゲル電解質,液体電解質,固体電解質,電解塩等がよい。これらのうち電解液が最もよいキャリア移動性を示すが、液体の場合には液漏れ等の問題があるのでゲル化や固体化したものを用いることが好ましい。
<Electrolyte>
The material of the electrolyte 14 which is the other conductive type transporter formed so as to fill the porous electron transport layer 12 includes transparent conductive oxide, electrolyte solution, electrolyte such as gel electrolyte and solid electrolyte, organic hole Examples include transport agents and ultra-thin metal. In particular, a hole electrolyte (p-type semiconductor) such as a gel electrolyte, a liquid electrolyte, a solid electrolyte, or an electrolytic salt is preferable. Among these, the electrolytic solution shows the best carrier mobility. However, in the case of a liquid, there are problems such as liquid leakage.

電解質14としての透明導電性酸化物は、GaP,NiO,CoO,FeO,Bi,MoO,Cr等や一価の銅を含む化合物半導体がよく、これらの中でも一価の銅を含む化合物半導体がよい。その化合物半導体としては、CuI,CuInSe,CuO,CuSCN,CuS,CuInS,CuAlSe等がよく、この中でもCuI,CuSCNがよく、さらにはCuIが製造しやすく最も好ましい。 The transparent conductive oxide as the electrolyte 14 is preferably a compound semiconductor containing GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3 or the like and monovalent copper. A compound semiconductor containing copper is preferable. As the compound semiconductor, CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , CuAlSe 2 and the like are preferable, among which CuI and CuSCN are preferable, and CuI is most preferable because it is easy to manufacture.

電解質溶液としては、第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては例えば、炭酸エチレン,アセトニトリルまたはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合して調製したものを用いることができる。   As the electrolyte solution, a quaternary ammonium salt, a Li salt, or the like is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing ethylene carbonate, acetonitrile, methoxypropionitrile, or the like with tetrapropylammonium iodide, lithium iodide, iodine, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルとに分けられる。化学ゲルは架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル,エチレンカーボネート,プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を酸化物半導体層に含有させ、加熱,紫外線照射,電子線照射等の手段で二次元,三次元の架橋反応を起こさせることによってゲル化または固体化させることができる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide into acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When using a gel electrolyte or solid electrolyte, a low-viscosity precursor is included in the oxide semiconductor layer, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド,ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩を持つ固体電解質が好ましい。ヨウ化物の溶融塩としては、イミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide, or polyethylene and having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt, or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

有機正孔輸送剤として機能する電解質14としては、トリフェニルジアミン(TPD1,TPD2,TPD3)やOMeTAD(2,2’,7,7’−tetrakis(N,N−di−p−methoxyphenyl−amine)9,9’−spirobifluorene)等が挙げられる。   Examples of the electrolyte 14 that functions as an organic hole transport agent include triphenyldiamine (TPD1, TPD2, TPD3) and OMeTAD (2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenyl-amine). 9,9′-spirobifluorene) and the like.

<色素>
電子輸送体層12に担持される色素13としては、太陽光の300〜2000nmの波長間の光を吸収し、電子輸送体層12に吸着する色素13であれば良い。色素13の材料として、シリコン、砒化ガリウム、インジウムリン、カドミウムセレン、硫化カドミウム、CuInSe等の無機系半導体や酸化クロム、酸化鉄、酸化ニッケル等の無機顔料やRu錯体系、ポルフィリン系、フタロシアニン系、メロシアニン系、クマリン系、インドリン系等の有機色素が良い。
<Dye>
The dye 13 supported on the electron transporter layer 12 may be any dye 13 that absorbs light between wavelengths of 300 to 2000 nm of sunlight and is adsorbed on the electron transporter layer 12. As the material of the dye 13, inorganic semiconductors such as silicon, gallium arsenide, indium phosphide, cadmium selenium, cadmium sulfide, CuInSe, inorganic pigments such as chromium oxide, iron oxide, nickel oxide, Ru complex, porphyrin, phthalocyanine, Organic pigments such as merocyanine, coumarin and indoline are preferred.

また、色素13に少なくとも1個以上の吸着置換基、すなわちカルボキシル基、スルホニル基、ヒドロキサム酸基、アルコキシ基、アリール基、ホスホリル基等を置換基として有することが有効である。ここで、吸着置換基は電子輸送体層12に強固に化学吸着することができ、励起状態の色素13から電子輸送体層12へ容易に電荷移動できるものであればよい。   In addition, it is effective that the dye 13 has at least one adsorption substituent, that is, a carboxyl group, a sulfonyl group, a hydroxamic acid group, an alkoxy group, an aryl group, a phosphoryl group, or the like as a substituent. Here, the adsorption substituent may be any one that can strongly chemisorb to the electron transport layer 12 and can easily transfer charges from the excited dye 13 to the electron transport layer 12.

また、電解質14から効率よく電子を捕獲するために、色素13に少なくとも1個以上の電子供与性置換基、すなわちメチル基,エチル基,イソプロピル基等のアルキル基、メトキシ基,エトキシ基等のアルコキシ基、フェニル,ナフチル基等のアリール基、塩素,臭素等のハロゲン基、ヒドロキシ基、アミノ基、チオシアナート基、シアノ基、ターシャルブチル基、3,5-ジターシャルブチルフェニル基等を置換基として有することが有効である。ここで、電子供与性置換基は、電解質14から効率よく電子を捕獲することができ、電解質14の還元体、たとえばヨウ素レドックスを用いた場合Iから色素13へ容易に電荷移動できるものであればよい。 Further, in order to efficiently capture electrons from the electrolyte 14, the dye 13 has at least one electron donating substituent, that is, an alkyl group such as a methyl group, an ethyl group or an isopropyl group, or an alkoxy group such as a methoxy group or an ethoxy group. Group, aryl groups such as phenyl and naphthyl groups, halogen groups such as chlorine and bromine, hydroxy groups, amino groups, thiocyanate groups, cyano groups, tertiary butyl groups, 3,5-ditertiary butylphenyl groups and the like as substituents It is effective to have. Here, the electron-donating substituent can be captured efficiently electrons from the electrolyte 14, the reduction of the electrolyte 14, for example if I using iodine redox - long as it can easily charge transfer to the dye 13 from That's fine.

電子輸送体層12(多孔質体の金属酸化物半導体)に色素13を吸着させる方法としては、電子輸送体層12を形成した透光性基板10を、色素13を溶解した溶液に浸漬する方法が挙げられる。電子輸送体層12を形成した透光性基板10を色素13を溶解した溶液に浸漬する際には、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気圧下とし、温度は室温とすればよく、浸漬時間は色素13の種類,溶媒の種類,溶液の濃度,温度等により適宜調整することができる。   As a method of adsorbing the dye 13 to the electron transport layer 12 (porous metal oxide semiconductor), a method of immersing the translucent substrate 10 on which the electron transport layer 12 is formed in a solution in which the dye 13 is dissolved Is mentioned. When the translucent substrate 10 on which the electron transport layer 12 is formed is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited, for example, the atmosphere is at atmospheric pressure, The temperature may be room temperature, and the immersion time can be appropriately adjusted depending on the type of the dye 13, the type of the solvent, the concentration of the solution, the temperature, and the like.

また、電子輸送体層12となる金属酸化物半導体の粉体に色素13を吸着させた後、第1の導電層11上にその金属酸化物半導体の粉体あるいはペーストを塗布し、色素13が変質、分解されない温度、雰囲気で固化させる方法が挙げられる。色素13を溶解した溶液に浸漬する際は、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気圧下とし、温度は室温とすればよく、浸漬時間は色素13の種類,溶媒の種類,溶液の濃度,温度等により適宜調整することができる。   Further, after the dye 13 is adsorbed to the metal oxide semiconductor powder to be the electron transport layer 12, the metal oxide semiconductor powder or paste is applied onto the first conductive layer 11, and the dye 13 Examples of the method include solidification at a temperature and atmosphere at which no alteration or decomposition occurs. When the dye 13 is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited. For example, the atmosphere may be under atmospheric pressure, the temperature may be room temperature, and the immersion time is the type of the dye 13 , And can be appropriately adjusted depending on the type of solvent, the concentration of the solution, the temperature, and the like.

これにより、色素13を多孔質体の金属酸化物半導体からなる電子輸送体層12に吸着させることができる。   Thus, the dye 13 can be adsorbed on the electron transporter layer 12 made of a porous metal oxide semiconductor.

色素13を溶解させるために用いる溶媒は、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。   Examples of the solvent used for dissolving the dye 13 include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like.

また、溶液中の色素13の濃度は5×10−5〜2×10−3mol/l(リットル:1000cc)程度が好ましい。 Further, the concentration of the dye 13 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (liter: 1000 cc).

また、色素13の凝集を抑制するために、添加剤として弱塩基性化合物、例えばターシャルブチルピリジンや弱酸性化合物、例えばデオキシコール酸を色素13の溶液に溶解し、色素13と添加剤とを電子輸送体層12に共吸着させる方法を用いるとよい。さらに、このような方法だけでなく、電子輸送体層12に色素13を吸着させた後、電子輸送体層12を上記の添加剤溶液に浸漬して添加剤を吸着させる方法により、電子輸送体層12に注入された電子が酸化状態の色素13と、電子輸送体層12に注入された電子が電解質14の酸化物質とそれぞれ再結合反応すること、すなわち電子のリークが発生することが抑制でき、光電変換効率を向上させることができる。   Further, in order to suppress aggregation of the dye 13, a weakly basic compound such as tertiary butyl pyridine or a weakly acidic compound such as deoxycholic acid is dissolved in the dye 13 solution, and the dye 13 and the additive are combined. A method of co-adsorption on the electron transporter layer 12 may be used. Further, in addition to such a method, after the dye 13 is adsorbed on the electron transporter layer 12, the electron transporter layer 12 is immersed in the additive solution to adsorb the additive. It is possible to suppress the recombination reaction between the dye 13 in which the electrons injected into the layer 12 are in the oxidized state and the electron injected into the electron transport layer 12 with the oxidized substance in the electrolyte 14, that is, the occurrence of electron leakage. The photoelectric conversion efficiency can be improved.

<支持体>
支持体(支持基板)18としては、フッ素樹脂,シリコンポリエステル樹脂,高耐候性ポリエステル樹脂,ポリ塩化ビニル樹脂,PET,PEN,ポリイミド,ポリカーボネート等からなる樹脂基板、白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等から成る無機質基板、有機無機ハイブリッドシート、アルミニウム,チタン,ステンレス等の金属から成る金属板がよい。
<Support>
The support (support substrate) 18 is a resin substrate made of fluorine resin, silicon polyester resin, high weather resistance polyester resin, polyvinyl chloride resin, PET, PEN, polyimide, polycarbonate, etc., white plate glass, soda glass, borosilicate glass Inorganic substrates made of ceramics, organic-inorganic hybrid sheets, and metal plates made of metals such as aluminum, titanium, and stainless steel are preferable.

<下地層>
下地層は図示していないが、図1の構成では、第1の導電層11と多孔質体で一方導電型の電子輸送体層12との間に、多孔質の一方導電型の輸送体の薄い緻密層を挿入すると、逆電流が流れなくなるのでよい。
<Underlayer>
Although the underlying layer is not shown, in the configuration of FIG. 1, a porous one-conducting transporter is disposed between the first conductive layer 11 and the one-conducting electron-transporting layer 12 in the porous body. If a thin dense layer is inserted, the reverse current may not flow.

<触媒層>
触媒層は図示していないが、図1の構成では、第2の導電層17と逆多孔質体で他方導電型の輸送体である電解質14との間に、白金あるいはカーボン等の極薄膜を挿入すると、正孔の移動がよくなるのでよい。
<Catalyst layer>
Although the catalyst layer is not shown, in the configuration of FIG. 1, an ultrathin film such as platinum or carbon is placed between the second conductive layer 17 and the electrolyte 14 which is a reverse porous body and the other conductive type transporter. When inserted, the movement of holes is improved.

なお、第1の導電層11および第2の導電層17にそれぞれ集電極を設けて、電気抵抗を小さくするとよい。   Note that a collector electrode may be provided on each of the first conductive layer 11 and the second conductive layer 17 to reduce the electric resistance.

かくして、本発明の光電変換装置によれば、多孔質半導体層に多数の溝を形成したことにより、多孔質半導体層と導電性基板との間の応力の緩和がなされ、多孔質半導体層の導電性基板からの剥離を抑制することができるため、光電変換面積の損失を抑制でき、光電変換装置の高変換効率化と低コスト化ができる。   Thus, according to the photoelectric conversion device of the present invention, since a number of grooves are formed in the porous semiconductor layer, the stress between the porous semiconductor layer and the conductive substrate is relieved, and the conductivity of the porous semiconductor layer is reduced. Since peeling from the conductive substrate can be suppressed, loss of the photoelectric conversion area can be suppressed, and high conversion efficiency and cost reduction of the photoelectric conversion device can be achieved.

以下に、本発明を具体的な実施例に基づいて説明する。   Hereinafter, the present invention will be described based on specific examples.

図3(a),(b)は、本発明の実施例1に係わる光電変換装置の断面図と平面図である。導電性基板として、フッ素ドープ酸化スズから成る透明な第1の導電層11が主面に形成された、ガラス製の透光性基板10を用い、その第1の導電層11上に多孔質の酸化チタンから成る電子輸送体層12を形成した。   3A and 3B are a cross-sectional view and a plan view of the photoelectric conversion device according to the first embodiment of the present invention. As the conductive substrate, a transparent substrate 10 made of glass in which a transparent first conductive layer 11 made of fluorine-doped tin oxide is formed on the main surface is used, and a porous material is formed on the first conductive layer 11. An electron transporter layer 12 made of titanium oxide was formed.

電子輸送体層12は以下のようにして形成した。まず、酸化チタンのアナターゼ粉末(日本エアロジル(株)製「P25」)にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法で、透光性基板10の第1の導電層11上に、一定の走査速度で塗布した。このとき、焼成後の膜厚が10μmになるようにペーストの組成比、粘度、走査速度を調整した。ペースト層が形成された透光性基板10を大気中で乾燥した後、空気雰囲気の電気炉で室温から450℃まで1時間昇温させ、電気炉中で450℃、30分間焼成すると、図3に示すように多孔質の電子輸送体層12にクラック状の溝を多数形成することができた。   The electron transporter layer 12 was formed as follows. First, acetylacetone was added to titanium oxide anatase powder (“P25” manufactured by Nippon Aerosil Co., Ltd.), and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste was applied onto the first conductive layer 11 of the translucent substrate 10 at a constant scanning speed by a doctor blade method. At this time, the composition ratio, viscosity, and scanning speed of the paste were adjusted so that the film thickness after firing was 10 μm. After the translucent substrate 10 on which the paste layer is formed is dried in the air, it is heated from room temperature to 450 ° C. for 1 hour in an electric furnace in an air atmosphere, and baked in the electric furnace for 45 minutes at 450 ° C. As shown in the figure, many crack-like grooves could be formed in the porous electron transport layer 12.

その後、四塩化チタン水溶液に上記多孔質の電子輸送体層12を設けた透光性基板10を浸漬し、乾燥させた後、450℃まで1時間昇温して、電気炉で450℃、30分間上記多孔質の電子輸送体層12を設けた透光性基板10を加熱し電子輸送体層12を焼成した。   Thereafter, the translucent substrate 10 provided with the porous electron transporter layer 12 is immersed in an aqueous solution of titanium tetrachloride, dried, heated to 450 ° C. for 1 hour, and heated in an electric furnace to 450 ° C., 30 ° C. The translucent substrate 10 provided with the porous electron transporter layer 12 was heated for 5 minutes to fire the electron transporter layer 12.

色素としては、ルテニウム錯体(ソラロニクス社製「N719」)を用い、色素を溶解させるために用いる溶媒としてアセトニトリルとt−ブタノール(容積比で1:1)を用い、電子輸送体層12を形成した透光性基板10を、色素を溶解した溶液(0.3mmol/l)に12時間浸漬して色素を電子輸送体層12に担持させた。その後、透光性基板10をアセトニトリルにて洗浄した後、乾燥させた。   As a dye, a ruthenium complex (“N719” manufactured by Solaronics) was used, and acetonitrile and t-butanol (1: 1 by volume) were used as solvents used to dissolve the dye, and an electron transporter layer 12 was formed. The light-transmitting substrate 10 was immersed in a solution (0.3 mmol / l) in which the dye was dissolved for 12 hours so that the dye was supported on the electron transporter layer 12. Thereafter, the translucent substrate 10 was washed with acetonitrile and then dried.

正孔輸送体層(電解質)14として、0.1mol/lのLiI、0.05mol/lのIをアセトニトリルに入れ電解質が溶解するまで攪拌して溶液(電解液)を調製した。 As a hole transporting layer (electrolyte) 14 was prepared 0.1 mol / l of LiI, stirring the solution until an I 2 of 0.05 mol / l dissolved electrolyte placed in acetonitrile (electrolyte).

第2の導電層17は、フッ素ドープ酸化スズからなる透明導電層を形成したガラス製の支持体18の主面に、Pt層を厚み50nmでスパッタリング法によって被着して成るものとした。   The second conductive layer 17 was formed by depositing a Pt layer with a thickness of 50 nm by a sputtering method on the main surface of a glass support 18 on which a transparent conductive layer made of fluorine-doped tin oxide was formed.

色素を電子輸送体層12に吸着させた透光性基板10と、第2の導電層17が形成された支持体18とを、電子輸送体層12と第2の導電層17とが対向するように、かつ間に熱可塑性樹脂(三井・デュポン ポリケミカル(株)製「ハイミラン」)から成るシート状のスペーサを介在させて対向させ、支持体18あるいは上記透光性基板10に形成された開口部より電解液を注入し、熱可塑性樹脂あるいは紫外線硬化性樹脂または熱硬化性樹脂を用いて封止し、光電変換装置のセルを形成した。   The translucent substrate 10 on which the dye is adsorbed on the electron transport layer 12 and the support 18 on which the second conductive layer 17 is formed are opposed to the electron transport layer 12 and the second conductive layer 17. In the same manner, a sheet-like spacer made of a thermoplastic resin (“HIMILAN” manufactured by Mitsui DuPont Polychemical Co., Ltd.) is interposed between the support 18 and the translucent substrate 10. An electrolytic solution was injected from the opening and sealed with a thermoplastic resin, an ultraviolet curable resin, or a thermosetting resin, thereby forming a cell of a photoelectric conversion device.

従来の酸化チタンからなる電子輸送体層12が透光性基板10から部分的に剥離した光電変換装置は、AM1.5において、100mW/cmで測定した結果、開放電圧Vocが0.651V、短絡電流Jscが4.22mA/cm、形状因子FFが0.581、光電変換効率が1.59%であり、低い光電変換効率であった。 A conventional photoelectric conversion device in which the electron transport layer 12 made of titanium oxide is partially peeled from the translucent substrate 10 is measured at 100 mW / cm 2 in AM1.5, and as a result, the open circuit voltage Voc is 0.651 V, short-circuited. The current Jsc was 4.22 mA / cm 2 , the shape factor FF was 0.581, the photoelectric conversion efficiency was 1.59%, and the photoelectric conversion efficiency was low.

上記の本実施例1の光電変換装置は、AM1.5において、100mW/cmで測定した結果、開放電圧Vocが0.669V、短絡電流Jscが9.19mA/cm2、形状因子FFが0.660、光電変換効率が4.06%であり、大幅な光電変換効率の向上が達成された。 The photoelectric conversion device of Example 1 described above was measured at 100 mW / cm 2 at AM 1.5. As a result, the open circuit voltage Voc was 0.669 V, the short circuit current Jsc was 9.19 mA / cm 2 , the form factor FF was 0.660, The conversion efficiency was 4.06%, and a significant improvement in photoelectric conversion efficiency was achieved.

本実施例2においては、導電性基板として、フッ素ドープ酸化スズからなる透明な第1の導電層11が形成されたガラス製の透光性基板10上に、多孔質の酸化チタンから成る電子輸送体層12をパターン形成したものを用いた。図4(a),(b)は、本実施例2に係わる光電変換装置の断面図と平面図である。   In the second embodiment, an electron transport made of porous titanium oxide is formed on a glass transparent substrate 10 on which a transparent first conductive layer 11 made of fluorine-doped tin oxide is formed as a conductive substrate. The body layer 12 having a pattern formed thereon was used. 4A and 4B are a cross-sectional view and a plan view of the photoelectric conversion device according to the second embodiment.

電子輸送体層12は以下のようにして形成した。実施例1と同様に、酸化チタンのアナターゼ粉末(日本エアロジル(株)製「P25」)にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。   The electron transporter layer 12 was formed as follows. In the same manner as in Example 1, after adding acetylacetone to anatase powder of titanium oxide (“P25” manufactured by Nippon Aerosil Co., Ltd.), a titanium oxide paste kneaded with deionized water and stabilized with a surfactant is used. Produced.

次に、作製したペーストをスクリーン印刷法で、フッ素ドープ酸化スズからなる第1の導電層11が形成されたガラス製の透光性基板10上に、酸化チタンのペーストをピッチ1mm、隙間0.1mmでパターン形成した。ここで、ピッチは、図4(b)における横方向の溝19間の間隔、間隔は、図4(b)における横方向の溝19の幅である。   Next, the prepared paste is screen-printed on a glass transparent substrate 10 on which the first conductive layer 11 made of fluorine-doped tin oxide is formed. The titanium oxide paste is 1 mm in pitch and 0.1 mm in gap. Pattern formation. Here, the pitch is the interval between the lateral grooves 19 in FIG. 4B, and the interval is the width of the lateral groove 19 in FIG. 4B.

そして、焼成後の膜厚が10μmになるようにペーストの組成比、粘度、走査速度を調整した。ペースト層が形成された透光性基板10を大気中で乾燥した後、空気雰囲気の電気炉で室温から450℃まで1時間で昇温し、電気炉で450℃、30分間焼成した。こうして得られた電子輸送体層12には、剥離が見られなかった。   Then, the composition ratio, viscosity, and scanning speed of the paste were adjusted so that the film thickness after firing was 10 μm. After the light-transmitting substrate 10 on which the paste layer was formed was dried in the air, the temperature was raised from room temperature to 450 ° C. in an air atmosphere in an electric furnace in 1 hour, and baked in an electric furnace at 450 ° C. for 30 minutes. No peeling was observed in the electron transport layer 12 thus obtained.

その後、実施例1と同様に、四塩化チタン水溶液に透光性基板10を浸漬し乾燥させた後、450℃まで1時間昇温させ、電気炉で450℃、30分間上記多孔質の電子輸送体層12を設けた透光性基板10を加熱し電子輸送体層12を焼成した。   Thereafter, in the same manner as in Example 1, the translucent substrate 10 was immersed in an aqueous titanium tetrachloride solution and dried, then heated to 450 ° C. for 1 hour, and the porous electron transport was performed in an electric furnace at 450 ° C. for 30 minutes. The translucent substrate 10 provided with the body layer 12 was heated to fire the electron transport layer 12.

色素としては、実施例1と同様に、ルテニウム錯体(ソラロニクス社製「N719」)を用い、色素を溶解させるために用いる溶媒としてアセトニトリルとt−ブタノール(容積比で1:1)を用い、電子輸送体層12を形成した透光性基板10を、色素を溶解した溶液(0.3mmol/l)に12時間浸漬して色素を電子輸送体層12に担持させた。その後、透光性基板10をアセトニトリルにて洗浄した後、乾燥させた。   As in Example 1, as in Example 1, a ruthenium complex (“N719” manufactured by Solaronics) was used, and acetonitrile and t-butanol (1: 1 by volume) were used as solvents used to dissolve the dye. The light-transmitting substrate 10 on which the transporter layer 12 was formed was immersed in a solution (0.3 mmol / l) in which the dye was dissolved for 12 hours so that the dye was supported on the electron transporter layer 12. Thereafter, the translucent substrate 10 was washed with acetonitrile and then dried.

正孔輸送体層である電解質14として、実施例1と同様に、0.1mol/lのLiI、0.05mol/lのIをアセトニトリルに入れ電解質14が溶解するまで攪拌して溶液を調製した。 As the electrolyte 14 is a hole transport layer, in the same manner as in Example 1 A solution was prepared by stirring until 0.1 mol / l of LiI, electrolyte 14 I 2 placed in acetonitrile 0.05 mol / l is dissolved.

第2の導電層17は、フッ素ドープ酸化スズからなる透明導電層を形成したガラス製の支持体18の主面に、Pt層を厚み50nmでスパッタリング法によって被着したものとした。   The second conductive layer 17 was formed by depositing a Pt layer with a thickness of 50 nm on the main surface of a glass support 18 on which a transparent conductive layer made of fluorine-doped tin oxide was formed by a sputtering method.

色素を電子輸送体層12に吸着させた透光性基板10と、第2の導電層17が形成された支持体18とを、電子輸送体層12と第2の導電層17とが対向するように、かつ間に熱可塑性樹脂(三井・デュポン ポリケミカル(株)社製「ハイミラン」)から成るシート状のスペーサを介在させて対向させ、支持体18あるいは上記透光性基板10に形成された開口部より電解液を注入し、熱可塑性樹脂あるいは紫外線硬化性樹脂または熱硬化性樹脂を用いて封止し、光電変換装置のセルを形成した。   The translucent substrate 10 on which the dye is adsorbed on the electron transport layer 12 and the support 18 on which the second conductive layer 17 is formed are opposed to the electron transport layer 12 and the second conductive layer 17. As shown, the sheet 18 is formed on the support 18 or the translucent substrate 10 with a sheet-like spacer made of thermoplastic resin (“HIMILAN” manufactured by Mitsui DuPont Polychemical Co., Ltd.) interposed therebetween. An electrolytic solution was injected from the opened opening and sealed with a thermoplastic resin, an ultraviolet curable resin, or a thermosetting resin to form a cell of a photoelectric conversion device.

こうして得られた光電変換装置は、AM1.5において、100mW/cmで測定した結果、開放電圧Vocが0.670V、短絡電流Jscが7.81mA/cm、形状因子FFが0.650、変換効率が3.40%であり、大幅な光電変換効率の向上が達成された。 The photoelectric conversion device thus obtained was measured at 100 mW / cm 2 at AM 1.5. As a result, the open circuit voltage Voc was 0.670 V, the short circuit current Jsc was 7.81 mA / cm 2 , the form factor FF was 0.650, and the conversion efficiency was 3.40. %, And a significant improvement in photoelectric conversion efficiency was achieved.

本実施例3においては、導電性基板として、ガラス製の透光性基板10の主面に形成されたフッ素ドープ酸化スズからなる透明な第1の導電層11上に、ガラス層等の凸部のパターンを形成した後、多孔質の酸化チタンからなる電子輸送体層12を形成した。   In Example 3, as the conductive substrate, a convex portion such as a glass layer is formed on the transparent first conductive layer 11 made of fluorine-doped tin oxide formed on the main surface of the glass transparent substrate 10. After forming the pattern, an electron transporter layer 12 made of porous titanium oxide was formed.

図5(a),(b)は、本実施例3に係わる光電変換装置の断面図と平面図である。   5A and 5B are a cross-sectional view and a plan view of the photoelectric conversion device according to the third embodiment.

フッ素ドープ酸化スズの第1の導電層11が形成されたガラス製の透光性基板10の第1の導電層11上に、ガラスペーストを用いてピッチ1mm、幅0.1mmで堤状(突条)の凸部21となる略格子状のパターンを印刷し、510℃、5分間焼成し、凸部21を形成した。ここで、ピッチは、図5(b)における横方向の凸部21の間隔、幅は、図5(b)における横方向の凸部21の幅である。   On the first conductive layer 11 of the light-transmitting substrate 10 made of glass on which the first conductive layer 11 of fluorine-doped tin oxide is formed, a glass paste is used to form a bank (projection) with a pitch of 1 mm and a width of 0.1 mm. ) Was printed and fired at 510 ° C. for 5 minutes to form the convex portion 21. Here, the pitch is the interval between the convex portions 21 in the horizontal direction in FIG. 5B, and the width is the width of the convex portions 21 in the horizontal direction in FIG.

電子輸送体層12は以下のようにして形成した。実施例1と同様に、酸化チタンのアナターゼ粉末(日本エアロジル(株)製「P25」)にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。そして、このペーストを用いて、ドクターブレード法で第1の導電層11上に、一定の走査速度で塗布した。焼成後の膜厚が10μmとなるようにペーストの組成比、粘度、走査速度を調整した。ペースト層が形成された透光性基板10を大気中で乾燥させた後、空気雰囲気の電気炉で室温から450℃まで1時間で昇温させ、電気炉で450℃、30分間焼成した。こうして得られた電子輸送体層12には、剥離が見られなかった。   The electron transporter layer 12 was formed as follows. In the same manner as in Example 1, after adding acetylacetone to anatase powder of titanium oxide (“P25” manufactured by Nippon Aerosil Co., Ltd.), a titanium oxide paste kneaded with deionized water and stabilized with a surfactant is used. Produced. And using this paste, it apply | coated on the 1st conductive layer 11 with the constant scanning speed by the doctor blade method. The composition ratio, viscosity, and scanning speed of the paste were adjusted so that the film thickness after firing was 10 μm. After the light-transmitting substrate 10 on which the paste layer was formed was dried in the air, the temperature was raised from room temperature to 450 ° C. in an air atmosphere in an electric furnace in 1 hour and baked in an electric furnace at 450 ° C. for 30 minutes. No peeling was observed in the electron transport layer 12 thus obtained.

また、電子輸送体層12には、図5(a),(b)に示すように、凸部21から電子輸送体層12の表面にかけてクラック状の溝19aが形成された。   Further, as shown in FIGS. 5A and 5B, a crack-like groove 19 a was formed on the electron transport layer 12 from the convex portion 21 to the surface of the electron transport layer 12.

その後、実施例1と同様に、四塩化チタン水溶液に透光性基板10を浸漬して乾燥させた後、450℃まで1時間昇温させ、電気炉で450℃、30分間上記多孔質の電子輸送体層12を設けた透光性基板10を加熱し電子輸送体層12を焼成した。   Thereafter, in the same manner as in Example 1, the translucent substrate 10 was immersed in an aqueous titanium tetrachloride solution and dried, then heated to 450 ° C. for 1 hour, and the porous electrons were heated in an electric furnace at 450 ° C. for 30 minutes. The light-transmitting substrate 10 provided with the transporter layer 12 was heated to fire the electron transporter layer 12.

色素としては、実施例1と同様に、ルテニウム錯体(ソラロニクス社製「N719」)を用い、色素を溶解させるために用いる溶媒としてアセトニトリルとt−ブタノール(容積比で1:1)を用い、電子輸送体層12を形成した透光性基板10を、色素を溶解した溶液(0.3mmol/l)に12時間浸漬して色素を電子輸送体層12に担持させた。その後、透光性基板10をアセトニトリルにて洗浄した後、乾燥させた。   As in Example 1, as in Example 1, a ruthenium complex (“N719” manufactured by Solaronics) was used, and acetonitrile and t-butanol (1: 1 by volume) were used as solvents used to dissolve the dye. The light-transmitting substrate 10 on which the transporter layer 12 was formed was immersed in a solution (0.3 mmol / l) in which the dye was dissolved for 12 hours so that the dye was supported on the electron transporter layer 12. Thereafter, the translucent substrate 10 was washed with acetonitrile and then dried.

正孔輸送体層としての電解質14として、実施例1と同様に、0.1mol/lのLiI、0.05mol/lのIをアセトニトリルに入れ電解質14が溶解するまで攪拌して溶液(電解液)を調製した。 As the electrolyte 14 as a hole transport layer, in the same manner as in Example 1, 0.1 mol / l of LiI, and stirred an I 2 of 0.05 mol / l until dissolution is electrolyte 14 was placed in acetonitrile solution (electrolyte solution) Was prepared.

第2の導電層17は、フッ素ドープ酸化スズからなる透明導電層を形成したガラス製の支持体18の主面に、Pt層を厚み50nmでスパッタリング法によって被着したものとした。   The second conductive layer 17 was formed by depositing a Pt layer with a thickness of 50 nm on the main surface of a glass support 18 on which a transparent conductive layer made of fluorine-doped tin oxide was formed by a sputtering method.

色素を電子輸送体層12に吸着させた透光性基板10と、第2の導電層17が形成された支持体18とを、電子輸送体層12と第2の導電層17とが対向するように、かつ間に熱可塑性樹脂(三井・デュポン ポリケミカル(株)社製「ハイミラン」)から成るシート状のスペーサを介在させて対向させ、支持体18あるいは上記透光性基板10に形成された開口部より電解液を注入し、熱可塑性樹脂あるいは紫外線硬化性樹脂または熱硬化性樹脂を用いて封止し、光電変換装置のセルを形成した。   The translucent substrate 10 on which the dye is adsorbed on the electron transport layer 12 and the support 18 on which the second conductive layer 17 is formed are opposed to the electron transport layer 12 and the second conductive layer 17. As shown, the sheet 18 is formed on the support 18 or the translucent substrate 10 with a sheet-like spacer made of thermoplastic resin (“HIMILAN” manufactured by Mitsui DuPont Polychemical Co., Ltd.) interposed therebetween. An electrolytic solution was injected from the opened opening and sealed with a thermoplastic resin, an ultraviolet curable resin, or a thermosetting resin to form a cell of a photoelectric conversion device.

こうして得られた光電変換装置は、AM1.5において、100mW/cmで測定した結果、開放電圧Vocが0.668V、短絡電流Jscが7.90mA/cm、形状因子FFが0.670、変換効率が3.54%であり、大幅な光電変換効率の向上が達成された。 The photoelectric conversion device thus obtained was measured at 100 mW / cm 2 at AM 1.5. As a result, the open circuit voltage Voc was 0.668 V, the short circuit current Jsc was 7.90 mA / cm 2 , the form factor FF was 0.670, and the conversion efficiency was 3.54. %, And a significant improvement in photoelectric conversion efficiency was achieved.

なお、上記実施例3においては、凹凸を形成するための凸部21をガラスフリットを用いて形成したが、凸部21の材料は電子輸送体層12よりも熱膨張係数が大きいものであることが良い。また、上記の実施例3において、凹凸を形成するための凹部を、第1の導電層11を部分的にエッチングすることにより形成しても良い。   In Example 3 described above, the convex portion 21 for forming irregularities was formed using glass frit. However, the material of the convex portion 21 has a thermal expansion coefficient larger than that of the electron transport layer 12. Is good. Further, in the above-described third embodiment, a recess for forming unevenness may be formed by partially etching the first conductive layer 11.

本発明の光電変換装置の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of the photoelectric conversion apparatus of this invention. 従来の光電変換装置の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the conventional photoelectric conversion apparatus typically. 本発明の光電変換装置の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of the photoelectric conversion apparatus of this invention. (a),(b)は、本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図および平面図である。(A), (b) is sectional drawing and the top view which show typically the other example of embodiment of the photoelectric conversion apparatus of this invention. (a),(b)は、本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図および平面図である。(A), (b) is sectional drawing and the top view which show typically the other example of embodiment of the photoelectric conversion apparatus of this invention.

符号の説明Explanation of symbols

1:光電変換装置
10:透光性基板
11:第1の導電層
12:電子輸送体層
13:色素
14:電解質
17:第2の導電層
18:支持体
19:溝
21:凸部
1: Photoelectric conversion device
10: Translucent substrate
11: First conductive layer
12: Electron transporter layer
13: Dye
14: Electrolyte
17: Second conductive layer
18: Support
19: Groove
21: Convex

Claims (3)

一方の電極として機能する導電性基板と、該導電性基板の主面に形成された複数の凸部と、前記導電性基板の主面に前記凸部と接するように形成された、光電変換を行なう光励起体が表面に多数付着した多孔質半導体層と、電解質と、他方の電極とを具備しており、前記多孔質半導体層は、前記凸部から表面に至る溝が複数形成されていることを特徴とする光電変換装置。 Conductive substrate that functions as one electrode, a plurality of convex portions formed on the main surface of the conductive substrate, and photoelectric conversion formed on the main surface of the conductive substrate so as to be in contact with the convex portions. The porous semiconductor layer has a porous semiconductor layer with a large number of photoexciters adhered to the surface, an electrolyte, and the other electrode, and the porous semiconductor layer has a plurality of grooves extending from the convex portions to the surface . A photoelectric conversion device characterized by the above. 前記溝は、前記多孔質半導体層の略全面にわたって連続的に形成されていることを特徴とする請求項1記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein the groove is formed continuously over substantially the entire surface of the porous semiconductor layer. 請求項1または請求項2記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。   A photovoltaic device comprising the photoelectric conversion device according to claim 1 or 2 as a power generation means, and the power generated by the power generation means is supplied to a load.
JP2005046475A 2005-02-23 2005-02-23 Photoelectric conversion device and photovoltaic device using the same Active JP4969046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046475A JP4969046B2 (en) 2005-02-23 2005-02-23 Photoelectric conversion device and photovoltaic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046475A JP4969046B2 (en) 2005-02-23 2005-02-23 Photoelectric conversion device and photovoltaic device using the same

Publications (2)

Publication Number Publication Date
JP2006236637A JP2006236637A (en) 2006-09-07
JP4969046B2 true JP4969046B2 (en) 2012-07-04

Family

ID=37044063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046475A Active JP4969046B2 (en) 2005-02-23 2005-02-23 Photoelectric conversion device and photovoltaic device using the same

Country Status (1)

Country Link
JP (1) JP4969046B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839371B1 (en) * 2006-11-17 2008-06-19 삼성에스디아이 주식회사 Dye-sensitized solar cell
JP2010080090A (en) * 2008-09-24 2010-04-08 Toyo Seikan Kaisha Ltd Negative electrode substrate used for pigment sensitized solar battery
JP5571930B2 (en) * 2009-10-05 2014-08-13 ローム株式会社 Photoelectric conversion element
JP2012209243A (en) * 2011-03-17 2012-10-25 Rohm Co Ltd Dye-sensitized solar cell
JP5292549B2 (en) * 2011-07-06 2013-09-18 ペクセル・テクノロジーズ株式会社 Dye-sensitized solar cell module and manufacturing method thereof
JP6176697B2 (en) * 2012-12-10 2017-08-09 inQs株式会社 Silicon dioxide solar cell
JP6176699B2 (en) * 2012-12-28 2017-08-09 inQs株式会社 Dye-sensitized tandem silicon dioxide solar cell
JP6864642B2 (en) 2018-03-22 2021-04-28 株式会社東芝 Solar cells, multi-junction solar cells, solar cell modules and photovoltaic systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050413A (en) * 2000-08-03 2002-02-15 Japan Gore Tex Inc Light electrode, and solar cell using the same
JP4576544B2 (en) * 2003-07-31 2010-11-10 学校法人桐蔭学園 Film-type dye-sensitized photocell

Also Published As

Publication number Publication date
JP2006236637A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
Lenzmann et al. Recent advances in dye‐sensitized solar cells
KR101245006B1 (en) Dye-sensitized photoelectric transducer and process for producing the same, eletronic apparatus and process for producing the same, and electronic equipment
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
EP2822009A1 (en) Solar cell and process for producing the same
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2011129526A (en) Dye-sensitized solar cell module and method of manufacturing the same
JP2005285472A (en) Photoelectric conversion device
KR101794988B1 (en) Preparation method of perovskite absorber layer and preparation method of solarcell applied thereby
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP2009009936A (en) Photoelectric conversion device
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2005064493A (en) Photoelectric converter and photovoltaic device using the same
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2008277422A (en) Laminated photoelectric converter
JP4651346B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4637473B2 (en) Stacked photoelectric conversion device
JP2005191137A (en) Stacked photoelectric converter
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5013741B2 (en) Photoelectric conversion device and photovoltaic power generation device
JP6773859B1 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150