JP2005285472A - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JP2005285472A
JP2005285472A JP2004096127A JP2004096127A JP2005285472A JP 2005285472 A JP2005285472 A JP 2005285472A JP 2004096127 A JP2004096127 A JP 2004096127A JP 2004096127 A JP2004096127 A JP 2004096127A JP 2005285472 A JP2005285472 A JP 2005285472A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
photoelectric conversion
photosensitive layer
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096127A
Other languages
Japanese (ja)
Inventor
Shozo Yanagida
祥三 柳田
Riichi Sasamori
理一 笹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Yanagida Shozo
Original Assignee
Kyocera Corp
Yanagida Shozo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Yanagida Shozo filed Critical Kyocera Corp
Priority to JP2004096127A priority Critical patent/JP2005285472A/en
Publication of JP2005285472A publication Critical patent/JP2005285472A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent photoelectric conversion device capable of enhancing a conversion efficiency, as well as realizing lower cost and further moderating greatly the problems with resistance to weather and durability. <P>SOLUTION: A photoelectric conversion device includes a support substrate 1 on which a metal layer serving as an only one side electrode is formed on its surface, a photosensitive layer 2 formed on the metal layer of the support substrate 1 and containing a semiconductor onto which a sensitizing pigment 3 is adsorbed, a transparent electroconductive layer 5 arranged opposite to the metal layer of the support substrate 1, and a charge transfer layer 4 charged between the metal layer of the support substrate 1 and transparent conductive layer 5. The surface of the metal layer on which the photosensitive layer 2 is formed is a rough surface. Since a moderate irregularity is formed on the metal layer of the support substrate 1 or on the metal layer, the metal and the photosensitive layer 2 are adhered firmly. Therefore, resistance to weather and durability of the photoelectric conversion device can be improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高い光電変換効率が期待でき、耐候性、耐久性に優れ、しかも低コスト化が図れる光電変換装置に関する。   The present invention relates to a photoelectric conversion device that can be expected to have high photoelectric conversion efficiency, is excellent in weather resistance and durability, and can be reduced in cost.

色素増感型太陽電池は、高温処理や真空装置を必要としないことから、太陽電池の低コスト化に有利であると考えられ、近年急速に研究開発が進められている。
この色素増感型太陽電池の製造方法は、例えば導電性ガラス基板上に粒径数10nmの酸化チタン微粒子を含む感光層を塗布し、焼結して多孔質の酸化チタン層を得る。酸化チタン層の粒子表面に、有機色素を単分子吸着させる。こうしてできた極を「光作用極」という。その上に、白金をスパッタした透明導電性ガラス対極を、酸化チタン層と接触しないように設置する。両ガラス基板の間に、ヨウ素/ヨウ化物レドックス対を含む電解質溶液を満たし、この電解質溶液を封止して、太陽電池を作製する。
Since dye-sensitized solar cells do not require high-temperature treatment or vacuum equipment, it is considered advantageous for reducing the cost of solar cells, and research and development have been promoted rapidly in recent years.
In this method for producing a dye-sensitized solar cell, for example, a photosensitive layer containing titanium oxide fine particles having a particle size of several tens of nanometers is applied on a conductive glass substrate and sintered to obtain a porous titanium oxide layer. A single molecule of organic dye is adsorbed on the particle surface of the titanium oxide layer. The pole thus formed is referred to as a “light working electrode”. On top of this, a transparent conductive glass counter electrode sputtered with platinum is placed so as not to contact the titanium oxide layer. An electrolyte solution containing an iodine / iodide redox pair is filled between both glass substrates, and this electrolyte solution is sealed to fabricate a solar cell.

前記酸化チタン層の多孔質化により、光作用極の表面積を1000倍以上に広げて、吸着色素による光吸収を効率よく行うことができる。研究レベルで最大10%程度、再現レベルでは7%前後の光電変換効率が知られている。このため、市場投入には更なる光電変換効率の向上が必要とされている。
特開2001-273937号公報
By making the titanium oxide layer porous, the surface area of the light working electrode can be increased by 1000 times or more, and light absorption by the adsorbing dye can be efficiently performed. Photoelectric conversion efficiency of about 10% at the research level and around 7% at the reproduction level is known. For this reason, further improvement in photoelectric conversion efficiency is required for market introduction.
Japanese Patent Laid-Open No. 2001-273937

ところで、前記色素増感型太陽電池の課題の一つとして、基板と半導体微粒子を含む感光層との界面強度を高めること要望されている。
基板と半導体微粒子を含む感光層との固着が悪ければ、耐候性、耐久性が低下し、太陽電池の信頼性が低下する。また、基板と半導体を含む感光層との接触面積が減少し、この結果、太陽電池の内部抵抗が大きくなり、太陽電池の変換効率が低下する。
Incidentally, as one of the problems of the dye-sensitized solar cell, there is a demand for increasing the interface strength between the substrate and the photosensitive layer containing semiconductor fine particles.
If the adhesion between the substrate and the photosensitive layer containing semiconductor fine particles is poor, the weather resistance and durability are lowered, and the reliability of the solar cell is lowered. In addition, the contact area between the substrate and the photosensitive layer containing the semiconductor is reduced. As a result, the internal resistance of the solar cell is increased, and the conversion efficiency of the solar cell is lowered.

また、太陽電池の大面積化を検討する場合にも太陽電池の内部抵抗を小さくすることが必要であるが、基板と半導体微粒子を含む感光層との固着が悪いと、太陽電池の内部抵抗が小さくならず、従来、銀などの集電線を一定間隔ごとに設けて抵抗損失を低減する必要があった。しかし、この場合には新たに電解液による集電線の腐食の問題が生じ、集電線の保護のための保護層の設置とともに、電解液の成分を集電極を腐食しにくいものに変える必要がある。またこのような集電極の設置は電池の光電変換有効面積を低下させるという問題もある。   Also, when considering increasing the area of the solar cell, it is necessary to reduce the internal resistance of the solar cell. However, if the adhesion between the substrate and the photosensitive layer containing semiconductor fine particles is poor, the internal resistance of the solar cell is reduced. Conventionally, it has been necessary to reduce resistance loss by providing silver and other current collectors at regular intervals. However, in this case, there is a problem of corrosion of the collector wire due to the electrolyte, and it is necessary to change the components of the electrolyte to those that do not corrode the collector electrode together with the installation of a protective layer for protecting the collector wire . In addition, such a collector electrode has a problem that the effective photoelectric conversion area of the battery is lowered.

本発明の目的は、変換効率を高めるとともに、低コスト化が可能で、しかも耐候性、耐久性の問題を大幅に軽減することのできる優れた光電変換装置を提供することにある。   An object of the present invention is to provide an excellent photoelectric conversion device capable of increasing the conversion efficiency, reducing the cost, and greatly reducing the problems of weather resistance and durability.

本発明の光電変換装置は、表面に一方電極となる金属層が形成された支持基板と、前記金属層上に形成され、増感色素が吸着された半導体を含む感光層と、前記金属層に対向して配置された透明導電層と、前記感光層及び前記透明導電層の間に充填された電荷移動層とを備え、前記感光層が形成される前記金属層の表面は、粗面であることを特徴とする。
前記支持基板は、それ自体が金属板で構成されていてもよい。
The photoelectric conversion device of the present invention includes a support substrate having a metal layer serving as one electrode on the surface, a photosensitive layer formed on the metal layer and including a semiconductor to which a sensitizing dye is adsorbed, and a metal layer. The surface of the metal layer on which the photosensitive layer is formed includes a transparent conductive layer disposed opposite to the photosensitive layer and a charge transfer layer filled between the photosensitive layer and the transparent conductive layer. It is characterized by that.
The support substrate may itself be made of a metal plate.

これらの発明の構成であれば、支持基板の金属層又は金属板上に適度な凹凸が形成されているために、金属と半導体を含む感光層とが強固に固着される。したがって、光電変換装置の耐候性、耐久性を向上させることができる。
また、金属上に適度な凹凸が形成されているために、半導体を含む感光層との接触面積が増加し、光電変換装置の内部抵抗が小さくなり、光電流の増大につながる。
According to the configurations of these inventions, the metal layer and the metal plate of the support substrate have moderate irregularities, so that the metal and the photosensitive layer containing the semiconductor are firmly fixed. Therefore, the weather resistance and durability of the photoelectric conversion device can be improved.
In addition, since moderate irregularities are formed on the metal, the contact area with the photosensitive layer containing the semiconductor increases, the internal resistance of the photoelectric conversion device decreases, and the photocurrent increases.

さらに、金属自体の比抵抗が小さいため、支持基板の金属層又は金属板のシート抵抗を小さくできる。このため、大面積化の際にも光電変換装置の内部抵抗が増大せず、光電流が低下しない。
さらに、金属上に適度な凹凸が形成されているために、上部から透過してきた光を反射・拡散させることができ、入射光のエネルギーを有効に利用することができる。このため、光電変換効率の増大につながる。
Furthermore, since the specific resistance of the metal itself is small, the sheet resistance of the metal layer of the support substrate or the metal plate can be reduced. For this reason, even when the area is increased, the internal resistance of the photoelectric conversion device does not increase and the photocurrent does not decrease.
Furthermore, since moderate irregularities are formed on the metal, the light transmitted from the upper part can be reflected and diffused, and the energy of the incident light can be used effectively. For this reason, it leads to the increase in photoelectric conversion efficiency.

前記感光層中の半導体は、多数個の半導体粒子からなり、前記粗面の凹部の大きさは、これらの半導体粒子のうち所定割合以上が受け入れ可能な大きさであることが好ましい。
より具体的には、前記粗面の凹部における平均開き角をθ、粗面の算術平均粗さをRaとし、前記感光層中の半導体の個々の粒子の粒径をLとした場合に、下記式を満たす半導体粒子の存在率が10%以上あることが好ましい。
The semiconductor in the photosensitive layer is composed of a large number of semiconductor particles, and the size of the concave portion of the rough surface is preferably such that a predetermined proportion or more of these semiconductor particles can be accepted.
More specifically, when the average opening angle in the concave portion of the rough surface is θ, the arithmetic average roughness of the rough surface is Ra, and the particle size of individual particles of the semiconductor in the photosensitive layer is L, the following The abundance of semiconductor particles satisfying the formula is preferably 10% or more.

L≦2Ra・tan(θ/2)
ここで算術平均粗さRaは、粗さ曲線からその平均線の方向に基準長さDだけを抜き取り、この抜取り部分の平均線の方向にX軸を、平面と垂直方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の式によって求められる値をいう(JIS B 0601(1994))。
L ≦ 2Ra · tan (θ / 2)
Here, the arithmetic average roughness Ra is obtained by extracting only the reference length D from the roughness curve in the direction of the average line, taking the X axis in the direction of the average line of the extracted portion, and the Y axis in the direction perpendicular to the plane. When the roughness curve is represented by y = f (x), it means a value obtained by the following formula (JIS B 0601 (1994)).

Ra=(1/D)∫|f(x)|dx (積分はx=0からx=Dまで)
この式を満たす粒径Lの半導体粒子の存在率が10%未満である場合には、半導体と金属との固着強度が低下し、感光層が剥がれやすくなる。
前記支持基板の表面の金属層の厚みは、0.01μm以上2mm以下であることが好ましい。金属層の厚みが0.01μm未満の場合には十分な導電性が得られないために内部抵抗が増大し特性が劣化する。また、金属層の厚みが2mmを超える場合にはコストがかかり、重い光電変換装置になる。
Ra = (1 / D) ∫ | f (x) | dx (Integration is from x = 0 to x = D)
When the abundance ratio of the semiconductor particles having the particle size L satisfying this formula is less than 10%, the adhesion strength between the semiconductor and the metal is lowered, and the photosensitive layer is easily peeled off.
The thickness of the metal layer on the surface of the support substrate is preferably 0.01 μm or more and 2 mm or less. When the thickness of the metal layer is less than 0.01 μm, sufficient conductivity cannot be obtained, so that the internal resistance increases and the characteristics deteriorate. In addition, when the thickness of the metal layer exceeds 2 mm, the cost is high and the photoelectric conversion device becomes heavy.

また、前記金属板の厚みは、0.01mm以上2mm以下であることが好ましい。金属板の厚みが0.01mm未満の場合には金属板の強度が保てない。金属板の厚みが2mmを超える場合には材料コストがかかり、かつ重い光電変換装置になる。    Moreover, it is preferable that the thickness of the said metal plate is 0.01 mm or more and 2 mm or less. When the thickness of the metal plate is less than 0.01 mm, the strength of the metal plate cannot be maintained. When the thickness of the metal plate exceeds 2 mm, the material cost is high and the photoelectric conversion device becomes heavy.

以下、本発明の光電変換装置の一例として、色素増感型太陽電池を例にとって、本発明の実施の形態を添付図面を参照しながら詳細に説明する。
図1及び図2は、色素増感型太陽電池の構造を示す断面図である。
この色素増感型太陽電池は、一方電極となる支持基板1と、前記支持基板1上に形成され、増感色素3が吸着された半導体を含む感光層2とを有する。さらに、前記支持基板1に対向して、下面に透明導電層5の形成された透光性基板6が配置され、前記支持基板1と、透明導電層5との間に電荷移動層4が充填されている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings, taking a dye-sensitized solar cell as an example of the photoelectric conversion device of the present invention.
FIG.1 and FIG.2 is sectional drawing which shows the structure of a dye-sensitized solar cell.
This dye-sensitized solar cell has a support substrate 1 serving as one electrode and a photosensitive layer 2 formed on the support substrate 1 and containing a semiconductor to which a sensitizing dye 3 is adsorbed. Further, a translucent substrate 6 having a transparent conductive layer 5 formed on the lower surface is disposed opposite to the support substrate 1, and the charge transfer layer 4 is filled between the support substrate 1 and the transparent conductive layer 5. Has been.

前記支持基板1は、図1に示すように単独の金属基板からなる場合と、図2に示すように絶縁基板1bの上に導電膜1aを形成した場合とがある。
単独の金属基板として、チタン、ステンレス、アルミニウム、銀、銅などの薄い金属基板があげられる。またカーボンや金属の微粒子や微細線を含浸した導電性の樹脂シートなどを採用してもよい。
The support substrate 1 may be a single metal substrate as shown in FIG. 1 or a conductive film 1a formed on an insulating substrate 1b as shown in FIG.
Examples of the single metal substrate include thin metal substrates such as titanium, stainless steel, aluminum, silver, and copper. Further, a conductive resin sheet impregnated with fine particles or fine wires of carbon or metal may be employed.

また絶縁基板1bの上に導電膜1aを形成する場合は、絶縁基板1bとしては、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリカーボネートなどの樹脂シート、ソーダガラス、硼珪酸ガラス、セラミックなどの無機質シート、有機無機ハイブリッドシートがよい。その上に形成する導電膜1aとしては、チタン、ステンレス、アルミニウム、銀、銅などの金属薄膜、ITO、SnO2:F、ZnO:Alなどの透明導電膜、Ti/Ag/Ti、Ti/ITO/Tiなどの積層型導電膜がよい。 When the conductive film 1a is formed on the insulating substrate 1b, the insulating substrate 1b includes a resin sheet such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, soda glass, borosilicate glass, An inorganic sheet such as ceramic or an organic-inorganic hybrid sheet is preferable. As the conductive film 1a formed thereon, a metal thin film such as titanium, stainless steel, aluminum, silver or copper, a transparent conductive film such as ITO, SnO 2 : F, ZnO: Al, Ti / Ag / Ti, Ti / ITO A laminated conductive film such as / Ti is preferable.

導電膜1aの積層方法は任意であり、例えば真空蒸着法,イオンプレーティング法、スパッタリング法、電解析出法などを採用できる。メッキ法や印刷法で形成してもよい。また、金属箔を絶縁樹脂基板に転写することにより形成することもできる。形成する導電膜1aの厚みは0.01μm〜2mmの範囲、好ましくは3μm〜2mmの範囲、さらに好ましくは50μm〜0.5mmの範囲がよい。   The method for laminating the conductive film 1a is arbitrary. For example, a vacuum deposition method, an ion plating method, a sputtering method, an electrolytic deposition method, or the like can be employed. It may be formed by a plating method or a printing method. It can also be formed by transferring a metal foil onto an insulating resin substrate. The thickness of the conductive film 1a to be formed is in the range of 0.01 μm to 2 mm, preferably in the range of 3 μm to 2 mm, and more preferably in the range of 50 μm to 0.5 mm.

なお、支持基板1に光反射性を持たせると、透過光を反射させて再利用することができるので、光反射率の高い導電性材料を使用することが好ましい。
本発明によれば、前記金属基板又は絶縁基板1bの上に形成した導電膜1aは、細かな凹凸を有する面、すなわち粗面であることが必要である。
凹凸の凹部又は凸部の形状としては円錐型、多角錐型等がある。凹凸の大きさ分布は均一、不均一を問わないが、均一の場合は凹凸の大きさを揃えるための工程が必要になるため、コスト的には不均一の場合が有利である。凹凸の側面や頂部はなめらかな曲面を持つほうが、光の光線角度の依存性も小さくなり好ましい。
Note that if the support substrate 1 has light reflectivity, the transmitted light can be reflected and reused. Therefore, it is preferable to use a conductive material having high light reflectivity.
According to the present invention, the conductive film 1a formed on the metal substrate or insulating substrate 1b needs to be a surface having fine irregularities, that is, a rough surface.
Examples of the shape of the concave or convex portion of the unevenness include a conical shape and a polygonal pyramid shape. The size distribution of the unevenness may be uniform or non-uniform, but if it is uniform, a process for aligning the size of the unevenness is required, and therefore, it is advantageous in terms of cost. It is preferable to have a smooth curved surface on the side surface and the top portion of the unevenness because the dependency on the ray angle of light is reduced.

前記粗面の凹部の大きさは、図3に示すように、この粗面の上に形成される多数個の半導体粒子のうち、一定割合(例えば10%)以上のものが受け入れ可能な大きさであることが望ましい。
一定割合以上のものが粗面の凹部に受け入れ可能かどうかを評価する手法として、粗面の算術平均粗さをRaとし、前記感光層2中の半導体の個々の粒子の粒径(直径)をLとした場合に、下記式(1)を満たす半導体粒子の存在率が一定割合以上、例えば10%以上あることが好ましい。
As shown in FIG. 3, the size of the concave portion of the rough surface is such a size that a certain percentage (for example, 10%) or more of many semiconductor particles formed on the rough surface can be accepted. It is desirable that
As a method for evaluating whether a certain ratio or more can be accepted in the concave portion of the rough surface, the arithmetic average roughness of the rough surface is Ra, and the particle size (diameter) of each semiconductor particle in the photosensitive layer 2 is When it is set to L, it is preferable that the abundance ratio of the semiconductor particles satisfying the following formula (1) is a certain ratio or more, for example, 10% or more.

L≦2Ra・tan(θ/2) (1)
図4は、粗面の拡大断面図である。凹部の開き角をθ、凹部の深さをRaとすると、凹部の開口直径は、2Ra・tan(θ/2)で表される。したがって、半導体の個々の粒子がこの凹部に入るかどうかは、前記不等式(1)に基づいて判定できる。
前記金属基板又は絶縁基板1b上の導電膜1aを粗面化する方法は、アルミナ等の微粒子を含む加圧した気体を基板の表面に吹き付けて物理的に削るサンドブラスト法、CF4等のプラズマ気体中に基板をさらすケミカルドライエッチング法、薬液によるエッチング法等がある。
L ≦ 2Ra · tan (θ / 2) (1)
FIG. 4 is an enlarged cross-sectional view of a rough surface. When the opening angle of the recess is θ and the depth of the recess is Ra, the opening diameter of the recess is represented by 2Ra · tan (θ / 2). Therefore, whether or not individual particles of the semiconductor enter this recess can be determined based on the inequality (1).
The method of roughening the conductive film 1a on the metal substrate or the insulating substrate 1b includes a sandblasting method in which a pressurized gas containing fine particles such as alumina is blown onto the surface of the substrate to physically scrape, or a plasma gas such as CF4. There are a chemical dry etching method in which the substrate is exposed to the substrate and an etching method using a chemical solution.

前記支持基板1の上に形成される半導体を含む感光層2には、多孔質の一導電型輸送体を用いる。この一導電型輸送体を多孔質体とすることにより、pn接合面積が拡がるとともに、色素を担持する表面積が増えて、光電変換効率を高めることができる。
前記一導電型輸送体の材料として、通常、金属酸化物半導体が用いられる。この金属酸化物半導体は、好適には粒状体または線状体(針状体、チューブ状体、柱状体など)の複数が集合して成るものである。
For the photosensitive layer 2 including a semiconductor formed on the support substrate 1, a porous one-conductive transporter is used. By making this one-conductivity-type transporter a porous body, the pn junction area is increased, the surface area for supporting the dye is increased, and the photoelectric conversion efficiency can be increased.
As the material for the one conductivity type transporter, a metal oxide semiconductor is usually used. This metal oxide semiconductor is preferably formed by aggregating a plurality of granular bodies or linear bodies (needle-like bodies, tube-like bodies, columnar bodies, etc.).

前記金属酸化物半導体の材料や組成としては、酸化チタン(TiO2)が最適である。他の材料や組成として、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca)、カドミウム(Cd)、アンチモン(Sb)、鉄(Fe)、タングステン(W)及びバナジウム(V)などの金属元素の中の少なくとも1種以上を主成分とする金属酸化物半導体がよい。 Titanium oxide (TiO 2 ) is optimal as the material and composition of the metal oxide semiconductor. Other materials and compositions include titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta ), Hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), cadmium (Cd), antimony (Sb), iron (Fe), tungsten (W) and vanadium (V) Of these, a metal oxide semiconductor containing at least one of them as a main component is preferable.

具体的には、酸化スズ、酸化インジウム、酸化亜鉛、酸化カドミウム、酸化アンチモン、酸化鉄、酸化タングステン、酸化チタン及びチタン酸ストロンチウムなどがあげられる。
また、これらの金属酸化物半導体に、窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)などの非金属元素の1種以上を含有させてもよい。
Specific examples include tin oxide, indium oxide, zinc oxide, cadmium oxide, antimony oxide, iron oxide, tungsten oxide, titanium oxide, and strontium titanate.
In addition, these metal oxide semiconductors contain one or more of non-metallic elements such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), and phosphorus (P). You may let them.

これらの金属酸化物半導体は、いずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2eV〜5eVの範囲にある。とくに、金属酸化物半導体の伝導帯の電子エネルギー準位が色素の伝導帯の電子エネルギー準位より低いn型半導体がよい。
この金属酸化物半導体は、空孔率が20%〜80%、より好適には40%〜60%の、多孔質体状のものがよい。この理由は、この程度の空孔率を持つ多孔質であると、光作用極の表面積を空孔率0の材質の1000倍以上に高めることができて、光吸収と発電と電子伝導を効率よく行うことができるからである。
Any of these metal oxide semiconductors has an electronic energy band gap in the range of 2 eV to 5 eV, which is larger than the energy of visible light. In particular, an n-type semiconductor in which the electronic energy level of the conduction band of the metal oxide semiconductor is lower than the electronic energy level of the conduction band of the dye is preferable.
The metal oxide semiconductor is preferably a porous body having a porosity of 20% to 80%, more preferably 40% to 60%. The reason for this is that a porous material with this degree of porosity can increase the surface area of the light working electrode to more than 1000 times that of a zero-porosity material, thus improving the efficiency of light absorption, power generation, and electron conduction. This is because it can be done well.

多孔質体の形状は、その表面積が大きく、かつ電気抵抗の小さい形状がよい。通常は、微細粒子もしくは微細線状から成るのがよい。その平均粒径もしくは平均線径は、5nm〜500nmとするのがよく、より好適には10nm〜200nmとするとよい。ここで、平均線径5nm〜500nmにおける下限値5nmは、これ未満になると材料の微細化が困難になり、上限値500nmは、これを超えるとpn接合面積が小さくなり光電流が著しく小さくなるからである。   The shape of the porous body is preferably a shape having a large surface area and a small electrical resistance. Usually, it should be composed of fine particles or fine lines. The average particle diameter or average line diameter is preferably 5 nm to 500 nm, and more preferably 10 nm to 200 nm. Here, if the lower limit value 5 nm in the average wire diameter of 5 nm to 500 nm is less than this, it becomes difficult to make the material finer, and if the upper limit value 500 nm is exceeded, the pn junction area is reduced and the photocurrent is significantly reduced. It is.

また、金属酸化物半導体の膜厚は、0.1μm〜50μmがよく、より好適には1μm〜20μmとするのがよい。ここで、0.1μm〜50μmにおける下限値0.1μmは、これより膜厚が小さくなると光電変換作用が著しく小さくなって実使用できず、上限値50μmは、これ以上膜厚が厚くなると光が透過しなくなって変換効率が上がらなくなるからである。
また、半導体が超微粒子になった場合、もはやバンドギャップは材料固有の値で無くなり、サイズに依るようになり、固有のバンドギャップがかなり小さい材料(1eV以下)でも、ナノサイズ化でバンドギャップを大きくできるので、吸収波長が選択できて、感度の長波長化もしやすい。超微粒子半導体として、CdS、CdSe、PbS、PbSe、CdTe、Bi23、InP、Siなどがある。
The film thickness of the metal oxide semiconductor is preferably 0.1 μm to 50 μm, and more preferably 1 μm to 20 μm. Here, the lower limit value of 0.1 μm to 0.1 μm between 0.1 μm and 50 μm cannot be used because the photoelectric conversion effect is significantly reduced when the film thickness becomes smaller than this, and the upper limit value of 50 μm allows light to be transmitted when the film thickness becomes thicker than this. This is because the conversion efficiency does not increase.
In addition, when the semiconductor becomes ultrafine particles, the band gap is no longer a value inherent to the material and depends on the size. Even with a material with a very small intrinsic band gap (1 eV or less), the band gap can be reduced by nano-sizing. Since it can be increased, the absorption wavelength can be selected, and the sensitivity can be easily increased. Examples of the ultrafine particle semiconductor include CdS, CdSe, PbS, PbSe, CdTe, Bi 2 S 3 , InP, and Si.

前記半導体を含む感光層2に吸着させる増感色素3としては、入射光に対する光電流効率(Incident Photon to Current Efficiency;IPCE)が長波長側へ伸びている特性を有する色素を使用することが有効である。
そのような感度が長波長側へ伸びている色素として、ビス型スクアリリウムシアニン色素をあげることができる。このビス型スクアリリウムシアニン色素は、IPCEのピーク波長が800nm近くにある。他に、波長700nm以上に高いIPCEをもつアズレニウム塩化合物、スクワリン酸誘導体、トリアリルピラゾリン、ヒドラゾン誘導体、ビフェニルジアミン誘導体、トリ−p−トリルアミン(TPTA)、トリスアゾ顔料、τ型無金属フタロシアニン、チタニルフタロシアニン、スクアリリウムシアニン、ブラック・ダイ、クマリン、βジケトナート、Re錯体、Os錯体、Ni錯体、Pd錯体、Pt錯体などの色素を使用することも有効である。
As the sensitizing dye 3 to be adsorbed on the photosensitive layer 2 containing the semiconductor, it is effective to use a dye having a characteristic that the photocurrent efficiency (IPC) with respect to incident light extends to the long wavelength side. It is.
A bis-type squarylium cyanine dye can be given as a dye having such sensitivity extending to the longer wavelength side. This bis-type squarylium cyanine dye has an IPCE peak wavelength near 800 nm. In addition, azurenium salt compounds having a high IPCE at a wavelength of 700 nm or more, squalinic acid derivatives, triallylpyrazoline, hydrazone derivatives, biphenyldiamine derivatives, tri-p-tolylamine (TPTA), trisazo pigments, τ-type metal-free phthalocyanine, titanyl It is also effective to use dyes such as phthalocyanine, squarylium cyanine, black dye, coumarin, β-diketonate, Re complex, Os complex, Ni complex, Pd complex, and Pt complex.

色素の他の例として、金属錯体色素、有機色素、有機顔料以外に、無機色素、無機顔料、無機系半導体などでもよい。また、色素の形状は、分子、超薄膜、微粒子、超微粒子、量子ドットの少なくとも一種からなっているものであればよい。
前記透光性基板6としては、鉄成分の少ない白板ガラスが透過率が高く、機械的強度もあり最もよい。他に、青板ガラス、硼珪酸ガラス、ソーダガラス、セラミック、サファイアなどの透光性無機質基板、ポリカーボネートなどの透光性有機樹脂基板などでもよい。
As other examples of the dye, in addition to the metal complex dye, the organic dye, and the organic pigment, an inorganic dye, an inorganic pigment, an inorganic semiconductor, and the like may be used. In addition, the shape of the dye only needs to be at least one of molecules, ultrathin films, fine particles, ultrafine particles, and quantum dots.
As the translucent substrate 6, white plate glass having a small iron component has the highest transmittance and the best mechanical strength. In addition, a light-transmitting inorganic substrate such as blue plate glass, borosilicate glass, soda glass, ceramic, and sapphire, or a light-transmitting organic resin substrate such as polycarbonate may be used.

また透光性基板6は両面が平坦なものでよいが、入射光の波長オーダーの大きさの凹凸を有する表面にする方が光閉じ込め効果があってなおよい。
この透光性基板6の厚みは、材料や基板サイズや用途によるが0.05mm〜6mmがよく、ガラスでメートルサイズの屋根置き用途であれば強度や重量の関係から3mm〜4mmが望ましい。
Further, the translucent substrate 6 may be flat on both sides, but it is better that the surface having an unevenness of the order of the wavelength of incident light has a light confinement effect.
The thickness of the translucent substrate 6 is preferably 0.05 mm to 6 mm depending on the material, the substrate size, and the use, and is preferably 3 mm to 4 mm from the viewpoint of strength and weight if it is used for roofing of glass and metric size.

前記透明導電層5として、低温成長のスパッタ法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)がよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)、熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO2:F膜)、不純物ドープの酸化インジウム膜(In23膜)などが使える。他の製膜法として、真空蒸着法、イオンプレーティング法、ディップコート法、ゾル・ゲル法、等がある。これらの膜成長によって入射光の波長オーダーの表面凹凸を形成すると、光閉じ込め効果があってなおよい。 The transparent conductive layer 5 is preferably a tin-doped indium oxide film (ITO film) produced by a low temperature growth sputtering method or a low temperature spray pyrolysis method. In addition, an impurity-doped zinc oxide film (ZnO film) produced by a solution growth method, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method, an impurity-doped indium oxide film (In 2 O) 3 membranes) can be used. As other film forming methods, there are a vacuum deposition method, an ion plating method, a dip coating method, a sol-gel method, and the like. If surface irregularities in the order of the wavelength of incident light are formed by the growth of these films, there is still a light confinement effect.

前記電荷移動層4としては、ゲル電解質などの正孔輸送体(p型半導体、液体電解質、固体電解質、電解塩など)を用いるのがよい。
この電荷移動層4は、前記半導体を含む感光層2の多孔質体を埋めるように形成する。この意味で「逆多孔質体」ともいう。電解液が最も良好なキャリア移動度を示すが、液漏れなどの問題があるのでゲル化や固体化したものが好まれる。
As the charge transfer layer 4, a hole transporter such as a gel electrolyte (p-type semiconductor, liquid electrolyte, solid electrolyte, electrolytic salt, etc.) is preferably used.
The charge transfer layer 4 is formed so as to fill the porous body of the photosensitive layer 2 containing the semiconductor. In this sense, it is also called “reverse porous body”. The electrolytic solution shows the best carrier mobility, but because of problems such as liquid leakage, gelled or solidified ones are preferred.

前記電荷移動層4の材料としては、透明導電性酸化物,電解質溶液,ゲル電解質や固体電解質などの電解質、有機正孔輸送剤、極薄膜金属などが挙げられる。
前記透明導電性酸化物としては、一価の銅を含む化合物半導体やGaP,NiO,CoO,FeO,Bi23,MoO2,Cr23などがよく、中でも一価の銅を含む化合物半導体がよい。一価の銅を含む化合物半導体としてはCuI,CuInSe2,Cu2O,CuSCN,CuS,CuInS2,CuAlSe2などがよく、この中ではCuIおよびCuSCNが望ましく、CuIが製造しやすいので最も望ましい。
Examples of the material for the charge transfer layer 4 include transparent conductive oxides, electrolyte solutions, electrolytes such as gel electrolytes and solid electrolytes, organic hole transport agents, and ultrathin metal films.
As the transparent conductive oxide, a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3, etc. are preferable. Among them, a compound containing monovalent copper A semiconductor is good. As the compound semiconductor containing monovalent copper, CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , CuAlSe 2 and the like are preferable, and among these, CuI and CuSCN are preferable, and CuI is most preferable because it is easy to manufacture.

前記電解質溶液としては、第4級アンモニウム塩やLi塩などを用いる。電解質溶液の組成は、例えば、炭酸エチレン、アセトニトリル、またはメトキシプロピオニトリルなどに、ヨウ化テトラプロピルアンモニウム、ヨウ化リチウム、ヨウ素などを混合し調製したものを用いることができる。
前記ゲル電解質は、大別して化学ゲルと物理ゲルに分けられる。化学ゲルは架橋反応などにより化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル、エチレンカーボネート、プロピレンカーボネート、またはそれらの混合物に対し、ポリエチレンオキサイド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミドなどのホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を酸化物半導体層に含有させ、加熱,紫外線照射,電子線照射などの手段で二次元,三次元の架橋反応をおこさせることによってゲル化または固体化できる。
As the electrolyte solution, a quaternary ammonium salt or a Li salt is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing tetrapropylammonium iodide, lithium iodide, iodine, or the like with ethylene carbonate, acetonitrile, methoxypropionitrile, or the like can be used.
The gel electrolyte is roughly classified into a chemical gel and a physical gel. A chemical gel is a gel formed by chemical bonding by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to physical interaction. As the gel electrolyte, acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof was polymerized by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, polyacrylamide or the like. A gel electrolyte is preferred. When using a gel electrolyte or solid electrolyte, a low-viscosity precursor is included in the oxide semiconductor layer, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.

前記固体電解質としては、ポリエチレンオキサイド、ポリエチレンオキサイドもしくはポリエチレンなどの高分子鎖に、スルホンイミダゾリウム塩、テトラシアノキノジメタン塩、ジシアノキノジイミン塩などの塩をもつ固体電解質が好ましい。ヨウ化物の溶融塩としてはイミダゾリウム塩、第4級アンモニウム塩、イソオキサゾリジニウム塩、イソチアゾリジニウム塩、ピラゾリジウム塩、ピロリジニウム塩、ピリジニウム塩などのヨウ化物を用いることができる。   The solid electrolyte is preferably a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide, or polyethylene having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt, or dicyanoquinodiimine salt. As the molten salt of iodide, iodides such as imidazolium salt, quaternary ammonium salt, isoxazolidinium salt, isothiazolidinium salt, pyrazolidium salt, pyrrolidinium salt, pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

有機正孔輸送剤としては、トリフェニルジアミン(TPD1,TPD2,TPD3)やOMeTADなどが挙げられる。
次に、この色素増感型太陽電池の製造方法を説明する。
まず、半導体微粒子の分散液を作製する。この作製方法としては、前述のゾル・ゲル法の他に、乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、あるいは半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げられる。
Examples of the organic hole transporting agent include triphenyldiamine (TPD1, TPD2, TPD3) and OMeTAD.
Next, the manufacturing method of this dye-sensitized solar cell is demonstrated.
First, a dispersion of semiconductor fine particles is prepared. In addition to the sol / gel method described above, this method can be used by grinding in a mortar, dispersing by pulverizing using a mill, or precipitating as fine particles in a solvent when synthesizing a semiconductor. Methods and the like.

分散媒としては、水または各種の有機溶媒(例えばメタノール、エタノール、イソプロピルアルコール、ジクロロメタン、アセトン、アセトニトリル、酢酸エチル等)が挙げられる。分散の際、必要に応じて例えばポリエチレングリコールのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として用いてもよい。ポリエチレングリコールの分子量を変えることで、剥がれにくい膜を形成したり、分散液の粘度が調節可能となるので、ポリエチレングリコールを添加することは好ましい。   Examples of the dispersion medium include water or various organic solvents (for example, methanol, ethanol, isopropyl alcohol, dichloromethane, acetone, acetonitrile, ethyl acetate, and the like). At the time of dispersion, a polymer such as polyethylene glycol, a surfactant, an acid, a chelating agent, or the like may be used as a dispersion aid as necessary. By changing the molecular weight of polyethylene glycol, a film that does not easily peel off can be formed, and the viscosity of the dispersion can be adjusted. Therefore, it is preferable to add polyethylene glycol.

次に、前記半導体微粒子を支持基板1上に配置する。これには、前記半導体微粒子の分散液またはコロイド溶液を支持基板1上に塗布してもよく、この方法の他に、前記半導体微粒子を支持基板1上に印刷する方法もある。
塗布方法としては、アプリケーション系としてローラ法、ディップ法等、メータリング系としてエアーナイフ法、ブレード法等がある。またアプリケーションとメータリングを同一部分に適用できるものとして、特公昭58-4589号に開示されているワイヤーバー法、米国特許2681294号、同2761419号、同2761791号等に開示されているスライドホッパー法、エクストルージョン法、カーテン法等がある。またスピン法やスプレー法も好ましい。
Next, the semiconductor fine particles are disposed on the support substrate 1. For this, the dispersion or colloidal solution of the semiconductor fine particles may be applied on the support substrate 1, and there is a method of printing the semiconductor fine particles on the support substrate 1 in addition to this method.
Examples of the application method include a roller method and a dip method as application systems, and an air knife method and a blade method as metering systems. In addition, as the application and metering can be applied to the same part, the wire bar method disclosed in Japanese Patent Publication No. 58-4589, the slide hopper method disclosed in US Pat. Nos. 2681294, 2761419, 2761791, etc. And the extrusion method and the curtain method. A spin method and a spray method are also preferable.

湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。
半導体微粒子の分散液の粘度は半導体微粒子の種類や分散性、使用溶媒種、界面活性剤やバインダー等の添加剤により大きく左右される。高粘度液(例えば0.01〜500Poise)ではエクストルージョン法、キャスト法、スクリーン印刷法等が好ましい。また低粘度液(例えば0.1Poise以下)ではスライドホッパー法、ワイヤーバー法またはスピン法が好ましく、これにより均一な膜にすることが可能である。なおある程度の塗布量があれば、低粘度液の場合でもエクストルージョン法による塗布は可能である。このように塗布液の粘度、塗布量、支持基板1、塗布速度等に応じて、適宜湿式製膜方法を選択すればよい。
As the wet printing method, intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness.
The viscosity of the dispersion of semiconductor fine particles greatly depends on the type and dispersibility of the semiconductor fine particles, the type of solvent used, and additives such as surfactants and binders. For a high viscosity liquid (for example, 0.01 to 500 Poise), an extrusion method, a casting method, a screen printing method, or the like is preferable. For low-viscosity liquids (for example, 0.1 Poise or less), the slide hopper method, wire bar method, or spin method is preferable, and a uniform film can be formed thereby. If there is a certain amount of coating, coating by the extrusion method is possible even in the case of a low viscosity liquid. As described above, a wet film forming method may be appropriately selected according to the viscosity of the coating liquid, the coating amount, the support substrate 1, the coating speed, and the like.

半導体微粒子の層は単層に限らず、粒径の違った半導体微粒子の分散液を多層塗布したり、種類が異なる半導体微粒子(あるいは異なるバインダー、添加剤)を含有する塗布層を多層塗布したりすることもできる。一度の塗布で膜厚が不足の場合にも多層塗布は有効である。多層塗布には、エクストルージョン法またはスライドホッパー法が適している。また多層塗布をする場合は同時に多層を塗布しても良く、数回から十数回順次重ね塗りしてもよい。さらに順次重ね塗りであればスクリーン印刷法も好ましく使用できる。   The semiconductor fine particle layer is not limited to a single layer, but a multi-layer coating of a dispersion of semiconductor fine particles having different particle diameters, or a multi-layer coating of a coating layer containing different types of semiconductor fine particles (or different binders and additives) You can also Multi-layer coating is also effective when the film thickness is insufficient with a single coating. For multilayer coating, an extrusion method or a slide hopper method is suitable. In the case of applying multiple layers, the multiple layers may be applied at the same time, or may be successively applied several times to several dozen times. Further, screen printing can be preferably used as long as it is sequentially overcoated.

一般に半導体微粒子層の厚さ(感光層2の厚さと同じ)が厚くなるほど単位投影面積当たりの担持色素量が増えるため、光の捕獲率が高くなるが、生成した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。したがって、半導体微粒子層の好ましい厚さは0.1〜100μmである。太陽電池に用いる場合、半導体微粒子層の厚さは0.5〜30μmが好ましく、1〜25μmがより好ましい。半導体微粒子の支持基板11m2当たり塗布量は0.5〜400gが好ましく、1〜100gがより好ましい。 In general, as the thickness of the semiconductor fine particle layer (same as the thickness of the photosensitive layer 2) increases, the amount of the supported dye increases per unit projected area, so that the light capture rate increases, but the diffusion distance of the generated electrons increases, resulting in an increase in charge. Loss due to recombination also increases. Therefore, the preferable thickness of the semiconductor fine particle layer is 0.1 to 100 μm. When used in a solar cell, the thickness of the semiconductor fine particle layer is preferably 0.5 to 30 μm, more preferably 1 to 25 μm. The coating amount of the semiconductor fine particles per 11 m 2 of the support substrate is preferably 0.5 to 400 g, more preferably 1 to 100 g.

塗布後は、半導体微粒子層を、大気中において300℃〜600℃、好適には400℃〜500℃で、10分〜60分、好適には20分〜40分焼成処理する。これにより、多孔質体の金属酸化物半導体を作製する。この手法は簡便であり、耐熱性の導電性シートに予め形成できる場合に有効である。
次に、半導体を含む多孔質体の感光層2に色素を吸着させる。この吸着方法としては、半導体を含む感光層2を形成した基板を、色素を溶解した溶液に浸漬する方法が挙げられる。多孔質体の半導体を含む感光層2を形成した基体を、色素を溶解した溶液に浸漬する際、溶液及び雰囲気の温度は特に限定されるものではなく、例えば、大気圧下、室温が挙げられる。浸漬時間は色素,溶媒の種類,溶液の濃度等により適宜調整することができる。これにより色素を多孔質体の半導体を含む感光層2に吸着させることができる。
After coating, the semiconductor fine particle layer is baked in the atmosphere at 300 ° C. to 600 ° C., preferably 400 ° C. to 500 ° C., for 10 minutes to 60 minutes, preferably 20 minutes to 40 minutes. Thus, a porous metal oxide semiconductor is produced. This technique is simple and effective when it can be formed in advance on a heat-resistant conductive sheet.
Next, the dye is adsorbed to the porous photosensitive layer 2 containing a semiconductor. Examples of the adsorption method include a method in which a substrate on which a photosensitive layer 2 containing a semiconductor is formed is immersed in a solution in which a dye is dissolved. When the substrate on which the photosensitive layer 2 containing a porous semiconductor is formed is immersed in a solution in which a dye is dissolved, the temperature of the solution and the atmosphere is not particularly limited, and examples include room temperature under atmospheric pressure. . The immersion time can be appropriately adjusted depending on the pigment, the type of solvent, the concentration of the solution, and the like. Thus, the dye can be adsorbed on the photosensitive layer 2 containing the porous semiconductor.

色素を溶解させるために用いる溶媒は、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。
また、溶液中の色素濃度は5×10-5〜2×10-3mol/l程度が好ましい。
次に、支持基板1の上部に、透明導電層5の形成された透光性基板6を、透明導電層5が下になるように配置する。このとき、透明導電層5が半導体を含む感光層2に接触しないようにする。この状態で、前記前記電荷移動層4を、透明導電層5と半導体を含む感光層2との間に注入し、支持基板1と透光性基板6との間を密封する。透明導電層5には集電極を設けて、電気抵抗を小さくするとよい。
Examples of the solvent used for dissolving the dye include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like.
Further, the dye concentration in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l.
Next, the translucent substrate 6 on which the transparent conductive layer 5 is formed is disposed on the support substrate 1 so that the transparent conductive layer 5 is on the bottom. At this time, the transparent conductive layer 5 is prevented from contacting the photosensitive layer 2 containing a semiconductor. In this state, the charge transfer layer 4 is injected between the transparent conductive layer 5 and the photosensitive layer 2 containing a semiconductor, and the space between the support substrate 1 and the translucent substrate 6 is sealed. The transparent conductive layer 5 may be provided with a collector electrode to reduce the electrical resistance.

このようにして、色素増感型太陽電池を作製することができる。
本発明では、支持基板1の少なくとも表面は金属層からなり、感光層2が形成される前記金属層の表面を粗面としたので、金属と半導体を含む感光層2とが強固に固着され、光電変換装置の耐候性、耐久性を向上させることができる。
In this way, a dye-sensitized solar cell can be produced.
In the present invention, at least the surface of the support substrate 1 is made of a metal layer, and the surface of the metal layer on which the photosensitive layer 2 is formed is a rough surface, so that the metal and the photosensitive layer 2 containing a semiconductor are firmly fixed, The weather resistance and durability of the photoelectric conversion device can be improved.

支持基板として、厚みが0.3mmのチタンシート(サイズ1cm×2cm)に、電子輸送体である多孔質の二酸化チタンを形成した。二酸化チタンの製造方法は、まず、TiO2のアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法で透光性導電膜が形成されている面上に、一定の速度で塗布し、大気中において450℃で30分焼成した。 As a support substrate, porous titanium dioxide as an electron transporter was formed on a titanium sheet (size: 1 cm × 2 cm) having a thickness of 0.3 mm. The titanium dioxide was produced by first adding acetylacetone to TiO 2 anatase powder and then kneading with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste was applied at a constant speed onto the surface on which the translucent conductive film was formed by the doctor blade method, and baked at 450 ° C. for 30 minutes in the air.

色素としては、N719色素を用い、色素を溶解させるために用いる溶媒としては、アセトニトリルとt−ブタノール(容積で1:1)を用い、金属酸化物半導体層を形成した支持基体を、色素を溶解した溶液に浸漬して色素を金属酸化物半導体に担持させた。
次に、ITO膜付きのPETフィルムにスパッタ装置で白金を被膜した。この透明導電シートと前記色素担持の二酸化チタン付きチタンシートを対面させて、この間に下記電解液を添加して軽く貼り合わせ、特性を評価した。
N719 dye is used as the dye, acetonitrile and t-butanol (1: 1 by volume) are used as the solvent used to dissolve the dye, and the support substrate on which the metal oxide semiconductor layer is formed is dissolved in the dye. The dye was supported on the metal oxide semiconductor by dipping in the solution.
Next, platinum was coated on a PET film with an ITO film by a sputtering apparatus. The transparent conductive sheet and the dye-supported titanium dioxide-attached titanium sheet were faced to each other, and the following electrolytic solution was added between the transparent conductive sheet and lightly bonded to evaluate the characteristics.

ここで正孔輸送体として、ゲル電解質もしくは固体電解質が好ましいが、本実施例では液体電解質である沃素(I2)と沃化リチウム(LiI)とアセトニトリル溶液を調整して用いた。このようにして色素増感型太陽電池を作製した。
こうして得られた色素増感型太陽電池は、AM1.5下、100mW/cm2で測定した結果、本発明対象外の積層型太陽電池と比較して、光電変換効率が20%以上向上した。
Here, as the hole transporter, a gel electrolyte or a solid electrolyte is preferable, but in this example, iodine (I 2 ), lithium iodide (LiI) and acetonitrile solutions as liquid electrolytes were prepared and used. In this way, a dye-sensitized solar cell was produced.
The dye-sensitized solar cell thus obtained was measured at 100 mW / cm 2 under AM 1.5, and as a result, the photoelectric conversion efficiency was improved by 20% or more compared to the stacked solar cell not subject to the present invention.

以上のように、この実施例において、本発明の色素増感型太陽電池が簡便容易に作製でき、しかも高い光電変換効率を実現することができた。   As described above, in this example, the dye-sensitized solar cell of the present invention can be easily and easily manufactured, and high photoelectric conversion efficiency can be realized.

本発明の単独の金属基板からなる色素増感型太陽電池の構造を示す断面図である。It is sectional drawing which shows the structure of the dye-sensitized solar cell which consists of a single metal substrate of this invention. 本発明の絶縁基板1bの上に導電膜1aを形成した色素増感型太陽電池の構造を示す断面図である。It is sectional drawing which shows the structure of the dye-sensitized solar cell which formed the electrically conductive film 1a on the insulated substrate 1b of this invention. 前記粗面の凹凸を示す断面図である。It is sectional drawing which shows the unevenness | corrugation of the said rough surface. 凹凸の拡大断面図である。It is an expanded sectional view of unevenness.

符号の説明Explanation of symbols

1 支持基板
1a 導電膜
1b 絶縁基板
2 感光層
3 増感色素
4 電荷移動層
5 透明導電層
6 透光性基板
DESCRIPTION OF SYMBOLS 1 Support substrate 1a Conductive film 1b Insulating substrate 2 Photosensitive layer 3 Sensitizing dye 4 Charge transfer layer 5 Transparent conductive layer 6 Translucent substrate

Claims (6)

表面に一方電極となる金属層が形成された支持基板と、
前記金属層上に形成され、増感色素が吸着された半導体を含む感光層と、
前記金属層に対向して配置された透明導電層と、
前記感光層及び前記透明導電層の間に充填された電荷移動層とを備え、
前記感光層が形成される前記金属層の表面は、粗面であることを特徴とする光電変換装置。
A support substrate on which a metal layer serving as one electrode is formed;
A photosensitive layer comprising a semiconductor formed on the metal layer and adsorbed with a sensitizing dye;
A transparent conductive layer disposed opposite the metal layer;
A charge transfer layer filled between the photosensitive layer and the transparent conductive layer,
The surface of the said metal layer in which the said photosensitive layer is formed is a rough surface, The photoelectric conversion apparatus characterized by the above-mentioned.
一方電極となる金属板からなる支持基板と、
前記支持基板上に形成され、増感色素が吸着された半導体を含む感光層と、
前記支持基板に対向して配置された透明導電層と、
前記感光層及び前記透明導電層の間に充填された電荷移動層とを備え、
前記感光層が形成された前記金属板の表面は、粗面であることを特徴とする光電変換装置。
On the other hand, a support substrate made of a metal plate to be an electrode,
A photosensitive layer comprising a semiconductor formed on the support substrate and adsorbed with a sensitizing dye;
A transparent conductive layer disposed facing the support substrate;
A charge transfer layer filled between the photosensitive layer and the transparent conductive layer,
The surface of the said metal plate in which the said photosensitive layer was formed is a rough surface, The photoelectric conversion apparatus characterized by the above-mentioned.
前記感光層中の前記半導体は、多数個の半導体粒子からなり、前記粗面の凹部の大きさは、これらの半導体粒子のうち所定割合以上が受け入れ可能な大きさである請求項1又は請求項2記載の光電変換装置。   The semiconductor in the photosensitive layer is composed of a large number of semiconductor particles, and the size of the concave portion of the rough surface is such that a predetermined proportion or more of these semiconductor particles can be accepted. 2. The photoelectric conversion device according to 2. 前記粗面の凹部における平均開き角をθ、前記粗面の算術平均粗さをRaとし、前記感光層中の前記半導体粒子の個々の粒径をLとした場合に、下記式を満たす半導体粒子の存在率が10%以上である請求項3記載の光電変換装置。
L≦2Ra・tan(θ/2)
Semiconductor particles satisfying the following formula, where θ is the average opening angle in the concave portion of the rough surface, Ra is the arithmetic average roughness of the rough surface, and L is the individual particle size of the semiconductor particles in the photosensitive layer The photoelectric conversion device according to claim 3, wherein the abundance ratio is 10% or more.
L ≦ 2Ra · tan (θ / 2)
前記金属層又は前記金属板は、アルミニウム、銅、チタン、ニッケル、鉄、亜鉛及びモリブデンの中から選ばれる1種類以上の金属を主成分とすることを特徴とする請求項1から請求項4のいずれかに記載の光電変換装置。   The said metal layer or the said metal plate has as a main component 1 or more types of metals chosen from aluminum, copper, titanium, nickel, iron, zinc, and molybdenum. The photoelectric conversion apparatus in any one. 前記半導体は、酸化スズ、酸化インジウム、酸化亜鉛、酸化カドミウム、酸化アンチモン、酸化鉄、酸化タングステン、酸化チタン及びチタン酸ストロンチウムの中から選ばれる1種類以上の酸化物を主成分とすることを特徴とする請求項1から請求項5のいずれかに記載の光電変換装置。   The semiconductor includes, as a main component, at least one oxide selected from tin oxide, indium oxide, zinc oxide, cadmium oxide, antimony oxide, iron oxide, tungsten oxide, titanium oxide, and strontium titanate. The photoelectric conversion device according to any one of claims 1 to 5.
JP2004096127A 2004-03-29 2004-03-29 Photoelectric conversion device Pending JP2005285472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096127A JP2005285472A (en) 2004-03-29 2004-03-29 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096127A JP2005285472A (en) 2004-03-29 2004-03-29 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2005285472A true JP2005285472A (en) 2005-10-13

Family

ID=35183633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096127A Pending JP2005285472A (en) 2004-03-29 2004-03-29 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2005285472A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134328A (en) * 2005-11-11 2007-05-31 Samsung Sdi Co Ltd Solar cell and its manufacturing method
JP2007265826A (en) * 2006-03-29 2007-10-11 Enplas Corp Dye-sensitized solar cell and its photoelectrode substrate
JP2007305351A (en) * 2006-05-09 2007-11-22 Gunze Ltd Method of manufacturing transparent electrode substrate for die-sensitized solar cell
JP2008053166A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Reverse irradiation type dye-sensitized large scale solar battery
JP2008084761A (en) * 2006-09-28 2008-04-10 Tdk Corp Photoelectric conversion element and its manufacturing method, and electrode for photoelectric conversion element
JP2008153180A (en) * 2006-12-20 2008-07-03 Fujikura Ltd Photoelectric conversion element, and manufacturing method of counter electrode for the photoelectric conversion element
JP2009099569A (en) * 2007-10-18 2009-05-07 Korea Electronics Telecommun Dye-sensitized solar battery, and manufacturing method thereof
JP2010055935A (en) * 2008-08-28 2010-03-11 Institute Of National Colleges Of Technology Japan Dye-sensitized solar cell
JP2010080091A (en) * 2008-09-24 2010-04-08 Toyo Seikan Kaisha Ltd Dye-sensitized solar cell
JP2010225317A (en) * 2009-03-19 2010-10-07 Dainippon Printing Co Ltd Laminate for dye-sensitized solar cell, dye-sensitized solar cell element, dye-sensitized solar cell module, and manufacturing method of the laminate for dye-sensitized solar cell
WO2011021299A1 (en) * 2009-08-20 2011-02-24 日新製鋼株式会社 Dye-sensitized solar cell and method for manufacturing the same
EP2337144A1 (en) * 2008-10-10 2011-06-22 Nisshin Steel Co., Ltd. Dye-sensitized solar cells
KR101212938B1 (en) 2012-09-12 2012-12-18 주식회사 상보 Metal flexible dye-sensitized solar cell with metal substrate for processing polishing and manufacturing method thereof
JP2013077578A (en) * 2013-01-16 2013-04-25 Fujikura Ltd Photoelectric conversion element
JP2014216309A (en) * 2013-04-25 2014-11-17 日本蓄電器工業株式会社 Dye-sensitized solar battery and electrode of the same
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
CN111504890A (en) * 2020-04-28 2020-08-07 烟台大学 Rapid detection method for weather resistance of titanium dioxide

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134328A (en) * 2005-11-11 2007-05-31 Samsung Sdi Co Ltd Solar cell and its manufacturing method
JP2007265826A (en) * 2006-03-29 2007-10-11 Enplas Corp Dye-sensitized solar cell and its photoelectrode substrate
JP2007305351A (en) * 2006-05-09 2007-11-22 Gunze Ltd Method of manufacturing transparent electrode substrate for die-sensitized solar cell
JP2008053166A (en) * 2006-08-28 2008-03-06 Toyo Seikan Kaisha Ltd Reverse irradiation type dye-sensitized large scale solar battery
JP2008084761A (en) * 2006-09-28 2008-04-10 Tdk Corp Photoelectric conversion element and its manufacturing method, and electrode for photoelectric conversion element
JP2008153180A (en) * 2006-12-20 2008-07-03 Fujikura Ltd Photoelectric conversion element, and manufacturing method of counter electrode for the photoelectric conversion element
JP2009099569A (en) * 2007-10-18 2009-05-07 Korea Electronics Telecommun Dye-sensitized solar battery, and manufacturing method thereof
JP2010055935A (en) * 2008-08-28 2010-03-11 Institute Of National Colleges Of Technology Japan Dye-sensitized solar cell
JP2010080091A (en) * 2008-09-24 2010-04-08 Toyo Seikan Kaisha Ltd Dye-sensitized solar cell
CN102177611A (en) * 2008-10-10 2011-09-07 日新制钢株式会社 Dye-sensitized solar cells
EP2337144A4 (en) * 2008-10-10 2012-06-27 Nisshin Steel Co Ltd Dye-sensitized solar cells
EP2337144A1 (en) * 2008-10-10 2011-06-22 Nisshin Steel Co., Ltd. Dye-sensitized solar cells
AU2009303186B2 (en) * 2008-10-10 2014-01-23 Nisshin Steel Co., Ltd. Dye-sensitized solar cells
JP2010225317A (en) * 2009-03-19 2010-10-07 Dainippon Printing Co Ltd Laminate for dye-sensitized solar cell, dye-sensitized solar cell element, dye-sensitized solar cell module, and manufacturing method of the laminate for dye-sensitized solar cell
KR101502807B1 (en) 2009-08-20 2015-03-16 닛신 세이코 가부시키가이샤 Dye-sensitized solar cell and method for manufacturing the same
US20120132275A1 (en) * 2009-08-20 2012-05-31 Nisshin Steel Co. Ltd Dye-sensitized solar cell and method for manufacturing the same
WO2011021299A1 (en) * 2009-08-20 2011-02-24 日新製鋼株式会社 Dye-sensitized solar cell and method for manufacturing the same
KR101212938B1 (en) 2012-09-12 2012-12-18 주식회사 상보 Metal flexible dye-sensitized solar cell with metal substrate for processing polishing and manufacturing method thereof
JP2013077578A (en) * 2013-01-16 2013-04-25 Fujikura Ltd Photoelectric conversion element
JP2014216309A (en) * 2013-04-25 2014-11-17 日本蓄電器工業株式会社 Dye-sensitized solar battery and electrode of the same
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP2015141954A (en) * 2014-01-27 2015-08-03 株式会社昭和 Dye-sensitized solar battery provided with light condensing device
CN111504890A (en) * 2020-04-28 2020-08-07 烟台大学 Rapid detection method for weather resistance of titanium dioxide
CN111504890B (en) * 2020-04-28 2022-11-22 烟台大学 Rapid detection method for weather resistance of titanium dioxide

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
US20070095390A1 (en) Solar cell and manufacturing method thereof
JP2005285472A (en) Photoelectric conversion device
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP2007280761A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device
JP4197637B2 (en) Photosensitized solar cell and manufacturing method thereof
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2005285473A (en) Photoelectric conversion device
JP4777592B2 (en) Counter electrode and dye-sensitized solar cell having the same
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP2005158379A (en) Photoelectric conversion element, its manufacturing method, electronic device and its manufacturing method
JP2004164950A (en) Electrode substrate, photoelectric conversion element, and dye-sensitized solar cell
JP2009009936A (en) Photoelectric conversion device
JP5127261B2 (en) Manufacturing method of photoelectric conversion module
WO2007138348A2 (en) Photovoltaic cell with mesh electrode
JP2008277422A (en) Laminated photoelectric converter
JP2009289571A (en) Photoelectric conversion module
JP2005064493A (en) Photoelectric converter and photovoltaic device using the same
JP2007227260A (en) Photoelectric converter and photovoltaic generator
JP4651346B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4637473B2 (en) Stacked photoelectric conversion device
JP2005191137A (en) Stacked photoelectric converter