JP2007018909A - Manufacturing method for photoelectric conversion device - Google Patents

Manufacturing method for photoelectric conversion device Download PDF

Info

Publication number
JP2007018909A
JP2007018909A JP2005200108A JP2005200108A JP2007018909A JP 2007018909 A JP2007018909 A JP 2007018909A JP 2005200108 A JP2005200108 A JP 2005200108A JP 2005200108 A JP2005200108 A JP 2005200108A JP 2007018909 A JP2007018909 A JP 2007018909A
Authority
JP
Japan
Prior art keywords
layer
oxide semiconductor
photoelectric conversion
semiconductor layer
porous oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005200108A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005200108A priority Critical patent/JP2007018909A/en
Publication of JP2007018909A publication Critical patent/JP2007018909A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of the photoelectric conversion device, wherein the range of selection of material for a translucent substrate or a collector electrode can be expanded, and which has high conversion efficiency and high reliability and can be easily manufactured. <P>SOLUTION: In this manufacturing method for a photoelectric conversion device 1, a laminate is formed by laminating a sintered porous oxide-semiconductor layer 7 and a transparent conductive layer 5 by turns, on the upper surface of a flexible supporting body 13 with prescribed thickness, then, the transparent conductive layer 5 of the laminate is bonded to a translucent substrate 2 through the transparent resin layer 4, then the support body is removed from the laminate, then, the porous oxide-semiconductor layer 7 is made to support dye 6 to make the laminate and the translucent substrate 2 a optical working electrode side board; then the optical working electrode side group plate and a counter electrode side board 11, having a counter electrode layer (catalyst conductive layer 12) in one main surface are arranged so that the porous oxide-semiconductor layer 7 and the counter electrode layer face each other; then outer peripheral parts of the optical working electrode side board and the counter electrode side board 11 are sealed via a sealing member 10; and an electrolyte is injected into a gap between the porous oxide-semiconductor layer 7 and the counter electrode layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電変換効率および信頼性に優れた太陽電池や受光素子等用の色素増感型の光電変換装置の製造方法に関する。   The present invention relates to a method for producing a dye-sensitized photoelectric conversion device for a solar cell, a light receiving element or the like having excellent photoelectric conversion efficiency and reliability.

従来、光電変換装置の一種である色素増感型太陽電池は、その製造の際に真空装置を必要としないことから、低コストで低環境負荷型の太陽電池であると認識されており、活発に研究開発が行われている。   Conventionally, a dye-sensitized solar cell, which is a type of photoelectric conversion device, does not require a vacuum device for its production, and thus has been recognized as a low-cost and low environmental load solar cell. Research and development is underway.

この色素増感型太陽電池は、通常、導電性ガラス基板上に粒径20nm程度の酸化チタンの微粒子を450℃程度で焼結して得られる厚み10μm程度の多孔質酸化チタン層を形成し、この多孔質酸化チタン層の酸化チタン粒子の表面に色素を単分子吸着させた光作用極側基板と、導電性ガラス基板上に白金やカーボンの対極層を形成した対極側基板とを、多孔質酸化チタン層と対極層とを互いに対向させ、スペーサ兼封止材としての枠状の熱可塑性樹脂シートを介してホットプレスにより両基板を貼り合わせ、これらの基板の間にヨウ素/ヨウ化物レドックス対を含む電解質溶液を対極側基板に開けた貫通孔を通して注入し、その貫通孔を塞ぐことによって作製される(例えば、非特許文献1参照)。   This dye-sensitized solar cell usually forms a porous titanium oxide layer having a thickness of about 10 μm obtained by sintering titanium oxide fine particles having a particle size of about 20 nm on a conductive glass substrate at about 450 ° C. The porous electrode is composed of a photoactive electrode side substrate in which a dye is adsorbed on the surface of titanium oxide particles of the porous titanium oxide layer, and a counter electrode side substrate in which a platinum or carbon counter electrode layer is formed on a conductive glass substrate. The titanium oxide layer and the counter electrode layer are opposed to each other, and both substrates are bonded by hot pressing through a frame-shaped thermoplastic resin sheet as a spacer and sealing material, and an iodine / iodide redox pair is interposed between these substrates. The electrolyte solution containing is injected through a through hole formed in the counter electrode side substrate, and the through hole is closed (see, for example, Non-Patent Document 1).

また従来、上記両基板の材料として、ポリエチレンテレフタレート(PET)などの樹脂基板を用いることが検討されてきた。樹脂基板を用いることができれば、色素増感型太陽電池の軽量化、および使用時の折り曲げが可能となり、操作性、汎用性に優れた色素増感型太陽電池が提供できる。   Conventionally, it has been studied to use a resin substrate such as polyethylene terephthalate (PET) as a material for both the substrates. If a resin substrate can be used, the dye-sensitized solar cell can be reduced in weight and bent during use, and a dye-sensitized solar cell excellent in operability and versatility can be provided.

しかしながら、樹脂基板は、上記のような高い焼結温度を有する焼結体である酸化チタン粒子からなる多孔質酸化チタン層を形成することはできない。そこで、多孔質酸化チタン層を形成するための低温プロセスとして、電析法,泳動電着法,水熱合成法等が行われ、多孔質酸化チタン層の電子輸送特性を良くするための後処理として、マイクロ波処理,CVD法によるプラズマ処理,熱触媒処理,UV照射処理などが用いられてきたが、高温プロセスによって形成された多孔質酸化チタン層で得られる高い変換効率を、低温プロセスによって形成された多孔質酸化チタン層で得ることは困難な状況にある。   However, the resin substrate cannot form a porous titanium oxide layer made of titanium oxide particles, which is a sintered body having a high sintering temperature as described above. Therefore, electrodeposition, electrophoretic deposition, hydrothermal synthesis, etc. are performed as low-temperature processes for forming the porous titanium oxide layer, and post-treatment to improve the electron transport properties of the porous titanium oxide layer. Microwave treatment, plasma treatment by CVD method, thermal catalyst treatment, UV irradiation treatment, etc. have been used, but high conversion efficiency obtained by porous titanium oxide layer formed by high temperature process is formed by low temperature process It is difficult to obtain a porous titanium oxide layer.

そこで、このような問題点を解決した従来例として非特許文献2がある。これによれば、TiOペーストをガラス基板上に塗布し、炉内で550℃の温度で焼結させ、焼結形成されたTiO層上に電極となる透明導電膜(ITO膜)を500nmの厚みで形成し、次に樹脂フィルム基板としてのPETフィルムを用い、透明樹脂層を介してITO膜上にPETフィルムを貼り合せ、次にガラス基板を除去することにより、フレキシブルな色素増感用の光作用極側基板を得ている。そして、TiO層にRu増感色素を担持させた光電極側基板と、導電性ガラス基板上にスパッタリング法によりPt層を形成した対極側基板とを貼り合わせて、両基板間の間に電解液を注液して太陽電池を得るとしている。
(株)情報機構発行,「色素増感太陽電池及び太陽電池の最前線と将来展望」,P26−P27 電気化学会,第72回大会,2005,P466
Therefore, Non-Patent Document 2 is a conventional example that solves such problems. According to this, a TiO 2 paste is applied onto a glass substrate, sintered in a furnace at a temperature of 550 ° C., and a transparent conductive film (ITO film) serving as an electrode is formed on the sintered TiO 2 layer to a thickness of 500 nm. For flexible dye sensitization by using a PET film as a resin film substrate, pasting the PET film on the ITO film through a transparent resin layer, and then removing the glass substrate The light working electrode side substrate is obtained. Then, a photoelectrode side substrate in which a Ru sensitizing dye is supported on a TiO 2 layer and a counter electrode side substrate in which a Pt layer is formed on a conductive glass substrate by a sputtering method are bonded together, and electrolysis is performed between both substrates. The liquid is injected to obtain a solar cell.
Published by Information Technology Co., Ltd., “Frontiers and Future Prospects of Dye-Sensitized Solar Cells and Solar Cells”, P26-P27 The Electrochemical Society, 72nd Annual Meeting, 2005, P466

従来の非特許文献1などによれば、光作用極側基板として、通常はSnO:F(フッ素ドープ酸化スズ;FTO)などからなる導電膜を被覆したガラス基板(以下、FTOガラス基板という)を用いているが、このFTOガラス基板上に厚み10μm以上の多孔質酸化チタン層を、酸化チタンのペーストの塗布後に高温焼成して形成すると、形成した多孔質酸化チタン層に内部応力が生じる。そのため、ガラス基板の厚みが1mm以下であるとFTOガラスが割れてしまうことがあったり、逆にガラス基板の厚みが1mmを超えると、多孔質酸化チタン層のひび割れやFTOガラス基板からの多孔質酸化チタン層の剥がれが生じるという問題があった。
また、FTOガラス基板のFTO膜は、耐熱性があり、酸化チタンの焼成温度でもシート抵抗が変化せず透光性も変化しないが、インジウム系の酸化物(ITO,Inなど)から成る透明導電膜に比べシート抵抗が高いという問題があった。そのため、シート抵抗が小さいITO膜を設けたガラス基板がよいが、酸化チタンの焼成温度ではシート抵抗や透光性が劣化してしまう問題があってインジウム系の酸化物からなる透明導電膜を用いることができなかった。
According to the conventional non-patent document 1 and the like, a glass substrate (hereinafter referred to as an FTO glass substrate) coated with a conductive film usually made of SnO 2 : F (fluorine-doped tin oxide; FTO) or the like is used as the photoactive electrode side substrate. However, when a porous titanium oxide layer having a thickness of 10 μm or more is formed on the FTO glass substrate by baking at a high temperature after applying the titanium oxide paste, internal stress is generated in the formed porous titanium oxide layer. Therefore, if the thickness of the glass substrate is 1 mm or less, the FTO glass may break, or conversely if the thickness of the glass substrate exceeds 1 mm, the porous titanium oxide layer is cracked or porous from the FTO glass substrate. There was a problem that the titanium oxide layer peeled off.
Further, the FTO film of the FTO glass substrate has heat resistance, and the sheet resistance does not change even at the firing temperature of titanium oxide, and the translucency does not change. However, the FTO film is made of indium oxide (ITO, In 2 O 3 etc.) There was a problem that sheet resistance was higher than the transparent conductive film. Therefore, a glass substrate provided with an ITO film having a low sheet resistance is preferable. However, there is a problem that the sheet resistance and translucency deteriorate at the firing temperature of titanium oxide, and a transparent conductive film made of an indium oxide is used. I couldn't.

また、FTOガラス基板は、シート抵抗が10Ω/□程度であるので、光電変換素子の長さが1cm以上の光電変換素子のサイズになると、抵抗ロスが大きくてFF値(曲線因子:curve fill factor)が小さくなり、高い光電変換効率(以下、変換効率ともいう)が得られない。   Further, since the sheet resistance of the FTO glass substrate is about 10Ω / □, when the length of the photoelectric conversion element becomes 1 cm or more, the resistance loss is large and the FF value (curve fill factor: curve fill factor) ) Becomes small and high photoelectric conversion efficiency (hereinafter also referred to as conversion efficiency) cannot be obtained.

そこで、FTOガラス基板上に、櫛形等の集電極を設けることが検討されてきたが、抵抗が低い集電極としては厚みが数μmから数十μmのものが必要であり、この場合櫛形の集電極上に厚み10μm程度の薄い多孔質酸化チタン層を形成することは、その塗布形成方法等に制限が生じて困難であった。また、細い電線の配置は電気抵抗をより小さくできるが線径が数十μmから数百μmであり、多孔質酸化チタン層の形成はさらに困難であった。例え酸化チタンのペーストを塗布できたとしても、形成された多孔質酸化チタン層は表面に凹凸のあるものとなるので、信頼性が低い層となる。その結果、光電極側基板と対極側基板とを貼り合わせてそれら基板間に注入して形成した電解質の厚みにバラツキが生じて、変換効率が不安定となり、信頼性の低い色素増感型太陽電池となっていた。   Therefore, it has been studied to provide a comb-shaped collector electrode on the FTO glass substrate. However, a collector electrode having a low resistance is required to have a thickness of several μm to several tens of μm. In this case, a comb-shaped collector electrode is required. It was difficult to form a thin porous titanium oxide layer having a thickness of about 10 μm on the electrode due to a limitation in the coating formation method and the like. Further, the arrangement of the thin electric wires can reduce the electric resistance, but the wire diameter is several tens to several hundreds of μm, and the formation of the porous titanium oxide layer is more difficult. Even if a titanium oxide paste can be applied, the formed porous titanium oxide layer has irregularities on the surface, so that the layer has low reliability. As a result, the thickness of the electrolyte formed by bonding the photoelectrode side substrate and the counter electrode side substrate and injecting them between them varies, resulting in unstable conversion efficiency and low reliability of the dye-sensitized solar It was a battery.

また、焼結形成される多孔質酸化チタン層の焼成温度は450℃程度と高く、集電極に低温形成用の導電性ペーストを用いると、集電極からの金属拡散、導電性ペーストに含まれる樹脂による汚染などが生じて、多孔質酸化チタン層に悪影響を及ぼすという問題があった。   In addition, the sintering temperature of the porous titanium oxide layer formed by sintering is as high as about 450 ° C. When a conductive paste for low temperature formation is used for the collector electrode, metal diffusion from the collector electrode, resin contained in the conductive paste There is a problem that the porous titanium oxide layer is adversely affected due to contamination by the above.

また、複数個の光電変換素子を配置して直列接続や並列接続をする場合、光入射側に複数個の光電変換素子を配置するためのより大きな集積化用の保護ガラス基板などが別途必要となり、光入射側の基板が二重になって変換効率が低下したり、コストアップになるという問題があった。   In addition, when a plurality of photoelectric conversion elements are arranged to be connected in series or in parallel, a larger protective glass substrate for integration is required for arranging the plurality of photoelectric conversion elements on the light incident side. There are problems that the substrate on the light incident side is doubled, the conversion efficiency is lowered, and the cost is increased.

また、非特許文献2に記載された構成では、集電極を設けていないため、抵抗ロスが大きくて高い変換効率が得られないという問題がある。また、製造工程で使用するガラス基材を除去するとしているが、通常、ガラス基材は厚く、機械加工や研磨で薄くしたカバーグラスでさえ0.12mm以上の厚みがあり、この厚みでも毒性を有する弗酸でエッチング除去することは困難である。そもそも大きなサイズで薄いガラス基材を作ることは技術的にもコスト的にも困難であり、非特許文献2に記載された方法では大きな光電変換装置の製造は困難である。さらに、ガラスは剛体であり可撓性がないため、引き剥がしによってガラス基材を除去することはできなかった。   Moreover, since the collector electrode is not provided in the configuration described in Non-Patent Document 2, there is a problem that high conversion efficiency cannot be obtained due to a large resistance loss. Although the glass substrate used in the manufacturing process is removed, the glass substrate is usually thick, and even a cover glass thinned by machining or polishing has a thickness of 0.12 mm or more, and even this thickness is toxic. It is difficult to etch away with hydrofluoric acid. In the first place, it is technically difficult to make a thin glass substrate with a large size, and it is difficult to manufacture a large photoelectric conversion device by the method described in Non-Patent Document 2. Furthermore, since glass is rigid and inflexible, the glass substrate could not be removed by peeling.

従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、以下の種々の作用効果が得られる光電変換装置の製造方法を提供することである。即ち、1)多孔質酸化チタン層を高温焼成法によって形成することができる、2)多孔質酸化チタン層の内部応力の悪影響を無くして信頼性を高めることができる、3)光作用極側基板の材料や厚みの選択の自由度を高めることができる、4)透明導電層の材料の選択の自由度を増大させることができる、5)集電極を低温形成が可能なペーストを用いることができて集電極の材料選択の自由度を上げるとともに低温形成によって製造コストを下げることができる、6)集電極としてより電気抵抗が小さい電線をもちいることができる、7)多孔質酸化チタン層を平坦且つ均一に大面積で形成できて信頼性を高めることができる、8)複数個の光電変換素子を容易に形成できるので集積化に優れる、9)光作用極側基板が大きくなっても多孔質酸化物半導体層の積層体を小さくできるので内部応力が小さく信頼性に優れる、10)光電変換素子を複数個積層して形成できるので積層化に優れる、11)変換効率が高い色素増感型太陽電池を得ることができる、といった作用効果が得られる光電変換装置の製造方法を提供することにある。   Accordingly, the present invention has been completed in view of the above-described problems in the prior art, and an object thereof is to provide a method for manufacturing a photoelectric conversion device that can obtain the following various functions and effects. That is, 1) the porous titanium oxide layer can be formed by a high temperature firing method, 2) the adverse effect of the internal stress of the porous titanium oxide layer can be eliminated, and the reliability can be improved. 4) The degree of freedom in selecting the material of the transparent conductive layer can be increased. 5) A paste capable of forming the collector electrode at a low temperature can be used. This makes it possible to increase the degree of freedom in selecting the material for the collector electrode and reduce the manufacturing cost by forming at a low temperature. 6) It is possible to use an electric wire with lower electrical resistance as the collector electrode. 7) Flatten the porous titanium oxide layer. In addition, it can be uniformly formed in a large area and can improve reliability. 8) It is easy to form a plurality of photoelectric conversion elements, so it is excellent in integration. 9) It is porous even if the substrate on the side of the working electrode becomes large. Since the stack of oxide semiconductor layers can be made small, the internal stress is small and excellent in reliability. 10) A plurality of photoelectric conversion elements can be formed by stacking, so that the stacking is excellent. 11) Dye-sensitized solar with high conversion efficiency. An object of the present invention is to provide a method for manufacturing a photoelectric conversion device capable of obtaining an effect of being able to obtain a battery.

本発明の光電変換装置の製造方法は、可撓性の支持体の上面に、焼結形成された多孔質酸化物半導体層および透明導電層を順次積層して積層体を形成し、次に該積層体の前記透明導電層を透明樹脂層を介して透光性基板に接着し、次に前記積層体から前記支持体を除去し、次に前記多孔質酸化物半導体層に色素を担持させて前記積層体および前記透光性基板を光作用極側基板と成し、次に該光作用極側基板および一主面に対極層を有する対極側基板を、前記多孔質酸化物半導体層と前記対極層とが対向するように配置するとともに前記光作用極側基板および前記対極側基板の外周部を封止部材を介して封止し、前記多孔質酸化物半導体層と前記対極層との間の隙間に前記光作用極側基板,前記対極側基板および前記封止部材のいずれかに形成した貫通孔を通して電解質を注入することを特徴とする。   In the method for producing a photoelectric conversion device of the present invention, a sintered porous oxide semiconductor layer and a transparent conductive layer are sequentially laminated on the upper surface of a flexible support, and then a laminate is formed. Adhering the transparent conductive layer of the laminate to a translucent substrate through a transparent resin layer, then removing the support from the laminate, and then supporting the dye on the porous oxide semiconductor layer The laminate and the translucent substrate are formed as a light working electrode side substrate, and then the light working electrode side substrate and a counter electrode side substrate having a counter electrode layer on one main surface are formed as the porous oxide semiconductor layer and the It arrange | positions so that a counter electrode layer may oppose, and the outer peripheral part of the said optical working electrode side board | substrate and the said counter electrode side board | substrate is sealed through a sealing member, Between the said porous oxide semiconductor layer and the said counter electrode layer Formed in any one of the light working electrode side substrate, the counter electrode side substrate and the sealing member Characterized by injecting an electrolyte through the through holes.

本発明の光電変換装置の製造方法において好ましくは、前記積層体から前記支持体を除去する際に、前記支持体を前記積層体から剥がすことを特徴とする。   Preferably, in the method for producing a photoelectric conversion device of the present invention, the support is peeled off from the laminate when the support is removed from the laminate.

本発明の光電変換装置の製造方法において好ましくは、前記積層体から前記支持体を除去する際に、前記支持体をエッチングにより溶解し除去することを特徴とする。   Preferably, in the method for manufacturing a photoelectric conversion device of the present invention, when the support is removed from the laminate, the support is dissolved and removed by etching.

また、本発明の光電変換装置の製造方法において好ましくは、前記積層体の前記透明導電層を透明樹脂層を介して透光性基板に接着する際に、前記透明導電層上に集電極を形成するとともに前記透明導電層上の前記集電極のない部位に前記透明樹脂層を形成することを特徴とする。   In the method for producing a photoelectric conversion device of the present invention, preferably, a collector electrode is formed on the transparent conductive layer when the transparent conductive layer of the laminate is bonded to a translucent substrate through a transparent resin layer. In addition, the transparent resin layer is formed on a portion of the transparent conductive layer without the collector electrode.

また、本発明の光電変換装置の製造方法において好ましくは、前記支持体の上面に予め多数の凹凸を形成しておき、前記積層体から前記支持体を除去する際に前記凹凸を前記多孔質酸化物半導体層の表面に転写することを特徴とする。   Preferably, in the method for producing a photoelectric conversion device of the present invention, a number of irregularities are formed in advance on the upper surface of the support, and the irregularities are removed from the porous oxidation when the support is removed from the laminate. It transfers to the surface of a physical semiconductor layer, It is characterized by the above-mentioned.

また、本発明の光電変換装置の製造方法において好ましくは、前記多孔質酸化物半導体層が酸化物半導体微粒子の焼結体から成り、前記酸化物半導体微粒子の粒径が前記支持体側から前記多孔質酸化物半導体層の厚み方向に向かって漸次小さくなるように形成することを特徴とする。   In the method for producing a photoelectric conversion device of the present invention, preferably, the porous oxide semiconductor layer is made of a sintered body of oxide semiconductor fine particles, and the particle diameter of the oxide semiconductor fine particles is from the support side to the porous The oxide semiconductor layer is formed so as to gradually become smaller in the thickness direction.

本発明の光電変換装置の製造方法は、可撓性の支持体の上面に、焼結形成された多孔質酸化物半導体層および透明導電層を順次積層して積層体を形成し、次に積層体の透明導電層を透明樹脂層を介して透光性基板に接着し、次に積層体から支持体を除去し、次に多孔質酸化物半導体層に色素を担持させて積層体および透光性基板を光作用極側基板と成し、次に光作用極側基板および一主面に対極層を有する対極側基板を、多孔質酸化物半導体層と対極層とが対向するように配置するとともに光作用極側基板および対極側基板の外周部を封止部材を介して封止し、多孔質酸化物半導体層と対極層との間の隙間に光作用極側基板,対極側基板および封止部材のいずれかに形成した貫通孔を通して電解質を注入することから、予め可撓性の支持体上に酸化チタンなどの酸化物半導体微粒子と水と界面活性剤などから成るペーストを塗布し、その後高温(450℃程度、30分程度)で焼結して多孔質酸化物半導体層を形成することができるので、多孔質酸化物半導体層が表面の平坦性に優れ信頼性が高いものとなる結果、変換効率が高い光電変換装置を製造することができる。   In the method for producing a photoelectric conversion device of the present invention, a sintered porous oxide semiconductor layer and a transparent conductive layer are sequentially laminated on the upper surface of a flexible support to form a laminate, and then the laminate is laminated. The transparent conductive layer of the body is bonded to the translucent substrate through the transparent resin layer, and then the support is removed from the laminate, and then the dye is supported on the porous oxide semiconductor layer and the laminate and the translucent The conductive substrate is formed with the light working electrode side substrate, and then the light working electrode side substrate and the counter electrode side substrate having a counter electrode layer on one main surface are arranged so that the porous oxide semiconductor layer and the counter electrode layer face each other. In addition, the outer peripheral portions of the light working electrode side substrate and the counter electrode side substrate are sealed with a sealing member, and the light working electrode side substrate, the counter electrode side substrate, and the sealing are placed in a gap between the porous oxide semiconductor layer and the counter electrode layer. Since the electrolyte is injected through a through-hole formed in one of the stop members, A porous oxide semiconductor layer can be formed by applying a paste composed of oxide semiconductor fine particles such as titanium oxide, water and a surfactant, and then sintering at a high temperature (about 450 ° C. for about 30 minutes). Therefore, as a result of the porous oxide semiconductor layer having excellent surface flatness and high reliability, a photoelectric conversion device with high conversion efficiency can be manufactured.

また、焼結形成された多孔質酸化物半導体層は、その内部応力が可撓性の支持体の変形もしくは除去によって開放されるので、光作用極側基板に多孔質酸化物半導体層を転写しても、内部応力のない多孔質酸化物半導体層が光作用極側基板に形成できる。   In addition, since the internal stress of the porous oxide semiconductor layer formed by sintering is released by deformation or removal of the flexible support, the porous oxide semiconductor layer is transferred to the substrate on the light working electrode side. However, a porous oxide semiconductor layer having no internal stress can be formed on the photoactive electrode side substrate.

さらに、透明導電層を多孔質酸化物半導体層の焼成後に形成できるので、透明導電層と多孔質酸化物半導体層との密着性を高めることができる結果、変換効率の高い光電変換装置を製造することができる。   Furthermore, since the transparent conductive layer can be formed after the porous oxide semiconductor layer is fired, the adhesion between the transparent conductive layer and the porous oxide semiconductor layer can be improved, and as a result, a photoelectric conversion device with high conversion efficiency is manufactured. be able to.

また、多孔質酸化物半導体層と透明導電層との間に、極薄の緻密な酸化物半導体層を挿入することで逆電流が抑制できて光電変換効率が高まる。   Further, by inserting an extremely thin dense oxide semiconductor layer between the porous oxide semiconductor layer and the transparent conductive layer, the reverse current can be suppressed and the photoelectric conversion efficiency is increased.

また、内部応力のない多孔質酸化物半導体層なので、光作用極側基板が割れるおそれが無く、信頼性の高い光電変換装置を製造することができる。   In addition, since the porous oxide semiconductor layer has no internal stress, there is no possibility of breaking the photoactive electrode side substrate, and a highly reliable photoelectric conversion device can be manufactured.

また、本発明の光電変換装置の製造方法は、支持体の上面に、焼結形成された多孔質酸化物半導体層および透明導電層を順次積層して積層体を形成し、次に積層体の透明導電層を透明樹脂層を介して透光性基板に接着し、次に積層体から支持体を除去するので、透光性基板(光作用極側基板)の材料や厚みを自由に選択することができる。つまり、多孔質酸化物半導体層の焼結温度に耐えられない樹脂などからなる、低い融点を有するとともにフレキシブルなものであり、低コストの透光性基板を用いることができる。従って、軽くて曲げられる低コストの光電変換装置を実現でき、その用途が拡がるという効果がある。   In the method for producing a photoelectric conversion device of the present invention, a laminated body is formed by sequentially laminating a sintered porous oxide semiconductor layer and a transparent conductive layer on an upper surface of a support. Since the transparent conductive layer is bonded to the translucent substrate through the transparent resin layer, and then the support is removed from the laminate, the material and thickness of the translucent substrate (light working electrode side substrate) can be freely selected. be able to. That is, it is a flexible material having a low melting point and made of a resin that cannot withstand the sintering temperature of the porous oxide semiconductor layer, and a low-cost translucent substrate can be used. Therefore, it is possible to realize a light and low-cost photoelectric conversion device that can be bent, and there is an effect that the application is expanded.

また、多孔質酸化物半導体層の焼結後に透明導電層を形成するので、透明導電層の材料を自由に選択できる。例えば、透明導電層としてシート抵抗が小さいインジウム系のものを用いることができ、光電変換装置の変換効率を高めることができる。   Moreover, since the transparent conductive layer is formed after the porous oxide semiconductor layer is sintered, the material of the transparent conductive layer can be freely selected. For example, an indium-based material having a low sheet resistance can be used as the transparent conductive layer, and the conversion efficiency of the photoelectric conversion device can be increased.

また、本発明の光電変換装置の製造方法は好ましくは、積層体から支持体を除去する際に、支持体を前記積層体から剥がすことから、可撓性の支持体を用いているため支持体を引き剥がすことが可能となり、従って支持体の除去を容易に行うことができる。   In addition, the method for producing a photoelectric conversion device of the present invention preferably uses a flexible support because the support is peeled off from the laminate when the support is removed from the laminate. Can be peeled off, and thus the support can be easily removed.

また、本発明の光電変換装置の製造方法は好ましくは、積層体から支持体を除去する際に、支持体をエッチングにより溶解し除去することから、支持体が可撓性を有するものであるため、支持体をエッチング除去が可能なほどの薄いものとすることができ、従って支持体の除去を容易に行うことができる。   In the method for producing a photoelectric conversion device of the present invention, since the support is preferably dissolved and removed by etching when the support is removed from the laminate, the support is flexible. The support can be made thin enough to be etched away, and therefore the support can be easily removed.

また、本発明の光電変換装置の製造方法は好ましくは、積層体の透明導電層を透明樹脂層を介して透光性基板に接着する際に、透明導電層上に集電極を形成するとともに透明導電層上の集電極のない部位に透明樹脂層を形成することから、透明導電層だけでなく集電極を設けているので、光電変換して得られた電流の出力側(集電極)の抵抗が非常に低くなり、高い変換効率が得られる光電変換装置を作製でき、またその結果として光電変換装置のサイズを大きくすることができるという作用効果がある。   In the method for producing a photoelectric conversion device of the present invention, preferably, when the transparent conductive layer of the laminate is bonded to the translucent substrate through the transparent resin layer, a collector electrode is formed on the transparent conductive layer and is transparent. Since the transparent resin layer is formed on the conductive layer without the collector electrode, the collector electrode is provided in addition to the transparent conductive layer, so the resistance on the current output side (collector electrode) obtained by photoelectric conversion Is extremely low, and a photoelectric conversion device capable of obtaining high conversion efficiency can be manufactured. As a result, there is an effect that the size of the photoelectric conversion device can be increased.

またこの場合、透明導電層上の櫛形電極等からなる集電極のない部位(凹部)を、透明樹脂層で埋めることとなるので、その結果として多孔質酸化物半導体層や電解質層が平坦な層となって凹凸が無くなる。従って、多孔質酸化物半導体層や電解質層の厚みや形状が製品ごとに一様になり、これらの層の信頼性が高くなるため、光電変換装置の変換効率等が安定化し信頼性の高いものとなる。   Further, in this case, a portion (concave portion) having no collecting electrode made of a comb-shaped electrode or the like on the transparent conductive layer is filled with the transparent resin layer. As a result, the porous oxide semiconductor layer or the electrolyte layer is a flat layer. Becomes uneven. Therefore, the thickness and shape of the porous oxide semiconductor layer and the electrolyte layer are uniform for each product, and the reliability of these layers is increased. Therefore, the conversion efficiency of the photoelectric conversion device is stabilized and the reliability is high. It becomes.

また、本発明の光電変換装置の製造方法は好ましくは、支持体の上面に予め多数の凹凸を形成しておき、積層体から支持体を除去する際に凹凸を多孔質酸化物半導体層の表面に転写することから、多孔質酸化物半導体層を通過した光が凹凸において散乱されて光閉じ込め効果が生じ、変換効率が高まるという効果がある。   In the method for producing a photoelectric conversion device of the present invention, it is preferable that a large number of irregularities are formed in advance on the upper surface of the support, and the irregularities are formed on the surface of the porous oxide semiconductor layer when the support is removed from the laminate. Therefore, the light that has passed through the porous oxide semiconductor layer is scattered in the unevenness, thereby producing a light confinement effect, and the conversion efficiency is increased.

また、本発明の光電変換装置の製造方法は好ましくは、多孔質酸化物半導体層が酸化物半導体微粒子の焼結体から成り、酸化物半導体微粒子の粒径が支持体側から多孔質酸化物半導体層の厚み方向に向かって漸次小さくなるように形成することから、多孔質酸化物半導体層中を通過する光が良好に散乱されることとなる。特に透過しやすい長波長光を粒径のより大きな酸化物半導体微粒子によってよく反射することができ、光閉じ込め効果を高めて変換効率を向上させることができる。   In the method for producing a photoelectric conversion device of the present invention, preferably, the porous oxide semiconductor layer is composed of a sintered body of oxide semiconductor fine particles, and the particle diameter of the oxide semiconductor fine particles is from the support side to the porous oxide semiconductor layer. Therefore, light passing through the porous oxide semiconductor layer is favorably scattered. In particular, long-wavelength light that is easily transmitted can be well reflected by the oxide semiconductor fine particles having a larger particle diameter, and the light confinement effect can be enhanced and the conversion efficiency can be improved.

本発明の光電変換装置の製造方法についての実施の形態を図面にもとづき以下に詳細に説明する。なお、図面において同一部材には同一符号を付している。   Embodiments of a method for manufacturing a photoelectric conversion device according to the present invention will be described below in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same member in drawing.

本発明の製造方法によって得られる光電変換装置を示す断面図を図1に、本発明の製造方法を説明するための光電変換装置の断面図を図2にそれぞれ示す。   1 is a cross-sectional view showing a photoelectric conversion device obtained by the manufacturing method of the present invention, and FIG. 2 is a cross-sectional view of the photoelectric conversion device for explaining the manufacturing method of the present invention.

本発明の製造方法は、可撓性の支持体の上面に、焼結形成された多孔質酸化物半導体層7および透明導電層5を順次積層して積層体を形成し、次に積層体の透明導電層5を透明樹脂層4を介して透光性基板2に接着し、次に積層体から支持体を除去し、次に多孔質酸化物半導体層7に色素6を担持させて積層体および透光性基板2を光作用極側基板と成し、次に光作用極側基板および一主面に対極層(触媒導電層12)を有する対極側基板11を、多孔質酸化物半導体層7と対極層とが対向するように配置するとともに光作用極側基板および対極側基板11の外周部を封止部材10を介して封止し、多孔質酸化物半導体層7と対極層との間の隙間に光作用極側基板,対極側基板11および封止部材10のいずれかに形成した貫通孔を通して電解質を注入するものである。   In the production method of the present invention, the porous oxide semiconductor layer 7 and the transparent conductive layer 5 are sequentially laminated on the upper surface of the flexible support to form a laminate, and then the laminate is formed. The transparent conductive layer 5 is bonded to the translucent substrate 2 through the transparent resin layer 4, then the support is removed from the laminate, and then the dye 6 is supported on the porous oxide semiconductor layer 7. And the translucent substrate 2 as the light working electrode side substrate, and then the light working electrode side substrate and the counter electrode side substrate 11 having the counter electrode layer (catalytic conductive layer 12) on one main surface, the porous oxide semiconductor layer 7 and the counter electrode layer are arranged so as to face each other, and the outer peripheral portion of the light working electrode side substrate and the counter electrode side substrate 11 is sealed through the sealing member 10, so that the porous oxide semiconductor layer 7 and the counter electrode layer Electricity is passed through a through-hole formed in one of the light working electrode side substrate, the counter electrode side substrate 11 and the sealing member 10 in the gap between them. It is intended to inject quality.

本発明の製造方法によって得られる図1に示す光電変換装置1は、光作用極側基板を成す透光性基板2の一主面に、集電極3と集電極3の間を埋めるように形成された透明樹脂層4とが接しており、集電極3及び透明樹脂層4に、透明導電層5、色素6を担持した焼結微粒子から成る多孔質酸化物半導体層7、電解質層9、対極層としての触媒導電層12、対極側基板11が順次積層されている。そして、透明樹脂層4、透明導電層5、多孔質酸化物半導体層7、電解質層9、触媒導電層12(導電層12x,触媒層12yから成る)からなる積層構造体の側面を取り囲む封止部材10が形成されている。   The photoelectric conversion device 1 shown in FIG. 1 obtained by the manufacturing method of the present invention is formed so as to fill a space between the collector electrode 3 and the collector electrode 3 on one main surface of the translucent substrate 2 constituting the light working electrode side substrate. The porous oxide semiconductor layer 7, the electrolyte layer 9, and the counter electrode made of sintered fine particles carrying the transparent conductive layer 5 and the dye 6 on the collector electrode 3 and the transparent resin layer 4. The catalyst conductive layer 12 and the counter electrode side substrate 11 as layers are sequentially laminated. The sealing surrounds the side surface of the laminated structure including the transparent resin layer 4, the transparent conductive layer 5, the porous oxide semiconductor layer 7, the electrolyte layer 9, and the catalyst conductive layer 12 (consisting of the conductive layer 12x and the catalyst layer 12y). A member 10 is formed.

図1に示す光電変換装置1は、図2に示す光電変換装置1の一部を含む断面図に示す一工程を経て製造することができる。即ち、多孔質酸化物半導体層7および透明導電層5からなる積層体から支持体13を除去する際に、支持体13を積層体から剥がす工程である。図2において、シート状の可撓性の支持体13上に、多孔質酸化物半導体層7、透明導電層5、集電極3を順次積層形成し、次に集電極3の間を埋めるように透明樹脂層4を設けて透光性基板2に接着する。ここで、支持体13としては、主成分がアルミニウムから成る箔もしくはシートがよい。   The photoelectric conversion device 1 illustrated in FIG. 1 can be manufactured through one step illustrated in a cross-sectional view including a part of the photoelectric conversion device 1 illustrated in FIG. That is, when removing the support 13 from the laminate composed of the porous oxide semiconductor layer 7 and the transparent conductive layer 5, the support 13 is peeled off from the laminate. In FIG. 2, a porous oxide semiconductor layer 7, a transparent conductive layer 5, and a collector electrode 3 are sequentially stacked on a sheet-like flexible support 13, and then the gap between the collector electrodes 3 is filled. A transparent resin layer 4 is provided and adhered to the translucent substrate 2. Here, the support 13 is preferably a foil or a sheet whose main component is aluminum.

次に、多孔質酸化物半導体層7、透明導電層5、集電極3、透明樹脂層4の積層体から支持体13を除去し、次に多孔質酸化物半導体層7を成す酸化物半導体微粒子の表面に色素6を担持させる。支持体13としては、500℃程度の温度に耐えられるシートや箔がよく、特にアルミニウム箔がよい。この可撓性の支持体13の除去は、粘着テープで機械的に引き剥がすなどの方法がよい。あるいは、純水で希釈した酸類やアルカリ類などで支持体13をエッチングし溶解させるとよい。アルミニウム製の支持体13の場合、純水で希釈した塩酸などでエッチングするとよく、容易にエッチング除去できる。エッチング除去する場合、透明導電層5としては、耐薬品性に優れたFTO膜等を単独で用いたり、FTO膜上にITO膜等を積層して用いることができる。   Next, the support 13 is removed from the laminate of the porous oxide semiconductor layer 7, the transparent conductive layer 5, the collector electrode 3, and the transparent resin layer 4, and then the oxide semiconductor fine particles forming the porous oxide semiconductor layer 7. The dye 6 is supported on the surface of the substrate. As the support 13, a sheet or foil that can withstand a temperature of about 500 ° C. is preferable, and an aluminum foil is particularly preferable. The flexible support 13 is preferably removed by mechanical peeling with an adhesive tape. Alternatively, the support 13 may be etched and dissolved with acids or alkalis diluted with pure water. In the case of the support 13 made of aluminum, it may be etched with hydrochloric acid diluted with pure water, and can be easily removed by etching. When removing by etching, as the transparent conductive layer 5, an FTO film or the like excellent in chemical resistance can be used alone, or an ITO film or the like can be laminated on the FTO film.

ここで、予め支持体13の表面に多数の凹凸を形成しておけばよく、支持体13の表面に形成した多孔質酸化物半導体層7の表面に凹凸が転写される。支持体13表面に多数の凹凸を付けるには、金型によるプレス成型法、サンドブラスト法、酸もしくはアルカリによるウエットエッチング法、超音波法等で容易に形成できる。   Here, a large number of irregularities may be formed on the surface of the support 13 in advance, and the irregularities are transferred to the surface of the porous oxide semiconductor layer 7 formed on the surface of the support 13. In order to give a large number of irregularities to the surface of the support 13, it can be easily formed by a press molding method using a mold, a sand blast method, a wet etching method using an acid or alkali, an ultrasonic method, or the like.

また本発明においては、多孔質酸化物半導体層7の酸化物半導体微粒子の粒径にバラツキを持たせたり、支持体13側より酸化物半導体微粒子の粒径が厚み方向に漸次小さくなるように、多孔質酸化物半導体層7となるペーストを複数回塗布すること等により、多孔質酸化物半導体層7に光閉じ込め効果を付与できる。   Further, in the present invention, the oxide semiconductor fine particles of the porous oxide semiconductor layer 7 have a variation in particle diameter, or the particle diameter of the oxide semiconductor fine particles gradually decreases in the thickness direction from the support 13 side. A light confinement effect can be imparted to the porous oxide semiconductor layer 7 by, for example, applying a paste that becomes the porous oxide semiconductor layer 7 a plurality of times.

次に、図1に示すように、透光性基板2と一体化された多孔質酸化物半導体層7と、対極側基板11に形成された触媒導電層12の面とが、隙間9を有して対向するように配置し、透光性基板2及び対極側基板11の外周部に封止部材10を設けて封止する。ここで、多孔質酸化物半導体層7と触媒導電層12とが電気的に短絡しないで隙間が均一に形成されるように、隙間に種々のスペーサ等を設置した構成を採用できる。   Next, as shown in FIG. 1, the porous oxide semiconductor layer 7 integrated with the translucent substrate 2 and the surface of the catalyst conductive layer 12 formed on the counter electrode side substrate 11 have a gap 9. Then, the sealing member 10 is provided on the outer peripheral portions of the translucent substrate 2 and the counter electrode side substrate 11 and sealed. Here, it is possible to employ a configuration in which various spacers are installed in the gap so that the gap is uniformly formed without causing an electrical short circuit between the porous oxide semiconductor layer 7 and the catalyst conductive layer 12.

次に、透光性基板2、対極側基板11及び封止部材10のいずれかに形成した貫通孔(注入孔)から、隙間と多孔質酸化物半導体層7内部の空孔に電解質9が充満するように電解質を注入し、この注入孔を封止する。   Next, the electrolyte 9 fills the gap and the pores inside the porous oxide semiconductor layer 7 from the through hole (injection hole) formed in any of the translucent substrate 2, the counter electrode side substrate 11, and the sealing member 10. An electrolyte is injected so as to seal the injection hole.

図3に示す光電変換装置1aは、集電極3、透明樹脂層4、透明導電層5、多孔質酸化物半導体層7、電解質層9、触媒導電層12からなる積層構造体を、透光性基板2と対極側基板11との間に、複数個並べて形成したものであり、積層構造体同士の間には封止部材10が形成されている。即ち、透光性基板2の一主面に、複数個の集電極3a,3b,3cと、集電極3a,3b,3cのそれぞれの間を埋めるように透明樹脂層4a,4b,4cとが形成されている。さらに、集電極3a,3b,3c及び透明樹脂層4a,4b,4c上に、透明導電層5a,5b,5c、色素6a,6b,6cを担持した酸化物半導体の焼結微粒子から成る多孔質酸化物半導体層7a,7b,7c、電解質層9a,9b,9c、触媒導電層12a,12b,12c、対極側基板11を順次積層している。   A photoelectric conversion device 1a shown in FIG. 3 has a translucent structure including a collector electrode 3, a transparent resin layer 4, a transparent conductive layer 5, a porous oxide semiconductor layer 7, an electrolyte layer 9, and a catalyst conductive layer 12. A plurality of substrates are formed side by side between the substrate 2 and the counter electrode side substrate 11, and a sealing member 10 is formed between the laminated structures. In other words, a plurality of collector electrodes 3a, 3b, 3c and transparent resin layers 4a, 4b, 4c are embedded on one main surface of the translucent substrate 2 so as to fill the space between the collector electrodes 3a, 3b, 3c. Is formed. Furthermore, the porous electrode comprises sintered fine particles of an oxide semiconductor carrying transparent conductive layers 5a, 5b, 5c and dyes 6a, 6b, 6c on the collecting electrodes 3a, 3b, 3c and the transparent resin layers 4a, 4b, 4c. The oxide semiconductor layers 7a, 7b, and 7c, the electrolyte layers 9a, 9b, and 9c, the catalyst conductive layers 12a, 12b, and 12c, and the counter electrode side substrate 11 are sequentially stacked.

図3の光電変換装置1aは、図4に示す光電変換装置の一部を含む断面図に示す一工程を経て、容易に製造することができる。図4において、シート状の複数個の可撓性の支持体13a,13b,13c上にそれぞれ、多孔質酸化物半導体層7a,7b,7c、透明導電層5a,5b,5c、集電極3a,3b,3cを順次積層形成し、次に集電極3a,3b,3cの間を埋めるように透明樹脂層4a,4b,4cを設けて、支持体13a,多孔質酸化物半導体層7a,透明導電層5a,集電極3a,透明樹脂層4aの積層体a、支持体13b,多孔質酸化物半導体層7b,透明導電層5b,集電極3b,透明樹脂層4bの積層体b、支持体13c,多孔質酸化物半導体層7c,透明導電層5c,集電極3c,透明樹脂層4cの積層体cを、透光性基板2上に間隔をあけて接着する。ここで、シート状の可撓性の支持体13a,13b,13cとしては、主成分がアルミニウムから成る箔もしくはシートがよい。   The photoelectric conversion device 1a of FIG. 3 can be easily manufactured through one step shown in a cross-sectional view including a part of the photoelectric conversion device shown in FIG. In FIG. 4, porous oxide semiconductor layers 7a, 7b, and 7c, transparent conductive layers 5a, 5b, and 5c, collector electrodes 3a, and the like are respectively formed on a plurality of sheet-like flexible supports 13a, 13b, and 13c. 3b and 3c are sequentially laminated, and then transparent resin layers 4a, 4b and 4c are provided so as to fill the space between collector electrodes 3a, 3b and 3c, and support 13a, porous oxide semiconductor layer 7a and transparent conductive layer are provided. Layer 5a, collector electrode 3a, laminate a of transparent resin layer 4a, support 13b, porous oxide semiconductor layer 7b, transparent conductive layer 5b, collector electrode 3b, laminate b of transparent resin layer 4b, support 13c, The laminated body c of the porous oxide semiconductor layer 7c, the transparent conductive layer 5c, the collector electrode 3c, and the transparent resin layer 4c is bonded onto the translucent substrate 2 with a space therebetween. Here, the sheet-like flexible supports 13a, 13b, and 13c are preferably foils or sheets whose main component is aluminum.

次に、支持体13a,13b,13cを除去し、次に多孔質酸化物半導体層7a,7b,7cの酸化物半導体微粒子の表面に色素6a,6b,6cを担持させる。色素6a,6b,6cを担持させるには、図4で支持体13a,13b,13cを除去した状態で、透光性基板2ごと色素溶液に浸漬すればよく、全ての積層体a,b,cの多孔質酸化物半導体層7a,7b,7cに色素6a,6b,6cを担持できる。   Next, the supports 13a, 13b, and 13c are removed, and then the dyes 6a, 6b, and 6c are supported on the surface of the oxide semiconductor fine particles of the porous oxide semiconductor layers 7a, 7b, and 7c. In order to carry the dyes 6a, 6b, and 6c, it is only necessary to immerse the light-transmitting substrate 2 together with the dye solution in a state where the supports 13a, 13b, and 13c are removed in FIG. The porous oxide semiconductor layers 7a, 7b, and 7c of c can support the dyes 6a, 6b, and 6c.

支持体13a,13b,13cの除去は上記と同様に行う。   Removal of the supports 13a, 13b, and 13c is performed in the same manner as described above.

次に、対極側基板11もしくは封止部材10に形成した貫通孔(注入孔)を通して隙間と多孔質酸化物半導体層7内部の空孔に電解質9を注入して充満させ、この注入孔を封止する。   Next, the electrolyte 9 is injected and filled into the gap and the hole inside the porous oxide semiconductor layer 7 through the through hole (injection hole) formed in the counter electrode side substrate 11 or the sealing member 10, and the injection hole is sealed. Stop.

図3に示す複数個の積層体a〜cを並べた光電変換装置1aは、一組の透光性基板、対極側基板において複数個の光電変換素子部が独立に形成されており、それらを直列接続するか並列接続するかを自由に選択できるので、用途が拡がる。また、光電変換素子部を接続する接続リードを封止部材によって覆うことができるので、接続リードが電解質によって腐食されるのを防止でき、信頼性に優れるという効果がある。   In the photoelectric conversion device 1a in which a plurality of stacked bodies a to c shown in FIG. 3 are arranged, a plurality of photoelectric conversion element portions are independently formed on a pair of translucent substrate and counter electrode side substrate. Applications can be expanded because it is possible to freely select whether to connect in series or in parallel. Moreover, since the connection lead which connects a photoelectric conversion element part can be covered with a sealing member, it can prevent that a connection lead is corroded by electrolyte, and there exists an effect that it is excellent in reliability.

図6に積層型の光電変換装置1bを示す。この積層型の光電変換装置1bの製造方法は、図1に示す1つの光電変換装置1の製造方法と同じ手順を用いて製造できる。即ち、図1の光電変換装置1を製造した後、2個目の光電変換装置1について図2の工程を行うが、このとき2個目の光電変換装置1の透明樹脂層4を1個目の光電変換装置1の対極側基板11に接着する。なおこの場合、対極側基板11は透光性であることが必要である。こうして、2つの光電変換装置1を積層した積層型の光電変換装置1bを製造することができる。この製造方法を繰り返すことで、複数個の光電変換装置1を積層することができ、図3の光電変換装置1aと同様の効果を有する積層型の光電変換装置1bを製造することができる。   FIG. 6 shows a stacked photoelectric conversion device 1b. The manufacturing method of this stacked photoelectric conversion device 1b can be manufactured using the same procedure as the manufacturing method of one photoelectric conversion device 1 shown in FIG. That is, after manufacturing the photoelectric conversion device 1 of FIG. 1, the process of FIG. 2 is performed on the second photoelectric conversion device 1. At this time, the transparent resin layer 4 of the second photoelectric conversion device 1 is changed to the first one. It adheres to the counter electrode side substrate 11 of the photoelectric conversion device 1. In this case, the counter electrode side substrate 11 needs to be translucent. In this way, a stacked photoelectric conversion device 1b in which two photoelectric conversion devices 1 are stacked can be manufactured. By repeating this manufacturing method, a plurality of photoelectric conversion devices 1 can be stacked, and a stacked photoelectric conversion device 1b having the same effect as the photoelectric conversion device 1a of FIG. 3 can be manufactured.

また、光電変換装置1を複数個積層して成る積層型の光電変換装置1bの製造方法によれば、上記の製造方法を繰り返すことにより、光作用極側基板11の材料や厚みを自由に選択することができる。つまり、多孔質酸化物半導体層7の焼結温度に耐えられない樹脂等からなる、融点が低く低コストでフレキシブルな光作用極側基板11を用いることができ、その結果変換効率が高く軽くて曲げられる低コストの積層型の光電変換装置1bが実現でき、用途が拡がるという効果がある。   In addition, according to the manufacturing method of the stacked photoelectric conversion device 1b formed by stacking a plurality of photoelectric conversion devices 1, the material and thickness of the photoactive electrode side substrate 11 can be freely selected by repeating the above manufacturing method. can do. That is, it is possible to use the flexible working electrode side substrate 11 made of a resin that cannot withstand the sintering temperature of the porous oxide semiconductor layer 7 and having a low melting point and a low cost, resulting in high conversion efficiency and light weight. A low-cost stacked photoelectric conversion device 1b that can be bent can be realized, and the application can be expanded.

ここで、光電変換装置1の電気的な接続構造について説明する。図5に示す断面図は、図1,図3に示すA−A´線断面およびB−B´線断面を左右に分けて示した図である。図5より、A−A´線断面において集電極3と触媒導電層12の端の一部が封止部材10より外部に引き出されていることが分かる。この外部に引き出されている部位で電気的な接続を行うことができる。隣接した光電変換装置1や積層体との接続もこの部位で行うことができる。また、この接続部位を接続後に封止部材10によって封止するのがよい。   Here, an electrical connection structure of the photoelectric conversion device 1 will be described. The cross-sectional view shown in FIG. 5 is a view in which the cross-sections taken along the lines AA ′ and BB ′ shown in FIGS. From FIG. 5, it can be seen that a part of the ends of the collector electrode 3 and the catalyst conductive layer 12 are drawn out from the sealing member 10 in the cross section along the line AA ′. Electrical connection can be made at the part drawn out to the outside. Connection with the adjacent photoelectric conversion device 1 and the laminated body can also be performed at this part. Moreover, it is good to seal this connection site | part with the sealing member 10 after connecting.

次に、上述した光電変換装置1を構成する各要素について詳細に説明する。   Next, each element which comprises the photoelectric conversion apparatus 1 mentioned above is demonstrated in detail.

<支持体>
可撓性の支持体13としては、上記のように主成分がアルミニウムの箔もしくはシートが、汎用的に入手でき良い。他に、亜鉛,チタン,鉄,ステンレス,銀,銅,ニッケル等、あるいはこれらの合金等を箔もしくはシート状に形成したものが利用できる。
<Support>
As the flexible support 13, a foil or sheet whose main component is aluminum as described above is generally available. In addition, zinc, titanium, iron, stainless steel, silver, copper, nickel, etc., or alloys thereof formed in foil or sheet form can be used.

この支持体13の厚みは10μm〜0.3mm(300μm)がよく、より好ましくは10μm〜100μmがよい。支持体13の厚みが0.3mmを超えると、化学的にエッチング除去するのが困難となり、フレキシブル性も無くなって引き剥がしによる除去もできない。支持体13の厚みが10μm未満になると、必要な面積を有して箔状として形成することが強度的に困難となり、従って引き剥がし法で支持体13を除去することができなくなる。市販のアルミホイルは、厚みが15μm〜20μmで具合がよく、化学的エッチングによる除去も引き剥がし法による除去も可能である。   The thickness of the support 13 is preferably 10 μm to 0.3 mm (300 μm), more preferably 10 μm to 100 μm. If the thickness of the support 13 exceeds 0.3 mm, it will be difficult to chemically remove it, the flexibility will be lost, and removal by peeling will not be possible. If the thickness of the support 13 is less than 10 μm, it becomes difficult in terms of strength to form a foil having a required area, and therefore the support 13 cannot be removed by a peeling method. Commercially available aluminum foil has a thickness of 15 μm to 20 μm, and can be removed by chemical etching or peeling.

支持体13の他の材料として、耐熱性の樹脂フィルムでもよい。例えば、ポリイミドフィルムは耐熱性があり、厚みも10μm〜0.3mmとすることができ、薄くて可撓性に優れた支持体13が得られる。また、ポリイミドフィルム製の支持体13は、化学的エッチング除去も可能であるが、強度があるため引き剥がし法による除去を行う方が具合がよい。   Another material of the support 13 may be a heat resistant resin film. For example, the polyimide film has heat resistance and can have a thickness of 10 μm to 0.3 mm, and the support 13 that is thin and excellent in flexibility can be obtained. The support 13 made of polyimide film can be removed by chemical etching, but since it has strength, it is better to remove it by the peeling method.

<多孔質酸化物半導体層>
多孔質酸化物半導体層7としては、二酸化チタン等の微粒子から成る多孔質のn型の金属酸化物等がよい。
<Porous oxide semiconductor layer>
The porous oxide semiconductor layer 7 is preferably a porous n-type metal oxide composed of fine particles such as titanium dioxide.

n型の多孔質酸化物半導体層7の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の酸化物からなる金属酸化物半導体がよく、また窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P),アルミニウム(Al)等の非金属元素の1種以上を含有していてもよい。酸化チタン等の金属酸化物半導体は、いずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり好ましい。また、多孔質酸化物半導体層7としては、電子エネルギー準位においてその伝導帯が色素の伝導帯よりも低いn型半導体がよい。 The material and composition of the n-type porous oxide semiconductor layer 7 is optimally titanium oxide (TiO 2 ), and other materials include titanium (Ti), zinc (Zn), tin (Sn), and niobium. (Nb), indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium (V), a metal oxide semiconductor composed of at least one oxide of a metal element such as tungsten (W) is preferable, and nitrogen (N), carbon (C), fluorine (F), sulfur (S), You may contain 1 or more types of nonmetallic elements, such as chlorine (Cl), phosphorus (P), and aluminum (Al). Metal oxide semiconductors such as titanium oxide are all preferable because their electronic energy band gap is in the range of 2 to 5 eV, which is larger than the energy of visible light. The porous oxide semiconductor layer 7 is preferably an n-type semiconductor whose conduction band is lower than the conduction band of the dye at the electron energy level.

多孔質酸化物半導体層7は、粒状体、または針状体,チューブ状体,柱状体等の線状体、またはこれら種々の線状体が集合してなるものであって多孔質体であることにより、色素を担持する表面積が増えて変換効率を高めることができる。また多孔質酸化物半導体層7は、その表面積が大きくなりかつ電気抵抗が小さくなる形状がよく、上記のように微細粒子もしくは微細線状体からなるのがよい。その平均粒径もしくは平均線径は5〜500nmがよく、より好適には10〜200nmがよい。平均粒径もしくは平均線径の5〜500nmにおける下限値は、これ未満になると材料の微細化ができず、上限値は、これを超えると接合面積が小さくなり光電流が著しく小さくなる。   The porous oxide semiconductor layer 7 is a porous body that is a granular body, or a linear body such as a needle-shaped body, a tubular body, or a columnar body, or a collection of these various linear bodies. As a result, the surface area for supporting the dye increases and the conversion efficiency can be increased. The porous oxide semiconductor layer 7 has a shape that increases its surface area and decreases electrical resistance, and is preferably composed of fine particles or fine linear bodies as described above. The average particle diameter or average wire diameter is preferably 5 to 500 nm, and more preferably 10 to 200 nm. If the lower limit of the average particle diameter or the average wire diameter in the range of 5 to 500 nm is less than this, the material cannot be miniaturized, and if the upper limit exceeds this, the junction area is reduced and the photocurrent is significantly reduced.

多孔質酸化物半導体層7は、空孔率が20〜80%、より好適には40〜60%の多孔質体であるのがよい。多孔質化により光作用極である多孔質酸化物半導体層7の表面積を、緻密質である場合の1000倍以上に高めることができ、光吸収と光電変換(発電)と電子伝導を効率よく行なうことができる。また、多孔質酸化物半導体層7を多孔質体とすることにより、これに色素を担持させて成る色素増感型光電変換体の表面が凹凸状となり、光閉じ込め効果をもたらして、変換効率をより高めることができる。   The porous oxide semiconductor layer 7 may be a porous body having a porosity of 20 to 80%, more preferably 40 to 60%. The surface area of the porous oxide semiconductor layer 7 that is a light working electrode can be increased by 1000 times or more as compared with the case of being dense, and the light absorption, photoelectric conversion (power generation), and electron conduction can be performed efficiently. be able to. In addition, by forming the porous oxide semiconductor layer 7 as a porous body, the surface of the dye-sensitized photoelectric conversion body in which the dye is supported becomes uneven, thereby providing a light confinement effect and improving the conversion efficiency. Can be increased.

また、多孔質酸化物半導体層7の厚みは0.1〜50μmがよく、より好適には1〜20μmがよい。ここで、0.1〜50μmにおける下限値は、これより膜みが小さくなると光電変換作用が著しく小さくなって実用に適さず、上限値は、これを超えて厚みが厚くなると光が透過しなくなって光が入射しなくなるからである。   The thickness of the porous oxide semiconductor layer 7 is preferably 0.1 to 50 μm, more preferably 1 to 20 μm. Here, the lower limit value at 0.1 to 50 μm is not suitable for practical use because the photoelectric conversion action is remarkably reduced when the film thickness is smaller than this, and the upper limit value is not suitable for practical use. This is because no light enters.

酸化チタンからなる多孔質酸化物半導体層7は以下のようにして製造される。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストをドクターブレード法やバーコート法等で支持体上に一定の速度で塗布し、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質酸化物半導体層7を形成する。この手法は簡便であり、これらの温度に耐え得る支持体13上に形成でき、変換効率等の特性がよいものが得られる。 The porous oxide semiconductor layer 7 made of titanium oxide is manufactured as follows. First, acetylacetone is added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste is applied onto a support at a constant speed by a doctor blade method, a bar coating method, or the like, and is 300 to 600 ° C., preferably 400 to 500 ° C., preferably 10 to 60 minutes, preferably 20 in the atmosphere. The porous oxide semiconductor layer 7 is formed by heat treatment for ˜40 minutes. This method is simple and can be formed on the support 13 that can withstand these temperatures, and a material having good characteristics such as conversion efficiency can be obtained.

また、多孔質酸化物半導体層7の表面をTiCl処理、即ちTiCl溶液に10時間浸漬し、水洗し、450℃で30分間焼成する処理を行うとよく、電子電導性がよくなって変換効率が高まる。 Further, the surface of the porous oxide semiconductor layer 7 may be treated with TiCl 4 treatment, that is, immersed in a TiCl 4 solution for 10 hours, washed with water, and baked at 450 ° C. for 30 minutes, resulting in improved electronic conductivity and conversion. Increases efficiency.

また、多孔質酸化物半導体層7と透明導電層5との間に、極薄のn型酸化物半導体の緻密層を挿入するとよく、逆電流が抑制できるので変換効率が高まる。   In addition, an ultrathin n-type oxide semiconductor dense layer may be inserted between the porous oxide semiconductor layer 7 and the transparent conductive layer 5, and the reverse current can be suppressed, so that the conversion efficiency is increased.

また、n型の多孔質酸化物半導体層7の代わりに、無機のp型の多孔質酸化物半導体層7でもよく、その場合、CoO,NiO,FeO,Bi,MoO,MoS,Cr、SrCu,CaO−Al等がよい。また、無機のp型の多孔質化合物半導体としては、一価の銅を含むCuI,CuInSe,CuO,CuSCN,CuS,CuInS,CuAlO,CuAlO,CuAlSe,CuGaO,CuGaS,CuGaSe等、また、GaP,GaAs,Si,Ge,SiC等がよい。 Further, instead of the n-type porous oxide semiconductor layer 7, an inorganic p-type porous oxide semiconductor layer 7 may be used. In that case, CoO, NiO, FeO, Bi 2 O 3 , MoO 2 , MoS 2 , Cr 2 O 3 , SrCu 2 O 2 , CaO—Al 2 O 3 and the like are preferable. As the p-type porous compound semiconductor of inorganic, CuI containing monovalent copper, CuInSe 2, Cu 2 O, CuSCN, CuS, CuInS 2, CuAlO, CuAlO 2, CuAlSe 2, CuGaO 2, CuGaS 2, CuGaSe 2 or the like, or GaP, GaAs, Si, Ge, SiC, or the like is preferable.

また、極薄の緻密な酸化物半導体層を多孔質酸化物半導体層7と透明導電層5との間に設けると逆電流が抑止できて変換効率が高まる。極薄の緻密な酸化物半導体膜は、スパッタリング法、真空蒸着法、ゾルゲル法、スプレー熱分解法などで形成できる。   In addition, when an extremely thin dense oxide semiconductor layer is provided between the porous oxide semiconductor layer 7 and the transparent conductive layer 5, a reverse current can be suppressed and conversion efficiency is increased. An extremely thin dense oxide semiconductor film can be formed by a sputtering method, a vacuum evaporation method, a sol-gel method, a spray pyrolysis method, or the like.

<透明導電層>
透明導電層5としては、低温成長法であるスパッタリング法やスプレー熱分解法で形成した、スズドープ酸化インジウム膜(ITO膜),不純物ドープの酸化インジウム膜(In膜),不純物ドープの酸化スズ膜(SnO)等がよく、これらを積層して用いてもよい。他に、溶液成長法で形成した不純物ドープ(Ga,Al等)の酸化亜鉛膜(ZnO膜)等がよい。また、熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)等を用いてもよい。これらの膜の他の製膜法として、真空蒸着法、イオンプレーティング法、ディップコート法、ゾル・ゲル法等がある。これらの成長膜の結晶化等によって入射光の波長オーダーの表面凹凸を形成すると、光閉じ込め効果があってなおよい。また、他の材料の透明導電層5として、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の薄い金属膜でもよい。
<Transparent conductive layer>
As the transparent conductive layer 5, a tin-doped indium oxide film (ITO film), an impurity-doped indium oxide film (In 2 O 3 film), an impurity-doped oxidation film formed by sputtering or spray pyrolysis, which are low-temperature growth methods. A tin film (SnO 2 ) or the like is good, and these may be laminated and used. In addition, an impurity-doped (Ga, Al, etc.) zinc oxide film (ZnO film) formed by a solution growth method is preferable. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. Other film forming methods of these films include a vacuum deposition method, an ion plating method, a dip coating method, and a sol-gel method. If surface irregularities in the order of the wavelength of incident light are formed by crystallization of these growth films, etc., there is still a light confinement effect. Further, as the transparent conductive layer 5 made of another material, a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method may be used.

<集電極>
集電極3としては、銀,アルミニウム,ニッケル,銅,錫,カーボン等の導電粒子と有機マトリックスであるエポキシ樹脂等と硬化剤等とから成る導電性ペーストが利用できる。これらのなかでは、AgペーストやAlペーストが特によく、低温焼成用ペースト、高温焼成用ペーストのいずれにも利用できる。
<Collecting electrode>
As the collector electrode 3, a conductive paste made of conductive particles such as silver, aluminum, nickel, copper, tin, and carbon, an epoxy resin that is an organic matrix, and a curing agent can be used. Among these, Ag paste and Al paste are particularly good and can be used for both low temperature baking paste and high temperature baking paste.

また、集電極に電線を用いてもよく、集電極内に電線を設けてもよく、集電極を電線の集合体で形成してもよい。電線の接着にはAgペーストや半田などを用いるのがよい。   Moreover, an electric wire may be used for the collector electrode, an electric wire may be provided in the collector electrode, and the collector electrode may be formed of an aggregate of electric wires. It is preferable to use Ag paste or solder for bonding the electric wires.

<透明樹脂層>
透明樹脂層4としては、吸湿防止機能を有し充分な接着強度を有するものがよく、エチレン酢酸ビニル共重合樹脂(EVA),ポリビニルブチラール(PVB),エチレン−アクリル酸エチル共重合体(EEA),フッ素樹脂,エポキシ樹脂,アクリル樹脂,飽和ポリエステル樹脂,アミノ樹脂,フェノール樹脂,ポリアミドイミド樹脂,UV硬化樹脂,シリコーン樹脂,ウレタン樹脂,シリコンポリエステル樹脂,高耐候性ポリエステル樹脂,ポリ塩化ビニル樹脂等がよい。
<Transparent resin layer>
The transparent resin layer 4 preferably has a moisture absorption preventing function and sufficient adhesive strength, such as ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral (PVB), ethylene-ethyl acrylate copolymer (EEA). , Fluorine resin, epoxy resin, acrylic resin, saturated polyester resin, amino resin, phenol resin, polyamideimide resin, UV curable resin, silicone resin, urethane resin, silicone polyester resin, high weather resistance polyester resin, polyvinyl chloride resin, etc. Good.

この透明樹脂層4は、透光性基板2と積層体(多孔質酸化物半導体層7及び透明導電層5)との接着を担っており、透明導電層5とともに電解質9が外部に漏ないようにしたり、外部環境から光電変換機能を保護するために設ける。   This transparent resin layer 4 is responsible for adhesion between the translucent substrate 2 and the laminate (the porous oxide semiconductor layer 7 and the transparent conductive layer 5), so that the electrolyte 9 together with the transparent conductive layer 5 does not leak outside. Or provided to protect the photoelectric conversion function from the external environment.

透明樹脂層4の厚みは0.1μm〜6mm、好ましくは1μm〜2mmがよい。また、樹脂中への各種添加物の混入等の処理によって、防眩性,遮熱性,耐熱性,低汚染性,抗菌性,防かび性,意匠性,高加工性,耐摩耗性,滑雪性,帯電防止性,遠赤外線放射性,耐酸性,耐食性,環境対応性等を透明樹脂層に付与することにより、信頼性や商品性をより高めることができる。   The thickness of the transparent resin layer 4 is 0.1 μm to 6 mm, preferably 1 μm to 2 mm. In addition, anti-glare, heat-shielding, heat resistance, low contamination, antibacterial, anti-fungal, design, high workability, wear resistance, snow-sliding properties due to the treatment of various additives mixed into the resin. By imparting anti-static properties, far-infrared radiation properties, acid resistance, corrosion resistance, environmental compatibility, and the like to the transparent resin layer, reliability and merchantability can be further improved.

また、透明樹脂層4を充分な機械的強度を有する厚みとなるように塗布することで、支持機能を有する透光性基板2の役割を担うことができ、このときには対極側基板11にも支持機能が存在するので、個別の透光性基板2は不必要であり、基板が1枚で済むことになる。また、複数個の積層体を集積化するには、電気的な結線を透明樹脂層4及び封止部材10によって覆い封じることで信頼性の高い光電変換装置1が得られる。   In addition, by applying the transparent resin layer 4 so as to have a thickness having sufficient mechanical strength, it can serve as the translucent substrate 2 having a supporting function. At this time, the transparent resin layer 4 is also supported by the counter electrode side substrate 11. Since the function exists, the individual translucent substrate 2 is unnecessary, and only one substrate is required. Further, in order to integrate a plurality of stacked bodies, the electrical connection is covered and sealed with the transparent resin layer 4 and the sealing member 10 to obtain the highly reliable photoelectric conversion device 1.

<透光性基板>
透光性基板2の材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),接着性フッ素樹脂,ポリカーボネート,ポリエステル,ポリエチレン,ポリプロピレン,シリコン,ポリイミド等からなる樹脂シートが軽量で折り曲げ可能であり、用途によっては商品価値が高い。
<Translucent substrate>
As a material for the translucent substrate 2, a resin sheet made of PET (polyethylene terephthalate), PEN (polyethylene naphthalate), adhesive fluororesin, polycarbonate, polyester, polyethylene, polypropylene, silicon, polyimide, etc. is lightweight and can be bent. Yes, depending on the application, the product value is high.

また、耐候性に優れ信頼性の高い材料としては、白板ガラス,ソーダガラス,硼珪酸ガラス等の各種ガラス,セラミックス等の無機質基板、有機無機ハイブリッド基板等がよい。   Further, as a material having excellent weather resistance and high reliability, various kinds of glass such as white plate glass, soda glass, borosilicate glass, inorganic substrates such as ceramics, and organic-inorganic hybrid substrates are preferable.

また、透光性基板2の光入射側の表面に反射防止膜を形成すると入射光量が増えてよい。また、透光性基板2の表面は平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面とすることで防眩性や光閉じ込め効果があってなおよい。   Further, when an antireflection film is formed on the light incident side surface of the translucent substrate 2, the amount of incident light may be increased. Further, the surface of the translucent substrate 2 may be flat, but the surface having irregularities in the order of the wavelength of incident light may have an antiglare property and a light confinement effect.

<色素>
増感色素である色素6としては、例えば、ルテニウム−トリス,ルテニウム−ビス,オスミウム−トリス,オスミウム−ビス型の遷移金属錯体、多核錯体、ルテニウム−シス−ジアクア−ビピリジル錯体、フタロシアニンやポルフィリン、多環芳香族化合物、ローダミンB等のキサンテン系色素であることが好ましい。
<Dye>
Examples of the sensitizing dye 6 include, for example, ruthenium-tris, ruthenium-bis, osmium-tris, osmium-bis type transition metal complexes, polynuclear complexes, ruthenium-cis-diaqua-bipyridyl complexes, phthalocyanines, porphyrins, many Xanthene dyes such as ring aromatic compounds and rhodamine B are preferred.

多孔質酸化物半導体層7に色素6を吸着させるためには、色素6に少なくとも1個以上のカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基を置換基として有することが有効である。ここで、置換基は色素6自身を多孔質酸化物半導体層7に強固に化学吸着することができ、励起状態の色素6から多孔質酸化物半導体層7へ容易に電荷移動できるものであればよい。   In order to adsorb the dye 6 to the porous oxide semiconductor layer 7, the dye 6 has at least one carboxyl group, sulfonyl group, hydroxamic acid group, alkoxy group, aryl group, phosphoryl group as a substituent. It is valid. Here, the substituent is not particularly limited as long as it can strongly chemisorb the dye 6 itself to the porous oxide semiconductor layer 7 and can easily transfer charges from the excited dye 6 to the porous oxide semiconductor layer 7. Good.

多孔質酸化物半導体層7に色素6を吸着させる方法としては、上記の方法が採用できる。具体的には、図2,図4に示すように支持体を除去した後に、透光性基板2および透明樹脂層4上に顕になった多孔質酸化物半導体層7だけを、色素6を溶解した溶液に浸漬する方法が挙げられる。色素6を溶解させるために用いる溶媒は、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の色素6濃度は5×10−5〜2×10−3mol/l(リットル:1000cm)程度が好ましい。 As a method for adsorbing the dye 6 to the porous oxide semiconductor layer 7, the above method can be adopted. Specifically, as shown in FIGS. 2 and 4, after removing the support, only the porous oxide semiconductor layer 7 exposed on the translucent substrate 2 and the transparent resin layer 4 is coated with the dye 6. The method of immersing in the melt | dissolved solution is mentioned. Examples of the solvent used for dissolving the dye 6 include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like. The concentration of the dye 6 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (liter: 1000 cm 3 ).

透光性基板2もしくは厚い透明樹脂層4上に顕になった多孔質酸化物半導体層7を、色素6を溶解した溶液に浸漬する際、溶液及び雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下、室温の条件が挙げられ、また浸漬時間は色素6及び溶液の種類、溶液の濃度等により適宜調整できる。これにより、色素6を多孔質酸化物半導体層7に吸着させることができる。   When immersing the porous oxide semiconductor layer 7 exposed on the translucent substrate 2 or the thick transparent resin layer 4 in a solution in which the pigment 6 is dissolved, the temperature conditions of the solution and the atmosphere are not particularly limited. For example, the conditions of atmospheric pressure and room temperature can be mentioned, and the immersion time can be appropriately adjusted depending on the type of the dye 6, the solution, the concentration of the solution, and the like. Thereby, the dye 6 can be adsorbed to the porous oxide semiconductor layer 7.

<対極側基板及び触媒導電層>
対極側基板11としては、絶縁性基板上に触媒導電層12を形成したものがよく、触媒導電層12は導電層12xと触媒層12yとを積層したものがよい。また、対極側基板11は導電性基板でもよく、この場合導電層12aは不要であり、触媒層12yのみでよい。
<Counter electrode side substrate and catalyst conductive layer>
As the counter electrode side substrate 11, a substrate in which a catalyst conductive layer 12 is formed on an insulating substrate is preferable, and the catalyst conductive layer 12 is preferably a laminate of a conductive layer 12 x and a catalyst layer 12 y. Further, the counter electrode side substrate 11 may be a conductive substrate. In this case, the conductive layer 12a is unnecessary, and only the catalyst layer 12y is required.

複数個の積層構造体を1枚の対極側基板11に集積化する場合、絶縁基板上に触媒導電層12を形成したものがよい。即ち、各積層構造体を電気的に絶縁し、自由に集積化できるので好都合である。   When a plurality of laminated structures are integrated on one counter electrode side substrate 11, it is preferable that the catalyst conductive layer 12 be formed on the insulating substrate. That is, it is convenient because each laminated structure can be electrically insulated and freely integrated.

また、対極側基板11は、透光性基板、非透光性基板のいずれであってもよい。対極側基板11が透光性基板である場合、両面から光を入射させて変換効率を高めることができる。また、シースルー型の太陽電池等が得られる。   Further, the counter electrode side substrate 11 may be either a translucent substrate or a non-translucent substrate. When the counter electrode side substrate 11 is a translucent substrate, it is possible to increase the conversion efficiency by making light incident from both sides. Further, a see-through solar cell or the like can be obtained.

また、対極側基板11の表面や導電層12xの表面は平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面とすることで光閉じ込め効果を有するものとなり、変換効率が高まる。   Further, the surface of the counter electrode side substrate 11 and the surface of the conductive layer 12x may be flat. However, by using a surface having irregularities in the order of the wavelength of incident light, it has a light confinement effect, and conversion efficiency is increased.

対極側基板11が透光性の絶縁基板から成る場合、その透光性の絶縁基板の材料としては、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド,ポリカーボネート等の樹脂材料、白板ガラス,ソーダガラス,硼珪酸ガラス等の各種ガラス、セラミックス等の無機材料、有機無機ハイブリッド材料等がよい。本発明では、耐熱性に劣るが軽量化と折り曲げが可能となって、しかも高い変換効率が得られる透光性のPET等の絶縁基板が最も好ましい。   When the counter electrode side substrate 11 is made of a translucent insulating substrate, the material of the translucent insulating substrate is a resin material such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polycarbonate, white plate glass, etc. Various kinds of glass such as soda glass and borosilicate glass, inorganic materials such as ceramics, and organic-inorganic hybrid materials are preferable. In the present invention, an insulating substrate such as translucent PET, which is inferior in heat resistance but can be reduced in weight and bent, and can obtain high conversion efficiency, is most preferable.

対極側基板11が非透光性の絶縁基板から成る場合、その非透光性の絶縁基板としては、着色した樹脂、着色ガラス、セラミックス等の無機基板、有機無機ハイブリッド基板等がある。これらの基板の表面に、入射光の波長オーダーの凹凸を形成すると光閉じ込め効果があってなおよい。これらの基板の厚みは、機械的強度の点で0.005mm〜5mm、好ましくは0.01mm〜2mmがよい。   When the counter electrode side substrate 11 is made of a non-translucent insulating substrate, the non-translucent insulating substrate includes an inorganic substrate such as colored resin, colored glass, and ceramics, and an organic-inorganic hybrid substrate. Forming irregularities in the order of the wavelength of incident light on the surface of these substrates may further provide a light confinement effect. The thickness of these substrates is 0.005 mm to 5 mm, preferably 0.01 mm to 2 mm in terms of mechanical strength.

導電層12xとしては、透光性、非透光性のいずれの層も用途に応じて利用できる。透光性の導電層12xとしては、低温膜成長法のスパッタリング法や低温スプレー熱分解法で形成した、スズドープ酸化インジウム膜(ITO膜),不純物ドープの酸化インジウム膜(In膜),不純物ドープの酸化スズ膜(SnO膜),不純物ドープの酸化亜鉛膜(ZnO膜)等がよい。また、熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)等は低コストでよい。また、Ti層,ITO層,Ti層を順次積層した密着性を高めた積層体でもよい。他には、簡便な溶液成長法で形成した不純物ドープの酸化亜鉛膜(ZnO膜)等でもよい。 As the conductive layer 12x, any of a light-transmitting layer and a non-light-transmitting layer can be used depending on the application. As the translucent conductive layer 12x, a tin-doped indium oxide film (ITO film), an impurity-doped indium oxide film (In 2 O 3 film), formed by a sputtering method of a low-temperature film growth method or a low-temperature spray pyrolysis method, An impurity-doped tin oxide film (SnO 2 film), an impurity-doped zinc oxide film (ZnO film), or the like is preferable. Further, a fluorine-doped tin dioxide film (SnO 2 : F film) or the like formed by a thermal CVD method may be inexpensive. Moreover, the laminated body which improved the adhesiveness which laminated | stacked Ti layer, ITO layer, and Ti layer one by one may be sufficient. In addition, an impurity-doped zinc oxide film (ZnO film) formed by a simple solution growth method may be used.

これらの膜の他の成膜法として、真空蒸着法、イオンプレーティング法、ディップコート法、ゾルゲル法等がある。これらの成膜法によって入射光の波長オーダーの表面凹凸を導電層12xに形成すると光閉じ込め効果があってなおよい。また、真空蒸着法やスパッタリング法等で形成した透光性を有するAu,Pd,Al等の薄い金属膜でもよい。透光性導電層の厚みは、高い導電性と高い光透過性の点で0.001〜10μm、好ましくは0.05〜2.0μmがよい。   As other film forming methods of these films, there are a vacuum deposition method, an ion plating method, a dip coating method, a sol-gel method, and the like. If the surface irregularities of the wavelength order of incident light are formed on the conductive layer 12x by these film forming methods, there is still a light confinement effect. Further, a thin metal film such as light-transmitting Au, Pd, or Al formed by vacuum vapor deposition or sputtering may be used. The thickness of the translucent conductive layer is 0.001 to 10 μm, preferably 0.05 to 2.0 μm from the viewpoint of high conductivity and high light transmittance.

非透光性の導電層12xとしては、チタン,ステンレススチール,アルミニウム,銀,銅,金,ニッケル等からなるものがよい。また、カーボンや金属の微粒子や微細線を含浸させた樹脂、導電性樹脂等でもよい。光反射性の非透光性の導電層12xとしては、アルミニウム,銀,銅,ニッケル,チタン,ステンレススチール等の光沢のある金属薄膜を単独で形成したもの、あるいは電解質9による腐食防止のために透光性の導電層12xを光沢のある金属薄膜上に被覆したものがよい。   The non-translucent conductive layer 12x is preferably made of titanium, stainless steel, aluminum, silver, copper, gold, nickel, or the like. Further, a resin or conductive resin impregnated with fine particles or fine wires of carbon or metal may be used. For the light-reflective non-transparent conductive layer 12x, a thin metallic thin film such as aluminum, silver, copper, nickel, titanium, stainless steel or the like, or for preventing corrosion by the electrolyte 9 What coated the translucent conductive layer 12x on the glossy metal thin film is good.

対極側基板11及び導電層12xとして導電性基板だけから成るものとしてもよく、この導電性基板としては、金属シートを単独で用いるのがよく、チタン,ステンレススチール,アルミニウム,銀,銅,ニッケル等からなるものがよい。また、カーボンや金属の微粒子や微細線を含浸させた樹脂、導電性樹脂等からなるものでもよい。この導電性基板の厚みは0.01mm〜5mm、好ましくは0.5mm〜3mmがよい。   The counter electrode substrate 11 and the conductive layer 12x may be composed of only a conductive substrate. As the conductive substrate, a metal sheet may be used alone, such as titanium, stainless steel, aluminum, silver, copper, nickel, etc. The thing which consists of is good. Further, it may be made of a resin or conductive resin impregnated with fine particles or fine wires of carbon or metal. The thickness of this conductive substrate is 0.01 mm to 5 mm, preferably 0.5 mm to 3 mm.

光反射性の支持体である対極側基板11としては、アルミニウム,銀,銅,ニッケル,チタン,ステンレススチール等の光沢のある金属薄板を単独で用いるか、あるいは電解質9による腐食防止のために透光性導電膜(ITO膜,SnO:F膜,ZnO:Al膜等)を光沢のある金属板上に被覆したものがよい。透光性導電膜の厚みは0.001μm〜10μm、好ましくは0.05μm〜2μmがよい。 As the counter electrode side substrate 11 which is a light-reflecting support, a glossy metal thin plate such as aluminum, silver, copper, nickel, titanium, stainless steel or the like is used alone, or transparent to prevent corrosion by the electrolyte 9. A photoconductive film (ITO film, SnO 2 : F film, ZnO: Al film, etc.) coated on a glossy metal plate is preferable. The thickness of the translucent conductive film is 0.001 μm to 10 μm, preferably 0.05 μm to 2 μm.

また、これらの支持体上に、Ti層,Al層,Ti層を順次積層した密着性を高めた積層体、Ti層,Ag層,Ti層を順次積層した密着性を高めた積層体等からなる光反射層を形成するのがよく、さらに電解質9による腐食防止のためにこれらの積層体上に透光性導電膜を被覆したものがよい。   Further, on these supports, a Ti layer, an Al layer, a Ti layer are sequentially laminated, a laminated body with improved adhesion, a Ti layer, an Ag layer, a Ti layer are laminated in order, and a laminated body with enhanced adhesion, etc. It is preferable to form a light reflecting layer, and to cover these laminates with a light-transmitting conductive film in order to prevent corrosion by the electrolyte 9.

これらの透光性の導電層12a、光反射層は、真空蒸着法,イオンプレーティング法,スパッタリング法,電解析出法等で形成できる。   These light-transmitting conductive layers 12a and light reflecting layers can be formed by vacuum deposition, ion plating, sputtering, electrolytic deposition, or the like.

<触媒層>
触媒層12yとしては、白金,カーボン等の極薄膜がよい。他に、金(Au),パラジウム(Pd),アルミニウム(Al)等の極薄膜を電析したものが挙げられる。また、触媒層12yの表面を凹凸化したり、触媒層12yを多孔質化することにより、表面積が増えて変換効率が高まる。
<Catalyst layer>
As the catalyst layer 12y, an ultrathin film of platinum, carbon or the like is preferable. In addition, an electrodeposited ultrathin film such as gold (Au), palladium (Pd), and aluminum (Al) can be used. Further, by making the surface of the catalyst layer 12y uneven or making the catalyst layer 12y porous, the surface area increases and the conversion efficiency increases.

<電解質>
電解質9としては、電解質溶液,ゲル電解質,固体電解質等のイオン伝導性の電解質、有機正孔輸送剤等が挙げられる。
<Electrolyte>
Examples of the electrolyte 9 include an ion conductive electrolyte such as an electrolyte solution, a gel electrolyte, and a solid electrolyte, and an organic hole transport agent.

電解質溶液としては、第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては、例えば炭酸エチレン,アセトニトリルまたはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合し調製したものを用いることができる。   As the electrolyte solution, a quaternary ammonium salt, a Li salt, or the like is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing tetrapropylammonium iodide, lithium iodide, iodine or the like with ethylene carbonate, acetonitrile, methoxypropionitrile, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルに分けられる。化学ゲルは、架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル,エチレンカーボネート,プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を多孔質酸化物半導体層に含有させ、加熱、紫外線照射、電子線照射等の手段で二次元、三次元の架橋反応を起こさせることによってゲル化または固体化できる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature by a physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide into acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When a gel electrolyte or solid electrolyte is used, a low-viscosity precursor is contained in the porous oxide semiconductor layer, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド,ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩をもつ固体電解質が好ましい。ヨウ化物の溶融塩としては、イミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide or polyethylene having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

なお、電解質9中にスペーサを設けてもよい。スペーサとしては、電解質に不活性な各種の高分子等の有機物、ガラスやセラミック等の無機物等からなるものが、粒子状とされて電解質9中に分散混合されたり、粒子状や繊維状のものを結着させて多孔質体状として用いるのがよく、広い面積で隙間を制御できて具合がよい。   A spacer may be provided in the electrolyte 9. As the spacer, an organic substance such as various polymers that are inert to the electrolyte, an inorganic substance such as glass or ceramic, etc., is made into particles and dispersed and mixed in the electrolyte 9, or particles or fibers. Is preferably used as a porous body, and the gap can be controlled over a wide area, and the condition is good.

<封止部材>
封止部材10は、電解質9が外部に漏れるのを防ぎ、また電解質9の厚みを保持するための機械的強度を補強し、さらに外部環境から光電変換機能を保護するために設ける。
<Sealing member>
The sealing member 10 is provided to prevent the electrolyte 9 from leaking to the outside, to reinforce the mechanical strength for maintaining the thickness of the electrolyte 9, and to protect the photoelectric conversion function from the external environment.

封止部材10の材料としては、吸湿防止機能を有し充分な接着強度を有するものがよく、エチレン酢酸ビニル共重合樹脂(EVA),ポリビニルブチラール(PVB),エチレン−アクリル酸エチル共重合体(EEA),フッ素樹脂,エポキシ樹脂,アクリル樹脂,飽和ポリエステル樹脂,アミノ樹脂,フェノール樹脂,ポリアミドイミド樹脂,UV硬化樹脂,シリコーン樹脂,フッ素樹脂,ウレタン樹脂等がよい。   The material of the sealing member 10 is preferably a material having a moisture absorption preventing function and sufficient adhesive strength, such as ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral (PVB), ethylene-ethyl acrylate copolymer ( EEA), fluorine resin, epoxy resin, acrylic resin, saturated polyester resin, amino resin, phenol resin, polyamideimide resin, UV curable resin, silicone resin, fluorine resin, urethane resin and the like are preferable.

また、本発明の光電変換装置1は、その用途として太陽電池に限定されるものではなく、光電変換機能を有するものであれば適用でき、各種受光素子や光センサ等にも適用可能である。   Moreover, the photoelectric conversion apparatus 1 of this invention is not limited to a solar cell as the use, It can apply if it has a photoelectric conversion function, and can also apply it to various light receiving elements, an optical sensor, etc.

また、上記光電変換装置1を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成した光発電装置とすることができる。即ち、上記光電変換装置1を1つ用いるか、または複数用いる場合には直列、並列または直並列に接続したものを発電手段として用い、この発電手段から直接直流負荷へ発電電力を供給するようにしてもよい。また、上記光発電手段をインバータ等の電力変換手段を介して発電電力を適当な交流電力に変換した後で、この発電電力を商用電源系統や各種の電気機器等の交流負荷に供給することが可能な発電装置としてもよい。さらに、このような発電装置を日当たりのよい建物に設置する等して、各種態様の太陽光発電システム等の光発電装置として利用することも可能であり、これにより高変換効率で耐久性のある光発電装置を提供することができる。   Moreover, it can be set as the photovoltaic power generation apparatus which used the said photoelectric conversion apparatus 1 as an electric power generation means, and supplied the electric power generated from this electric power generation means to load. In other words, when one or a plurality of the photoelectric conversion devices 1 are used, a series, parallel or series-parallel connection is used as a power generation means, and the generated power is directly supplied from this power generation means to the DC load. May be. In addition, after the photovoltaic power generation means converts the generated power into appropriate AC power via power conversion means such as an inverter, the generated power can be supplied to an AC load such as a commercial power system or various electric devices. It is good also as a possible electric power generating apparatus. Furthermore, it is also possible to use such a power generation device as a photovoltaic power generation device such as a solar power generation system of various aspects by installing it in a building with good sunlight, and thereby high conversion efficiency and durability. A photovoltaic device can be provided.

また、本発明の光発電装置は、上記本発明の光電変換装置1を発電手段として用い、発電手段の発電電力を負荷に供給するように成したことから、上記種々の効果により、変換効率が高まる、信頼性が高まる、用途が拡がる、製造が容易となり低コスト化が実現できる、という効果を有する。   Further, the photovoltaic power generation apparatus of the present invention uses the photoelectric conversion apparatus 1 of the present invention as a power generation means and supplies the generated power of the power generation means to a load. It has the effects of increasing the reliability, increasing the application, expanding the use, and facilitating the manufacturing and reducing the cost.

本発明を具体化した実施例1について以下に説明する。   A first embodiment embodying the present invention will be described below.

まず、可撓性の支持体として、厚み20μm、5cm角のアルミニウム箔を用いた。このアルミニウム箔を熱処理して表面を親水性とする前処理を行った。次に、この支持体上に二酸化チタンから成る多孔質酸化物半導体層を形成した。二酸化チタンから成る多孔質酸化物半導体層は以下のようにして形成した。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法で上記支持体上に一定の速度で塗布し、大気中で450℃で30分間焼成した。 First, an aluminum foil having a thickness of 20 μm and a 5 cm square was used as a flexible support. This aluminum foil was subjected to a heat treatment to make the surface hydrophilic. Next, a porous oxide semiconductor layer made of titanium dioxide was formed on the support. The porous oxide semiconductor layer made of titanium dioxide was formed as follows. First, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste was applied onto the support at a constant speed by a doctor blade method, and baked at 450 ° C. for 30 minutes in the air.

この多孔質酸化物半導体層上に、スパッタリング装置にて、ITOターゲット、Arガス,Oガス(10体積%)の混合ガスからなる雰囲気ガスを用いて、透明導電層としてのITO膜を約0.3μmの厚みで形成した。さらに、このITO膜上にAgペーストを塗布して加熱し、集電極となる線状パターンを形成した。 An ITO film as a transparent conductive layer is formed on the porous oxide semiconductor layer by using a sputtering apparatus and an atmosphere gas composed of a mixed gas of an ITO target, Ar gas, and O 2 gas (10 vol%). It was formed with a thickness of 3 μm. Further, an Ag paste was applied on the ITO film and heated to form a linear pattern serving as a collector electrode.

次に、透光性基板としてPETフィルムを用い、このPETフィルムの一主面に、EVA(エチレン酢酸ビニル共重合樹脂)からなる透明樹脂層を形成した。この透明樹脂層は、EVAシートをITO膜と透光性基板との間に挟み、加熱によるEVAシートの溶融、圧着充填、熱硬化、一次冷却、大気圧への開放、二次冷却からなる工程によって作製した。   Next, a PET film was used as a translucent substrate, and a transparent resin layer made of EVA (ethylene vinyl acetate copolymer resin) was formed on one main surface of the PET film. This transparent resin layer is a process comprising sandwiching an EVA sheet between an ITO film and a translucent substrate, melting the EVA sheet by heating, pressure bonding, thermosetting, primary cooling, opening to atmospheric pressure, and secondary cooling. It was produced by.

次に、可撓性の支持体としてのアルミニウム箔を引き剥がし法によりゆっくり除去した。次に、この顕になった多孔質酸化物半導体層を、色素(ソラロニクス・エスエー社製「N719」)を溶媒のアセトニトリルとt−ブタノール(容積比で1:1)に溶解させた色素溶液(0.3mモル/l)に、12時間浸漬して、色素を多孔質酸化物半導体層に担持させた。その後、多孔質酸化物半導体層をエタノールにて洗浄し乾燥させ、透光性基板、透明樹脂層、集電極、透明導電層、多孔質酸化物半導体層から成る光作用極側基板を作製した。   Next, the aluminum foil as a flexible support was slowly removed by a peeling method. Next, the resulting porous oxide semiconductor layer was prepared by dissolving a dye (Solaronics SA “N719”) in a solvent acetonitrile and t-butanol (1: 1 by volume) (1: 1 by volume). The dye was supported on the porous oxide semiconductor layer by immersing in 0.3 mmol / l) for 12 hours. Thereafter, the porous oxide semiconductor layer was washed with ethanol and dried to produce a light working electrode side substrate comprising a translucent substrate, a transparent resin layer, a collector electrode, a transparent conductive layer, and a porous oxide semiconductor layer.

次に、対極側基板用として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板を用いた。この透明導電層上に、触媒層としてのPt層をスパッタリング法で厚さ50nmに形成し、これを対極側基板とした。   Next, a glass substrate with a transparent conductive layer made of fluorine-doped tin oxide was used for the counter electrode side substrate. On this transparent conductive layer, a Pt layer as a catalyst layer was formed to a thickness of 50 nm by sputtering, and this was used as a counter electrode side substrate.

これらの光作用極側基板と対極側基板とを、多孔質酸化物半導体層と触媒層とが対向するように配置し、枠状に形成したオレフィン系樹脂(三井・デュポン ポリケミカル(株)製商品名「ハイミラン」)から成る封止部材を挟んで、両基板を押し付けで加熱し封止した。そして、予め開けておいた対極側基板の貫通孔を通して電解質を注入した。本実施例では、電解質は液体電解質である沃素(I)と沃化リチウム(LiI)とアセトニトリル溶液とを用いて作製した。 These optical working electrode side substrate and counter electrode side substrate are arranged so that the porous oxide semiconductor layer and the catalyst layer face each other, and are formed into a frame shape olefin resin (Mitsui / DuPont Polychemical Co., Ltd.) Both substrates were pressed and heated to be sealed with a sealing member composed of a trade name “HIMILAN” between them. And electrolyte was inject | poured through the through-hole of the counter electrode side board | substrate opened beforehand. In this example, the electrolyte was prepared using iodine (I 2 ), lithium iodide (LiI), and acetonitrile solution, which are liquid electrolytes.

こうして得られた光電変換装置の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率4.1%を示した。 When the photoelectric conversion characteristics of the photoelectric conversion device thus obtained were evaluated, the conversion efficiency was 4.1% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例においては、本発明の光電変換装置1が簡便に作製でき、しかも高い変換効率を実現することができた。   As described above, in this example, the photoelectric conversion device 1 of the present invention could be easily produced and high conversion efficiency could be realized.

本発明の実施例2について以下に説明する。   A second embodiment of the present invention will be described below.

可撓性の支持体として、表1に示すように厚みが6μm乃至400μm(0.4mm)の範囲で10種類アルミニウム箔を用いて、実施例1と同じ製造方法によって光電変換装置を作製した。なお、1種類のアルミニウム箔につき光電変換装置を5個作製して評価した。そして、評価項目4項目に対し、表1に示す結果を得た。

Figure 2007018909
As shown in Table 1, a photoelectric conversion device was manufactured by the same manufacturing method as in Example 1 using 10 types of aluminum foil in the range of 6 μm to 400 μm (0.4 mm) as shown in Table 1. In addition, five photoelectric conversion apparatuses were produced and evaluated for one type of aluminum foil. And the result shown in Table 1 was obtained with respect to 4 evaluation items.
Figure 2007018909

表1において、引っ張り強さとは、アルミニウム箔からなる支持体を、多孔質酸化物半導体層及び透明導電層からなる積層体から剥がす際の支持体の剥がれ強さを示し、×は支持体を積層体から剥がす際に光電変換装置の2個以上について支持体が途中で破れた場合、△は光電変換装置の1個について支持体が途中で破れた場合、○は光電変換装置の全てについて支持体が破れなかった場合をそれぞれ示す。   In Table 1, the tensile strength indicates the peeling strength of the support when the support made of aluminum foil is peeled off from the laminate made of the porous oxide semiconductor layer and the transparent conductive layer, and x is the laminate of the support. When the support is broken in the middle of two or more photoelectric conversion devices when peeled from the body, Δ is the support broken in the middle of one of the photoelectric conversion devices, ○ is the support for all of the photoelectric conversion devices Shows the cases where no breaks.

柔軟性とは、積層体にクラック等が生じるのを防ぐことができるような、アルミニウム箔からなる支持体が有する適度な柔軟性(可撓性)を示し、×は光電変換装置の製造中に2個以上のものについて積層体にクラックが生じた場合、△は光電変換装置の製造中に1個のものについてクラックが生じた場合、○は光電変換装置の製造中に全く積層体にクラックが生じなかった場合をそれぞれ示す。   Flexibility refers to moderate flexibility (flexibility) of a support made of an aluminum foil that can prevent cracks and the like from being generated in the laminate, and x indicates that the photoelectric conversion device is being manufactured. When a crack occurs in the laminate for two or more, Δ indicates that a crack occurs for one during the manufacture of the photoelectric conversion device, ○ indicates that there is no crack in the laminate during the manufacture of the photoelectric conversion device. The case where it did not occur is shown respectively.

サンドブラスト性とは、アルミニウム箔からなる支持体の表面をサンドブラスト法で凹凸を形成して、積層体から支持体を除去する際に凹凸を多孔質酸化物半導体層の表面に転写するに際して、支持体がサンドブラストの圧力に耐えられるかどうかを示し、×は凹凸の形成中に支持体の2個以上のものについて破損が生じた場合、△は凹凸の形成中に支持体の1個について破損が生じた場合、○は凹凸の形成中に全く破損が生じなかった場合をそれぞれ示す。   Sand blasting refers to the formation of irregularities on the surface of a support made of aluminum foil by sandblasting, and when removing the support from the laminate, the support is transferred to the surface of the porous oxide semiconductor layer. Indicates whether or not it can withstand the pressure of sandblasting, x indicates that damage has occurred on two or more of the supports during the formation of irregularities, and Δ indicates that damage has occurred on one of the supports during the formation of irregularities. In this case, ◯ indicates the case where no damage occurred during the formation of the unevenness.

多孔質酸化物半導体層(TiO層)の焼成後の反りとは、多孔質酸化物半導体層の焼成後に反り(1cm角で5mm程度の反り)が発生したか否かを示し、×は支持体上において多孔質酸化物半導体層を焼成し形成した際に光電変換装置の2個以上について多孔質酸化物半導体層に反りが発生した場合、△は光電変換装置の1個について多孔質酸化物半導体層に反りが発生した場合、○は光電変換装置の全てについて多孔質酸化物半導体層に反りが発生しなかった場合をそれぞれ示す。 The warpage after firing of the porous oxide semiconductor layer (TiO 2 layer) indicates whether or not warpage (warpage of about 5 mm at 1 cm square) occurred after firing of the porous oxide semiconductor layer, and × indicates support When warping occurs in the porous oxide semiconductor layer for two or more photoelectric conversion devices when the porous oxide semiconductor layer is baked and formed on the body, Δ indicates the porous oxide for one photoelectric conversion device. In the case where warpage occurs in the semiconductor layer, ◯ indicates the case where warpage does not occur in the porous oxide semiconductor layer for all of the photoelectric conversion devices.

表1の結果より、アルミニウム箔からなる支持体の厚みが10μm未満であると、引っ張り強さやTiO層の焼成後の反りなどが非常に悪く、逆に支持体の厚みが300μmを超えると、支持体の柔軟性が非常に悪く、従って支持体の厚みは10μm乃至300μm(0.3mm)がよいことが判った。 From the results of Table 1, when the thickness of the support made of aluminum foil is less than 10 μm, the tensile strength and the warp after firing of the TiO 2 layer are very bad. Conversely, when the thickness of the support exceeds 300 μm, It has been found that the flexibility of the support is very poor, and therefore the thickness of the support is preferably 10 μm to 300 μm (0.3 mm).

本発明の製造方法によって得られる光電変換装置について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the photoelectric conversion apparatus obtained by the manufacturing method of this invention. 本発明の製造方法の一工程について実施の形態の一例を示す光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which shows an example of embodiment about 1 process of the manufacturing method of this invention. 本発明の製造方法によって得られる光電変換装置について実施の形態の他例を示す断面図である。It is sectional drawing which shows the other example of embodiment about the photoelectric conversion apparatus obtained by the manufacturing method of this invention. 本発明の製造方法の一工程について実施の形態の他例を示す光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which shows the other example of embodiment about 1 process of the manufacturing method of this invention. 本発明の製造方法によって得られる光電変換装置について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the photoelectric conversion apparatus obtained by the manufacturing method of this invention. 本発明の製造方法によって得られる光電変換装置について実施の形態の他例を示す断面図である。It is sectional drawing which shows the other example of embodiment about the photoelectric conversion apparatus obtained by the manufacturing method of this invention.

符号の説明Explanation of symbols

1:光電変換装置
2:透光性基板
3:集電極
4:透明樹脂層
5:透明導電層
6:色素
7:多孔質酸化物半導体層
9:電解質
10:封止部材
11:対極側基板
12:触媒導電層(対極層)
13:支持体
1: Photoelectric conversion device 2: Translucent substrate 3: Collector electrode 4: Transparent resin layer 5: Transparent conductive layer 6: Dye 7: Porous oxide semiconductor layer 9: Electrolyte 10: Sealing member 11: Counter electrode side substrate 12 : Catalyst conductive layer (counter electrode layer)
13: Support

Claims (6)

可撓性の支持体の上面に、焼結形成された多孔質酸化物半導体層および透明導電層を順次積層して積層体を形成し、次に該積層体の前記透明導電層を透明樹脂層を介して透光性基板に接着し、次に前記積層体から前記支持体を除去し、次に前記多孔質酸化物半導体層に色素を担持させて前記積層体および前記透光性基板を光作用極側基板と成し、次に該光作用極側基板および一主面に対極層を有する対極側基板を、前記多孔質酸化物半導体層と前記対極層とが対向するように配置するとともに前記光作用極側基板および前記対極側基板の外周部を封止部材を介して封止し、前記多孔質酸化物半導体層と前記対極層との間の隙間に前記光作用極側基板,前記対極側基板および前記封止部材のいずれかに形成した貫通孔を通して電解質を注入することを特徴とする光電変換装置の製造方法。 A porous oxide semiconductor layer and a transparent conductive layer are sequentially laminated on the upper surface of the flexible support to form a laminate, and then the transparent conductive layer of the laminate is formed as a transparent resin layer. The substrate is then bonded to the light-transmitting substrate, and then the support is removed from the stacked body. Next, the porous oxide semiconductor layer is loaded with a dye to light the stacked body and the light-transmitting substrate. The working electrode side substrate is formed, and then the light working electrode side substrate and the counter electrode side substrate having a counter electrode layer on one main surface are arranged so that the porous oxide semiconductor layer and the counter electrode layer face each other. The outer periphery of the light working electrode side substrate and the counter electrode side substrate is sealed with a sealing member, and the light working electrode side substrate, the gap between the porous oxide semiconductor layer and the counter electrode layer, An electrolyte is injected through a through-hole formed in either the counter electrode side substrate or the sealing member. Process for producing a photovoltaic device comprising and. 前記積層体から前記支持体を除去する際に、前記支持体を前記積層体から剥がすことを特徴とする請求項1記載の光電変換装置の製造方法。 The method for producing a photoelectric conversion device according to claim 1, wherein the support is peeled off from the laminate when the support is removed from the laminate. 前記積層体から前記支持体を除去する際に、前記支持体をエッチングにより溶解し除去することを特徴とする請求項1記載の光電変換装置の製造方法。 The method for manufacturing a photoelectric conversion device according to claim 1, wherein when removing the support from the laminate, the support is dissolved and removed by etching. 前記積層体の前記透明導電層を透明樹脂層を介して透光性基板に接着する際に、前記透明導電層上に集電極を形成するとともに前記透明導電層上の前記集電極のない部位に前記透明樹脂層を形成することを特徴とする請求項1乃至3のいずれか記載の光電変換装置の製造方法。 When adhering the transparent conductive layer of the laminate to a translucent substrate through a transparent resin layer, a collector electrode is formed on the transparent conductive layer and at a portion without the collector electrode on the transparent conductive layer. The method for manufacturing a photoelectric conversion device according to claim 1, wherein the transparent resin layer is formed. 前記支持体の上面に予め多数の凹凸を形成しておき、前記積層体から前記支持体を除去する際に前記凹凸を前記多孔質酸化物半導体層の表面に転写することを特徴とする請求項1乃至4のいずれか記載の光電変換装置の製造方法。 A number of irregularities are formed in advance on the upper surface of the support, and the irregularities are transferred to the surface of the porous oxide semiconductor layer when the support is removed from the stacked body. The manufacturing method of the photoelectric conversion apparatus in any one of 1-4. 前記多孔質酸化物半導体層が酸化物半導体微粒子の焼結体から成り、前記酸化物半導体微粒子の粒径が前記支持体側から前記多孔質酸化物半導体層の厚み方向に向かって漸次小さくなるように形成することを特徴とする請求項1乃至5のいずれか記載の光電変換装置の製造方法。

The porous oxide semiconductor layer is made of a sintered body of oxide semiconductor fine particles, and the particle diameter of the oxide semiconductor fine particles gradually decreases from the support side toward the thickness direction of the porous oxide semiconductor layer. The method of manufacturing a photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is formed.

JP2005200108A 2005-07-08 2005-07-08 Manufacturing method for photoelectric conversion device Pending JP2007018909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200108A JP2007018909A (en) 2005-07-08 2005-07-08 Manufacturing method for photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200108A JP2007018909A (en) 2005-07-08 2005-07-08 Manufacturing method for photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2007018909A true JP2007018909A (en) 2007-01-25

Family

ID=37755890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200108A Pending JP2007018909A (en) 2005-07-08 2005-07-08 Manufacturing method for photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2007018909A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088503A (en) * 2007-09-14 2009-04-23 Mitsubishi Chemicals Corp Laminated cover substrate for solar cell, solar cell and method for manufacturing the laminated cover substrate for solar cell
WO2009133689A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2009133688A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2010182640A (en) * 2009-02-09 2010-08-19 Toda Kogyo Corp Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
WO2013002246A1 (en) * 2011-06-30 2013-01-03 株式会社フジクラ Dye-sensitized solar cell and method for manufacturing same
US9035171B2 (en) 2011-09-07 2015-05-19 Hyundai Motor Company Dye-sensitized solar cell
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
WO2020262164A1 (en) * 2019-06-26 2020-12-30 三桜工業株式会社 Heat-utilizing power generation module and thermal power generation device equipped with same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088503A (en) * 2007-09-14 2009-04-23 Mitsubishi Chemicals Corp Laminated cover substrate for solar cell, solar cell and method for manufacturing the laminated cover substrate for solar cell
JP2013070093A (en) * 2007-09-14 2013-04-18 Mitsubishi Chemicals Corp Laminate cover substrate for solar cell, solar cell, and method for manufacturing laminate cover substrate for solar cell
WO2009133689A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2009133688A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2009289735A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric conversion element, photoelectric conversion element manufactured thereby, manufacturing method for photoelectric conversion element module, and photoelectric conversion element module manufactured thereby
JP2009289736A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
AU2009241138B2 (en) * 2008-04-28 2012-02-02 Fujikura Ltd. Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2010182640A (en) * 2009-02-09 2010-08-19 Toda Kogyo Corp Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and manufacturing method for transparent conductive substrate
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
US10428431B2 (en) 2010-12-10 2019-10-01 Aquahydrex Pty Ltd Multi-layer water-splitting devices
WO2013002246A1 (en) * 2011-06-30 2013-01-03 株式会社フジクラ Dye-sensitized solar cell and method for manufacturing same
JP5627785B2 (en) * 2011-06-30 2014-11-19 株式会社フジクラ Dye-sensitized solar cell and method for producing the same
US9035171B2 (en) 2011-09-07 2015-05-19 Hyundai Motor Company Dye-sensitized solar cell
WO2020262164A1 (en) * 2019-06-26 2020-12-30 三桜工業株式会社 Heat-utilizing power generation module and thermal power generation device equipped with same
JP2021005649A (en) * 2019-06-26 2021-01-14 三桜工業株式会社 Power generation module utilizing heat and thermoelectric power generation device including the same

Similar Documents

Publication Publication Date Title
JP4856089B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP5678345B2 (en) Dye-sensitized solar cell and method for producing the same
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP2007280761A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device
KR20100091883A (en) Dye-sensitized photoelectric conversion device module and method for manufacturing the same, photoelectric conversion device module and method for manufacturing the same, and electronic device
JP5486996B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
JP2008251517A (en) Dye-sensitized solar cell module and method of manufacturing photo-electrode used in it
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2005285472A (en) Photoelectric conversion device
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP5078367B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2008176993A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic generator device
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP2009193911A (en) Dye-sensitized photoelectric conversion element and its manufacturing method, dye-sensitized photoelectric conversion element module and its manufacturing method, electronic device, and method for manufacturing porous silica film
JP2009009936A (en) Photoelectric conversion device
JP5324793B2 (en) Dye-sensitized solar cell
JP2008010237A (en) Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2007227260A (en) Photoelectric converter and photovoltaic generator
JP5127261B2 (en) Manufacturing method of photoelectric conversion module
JP5013741B2 (en) Photoelectric conversion device and photovoltaic power generation device
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
KR101896728B1 (en) Vertical electrical connection of photoelectrochemical cells