JP4901194B2 - PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE - Google Patents

PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE Download PDF

Info

Publication number
JP4901194B2
JP4901194B2 JP2005337010A JP2005337010A JP4901194B2 JP 4901194 B2 JP4901194 B2 JP 4901194B2 JP 2005337010 A JP2005337010 A JP 2005337010A JP 2005337010 A JP2005337010 A JP 2005337010A JP 4901194 B2 JP4901194 B2 JP 4901194B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
porous oxide
semiconductor layer
layer
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005337010A
Other languages
Japanese (ja)
Other versions
JP2007141764A (en
Inventor
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005337010A priority Critical patent/JP4901194B2/en
Publication of JP2007141764A publication Critical patent/JP2007141764A/en
Application granted granted Critical
Publication of JP4901194B2 publication Critical patent/JP4901194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、変換効率に優れた太陽電池や受光素子等の色素増感型の光電変換装置及びその製造方法並びに光発電装置に関する。   The present invention relates to a dye-sensitized photoelectric conversion device such as a solar cell or a light receiving element excellent in conversion efficiency, a manufacturing method thereof, and a photovoltaic device.

従来、光電変換装置の一種である色素増感型太陽電池は、その製造に際して真空装置を必要としないことから、低コストで低環境負荷型の太陽電池であると考えられ、活発に研究開発が行われている。   Conventionally, a dye-sensitized solar cell, which is a type of photoelectric conversion device, does not require a vacuum device for its production, so it is considered to be a low-cost, low-environmental load-type solar cell, and is actively researched and developed. Has been done.

この色素増感型太陽電池は、通常、導電性ガラス基板上に平均粒径20nm程度の酸化チタンの微粒子を450℃程度で焼結して得られる厚み10μm程度の多孔質酸化チタン層を設け、この多孔質酸化チタン層の酸化チタン粒子の表面に色素を単分子吸着させた光作用極層を形成した光作用極基板と、導電性ガラス基板上に白金やカーボンの対極層を形成した対極基板とを、多孔質酸化チタン層と対極層とを互いに対向させ、スペーサ兼封止材として枠状の熱可塑性樹脂シートを用い、ホットプレスにより両基板を貼り合わせ、これら基板間にヨウ素/ヨウ化物レドックス対を含む電解質溶液を注入して得られる。このようにして得られた太陽電池において、多孔質酸化物半導体層としての多孔質酸化チタン層に吸着した色素が照射された光エネルギーを吸収し、生成した電子は多孔質酸化物半導体層へ移動し、外部の負荷回路を経由して、対極層よりイオンとして電解質を移動し、色素に戻ることにより、電気エネルギーとして取り出される仕組みである(下記の非特許文献1参照)。   This dye-sensitized solar cell is usually provided with a porous titanium oxide layer having a thickness of about 10 μm obtained by sintering fine particles of titanium oxide having an average particle size of about 20 nm on a conductive glass substrate at about 450 ° C. A photoactive electrode substrate in which a single molecule of a dye is adsorbed on the surface of the titanium oxide particles of the porous titanium oxide layer, and a counter electrode substrate in which a platinum or carbon counter electrode layer is formed on a conductive glass substrate The porous titanium oxide layer and the counter electrode layer are opposed to each other, a frame-shaped thermoplastic resin sheet is used as a spacer and sealing material, and both substrates are bonded by hot pressing, and iodine / iodide is interposed between these substrates. It is obtained by injecting an electrolyte solution containing a redox couple. In the solar cell thus obtained, the dye adsorbed on the porous titanium oxide layer as the porous oxide semiconductor layer absorbs the irradiated light energy, and the generated electrons move to the porous oxide semiconductor layer. Then, the electrolyte is transferred as ions from the counter electrode layer via an external load circuit and returned to the pigment, thereby being taken out as electric energy (see Non-Patent Document 1 below).

しかし、この色素増感型太陽電池は、通常、単層の多孔質酸化物半導体層を用いるために、光電変換に寄与する光吸収量が小さく光透過量が大きくなり、高い光電変換効率(以下、変換効率ともいう)が得られないという問題があった。そこで、多孔質酸化物半導体層の裏面に光反射粒子層を設けた特許文献1の構成、多孔質酸化物半導体層を複数層としそれぞれ異なる微粒子サイズから成るものとしたり、一部の多孔質酸化物半導体層中に大きめの光散乱粒子を混合して散乱層としても機能するようにした特許文献2,3の構成がある。   However, since this dye-sensitized solar cell normally uses a single-layer porous oxide semiconductor layer, the amount of light absorption contributing to photoelectric conversion is small and the amount of light transmission is large. , Also referred to as conversion efficiency). Therefore, the configuration of Patent Document 1 in which a light-reflecting particle layer is provided on the back surface of the porous oxide semiconductor layer, the porous oxide semiconductor layer having a plurality of layers, each having a different fine particle size, There are configurations of Patent Documents 2 and 3 in which large light scattering particles are mixed in a physical semiconductor layer so as to function as a scattering layer.

特許文献1には、ガラス基板の裏面に電極が設けられ、その電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、その光吸収粒子層を含んで電極の下面に電解液部が設けられ、その電解液部の下面に対向電極が設けられた色素増感太陽電池において、電極と光吸収粒子層との間に高屈折材料薄膜が設けられると共に、光吸収粒子層の下面に粒径を制御した高屈折材料粒子を堆積させた光反射粒子層が設けられた色素増感太陽電池が記載されている。この構成により、従来の構造では半導体微粒子から成る光吸収粒子層を透過していた光のエネルギーの多くを、この光吸収粒子層に吸収させて閉じ込めることができるため、色素増感太陽電池のセルの出力電流を増やすことが可能になる。   In Patent Document 1, an electrode is provided on the back surface of a glass substrate, a light absorbing particle layer in which semiconductor fine particles adsorbing a dye are deposited is formed on the lower surface of the electrode, and the lower surface of the electrode includes the light absorbing particle layer. In the dye-sensitized solar cell in which the electrolyte portion is provided and the counter electrode is provided on the lower surface of the electrolyte portion, a highly refractive material thin film is provided between the electrode and the light absorbing particle layer, and the light absorbing particles A dye-sensitized solar cell is described in which a light-reflecting particle layer in which high refractive material particles having a controlled particle size are deposited is provided on the lower surface of the layer. With this configuration, most of the energy of light that has been transmitted through the light-absorbing particle layer composed of semiconductor fine particles in the conventional structure can be absorbed and confined in this light-absorbing particle layer. The output current can be increased.

特許文献2には、透明導電体層と、微粒子を積層して形成されたn型酸化物半導体電極と、このn型酸化物半導体電極上に吸着された色素と、この色素と接する電荷輸送層と、この電荷輸送層と接する対向電極とを具備する光電変換素子において、透明導電体層近傍の微粒子の平均粒径に比べて、電荷輸送層側の微粒子の平均粒径が大きい光電変換素子が記載されている。また、透明導電体層近傍の微粒子の平均粒径が5〜50nmであり、且つ電荷輸送層近傍の微粒子の平均粒径が30〜500nmである。また、透明導電体層側では光を散乱させることなく入射させる必要があるため、n型酸化物半導体電極を成す微粒子の粒径はできる限り小さいことが望ましい。一方、電荷輸送層側においては、電荷担体であるイオン等が色素近傍まで容易に拡散できるように、ポーラス体であるn型酸化物半導体電極内部の気孔径はできる限り大きいことが望ましい。この構成により、錯体色素でより多くの光吸収をさせるとともに、電荷輸送層中の電荷担体の拡散を容易にし、結果としてエネルギー変換効率を高めることができる。   Patent Document 2 discloses a transparent conductor layer, an n-type oxide semiconductor electrode formed by laminating fine particles, a dye adsorbed on the n-type oxide semiconductor electrode, and a charge transport layer in contact with the dye And a counter electrode in contact with the charge transport layer, the photoelectric conversion element having a larger average particle size of the fine particles on the charge transport layer side than the average particle size of the fine particles in the vicinity of the transparent conductor layer. Are listed. The average particle size of the fine particles near the transparent conductor layer is 5 to 50 nm, and the average particle size of the fine particles near the charge transport layer is 30 to 500 nm. Further, since it is necessary to make the light incident on the transparent conductor layer side without scattering, it is desirable that the particle diameter of the fine particles forming the n-type oxide semiconductor electrode be as small as possible. On the other hand, on the charge transport layer side, it is desirable that the pore diameter inside the n-type oxide semiconductor electrode, which is a porous body, is as large as possible so that ions as charge carriers can easily diffuse to the vicinity of the dye. With this configuration, more light can be absorbed by the complex dye, and the diffusion of charge carriers in the charge transport layer can be facilitated, resulting in an increase in energy conversion efficiency.

特許文献3の光電変換素子は、少なくとも色素の吸着した半導体微粒子膜の層と導電性支持体とを有する光電変換素子であって、半導体微粒子膜の層が光散乱性の異なる複数の層から成り、光の入射側に光散乱性の最も低い層が配される光電変換素子である。また、光散乱性の低い層は平均粒径5〜50nmの半導体微粒子から成り、光散乱性が高い層は少なくとも平均粒径100〜500nmの半導体微粒子を含有し、光散乱性が中程度の層は平均粒径100〜500nmの半導体微粒子と平均粒径5〜50nmの半導体微粒子の混合物を含有する。   The photoelectric conversion element of Patent Document 3 is a photoelectric conversion element having at least a layer of a semiconductor fine particle film on which a dye is adsorbed and a conductive support, and the layer of the semiconductor fine particle film is composed of a plurality of layers having different light scattering properties. A photoelectric conversion element in which a layer having the lowest light scattering property is disposed on the light incident side. Further, the layer having low light scattering property is composed of semiconductor fine particles having an average particle diameter of 5 to 50 nm, and the layer having high light scattering property contains at least semiconductor fine particles having an average particle size of 100 to 500 nm and has a medium light scattering property. Contains a mixture of semiconductor fine particles having an average particle diameter of 100 to 500 nm and semiconductor fine particles having an average particle diameter of 5 to 50 nm.

この特許文献3においては、感光層が膜厚方向に対して均質な単層構成の場合よりも、光の入射側は光散乱性が低く光が進むに従い光散乱性が高くなるような多層構成の場合の方が光の捕獲率が高く、ひいては変換効率が高い。   In Patent Document 3, the light-incident side has a low light scattering property and a light scattering property becomes higher as the light travels than in the case where the photosensitive layer has a uniform single layer structure in the film thickness direction. In the case of, the light capture rate is higher and the conversion efficiency is higher.

また、感光層の光散乱性は、用いる半導体微粒子の種類や粒子径、空隙率、または空隙のサイズによって調節することができる。このうち半導体微粒子の粒子径で調節するのが好ましい。   The light scattering property of the photosensitive layer can be adjusted by the type, particle diameter, porosity, or void size of the semiconductor fine particles used. Among these, it is preferable to adjust by the particle diameter of the semiconductor fine particles.

さらに、感光層が低散乱層と高散乱層の2層構成の場合、高散乱層の構成成分は単一の半導体微粒子を用いるよりも、2種以上の微粒子を混合したほうが好ましい。詳しくは高散乱層は平均粒径5〜50nmの半導体微粒子と、平均粒径100〜500nmの半導体微粒子とを混合した場合が、特に好ましい。このとき、大きい方の半導体微粒子の含有率は10〜90重量%が好ましく、10〜50重量%がより好ましい。   Furthermore, when the photosensitive layer has a two-layer structure of a low scattering layer and a high scattering layer, it is preferable to mix two or more kinds of fine particles as constituents of the high scattering layer rather than using a single semiconductor fine particle. Specifically, the high scattering layer is particularly preferably a mixture of semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm. At this time, the content of the larger semiconductor fine particles is preferably 10 to 90% by weight, and more preferably 10 to 50% by weight.

さらに、低散乱層、中散乱層、高散乱層の3層構成の場合、中散乱層は単一の半導体微粒子を用いるよりも、2種以上の微粒子を混合したほうが好ましい。詳しくは中散乱層は、平均粒径5〜50nmの半導体微粒子と平均粒径100〜500nmの半導体微粒子とを混合した場合が、特に好ましい。このとき大きい方の半導体微粒子の含有率は5〜70重量%が好ましく、10〜50重量%がより好ましい。   Furthermore, in the case of a three-layer structure of a low scattering layer, a medium scattering layer, and a high scattering layer, it is preferable that two or more kinds of fine particles are mixed in the medium scattering layer rather than using a single semiconductor fine particle. Specifically, the medium scattering layer is particularly preferably a mixture of semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm. At this time, the content of the larger semiconductor fine particles is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.

さらに、4層以上の場合では、低光散乱層側から高光散乱層に向かって光散乱率が上昇して行く組成が望ましい。高散乱層は、平均粒径100〜500nmの単一の半導体微粒子であっても、2種以上の半導体微粒子を混合したものであっても良い。高散乱層が、平均粒径5〜50nmの半導体微粒子と平均粒径100〜500nmの半導体微粒子との混合物から成る場合、その混合比率は、大きい方の半導体微粒子の含有率が30〜100重量%であるのが好ましく、50〜100重量%がより好ましい。また、大きい方の半導体粒子の含有率は中散乱層よりも大きい。   Further, in the case of four or more layers, a composition in which the light scattering rate increases from the low light scattering layer side toward the high light scattering layer is desirable. The high scattering layer may be a single semiconductor fine particle having an average particle diameter of 100 to 500 nm or a mixture of two or more kinds of semiconductor fine particles. When the high scattering layer is composed of a mixture of semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm, the mixing ratio is such that the content of the larger semiconductor fine particles is 30 to 100% by weight. It is preferable that it is 50 to 100 weight%. Moreover, the content rate of the larger semiconductor particle is larger than that of the middle scattering layer.

感光層に用いる増感色素は、光電変換の波長域をできるだけ広くし、かつ変換効率を上げるため、2種類以上の色素を併用または混合することができる。この場合、目的とする光源の波長域と強度分布に合わせるように、併用または混合する色素とその割合を選ぶことができる。そして、特許文献3には、従来よりも変換効率の改善された色素増感光電変換素子が得られたと記載されている。
特開平10−255863号公報 特開2001−93591号公報 特開2002−222968号公報 (株)情報機構発行「色素増感太陽電池及び太陽電池の最前線と将来展望」P26−P27
The sensitizing dye used in the photosensitive layer can be used in combination or mixed with two or more kinds of dyes in order to make the wavelength range of photoelectric conversion as wide as possible and increase the conversion efficiency. In this case, the dye to be used or mixed and the ratio thereof can be selected so as to match the wavelength range and intensity distribution of the target light source. Patent Document 3 describes that a dye-sensitized photoelectric conversion element having improved conversion efficiency than the conventional one is obtained.
JP-A-10-255863 JP 2001-93591 A JP 2002-222968 A Published by Information Technology Co., Ltd. “Frontiers and Future Prospects of Dye-Sensitized Solar Cells and Solar Cells” P26-P27

従来の色素増感型太陽電池のように、単層の多孔質酸化物半導体層を用いたのでは光の利用効率が低く、高い変換効率が得られないという問題点があった。そこで、多孔質酸化物半導体層の裏面に光反射粒子層を設けた特許文献1の構成や、多孔質酸化物半導体層を複数層としそれぞれ異なる微粒子サイズから成るものとしたり、一部の多孔質酸化物半導体層に大きめの光散乱粒子を混合して散乱層としても機能させた特許文献2,3の構成があったが、下記のような問題点がそれぞれあった。   When a single porous oxide semiconductor layer is used as in a conventional dye-sensitized solar cell, there is a problem in that light use efficiency is low and high conversion efficiency cannot be obtained. Therefore, the configuration of Patent Document 1 in which a light-reflecting particle layer is provided on the back surface of the porous oxide semiconductor layer, a plurality of porous oxide semiconductor layers having different fine particle sizes, Although there existed the structure of the patent documents 2 and 3 which mixed the large light-scattering particle | grains with the oxide semiconductor layer and made it function also as a scattering layer, there existed the following problems, respectively.

特許文献1の太陽電池は以下のような問題点があった。光反射粒子層は、粒径が約200〜500nmの例えば酸化チタン(ルチル)からなる高屈折材料粒子により構成され、この光反射粒子層の厚さは約5〜10μmが好ましいとしているが、このように大きな粒径の粒子を500℃程度で焼結させることは困難であり、膜形成ができず、また導電パスの抵抗が大きくて色素からの電流を効率よく取り出すことができない。また、焼結させるために温度を上げると、電極や透明導電層の電気抵抗が上がって、変換効率の低下を引き起こす。また、光反射粒子層の粒径が光吸収粒子層の粒径よりも1桁大きいので、粒子の表面積は100分の1となり、そのため吸着色素量が極めて少なく、ほとんど変換効率の向上に寄与しない。また、高屈折材料粒子からなる光反射粒子層の薄膜を設けることは、製造において工程が煩雑となり、またコストも上がる。   The solar cell of Patent Document 1 has the following problems. The light reflecting particle layer is composed of high refractive material particles made of, for example, titanium oxide (rutile) having a particle size of about 200 to 500 nm. The thickness of the light reflecting particle layer is preferably about 5 to 10 μm. Thus, it is difficult to sinter particles having such a large particle size at about 500 ° C., film formation cannot be performed, and the resistance of the conductive path is large, so that the current from the dye cannot be taken out efficiently. Further, when the temperature is raised for sintering, the electrical resistance of the electrode and the transparent conductive layer is increased, and the conversion efficiency is lowered. In addition, since the particle size of the light reflecting particle layer is an order of magnitude larger than the particle size of the light absorbing particle layer, the surface area of the particles becomes 1/100, so the amount of adsorbed dye is extremely small and hardly contributes to the improvement of the conversion efficiency. . In addition, providing a light-reflecting particle layer thin film made of highly refractive material particles complicates the manufacturing process and increases the cost.

特許文献2の光電変換装置は以下のような問題点があった。透明導電体層近傍の微粒子の平均粒径が5〜50nmであり、且つ電荷輸送層近傍の微粒子の平均粒径が30〜500nmでより大きいとしているが、このように大きな粒径の粒子を500℃程度で焼結させることは困難であり、膜形成ができず、また導電パスの抵抗が大きくて色素からの電流を効率よく取り出すことができない。また、焼結させるために温度を上げると、電極や透明導電体層の電気抵抗が上がって、変換効率の低下を引き起こす。また、小さな粒径の微粒子に大きな粒径の微粒子を混合した場合、分散が難しくなってペーストの調製が良好にできず、成膜のための塗布が困難になる。また、光反射粒子層の粒径が光吸収粒子層の粒径よりも1桁大きいので、粒子の表面積は100分の1となり、吸着色素量が極めて少なく、ほとんど変換効率の向上に寄与しない。また、色素が1種では広い吸収波長域の光を光電変換することができない。   The photoelectric conversion device of Patent Document 2 has the following problems. The average particle size of the fine particles in the vicinity of the transparent conductor layer is 5 to 50 nm, and the average particle size of the fine particles in the vicinity of the charge transport layer is 30 to 500 nm, which is larger. It is difficult to sinter at about 0 ° C., a film cannot be formed, and the resistance of the conductive path is so large that the current from the dye cannot be taken out efficiently. Further, when the temperature is raised for sintering, the electrical resistance of the electrode and the transparent conductor layer is increased, and the conversion efficiency is lowered. In addition, when fine particles with a large particle size are mixed with fine particles with a small particle size, dispersion becomes difficult and the paste cannot be prepared well, and coating for film formation becomes difficult. Further, since the particle size of the light reflecting particle layer is an order of magnitude larger than the particle size of the light absorbing particle layer, the surface area of the particles becomes 1/100, the amount of adsorbed dye is extremely small, and hardly contributes to the improvement of the conversion efficiency. In addition, it is not possible to photoelectrically convert light in a wide absorption wavelength range with one kind of dye.

特許文献3の光電変換素子では、感光層の光散乱性は、用いる半導体微粒子の種類や粒子径、空隙率または空隙のサイズによって調節することができ、このうち半導体微粒子の粒子径で調節するのが好ましいとしているが、以下のような問題点があった。即ち、平均粒径100〜500nmの半導体微粒子のように大きな粒径の粒子をペーストとして調製することは、分散性が低下して粒子が凝集しやすくなり、ペースト調製は困難であった。   In the photoelectric conversion element of Patent Document 3, the light scattering property of the photosensitive layer can be adjusted by the type, particle diameter, porosity, or void size of the semiconductor fine particles to be used. However, there were the following problems. That is, preparing a particle having a large particle size such as semiconductor fine particles having an average particle size of 100 to 500 nm as a paste is difficult to prepare the paste because the dispersibility is lowered and the particles are likely to aggregate.

また、平均粒径100〜500nmの半導体微粒子のように大きな粒径の粒子を500℃程度で焼結させることは困難であり、膜形成ができず、導電パスの抵抗が大きくて色素からの電流を効率よく取り出すことができない。また、焼結させるために温度を上げると、電極や透明導電層の電気抵抗が上がって、変換効率の低下を引き起こす。また、高光散乱層の粒径が低光散乱層の粒径よりも最大1桁大きいので、粒子の表面積は100分の1となり、吸着色素量が極めて少なく、ほとんど変換効率の向上に寄与しない。これらの問題点は、平均粒径5〜50nmの半導体微粒子と平均粒径100〜500nmの半導体微粒子とを混合することで少しは軽減されるが、これらの問題点は完全には解消されない。   In addition, it is difficult to sinter particles having a large particle size, such as semiconductor fine particles having an average particle size of 100 to 500 nm, at about 500 ° C., film formation is impossible, the resistance of the conductive path is large, and the current from the dye Cannot be taken out efficiently. Further, when the temperature is raised for sintering, the electrical resistance of the electrode and the transparent conductive layer is increased, and the conversion efficiency is lowered. Further, since the particle size of the high light scattering layer is one order of magnitude larger than the particle size of the low light scattering layer, the surface area of the particles is 1/100, the amount of adsorbed dye is extremely small, and hardly contributes to the improvement of the conversion efficiency. These problems are slightly reduced by mixing semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm, but these problems are not completely solved.

従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は以下のようなものである。   Therefore, the present invention has been completed in view of the above-mentioned problems in the prior art, and the object thereof is as follows.

(1)光出射側の多孔質酸化物半導体層に光散乱性を付与するに際して、光入射側の多孔質酸化物半導体層の半導体微粒子より平均粒径が大きい散乱粒子を用いることなく、光入射側の多孔質酸化物半導体層の半導体微粒子と同じ平均粒径の半導体微粒子を光出射側の多孔質酸化物半導体層にも用いることにより、上述した様々な問題点を解消すること。 (1) When light scattering property is imparted to the light emitting side porous oxide semiconductor layer, light incident is performed without using scattering particles having an average particle size larger than that of the semiconductor fine particles of the light incident side porous oxide semiconductor layer. The above-described various problems are solved by using semiconductor fine particles having the same average particle diameter as the semiconductor fine particles of the porous oxide semiconductor layer on the light emitting side for the porous oxide semiconductor layer on the light emitting side.

(2)平均粒径が小さい半導体微粒子を光出射側の多孔質酸化物半導体層に用いても、光出射側の多孔質酸化物半導体層に光散乱性を付与できるようにすること。 (2) Even when semiconductor fine particles having a small average particle diameter are used in the porous oxide semiconductor layer on the light emitting side, light scattering properties can be imparted to the porous oxide semiconductor layer on the light emitting side.

(3)焼成温度が光入射側の多孔質酸化物半導体層と光出射側の多孔質酸化物半導体層とで同じ低い温度で確実に焼成できること。 (3) The firing temperature can be surely fired at the same low temperature in the porous oxide semiconductor layer on the light incident side and the porous oxide semiconductor layer on the light exit side.

(4)光出射側の多孔質酸化物半導体層の生産性と信頼性を高め、且つその導電パスを確実にし、変換効率を高めること。 (4) To increase the productivity and reliability of the porous oxide semiconductor layer on the light emitting side, to ensure the conductive path, and to increase the conversion efficiency.

(5)光出射側の多孔質酸化物半導体層を形成しても、電極や透明導電層の電気抵抗が上がらないようにすること。 (5) Even when the light emitting side porous oxide semiconductor layer is formed, the electrical resistance of the electrode and the transparent conductive layer should not be increased.

(6)光出射側の多孔質酸化物半導体層を充分な多孔性を有する多孔質体として、大きな表面積を有するものとすることにより、色素の吸着量を増やし、より長波長側の光を変換効率に寄与させること。 (6) The porous oxide semiconductor layer on the light emitting side is made of a porous body having sufficient porosity, and has a large surface area, thereby increasing the amount of dye adsorbed and converting light on the longer wavelength side. To contribute to efficiency.

(7)光透過性の高い光入射側の多孔質酸化物半導体層の膜厚を厚くして、色素の吸着量を増やして変換効率を高め、光反射性の高い光出射側の多孔質酸化物半導体層の膜厚を薄くして、多孔質酸化物半導体層の電気抵抗の増加を抑制すること。 (7) Increasing the film thickness of the porous oxide semiconductor layer on the light incident side with high light transmittance, increasing the adsorption amount of the dye to increase the conversion efficiency, and porous oxidation on the light emitting side with high light reflectivity Reducing the electrical resistance of the porous oxide semiconductor layer by reducing the thickness of the physical semiconductor layer.

(8)平均粒径が小さい半導体微粒子を光出射側の多孔質酸化物半導体層に用いても、光出射側の多孔質酸化物半導体層に光散乱性を付与できる多孔質酸化物半導体層の製造方法を提供すること。 (8) A porous oxide semiconductor layer that can impart light scattering properties to a light emitting side porous oxide semiconductor layer even if semiconductor fine particles having a small average particle diameter are used in the light emitting side porous oxide semiconductor layer Providing a manufacturing method.

本発明の光電変換装置は、導電性基板上に色素を担持した多孔質酸化物半導体層及び電解質層が形成された色素増感型の光電変換装置において、前記多孔質酸化物半導体層は、複数層が積層されて成るとともに、光入射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さが光出射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の前記多孔質酸化物半導体層の厚みが光出射側の前記多孔質酸化物半導体層の厚みよりも厚いことを特徴とする。   The photoelectric conversion device of the present invention is a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer supporting a dye and an electrolyte layer are formed on a conductive substrate, wherein the porous oxide semiconductor layer includes a plurality of porous oxide semiconductor layers. And the arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light incident side or the surface of the fracture surface is a surface of the porous oxide semiconductor layer on the light emission side or the surface of the fracture surface. The thickness of the porous oxide semiconductor layer on the light incident side is smaller than the thickness of the porous oxide semiconductor layer on the light emitting side.

本発明の光電変換装置は好ましくは、複数層が積層されて成る前記多孔質酸化物半導体層は酸化物半導体微粒子の焼結体から成り、光出射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径が、光入射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径よりも大きいことを特徴とする。   In the photoelectric conversion device of the present invention, preferably, the porous oxide semiconductor layer formed by laminating a plurality of layers is made of a sintered body of oxide semiconductor fine particles, and forms the porous oxide semiconductor layer on the light emitting side. The average particle size of the sintered particles of the oxide semiconductor fine particles is larger than the average particle size of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side.

本発明の光電変換装置の製造方法は、導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成することを特徴とする。   A method for producing a photoelectric conversion device according to the present invention includes a porous oxide semiconductor layer formed of a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate and carries a dye, and an electrolyte layer In the method for producing a dye-sensitized photoelectric conversion device formed with a plurality of layers, an average particle size of primary particles before sintering of oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers Forming the porous oxide semiconductor layer with the same diameter and on the light incident side by applying and baking a colloidal liquid paste in which the dispersed phase is the primary particles of the oxide semiconductor fine particles and the dispersion medium is a liquid The porous oxide semiconductor layer on the light emitting side is formed by spraying and baking an aerosol obtained by adding a gas as a dispersion medium to the liquid paste.

また、本発明の光電変換装置の製造方法は、導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成することを特徴とする。   The method for producing a photoelectric conversion device of the present invention includes a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate and carrying a dye, and In the method for manufacturing a dye-sensitized photoelectric conversion device in which an electrolyte layer is formed, primary particles before sintering of oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers The porous oxide semiconductor layer on the light incident side having the same average particle diameter is coated with a colloidal liquid paste in which the dispersed phase is a primary particle of the oxide semiconductor fine particles and the dispersion medium is a liquid, and is fired. The porous oxide semiconductor layer on the light emission side is formed by applying and baking a liquid paste in which fine particles of an organic resin are added as a dispersed phase to the liquid paste.

また、本発明の光電変換装置の製造方法は、導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成することを特徴とする。   The method for producing a photoelectric conversion device of the present invention includes a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate and carrying a dye, and In the method for manufacturing a dye-sensitized photoelectric conversion device in which an electrolyte layer is formed, primary particles before sintering of oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers The porous oxide semiconductor layer on the light incident side having the same average particle diameter is coated with a colloidal liquid paste in which the dispersed phase is a primary particle of the oxide semiconductor fine particles and the dispersion medium is a liquid, and is fired. The porous oxide semiconductor layer on the light emission side is formed by spraying and baking an aerosol in which fine particles of an organic resin are added to the liquid paste as a dispersed phase and a gas is added as a dispersion medium. And wherein the Rukoto.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする。   The photovoltaic power generation device of the present invention is characterized in that the photoelectric conversion device of the present invention is used as a power generation means, and the generated power of the power generation means is supplied to a load.

本発明の光電変換装置は、導電性基板上に色素を担持した多孔質酸化物半導体層及び電解質層が形成された色素増感型の光電変換装置において、多孔質酸化物半導体層は、複数層が積層されて成るとともに、光入射側の多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さが光出射側の多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の多孔質酸化物半導体層の厚みが光出射側の多孔質酸化物半導体層の厚みよりも厚いことから、光入射側の多孔質酸化物半導体層は、短波長光(400〜600nm)をよく散乱して閉じ込めるが長波長光(600〜900nm)をよく透過させるものであり、長波長光が透過しやすいため厚く形成できる。よって、光入射側の多孔質酸化物半導体層が担持した色素によって、よく短波長光を吸収するとともに、算術平均粗さが小さいため表面積が大きくなり、色素の担持量が多くなるので、色素からの光電流を増やすことができる。   The photoelectric conversion device of the present invention is a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer supporting a dye and an electrolyte layer are formed on a conductive substrate, and the porous oxide semiconductor layer includes a plurality of layers. The arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light incident side or the surface of the fractured surface is the arithmetic average of the surface of the porous oxide semiconductor layer on the light output side or the surface of the fractured surface. Since the thickness of the porous oxide semiconductor layer on the light incident side is smaller than the roughness, and the thickness of the porous oxide semiconductor layer on the light output side is larger than that of the light incident side, the porous oxide semiconductor layer on the light incident side has a short wavelength. Light (400 to 600 nm) is well scattered and confined, but long wavelength light (600 to 900 nm) is well transmitted. Since long wavelength light is easily transmitted, it can be formed thick. Therefore, the dye carried by the porous oxide semiconductor layer on the light incident side absorbs short-wavelength light well, and since the arithmetic mean roughness is small, the surface area is increased, and the amount of dye carried increases. The photocurrent can be increased.

光出射側の多孔質酸化物半導体層は、その内部で長波長光を散乱して閉じ込めるものであり、薄く形成できるので導電パスの抵抗を小さくできる。よって、光出射側の多孔質酸化物半導体層に担持された色素によって長波長光をよく吸収して、色素からの光電流を増やすとともに、色素からの電流を低い抵抗で効率よく取り出すことができる。   The porous oxide semiconductor layer on the light emitting side scatters and confines long-wavelength light inside thereof and can be formed thin, so that the resistance of the conductive path can be reduced. Therefore, the long-wavelength light is well absorbed by the dye supported on the porous oxide semiconductor layer on the light emitting side, the photocurrent from the dye is increased, and the current from the dye can be efficiently extracted with low resistance. .

また好ましくは、光入射側及び光出射側の多孔質酸化物半導体層の中間に、さらに多孔質酸化物半導体層を設け、この中間の多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さを中間の大きさとすることにより、短波長光と長波長光との中間波長光(550〜650nm)を散乱して閉じ込めることができ、中間の多孔質酸化物半導体層に担持された色素によって中間波長光をよく吸収して、色素からの光電流を増やすことができる。   Preferably, a porous oxide semiconductor layer is further provided between the light incident side and light emitting side porous oxide semiconductor layers, and the surface of the intermediate porous oxide semiconductor layer or the surface of the fracture surface is arithmetically operated. By setting the average roughness to an intermediate size, the intermediate wavelength light (550 to 650 nm) of the short wavelength light and the long wavelength light can be scattered and confined and supported by the intermediate porous oxide semiconductor layer. The intermediate wavelength light is well absorbed by the dye, and the photocurrent from the dye can be increased.

また、導電性基板上に色素を担持した複数の多孔質酸化物半導体層を色素溶液に浸漬して光電変換装置を製造する場合、光入射側の多孔質酸化物半導体層よりも色素溶液側にある光出射側の多孔質酸化物半導体層の方が、表面または破断面の表面の算術平均粗さが大きいので、色素の光出射側及び光入射側の多孔質酸化物半導体層への浸透速度が早くなり、光入射側の多孔質酸化物半導体層まで確実に色素を吸着(着色)できる。   In addition, when a photoelectric conversion device is manufactured by immersing a plurality of porous oxide semiconductor layers carrying a dye on a conductive substrate in a dye solution, the dye solution side is closer to the porous oxide semiconductor layer on the light incident side. The porous oxide semiconductor layer on the light emitting side has a larger arithmetic average roughness on the surface or the surface of the fracture surface, so that the penetration rate of the dye into the porous oxide semiconductor layer on the light emitting side and light incident side As a result, the dye can be reliably adsorbed (colored) to the porous oxide semiconductor layer on the light incident side.

本発明の光電変換装置は好ましくは、複数層が積層されて成る多孔質酸化物半導体層は酸化物半導体微粒子の焼結体から成り、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径が、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きいことから、光入射側の多孔質酸化物半導体層は、短波長光(400〜600nm)をよく散乱して閉じ込めるが長波長光(600〜900nm)をよく透過させるものであり、長波長光が透過しやすいため厚く形成できる。よって、光入射側の多孔質酸化物半導体層が担持した色素によって、よく短波長光を吸収するとともに、算術平均粗さが小さいため表面積が大きくなり、色素の担持量が多くなるので、色素からの光電流を増やすことができる。   In the photoelectric conversion device of the present invention, preferably, the porous oxide semiconductor layer formed by laminating a plurality of layers is composed of a sintered body of oxide semiconductor fine particles, and the oxide semiconductor forming the porous oxide semiconductor layer on the light emission side Since the average particle size of the sintered particles of the fine particles is larger than the average particle size of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side, the porous oxide semiconductor on the light incident side The layer scatters and confines the short wavelength light (400 to 600 nm) well, but transmits the long wavelength light (600 to 900 nm) well, and the layer can be formed thick because it easily transmits the long wavelength light. Therefore, the dye carried by the porous oxide semiconductor layer on the light incident side absorbs short-wavelength light well, and since the arithmetic mean roughness is small, the surface area is increased, and the amount of dye carried increases. The photocurrent can be increased.

また、光入射側の多孔質酸化物半導体層も光出射側の多孔質酸化物半導体層も同じ粒径の酸化物半導体微粒子から成るので、焼結温度が低くてすみ、焼結温度が高いことによる電極や透明導電層の抵抗増加が無く、また製造工程が簡略となり製品の信頼性も高くなる。   Moreover, since the porous oxide semiconductor layer on the light incident side and the porous oxide semiconductor layer on the light output side are composed of oxide semiconductor fine particles having the same particle size, the sintering temperature can be low and the sintering temperature must be high. As a result, there is no increase in resistance of the electrode and the transparent conductive layer, and the manufacturing process is simplified and the reliability of the product is increased.

また、光出射側の多孔質酸化物半導体層の焼結粒子(二次粒子)が、一次粒子の凝集体が焼成されて成るので、多孔質体の空孔が大きくなり、色素の担持量が増えて光電流を増やすことができる。   In addition, since the sintered particles (secondary particles) of the porous oxide semiconductor layer on the light emitting side are formed by firing aggregates of primary particles, the pores of the porous body become larger, and the amount of dye supported is increased. It is possible to increase the photocurrent.

本発明の光電変換装置の製造方法は、導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層を、液体ペーストに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成することにより、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径を、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きくすることができるので、上記の優れた効果を有する光電変換装置を得ることができる。   A method for producing a photoelectric conversion device according to the present invention includes a porous oxide semiconductor layer formed of a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate and carries a dye, and an electrolyte layer In the method for producing a dye-sensitized photoelectric conversion device formed with a plurality of layers, an average particle size of primary particles before sintering of oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers A porous oxide semiconductor layer having the same diameter and a light incident side is formed by applying and baking a colloidal liquid paste in which a dispersed phase is a primary particle of oxide semiconductor fine particles and a dispersion medium is a liquid, The oxide semiconductor that forms the porous oxide semiconductor layer on the light emitting side by forming the porous oxide semiconductor layer on the light emitting side by spray-coating and baking an aerosol obtained by adding a gas as a dispersion medium to the liquid paste. Fine particles Since the average particle size of the sintered particles can be made larger than the average particle size of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side, the above-mentioned excellent effects are obtained. A photoelectric conversion device can be obtained.

また、本発明の光電変換装置の製造方法は、導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層を、液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成することにより、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径を、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きくすることができるので、上記の優れた効果を有する光電変換装置を得ることができる。   The method for producing a photoelectric conversion device of the present invention includes a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate and carrying a dye, and In the method for manufacturing a dye-sensitized photoelectric conversion device in which an electrolyte layer is formed, an average of primary particles before sintering of oxide semiconductor fine particles constituting each layer of a porous oxide semiconductor layer in which a plurality of layers are laminated A porous oxide semiconductor layer having the same particle size and having a light incident side is formed by applying and baking a colloidal liquid paste in which a dispersed phase is a primary particle of oxide semiconductor fine particles and a dispersion medium is a liquid. The porous oxide semiconductor layer on the light emitting side is formed by applying and baking a liquid paste in which fine particles of an organic resin are added as a dispersed phase to the liquid paste. Oxide half Since the average particle size of the sintered particles of the body fine particles can be made larger than the average particle size of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side, the above excellent effect Can be obtained.

また、本発明の光電変換装置の製造方法は、導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層を、液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成することにより、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径を、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きくすることができるので、上記の優れた効果を有する光電変換装置を得ることができる。   The method for producing a photoelectric conversion device of the present invention includes a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate and carrying a dye, and In the method for manufacturing a dye-sensitized photoelectric conversion device in which an electrolyte layer is formed, an average of primary particles before sintering of oxide semiconductor fine particles constituting each layer of a porous oxide semiconductor layer in which a plurality of layers are laminated A porous oxide semiconductor layer having the same particle size and having a light incident side is formed by applying and baking a colloidal liquid paste in which a dispersed phase is a primary particle of oxide semiconductor fine particles and a dispersion medium is a liquid. The light emitting side porous oxide semiconductor layer is formed by spraying and baking an aerosol in which fine particles of organic resin are added as a dispersed phase and gas is added as a dispersion medium to a liquid paste, and then fired. The average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the side is larger than the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. Since it can enlarge, the photoelectric conversion apparatus which has said outstanding effect can be obtained.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、発電手段の発電電力を負荷へ供給するように成したことにより、上記本発明の光電変換装置の作用効果である、光入射側の色素を担持した多孔質酸化物半導体層は短波長光をよく散乱し閉じ込めてよく吸収し、光出射側の色素を担持した多孔質酸化物半導体層は長波長光をよく散乱し閉じ込めてよく吸収し、光電流を増やして変換効率を高める、という作用効果を利用した、高変換効率を有する高信頼性の光発電装置となる。   The photovoltaic device of the present invention uses the photoelectric conversion device of the present invention as a power generation means, and supplies the generated power of the power generation means to a load. This is the operational effect of the photoelectric conversion device of the present invention. The porous oxide semiconductor layer carrying the light incident side dye scatters and absorbs short wavelength light well, and the porous oxide semiconductor layer carrying the light exit side dye scatters long wavelength light well. Then, it becomes a highly reliable photovoltaic device having high conversion efficiency utilizing the effect of confining and absorbing well, increasing the photocurrent and increasing the conversion efficiency.

本発明の光電変換装置、その製造方法及び光発電装置についての実施の形態を、図1及び図2に基づき以下に詳細に説明する。なお、各図において、同一部材には同一符号を付している。   DESCRIPTION OF EMBODIMENTS Embodiments of a photoelectric conversion device, a manufacturing method thereof, and a photovoltaic device of the present invention will be described below in detail with reference to FIGS. In addition, in each figure, the same code | symbol is attached | subjected to the same member.

本発明の光電変換装置の断面図を図1に示す。図1の光電変換装置1は、多孔質酸化物半導体層が2層から成るもので、導電性基板2上に形成された、色素(図示せず)を吸着した第1の多孔質酸化物半導体層3、色素を吸着した第2の多孔質酸化物半導体層4、電解質層7、対極8及び封止部9を具備した構成である。   A cross-sectional view of the photoelectric conversion device of the present invention is shown in FIG. The photoelectric conversion device 1 of FIG. 1 has a porous oxide semiconductor layer composed of two layers, and is a first porous oxide semiconductor formed on a conductive substrate 2 and adsorbing a dye (not shown). The layer 3 includes a second porous oxide semiconductor layer 4 that has adsorbed a dye, an electrolyte layer 7, a counter electrode 8, and a sealing portion 9.

即ち、本発明の光電変換装置1は、導電性基板2上に色素を担持した多孔質酸化物半導体層3,4及び電解質層7が形成された色素増感型の光電変換装置1において、多孔質酸化物半導体層3,4は、複数層が積層されて成るとともに、光入射側の多孔質酸化物半導体層3の表面または破断面の表面の算術平均粗さが光出射側の多孔質酸化物半導体層4の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の多孔質酸化物半導体層3の厚みが光出射側の多孔質酸化物半導体層4の厚みよりも厚い構成である。   That is, the photoelectric conversion device 1 according to the present invention is a dye-sensitized photoelectric conversion device 1 in which the porous oxide semiconductor layers 3 and 4 and the electrolyte layer 7 supporting a dye are formed on a conductive substrate 2. The porous oxide semiconductor layers 3 and 4 are formed by laminating a plurality of layers, and the arithmetic average roughness of the surface of the porous oxide semiconductor layer 3 on the light incident side or the surface of the fracture surface is porous oxidation on the light emitting side. The thickness of the porous oxide semiconductor layer 3 on the light incident side is smaller than the arithmetic mean roughness of the surface of the physical semiconductor layer 4 or the surface of the fracture surface, and the thickness of the porous oxide semiconductor layer 4 on the light emitting side is thicker It is.

本発明において、多孔質酸化物半導体層3,4の算術平均粗さについて、その表面(層の上面及び下面)、またはその破断面の算術平均粗さを、光入射側と光出射側とで大小関係を規定しているが、少なくとも多孔質酸化物半導体層3,4の表面の算術平均粗さが上記の大小関係になっていてもよい。即ち、光入射側の多孔質酸化物半導体層3の表面の算術平均粗さが、光出射側の多孔質酸化物半導体層4の表面の算術平均粗さよりも小さくなっていれば、当然に、光入射側の多孔質酸化物半導体層3の焼結表面に対応する破断面の表面の算術平均粗さが、光出射側の多孔質酸化物半導体層4の焼結表面に対応する破断面の表面の算術平均粗さよりも小さくなっていると考えられるからである。   In the present invention, regarding the arithmetic average roughness of the porous oxide semiconductor layers 3 and 4, the arithmetic average roughness of the surface (the upper surface and the lower surface of the layer) or the fracture surface thereof is determined between the light incident side and the light emitting side. Although the magnitude relation is defined, the arithmetic average roughness of at least the surfaces of the porous oxide semiconductor layers 3 and 4 may be the magnitude relation described above. That is, if the arithmetic average roughness of the surface of the porous oxide semiconductor layer 3 on the light incident side is smaller than the arithmetic average roughness of the surface of the porous oxide semiconductor layer 4 on the light emitting side, naturally, The arithmetic mean roughness of the surface of the fracture surface corresponding to the sintered surface of the porous oxide semiconductor layer 3 on the light incident side is that of the fracture surface corresponding to the sintered surface of the porous oxide semiconductor layer 4 on the light emission side. This is because it is considered to be smaller than the arithmetic average roughness of the surface.

また、多孔質酸化物半導体層3,4の表面または破断面の表面の算術平均粗さは、露出した表面である多孔質酸化物半導体層4の上面等を測定する場合、サーフテスト装置(触針式表面粗さ測定装置)、原子間力顕微鏡(AFM)等で測定することができる。また、多孔質酸化物半導体層3,4の破断面の表面を測定する場合、原子間力顕微鏡で測定することが好ましい。それは、多孔質酸化物半導体層3の膜厚は3〜25μm、より好適には6〜18μmであり、破断面の幅(膜厚)が狭く、数μmの範囲で測定可能な手段としては原子間力顕微鏡(AFM)が優れているからである。   Further, the arithmetic average roughness of the surface of the porous oxide semiconductor layers 3 and 4 or the surface of the fractured surface is determined by measuring the surface of the porous oxide semiconductor layer 4 which is an exposed surface, etc. It can be measured with a needle type surface roughness measuring device), an atomic force microscope (AFM) or the like. Moreover, when measuring the surface of the torn surface of the porous oxide semiconductor layers 3 and 4, it is preferable to measure with an atomic force microscope. The porous oxide semiconductor layer 3 has a film thickness of 3 to 25 μm, more preferably 6 to 18 μm. The width (thickness) of the fracture surface is narrow, and a means that can be measured within a range of several μm is an atom. This is because the atomic force microscope (AFM) is excellent.

図1の光電変換装置1の製造方法は、導電性基板2上に、第1の多孔質酸化物半導体層3を塗布形成して焼成し、次に第2の多孔質酸化物半導体層4を塗布形成して焼成し、次に色素溶液に導電性基板2を浸漬して多孔質酸化物半導体層に色素を吸着させ、次に対極8と導電性基板2の外周部を封止部9にて封止し、次に対極8と導電性基板2との間に電解質層7を注入して完成する。   In the method of manufacturing the photoelectric conversion device 1 in FIG. 1, the first porous oxide semiconductor layer 3 is applied and formed on the conductive substrate 2 and baked, and then the second porous oxide semiconductor layer 4 is formed. Then, the conductive substrate 2 is immersed in the dye solution to adsorb the dye to the porous oxide semiconductor layer, and then the outer periphery of the counter electrode 8 and the conductive substrate 2 is used as the sealing portion 9. Then, the electrolyte layer 7 is injected between the counter electrode 8 and the conductive substrate 2 to complete.

即ち、本発明の光電変換装置1の製造方法は、導電性基板2上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層3,4、及び電解質層7が形成された色素増感型の光電変換装置1の製造方法において、複数層が積層されて成る多孔質酸化物半導体層3,4の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層3を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層4を、液体ペーストに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成する構成である。   That is, in the method for manufacturing the photoelectric conversion device 1 of the present invention, a porous oxide semiconductor layer comprising a sintered body of oxide semiconductor fine particles, which is formed by laminating a plurality of layers on a conductive substrate 2 and carrying a dye. In the method for manufacturing the dye-sensitized photoelectric conversion device 1 in which the electrolyte layers 7 and 3 and the electrolyte layer 7 are formed, the oxide semiconductors that constitute each of the porous oxide semiconductor layers 3 and 4 in which a plurality of layers are laminated The average particle diameter of the primary particles before sintering of the fine particles is the same, the porous oxide semiconductor layer 3 on the light incident side is colloidal in which the dispersed phase is the primary particles of the oxide semiconductor fine particles and the dispersion medium is a liquid. The light emitting side porous oxide semiconductor layer 4 is formed by spraying and baking an aerosol in which a gas is added as a dispersion medium to the light paste.

また、本発明の光電変換装置の製造方法は、複数層が積層されて成る多孔質酸化物半導体層3,4の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層3を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層4を、液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成する構成である。   In the method for manufacturing a photoelectric conversion device of the present invention, the average particle size of primary particles before sintering of oxide semiconductor fine particles constituting each layer of porous oxide semiconductor layers 3 and 4 formed by laminating a plurality of layers is The light incident side porous oxide semiconductor layer 3 is formed by applying and baking a colloidal liquid paste in which the dispersed phase is the primary particles of oxide semiconductor fine particles and the dispersion medium is a liquid. The emission-side porous oxide semiconductor layer 4 is formed by applying and baking a liquid paste in which fine particles of an organic resin are added as a dispersed phase to the liquid paste.

また、本発明の光電変換装置の製造方法は、複数層が積層されて成る多孔質酸化物半導体層3,4の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層3を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層4を、液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成する構成である。   In the method for manufacturing a photoelectric conversion device of the present invention, the average particle size of primary particles before sintering of oxide semiconductor fine particles constituting each layer of porous oxide semiconductor layers 3 and 4 formed by laminating a plurality of layers is The light incident side porous oxide semiconductor layer 3 is formed by applying and baking a colloidal liquid paste in which the dispersed phase is the primary particles of oxide semiconductor fine particles and the dispersion medium is a liquid. The emission-side porous oxide semiconductor layer 4 is formed by spraying and baking an aerosol in which fine particles of an organic resin are added as a dispersed phase to a liquid paste and a gas is added as a dispersion medium.

ここで、第1の多孔質酸化物半導体層3の焼成を低温での仮焼成(乾燥)とし、次に第2の多孔質酸化物半導体層4を塗布形成してから、まとめて焼成してもよい。   Here, the firing of the first porous oxide semiconductor layer 3 is preliminarily fired (dried) at a low temperature, and then the second porous oxide semiconductor layer 4 is applied and formed, and then fired together. Also good.

本発明の光電変換装置について実施の形態の他例の断面図を図2に示す。図2の光電変換装置1は、多孔質酸化物半導体層が3層から成るもので、導電性基板2上に形成された、色素(図示せず)を吸着した第1の多孔質酸化物半導体層3、色素を吸着した第2の多孔質酸化物半導体層4、色素を吸着した第3の多孔質酸化物半導体層5、電解質層7、対極8、封止部9を具備した構成である。   FIG. 2 shows a cross-sectional view of another example of the embodiment of the photoelectric conversion device of the present invention. The photoelectric conversion device 1 shown in FIG. 2 has a porous oxide semiconductor layer composed of three layers, and is formed on a conductive substrate 2 and is a first porous oxide semiconductor adsorbing a dye (not shown). Layer 3, second porous oxide semiconductor layer 4 that adsorbs the dye, third porous oxide semiconductor layer 5 that adsorbs the dye, electrolyte layer 7, counter electrode 8, and sealing portion 9. .

図2の光電変換装置1の製造方法は、導電性基板2上に、第1の多孔質酸化物半導体層3を塗布形成して焼成し、次に第2の多孔質酸化物半導体層4を塗布形成して焼成し、次に第3の多孔質酸化物半導体層5を塗布形成して焼成し、次に色素溶液に導電性基板2を浸漬して多孔質酸化物半導体層3〜5に色素を吸着させ、次に対極8と導電性基板2の外周部を封止部9にて封止し、次に対極8と導電性基板2との間に電解質層7を注入して完成する。   2, the first porous oxide semiconductor layer 3 is applied and formed on the conductive substrate 2 and baked, and then the second porous oxide semiconductor layer 4 is formed. Coating and forming and baking, and then applying and baking the third porous oxide semiconductor layer 5, and then immersing the conductive substrate 2 in the dye solution to form the porous oxide semiconductor layers 3 to 5 The dye is adsorbed, and then the outer periphery of the counter electrode 8 and the conductive substrate 2 is sealed with the sealing portion 9, and then the electrolyte layer 7 is injected between the counter electrode 8 and the conductive substrate 2 to complete. .

次に、上述した光電変換装置1を構成する各要素について詳細に説明する。   Next, each element which comprises the photoelectric conversion apparatus 1 mentioned above is demonstrated in detail.

<導電性基板>
導電性基板2としては、透光性を有する基板2a上に透明導電層2bを設けたものがよい。この基板2aの材料としては、白板ガラス,ソーダガラス,硼珪酸ガラス等のガラス、セラミックス等の無機材料等が焼成温度に耐えられてよい。この基板2aの厚みは、機械的強度の点で0.05〜8mm、好ましくは0.2〜4mmがよい。
<Conductive substrate>
As the conductive substrate 2, a substrate having a transparent conductive layer 2b on a light-transmitting substrate 2a is preferable. As a material of the substrate 2a, glass such as white plate glass, soda glass, borosilicate glass, or an inorganic material such as ceramics may withstand the firing temperature. The thickness of the substrate 2a is 0.05 to 8 mm, preferably 0.2 to 4 mm in terms of mechanical strength.

透明導電層2bとしては、弗素や金属をドープした金属酸化物の透明導電層が用いられる。例えば、不純物(F,Sb等)ドープの酸化スズ膜(SnO膜)、不純物(Ga,Al等)ドープの酸化亜鉛膜(ZnO膜)、スズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)、ニオブドープの酸化チタン膜等でもよい。 As the transparent conductive layer 2b, a transparent conductive layer of metal oxide doped with fluorine or metal is used. For example, an impurity (F, Sb, etc.)-Doped tin oxide film (SnO 2 film), an impurity (Ga, Al, etc.)-Doped zinc oxide film (ZnO film), a tin-doped indium oxide film (ITO film) or an impurity-doped oxide An indium film (In 2 O 3 film), a niobium-doped titanium oxide film, or the like may be used.

この中では、熱CVD法やスプレー熱分解法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)が、耐熱性を有し安価な材料コストを有して最もよい。透明導電層2bの成膜法としては、熱CVD法、スプレー熱分解法、スパッタリング法、真空蒸着法、イオンプレーティング法、ディップコート法、溶液成長法、ゾルゲル法等がある。 Among these, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by thermal CVD or spray pyrolysis is best because it has heat resistance and low material cost. Examples of the method for forming the transparent conductive layer 2b include a thermal CVD method, a spray pyrolysis method, a sputtering method, a vacuum deposition method, an ion plating method, a dip coating method, a solution growth method, and a sol-gel method.

透明導電層2bの厚みは0.001〜10μm、好ましくは0.05〜2.0μmがよい。   The thickness of the transparent conductive layer 2b is 0.001 to 10 μm, preferably 0.05 to 2.0 μm.

また、透明導電層2bは、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の極薄い金属膜でもよい。また、これらの金属膜を種々の組合せで積層して用いてもよい。例えば、透明導電層2bとして、Ti層,ITO層,Ti層を順次積層したものでもよく、密着性と耐食性を高めた積層膜となる。   Further, the transparent conductive layer 2b may be an extremely thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method. Further, these metal films may be laminated and used in various combinations. For example, as the transparent conductive layer 2b, a Ti layer, an ITO layer, and a Ti layer may be sequentially laminated, and a laminated film with improved adhesion and corrosion resistance is obtained.

また、導電性基板2の基板2aとしては、逆方向(図1では上側)から光を入射させる場合、非透光性でもよく、チタン,ステンレススチール,ニッケル等からなる薄い金属シート、またはカーボン等からなる薄いシート、または絶縁基板等の表面に電解質層7の電解質による腐食防止のためにチタン層,ステンレススチール層,導電性の金属酸化物層等を被覆したものでもよい。   Further, the substrate 2a of the conductive substrate 2 may be non-translucent when light is incident from the opposite direction (upper side in FIG. 1), a thin metal sheet made of titanium, stainless steel, nickel or the like, or carbon In order to prevent corrosion of the electrolyte layer 7 by the electrolyte, a thin sheet made of an insulating substrate or the like may be coated with a titanium layer, a stainless steel layer, a conductive metal oxide layer, or the like.

本発明では多孔質酸化物半導体層3,4,5を焼成(400℃〜550℃)することから、耐熱性の低い樹脂基板等に直接多孔質酸化物半導体層3,4,5を形成することができない。このような場合、まず耐熱性の支持基板(アルミニウムなどの金属シート)上に多孔質酸化物半導体層3,4,5を形成し焼成した後、透明導電層2bを形成もしくは透明導電層2bを被膜した樹脂から成る基板2a上に多孔質酸化物半導体膜3,4,5を転写して接着し、次に支持基板を剥がすとよい。   In the present invention, the porous oxide semiconductor layers 3, 4, 5 are fired (400 ° C. to 550 ° C.), so that the porous oxide semiconductor layers 3, 4, 5 are directly formed on a resin substrate having low heat resistance. I can't. In such a case, the porous oxide semiconductor layers 3, 4, 5 are first formed and fired on a heat-resistant support substrate (a metal sheet such as aluminum), and then the transparent conductive layer 2 b is formed or the transparent conductive layer 2 b is formed. The porous oxide semiconductor films 3, 4 and 5 may be transferred and bonded onto the substrate 2a made of the coated resin, and then the supporting substrate may be peeled off.

樹脂から成る基板2aの材料としては、ポリカーボネート(PC),アクリル樹脂,ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド等の材料がよい。このような転写型の製造法であれば、低コストの基板2aが利用できる上に、基板2aに可撓性(フレキシブル性)も付与できるので用途が拡がる。樹脂からなる基板2aも考慮すると、導電性基板2の厚みは、機械的強度の点で0.005〜5mm、好ましくは0.01〜2mmがよい。   The material of the substrate 2a made of resin is preferably a material such as polycarbonate (PC), acrylic resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, or the like. With such a transfer mold manufacturing method, the low-cost substrate 2a can be used, and flexibility (flexibility) can be imparted to the substrate 2a. Considering the substrate 2a made of resin, the thickness of the conductive substrate 2 is 0.005 to 5 mm, preferably 0.01 to 2 mm in terms of mechanical strength.

<多孔質酸化物半導体層>
多孔質酸化物半導体層3,4,5としては、二酸化チタン等からなる多孔質のn型酸化物半導体層等がよい。図1,図2に示すように、導電性基板2上に多孔質酸化物半導体層3,4、または多孔質酸化物半導体層3〜5を順次形成する。
<Porous oxide semiconductor layer>
As the porous oxide semiconductor layers 3, 4 and 5, a porous n-type oxide semiconductor layer made of titanium dioxide or the like is preferable. As shown in FIGS. 1 and 2, porous oxide semiconductor layers 3 and 4 or porous oxide semiconductor layers 3 to 5 are sequentially formed on a conductive substrate 2.

多孔質酸化物半導体層3〜5の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、また窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有してもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。また、多孔質酸化物半導体層3〜5は、電子エネルギー準位においてその伝導帯が色素の伝導帯よりも低いn型半導体がよい。 As the material and composition of the porous oxide semiconductor layers 3 to 5, titanium oxide (TiO 2 ) is optimal, and as other materials, titanium (Ti), zinc (Zn), tin (Sn), niobium ( Nb), indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium ( V), at least one metal oxide semiconductor of a metal element such as tungsten (W) is preferable, and nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), You may contain 1 or more types of nonmetallic elements, such as phosphorus (P). Titanium oxide or the like is preferable because it has an electron energy band gap in the range of 2 to 5 eV that is larger than the energy of visible light. The porous oxide semiconductor layers 3 to 5 are preferably n-type semiconductors whose conduction band is lower than the conduction band of the dye in the electron energy level.

多孔質酸化物半導体層3〜5は、いずれも同じ一次粒子の酸化物半導体微粒子から成り、一次粒子の平均粒径は1〜40nmであるのがよく、より好適には5〜30nmがよい。ここで、平均粒径における下限値1nmは、これ未満になると材料の微細化ができず、上限値40nmは、これを超えると接合面積が小さくなり光電流が著しく小さくなることによる。   The porous oxide semiconductor layers 3 to 5 are all composed of oxide semiconductor fine particles having the same primary particles, and the average particle size of the primary particles is preferably 1 to 40 nm, and more preferably 5 to 30 nm. Here, if the lower limit value 1 nm of the average particle diameter is less than this, the material cannot be refined, and if the upper limit value 40 nm is exceeded, the junction area is reduced and the photocurrent is significantly reduced.

本発明の多孔質酸化物半導体層3〜5は、このように微細な一次粒子の酸化物半導体微粒子を分散相とし、水系あるいは非水系の溶液を分散媒としてペーストを調製し、この調製したペーストを導電性基板2上に、順次塗布し焼成して形成する。このように、微細な酸化物半導体によって多孔質酸化物半導体層3〜5を形成し多孔質化することにより、全ての多孔質酸化物半導体層3〜5について光作用極層としての表面積を高めることができ、光吸収と光電変換と電子伝導を効率よく行うことができる。   The porous oxide semiconductor layers 3 to 5 of the present invention are prepared by using a fine primary oxide semiconductor fine particle as a dispersion phase, and preparing a paste using an aqueous or non-aqueous solution as a dispersion medium. Are sequentially applied and fired on the conductive substrate 2. In this way, by forming the porous oxide semiconductor layers 3 to 5 with a fine oxide semiconductor and making them porous, the surface area of all the porous oxide semiconductor layers 3 to 5 as the photoactive electrode layer is increased. Therefore, light absorption, photoelectric conversion, and electron conduction can be performed efficiently.

光入射側の多孔質酸化物半導体層3は、焼成後の表面または破断面の表面の算術平均粗さRaが10〜60nmであるのがよく、より好適には15〜55nmであるのがよい。この多孔質酸化物半導体層3は、可視光下の目視にて透明に見えるのがよい。光入射側の多孔質酸化物半導体層3は、焼結後の算術平均粗さRaが小さいことにより、短波長光(400〜600nm)をよく散乱して閉じ込めるが長波長光(600〜900nm)をよく透過させるものであり、長波長光が透過しやすいため厚く形成できる。よって、多孔質酸化物半導体層3に担持された色素によってよく短波長光を吸収するとともに、色素の担持量が多いので、色素からの光電流を増やすことができる。   The porous oxide semiconductor layer 3 on the light incident side preferably has an arithmetic average roughness Ra of 10 to 60 nm, more preferably 15 to 55 nm, on the surface after firing or the surface of the fracture surface. . The porous oxide semiconductor layer 3 should be transparent when viewed under visible light. Since the porous oxide semiconductor layer 3 on the light incident side has a small arithmetic average roughness Ra after sintering, it scatters and confines short wavelength light (400 to 600 nm) well, but long wavelength light (600 to 900 nm). Can be formed thick because long wavelength light is easily transmitted. Therefore, the short wavelength light is well absorbed by the dye supported on the porous oxide semiconductor layer 3, and the amount of the dye supported is large, so that the photocurrent from the dye can be increased.

この光入射側の多孔質酸化物半導体層3を形成するには、まず液体ペーストを作製する。液体ペーストの作製は、例えば、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストを塗布する前に、遠心脱泡及び真空脱法をして気泡を含まない液体ペーストとし、次に静かに導電性基板2上にこの液体ペーストを滴下し、ドクターブレード法、バーコート法またはスピンナーコーター法等によって、一定速度で均一に静かに塗布するとよい。 In order to form the porous oxide semiconductor layer 3 on the light incident side, first, a liquid paste is prepared. The liquid paste is prepared, for example, by adding acetylacetone to TiO 2 anatase powder, kneading with deionized water, and preparing a titanium oxide paste stabilized with a surfactant. Before applying the prepared paste, centrifugal defoaming and vacuum degassing are performed to make a liquid paste that does not contain bubbles, and then this liquid paste is gently dropped on the conductive substrate 2, and the doctor blade method and bar coating method. Alternatively, it may be applied uniformly and gently at a constant speed by a spinner coater method or the like.

次に、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質酸化物半導体層3を形成する。この光入射側の多孔質酸化物半導体層3の厚みは、3〜25μmがよく、より好適には6〜18μmがよい。   Next, the porous oxide semiconductor layer 3 is formed by heat treatment in the atmosphere at 300 to 600 ° C., preferably 400 to 500 ° C., for 10 to 60 minutes, preferably 20 to 40 minutes. The thickness of the porous oxide semiconductor layer 3 on the light incident side is preferably 3 to 25 μm, and more preferably 6 to 18 μm.

光出射側の多孔質酸化物半導体層4は、焼成後の表面または破断面の表面の算術平均粗さRaが30〜200nmであるのがよく、より好適には40〜150nmであるのがよい。この多孔質酸化物半導体層4は可視光下の目視にて不透明に見えるのがよい。焼結後にこのような表面粗さであることにより、この光出射側の多孔質酸化物半導体層4は、その内部で長波長光を散乱して閉じ込めるものであり、薄く形成できるので導電パスの抵抗を小さくできる。よって、光出射側の多孔質酸化物半導体層4が担持した色素によって長波長光をよく吸収して、色素からの光電流を増やすとともに、色素からの電流を低い抵抗で効率よく取り出すことができる。   The porous oxide semiconductor layer 4 on the light emitting side may have an arithmetic average roughness Ra of 30 to 200 nm, more preferably 40 to 150 nm, on the surface after firing or the surface of the fracture surface. . The porous oxide semiconductor layer 4 should appear opaque when viewed under visible light. Due to such surface roughness after sintering, the porous oxide semiconductor layer 4 on the light emitting side scatters and confines long-wavelength light inside thereof and can be formed thin, so that the conductive path Resistance can be reduced. Therefore, the long wavelength light is well absorbed by the dye carried by the porous oxide semiconductor layer 4 on the light emitting side, the photocurrent from the dye is increased, and the current from the dye can be efficiently extracted with low resistance. .

この多孔質酸化物半導体層4を形成するには、液体ペーストの作製方法と塗布膜形成方法を用いるが、以下の3つの方法が特によい。   In order to form the porous oxide semiconductor layer 4, a liquid paste preparation method and a coating film formation method are used, and the following three methods are particularly preferable.

第1の方法は、まず液体ペーストを多孔質酸化物半導体層3の場合と同様に作製する。この液体ペーストを遠心脱泡して気泡を含まない液体ペーストとする。次に、導電性基板2上にスプレー塗布法等を用いて、気泡を含む液体ペーストとして導電性基板2上に滴下し、均一に塗布する。   In the first method, a liquid paste is first prepared in the same manner as in the case of the porous oxide semiconductor layer 3. This liquid paste is centrifugally defoamed to obtain a liquid paste containing no bubbles. Next, using a spray coating method or the like on the conductive substrate 2, it is dropped onto the conductive substrate 2 as a liquid paste containing bubbles and applied uniformly.

第2の方法は、まず液体ペーストを上記と同様に作製する際に、有機樹脂の微粒子を混合して混練し、この調製ペーストを遠心脱泡して気泡を含まない液体ペーストとする。次に、この液体ペーストを導電性基板2上に滴下し、均一に静かにドクターブレード法、バーコート法、スピンナーコーター法等で均一に塗布する。   In the second method, when a liquid paste is first prepared in the same manner as described above, organic resin fine particles are mixed and kneaded, and the prepared paste is centrifugally defoamed to obtain a liquid paste containing no bubbles. Next, this liquid paste is dropped onto the conductive substrate 2 and uniformly and uniformly applied by a doctor blade method, a bar coat method, a spinner coater method or the like.

第3の方法は、液体ペーストを上記第2の方法と同様に作製する。次に、この液体ペーストを導電性基板2上にスプレー塗布法等を用いて、気泡を含む液体ペーストとして滴下し、均一に塗布する。   In the third method, a liquid paste is produced in the same manner as the second method. Next, this liquid paste is dropped onto the conductive substrate 2 as a liquid paste containing bubbles using a spray coating method or the like, and uniformly applied.

上記第2及び第3の方法に用いる有機樹脂の微粒子として、特にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子がよく、他にPEG(ポリエチレングリコール)のフレーク等でもよい。   As the organic resin fine particles used in the second and third methods, spherical fine particles of acrylic resin (methacrylic ester copolymer) are particularly good, and PEG (polyethylene glycol) flakes may be used.

こうして上記第1〜第3の方法のいずれかの方法で得られた塗布膜を、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質酸化物半導体層4が得られる。この多孔質酸化物半導体層4は可視光下の目視にて不透明を示すのがよい。   Thus, the coating film obtained by any one of the first to third methods is 300 to 600 ° C., preferably 400 to 500 ° C. in the atmosphere, and 10 to 60 minutes, preferably 20 to 40 in the atmosphere. By performing the partial heat treatment, the porous oxide semiconductor layer 4 is obtained. The porous oxide semiconductor layer 4 should be opaque by visual observation under visible light.

ここで、第1の方法では分散した気泡が多孔質酸化物半導体層4に所望の表面粗さを与え、第2の方法では分散した有機樹脂の微粒子が焼成で気化して多孔質酸化物半導体層4に所望の表面粗さを与え、第3の方法では分散した気泡が多孔質酸化物半導体層4に所望の表面粗さの一部を与えるとともに、分散した有機樹脂の微粒子が焼成で気化して所望の表面粗さの一部を与える。   Here, in the first method, the dispersed bubbles give the porous oxide semiconductor layer 4 a desired surface roughness, and in the second method, the dispersed organic resin fine particles are vaporized by firing to form a porous oxide semiconductor. In the third method, a desired surface roughness is given to the layer 4, and dispersed bubbles give part of the desired surface roughness to the porous oxide semiconductor layer 4, and fine particles of the dispersed organic resin are removed by firing. To give part of the desired surface roughness.

多孔質酸化物半導体層4の厚みは、1〜12μmがよく、より好適には2〜10μmがよく、多孔質酸化物半導体膜3より薄く形成できる。   The thickness of the porous oxide semiconductor layer 4 is preferably 1 to 12 μm, more preferably 2 to 10 μm, and can be formed thinner than the porous oxide semiconductor film 3.

多孔質酸化物半導体層5は、光入射側と光出射側の多孔質酸化物半導体層3,4の中間に設けられたものであり、焼成後の表面または破断面の表面の算術平均粗さRaが20〜120nmであるのがよく、より好適には30〜100nmであるのがよい。この中間の多孔質酸化物半導体層5は、可視光下の目視にて半透明に見えるのがよい。この多孔質酸化物半導体層5の作製方法は、上記の第1〜第3の方法とほぼ同様に行えばよく、ペースト粘度を低い方に調整したり、有機樹脂の微粒子の混合量を減らしたりして、焼成後の表面粗さRaを中間の大きさにすることができる。   The porous oxide semiconductor layer 5 is provided between the light incident side and light emitting side porous oxide semiconductor layers 3 and 4, and the arithmetic average roughness of the surface after firing or the surface of the fracture surface Ra is preferably 20 to 120 nm, and more preferably 30 to 100 nm. The intermediate porous oxide semiconductor layer 5 should look translucent when viewed under visible light. The method for producing the porous oxide semiconductor layer 5 may be performed in substantially the same manner as the first to third methods described above. The paste viscosity may be adjusted to a lower value, or the mixing amount of organic resin fine particles may be reduced. Thus, the surface roughness Ra after firing can be set to an intermediate size.

焼結後に多孔質酸化物半導体層5の表面または破断面の表面の算術平均粗さを中間の大きさとすることにより、短波長光と長波長光との中間波長光(550〜650nm)を散乱して閉じ込めることができ、多孔質酸化物半導体層5に担持された色素によって中間波長光をよく吸収して、色素からの光電流を増やすことができる。   The intermediate wavelength light (550 to 650 nm) of short wavelength light and long wavelength light is scattered by setting the arithmetic average roughness of the surface of the porous oxide semiconductor layer 5 or the surface of the fractured surface to an intermediate size after sintering. Thus, the intermediate wavelength light is well absorbed by the dye supported on the porous oxide semiconductor layer 5 and the photocurrent from the dye can be increased.

この多孔質酸化物半導体層5の膜厚は、1〜10μmがよく、より好適には3〜8μmがよく、多孔質酸化物半導体膜3より薄く、多孔質酸化物半導体膜4より厚くできる。   The film thickness of the porous oxide semiconductor layer 5 is preferably 1 to 10 μm, more preferably 3 to 8 μm, which is thinner than the porous oxide semiconductor film 3 and thicker than the porous oxide semiconductor film 4.

図3のグラフに、このようにして得られたTiOからなる多孔質酸化物半導体層の表面粗さRaと吸収波長との関係を示す。ここで、算術平均粗さRaはサーフテスト装置(ミツトヨ社製、製品名「SJ−400」)にてJIS規格のB0601−1994に基づき評価した。また、吸収波長は、導電性基板2上に多孔質酸化物半導体層を形成する前後の光透過率の差より、多孔質酸化物半導体層が吸収する光スペクトルの吸収ピーク波長を割り出し評価した。 The graph of FIG. 3 shows the relationship between the surface roughness Ra of the porous oxide semiconductor layer made of TiO 2 thus obtained and the absorption wavelength. Here, arithmetic average roughness Ra was evaluated based on JIS standard B0601-1994 with a surf test apparatus (product name “SJ-400” manufactured by Mitutoyo Corporation). The absorption wavelength was evaluated by determining the absorption peak wavelength of the light spectrum absorbed by the porous oxide semiconductor layer from the difference in light transmittance before and after forming the porous oxide semiconductor layer on the conductive substrate 2.

図3より、吸収波長は、多孔質酸化物半導体層のRaとほぼ比例関係にあることが分かる。従って、本発明のように、多孔質酸化物半導体層のRaを調整することにより、吸収波長を制御することができる。   FIG. 3 shows that the absorption wavelength is substantially proportional to Ra of the porous oxide semiconductor layer. Therefore, the absorption wavelength can be controlled by adjusting Ra of the porous oxide semiconductor layer as in the present invention.

また、多孔質酸化物半導体層3〜5の表面に対して、TiCl処理、即ちTiCl溶液に10時間程度浸漬し、水洗し、450℃で30分間焼成する処理を施すと、電子電導性がさらによくなって変換効率が高まる。 Further, when the surface of the porous oxide semiconductor layers 3 to 5 is treated with TiCl 4 , that is, immersed in a TiCl 4 solution for about 10 hours, washed with water, and baked at 450 ° C. for 30 minutes, the electronic conductivity is increased. Improves the conversion efficiency.

また、多孔質酸化物半導体層3と導電性基板2との間に、n型酸化物半導体の極薄の緻密層を挿入するとよく、逆電流が抑制できるので変換効率が高まる。   In addition, an extremely thin dense layer of an n-type oxide semiconductor may be inserted between the porous oxide semiconductor layer 3 and the conductive substrate 2, and the reverse current can be suppressed, so that the conversion efficiency is increased.

<色素>
増感色素である色素としては、例えば、ルテニウム−トリス,ルテニウム−ビス,オスミウム−トリス,オスミウム−ビス型の遷移金属錯体、多核錯体、またはルテニウム−シス−ジアクア−ビピリジル錯体、またはフタロシアニンやポルフィリン、多環芳香族化合物、ローダミンB等のキサンテン系色素であることが好ましい。
<Dye>
Examples of the sensitizing dye include a ruthenium-tris, ruthenium-bis, osmium-tris, osmium-bis transition metal complex, a polynuclear complex, or a ruthenium-cis-diaqua-bipyridyl complex, or a phthalocyanine or porphyrin. Xanthene dyes such as polycyclic aromatic compounds and rhodamine B are preferred.

多孔質酸化物半導体層3〜5に色素を吸着させるためには、色素に少なくとも1個以上のカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基を置換基として有することが有効である。ここで、置換基は色素自身を多孔質酸化物半導体層3〜5に強固に化学吸着させることができ、励起状態の色素から多孔質酸化物半導体層3〜5へ容易に電荷移動できるものであればよい。   In order to adsorb the dye to the porous oxide semiconductor layers 3 to 5, the dye has at least one carboxyl group, sulfonyl group, hydroxamic acid group, alkoxy group, aryl group, phosphoryl group as a substituent. It is valid. Here, the substituent can strongly chemisorb the dye itself to the porous oxide semiconductor layers 3 to 5 and can easily transfer charges from the excited state dye to the porous oxide semiconductor layers 3 to 5. I just need it.

多孔質酸化物半導体層3〜5に色素を吸着させる方法としては、例えば導電性基板2上に形成された多孔質酸化物半導体層3〜5を、色素を溶解した溶液に浸漬する方法が挙げられる。色素を溶解させる溶液の溶媒は、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の色素濃度は5×10−5〜2×10−3mol/l(l(リットル):1000cm)程度が好ましい。 Examples of the method of adsorbing the dye on the porous oxide semiconductor layers 3 to 5 include a method of immersing the porous oxide semiconductor layers 3 to 5 formed on the conductive substrate 2 in a solution in which the dye is dissolved. It is done. Examples of the solvent of the solution for dissolving the dye include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like. The dye concentration in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l (liter): 1000 cm 3 ).

多孔質酸化物半導体層3〜5を形成した導電性基板2を、色素を溶解した溶液に浸漬する際、溶液及び雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下もしくは真空中、室温もしくは導電性基板2加熱の条件が挙げられる。浸漬時間は色素及び溶液の種類、溶液の濃度等により適宜調整することができる。これにより、色素を多孔質酸化物半導体層3〜5に吸着させることができる。   When the conductive substrate 2 on which the porous oxide semiconductor layers 3 to 5 are formed is immersed in the solution in which the dye is dissolved, the temperature conditions of the solution and the atmosphere are not particularly limited, and for example, under atmospheric pressure or vacuum Among these, room temperature or conditions for heating the conductive substrate 2 may be mentioned. The immersion time can be appropriately adjusted depending on the type of the dye and the solution, the concentration of the solution, and the like. Thereby, a pigment | dye can be made to adsorb | suck to the porous oxide semiconductor layers 3-5.

<対極>
対極8としては、触媒機能を有する白金,カーボン等の極薄膜がよい。他に、金(Au),パラジウム(Pd),アルミニウム(Al)等の極薄膜を電析したものがよい。また、導電性有機材料からなる薄膜が挙げられる。また、これらの材料の微粒子等から成る多孔質膜、例えばカーボン微粒子の多孔質膜等がよく、対極8の表面積が増え、気孔部に電解質層7の電解質成分を含有させることができ、変換効率を高めることができる。対極8を薄膜だけで形成し導電性基板2側に一体化したり、対極8を厚くしたりして、支持体としての対極基板を用いないことも可能であるが、電解質層7側の面にPt等からなる触媒層を設けた対極基板を用いるのが簡易に製作できてよい。
<Counter electrode>
As the counter electrode 8, a very thin film of platinum, carbon or the like having a catalytic function is preferable. In addition, an electrodeposited ultrathin film of gold (Au), palladium (Pd), aluminum (Al) or the like is preferable. Moreover, the thin film which consists of an electroconductive organic material is mentioned. Further, a porous film made of fine particles of these materials, for example, a porous film of carbon fine particles, etc. is good, the surface area of the counter electrode 8 is increased, and the electrolyte component of the electrolyte layer 7 can be contained in the pores, and the conversion efficiency Can be increased. It is possible to form the counter electrode 8 with only a thin film and integrate it on the conductive substrate 2 side, or to thicken the counter electrode 8 so that the counter electrode substrate as a support is not used. Using a counter electrode substrate provided with a catalyst layer made of Pt or the like may be easily manufactured.

対極8が、触媒層と対極基板(図示せず)とから成る場合、対極基板としては、上記の導電性基板2と同様のものが利用できる。例えば、対極基板としては、電気抵抗が小さく耐食性に優れた金属からなるものがよく、例えば、チタニウム、ステンレス等の金属シートがよい。また、導電層を被覆した樹脂基板を用いてもよい。このような樹脂基板として、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド,ポリカーボネート等のシートがよく、導電層として、チタニウム、ステンレス等の金属薄膜がよい。さらに、上記の金属シートや導電層付き樹脂シートと、触媒層との間に、腐食防止のために導電性の金属酸化物層(ITO膜,SnO:F膜,ZnO:Al膜等)を設けると信頼性が高まる。これらの対極基板の厚みは、機械的強度の点で0.01〜5mm、好ましくは0.1〜3mmがよい。 When the counter electrode 8 includes a catalyst layer and a counter electrode substrate (not shown), the same substrate as the conductive substrate 2 can be used as the counter electrode substrate. For example, the counter electrode substrate is preferably made of a metal having low electrical resistance and excellent corrosion resistance, and for example, a metal sheet such as titanium or stainless steel is preferable. Alternatively, a resin substrate coated with a conductive layer may be used. Such a resin substrate is preferably a sheet of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polycarbonate or the like, and a metal thin film such as titanium or stainless steel is preferable as the conductive layer. Furthermore, a conductive metal oxide layer (ITO film, SnO 2 : F film, ZnO: Al film, etc.) is provided between the metal sheet or the resin sheet with a conductive layer and the catalyst layer to prevent corrosion. If provided, reliability is increased. The thickness of these counter electrode substrates is 0.01 to 5 mm, preferably 0.1 to 3 mm in terms of mechanical strength.

<封止部>
図1及び図2において、光電変換装置1の側壁を構成する封止部9は、電解質層7の電解質成分が外部に漏れるのを防ぐことができる機械的強度を付与するとともに、外部環境と直接接して光電変換装置1の内部を保護し、光電変換機能が劣化するのを防ぐために設ける。
<Sealing part>
1 and 2, the sealing portion 9 constituting the side wall of the photoelectric conversion device 1 provides mechanical strength that can prevent the electrolyte component of the electrolyte layer 7 from leaking to the outside, and directly with the external environment. It is provided to contact and protect the inside of the photoelectric conversion device 1 and prevent the photoelectric conversion function from deteriorating.

封止部9の材料としては、吸湿防止機能を有し充分な接着強度を有するものがよく、エチレン酢酸ビニル共重合樹脂(EVA),ポリビニルブチラール(PVB),エチレン−アクリル酸エチル共重合体(EEA),フッ素樹脂,エポキシ樹脂,アクリル樹脂,飽和ポリエステル樹脂,アミノ樹脂,フェノール樹脂,ポリアミドイミド樹脂,UV硬化樹脂,シリコーン樹脂,フッ素樹脂,ウレタン樹脂,金属屋根に利用される塗布樹脂等がよい。   The material of the sealing portion 9 is preferably a material having a moisture absorption preventing function and sufficient adhesive strength, such as ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral (PVB), ethylene-ethyl acrylate copolymer ( EEA), fluorine resin, epoxy resin, acrylic resin, saturated polyester resin, amino resin, phenol resin, polyamideimide resin, UV curable resin, silicone resin, fluorine resin, urethane resin, coating resin used for metal roof, etc. are good .

封止部9の厚みは0.01μm〜6mm、好ましくは1μm〜4mmがよい。また、防眩性、遮熱性、耐熱性、低汚染性、抗菌性、防かび性、意匠性、高加工性、耐疵付き・耐摩耗性、滑雪性、帯電防止性、遠赤外線放射性、耐酸性、耐食性、環境対応性等を封止部9に付与することにより、信頼性や商品性をより高めることができる。   The thickness of the sealing part 9 is 0.01 μm to 6 mm, preferably 1 μm to 4 mm. In addition, antiglare, heat shield, heat resistance, low contamination, antibacterial, antifungal, design, high workability, rust and abrasion resistance, snow sliding, antistatic, far infrared radiation, acid resistance By providing the sealing part 9 with properties, corrosion resistance, environmental compatibility, and the like, reliability and merchantability can be further improved.

<電解質層>
電解質層7としては、電解質溶液、ゲル電解質、固体電解質等のイオン伝導性の電解質、有機正孔輸送剤等が挙げられる。
<Electrolyte layer>
Examples of the electrolyte layer 7 include electrolyte solutions, gel electrolytes, ion conductive electrolytes such as solid electrolytes, and organic hole transport agents.

電解質溶液としては、第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては、例えば炭酸エチレン,アセトニトリルまたはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合し調製したものを用いることができる。   As the electrolyte solution, a quaternary ammonium salt, a Li salt, or the like is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing tetrapropylammonium iodide, lithium iodide, iodine or the like with ethylene carbonate, acetonitrile, methoxypropionitrile, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルに分けられる。化学ゲルは、架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル,エチレンカーボネート,プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を多孔質酸化物半導体層3〜5に含有させ、加熱、紫外線照射、電子線照射等の手段で二次元、三次元の架橋反応をおこさせることによってゲル化または固体化できる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature by a physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide into acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When using a gel electrolyte or a solid electrolyte, a low-viscosity precursor is contained in the porous oxide semiconductor layers 3 to 5, and two-dimensional or three-dimensional crosslinking is performed by means such as heating, ultraviolet irradiation, or electron beam irradiation. It can be gelled or solidified by reacting.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド,ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩をもつ固体電解質が好ましい。ヨウ化物の溶融塩としては、イミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide or polyethylene having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

上記光電変換装置1を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成した光発電装置とすることができる。即ち、上記光電変換装置1を1つ用いるか、または複数用いる場合には直列、並列または直並列に接続したものを発電手段として用い、この発電手段から直接直流負荷へ発電電力を供給するようにしてもよい。また、上記発電手段をインバータ等の電力変換手段を介して発電電力を適当な交流電力に変換した後で、この交流電力を商用電源系統や各種の電気機器等の交流負荷に供給することが可能な光発電装置としてもよい。さらに、このような光発電装置を日当たりのよい建物に設置する等して、各種態様の太陽光発電システム等の光発電装置として利用することも可能であり、これにより高変換効率で耐久性のある光発電装置を提供することができる。   The photoelectric conversion apparatus 1 can be used as a power generation means, and a photovoltaic power generation apparatus configured to supply generated power from the power generation means to a load can be obtained. In other words, when one or a plurality of the photoelectric conversion devices 1 are used, a series, parallel or series-parallel connection is used as a power generation means, and the generated power is directly supplied from this power generation means to the DC load. May be. In addition, after the power generation means converts the generated power to appropriate AC power via power conversion means such as an inverter, it is possible to supply this AC power to an AC load such as a commercial power system or various electric devices. It is good also as a simple photovoltaic device. Furthermore, it is possible to use such a photovoltaic power generation device as a photovoltaic power generation device such as a photovoltaic power generation system in various aspects by installing it in a building with good sunlight, which enables high conversion efficiency and durability. A photovoltaic device can be provided.

また、本発明の光発電装置は、上記本発明の光電変換装置1を発電手段として用い、発電手段の発電電力を負荷に供給するように成したことから、上記種々の効果により、変換効率が高まる、信頼性が高まる、用途が拡がる、製造が容易となり低コスト化が実現できる、という効果を有する。また、本発明の光電変換装置1は、その用途として太陽電池に限定されるものではなく、光電変換機能を有するものであれば適用でき、各種受光素子や光センサ等にも適用可能である。   Further, the photovoltaic power generation apparatus of the present invention uses the photoelectric conversion apparatus 1 of the present invention as a power generation means and supplies the generated power of the power generation means to a load. It has the effects of increasing the reliability, increasing the application, expanding the use, and facilitating the manufacturing and reducing the cost. Moreover, the photoelectric conversion apparatus 1 of this invention is not limited to a solar cell as the use, It can apply if it has a photoelectric conversion function, and can also apply it to various light receiving elements, an optical sensor, etc.

本発明の光電変換装置の実施例1について以下に説明する。図1の構成の光電変換装置1を以下のようにして作製した。   Example 1 of the photoelectric conversion device of the present invention will be described below. A photoelectric conversion device 1 having the configuration shown in FIG. 1 was produced as follows.

まず、導電性基板2として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板(縦3cm×横2cm)を用いた。この導電性基板2上に二酸化チタンから成る光入射側の多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3は以下のようにして形成した。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置及び真空装置にて液体ペーストの気泡を無くした。この液体ペーストを導電性基板2上に静かに滴下し、バーコート法で塗布し、大気中、450℃で30分間焼成し、約7μmの厚みの多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3の表面の算術平均粗さRaをサーフテスト装置で多孔質酸化物半導体層3の表面を測定したところ、Ra=18nmであり、可視光下の目視で透明であった。 First, a glass substrate (3 cm long × 2 cm wide) with a transparent conductive layer made of fluorine-doped tin oxide was used as the conductive substrate 2. On the conductive substrate 2, a light incident side porous oxide semiconductor layer 3 made of titanium dioxide was formed. This porous oxide semiconductor layer 3 was formed as follows. First, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide stabilized with a surfactant. Next, bubbles of the liquid paste were eliminated with a centrifugal defoaming device and a vacuum device. This liquid paste was gently dropped onto the conductive substrate 2, applied by a bar coating method, and baked at 450 ° C. for 30 minutes in the air to form a porous oxide semiconductor layer 3 having a thickness of about 7 μm. When the surface of the porous oxide semiconductor layer 3 was measured for the arithmetic average roughness Ra of the surface of the porous oxide semiconductor layer 3 with a surf test apparatus, Ra = 18 nm, which was transparent under visual light. It was.

次に、この多孔質酸化物半導体層3上に二酸化チタンから成る光出射側の多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4は以下のようにして形成した。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層3上にスプレー塗布法にて気泡を含ませた液体ペーストとして均一に塗布した。次に、大気中で450℃で30分間焼成し、約4μmの厚みの多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4の表面のRaをサーフテスト装置で多孔質酸化物半導体層4の表面を測定したところ、Ra=84nmであり、可視光下の目視で不透明であった。 Next, the light emitting side porous oxide semiconductor layer 4 made of titanium dioxide was formed on the porous oxide semiconductor layer 3. This porous oxide semiconductor layer 4 was formed as follows. First, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide stabilized with a surfactant. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste was uniformly coated on the porous oxide semiconductor layer 3 as a liquid paste containing bubbles by spray coating. Next, the porous oxide semiconductor layer 4 having a thickness of about 4 μm was formed by firing at 450 ° C. for 30 minutes in the air. When the surface of the surface of the porous oxide semiconductor layer 4 was measured with a surf test apparatus, the surface of the porous oxide semiconductor layer 4 was Ra = 84 nm, and was visually opaque under visible light.

多孔質酸化物半導体層3,4を積層した導電性基板2を、ルテニウム錯体色素N719(ソラロニクス・エスエー社製)を溶媒のアセトニトリルとt−ブタノール(容積比で1:1)に溶解させた色素溶液(0.3mモル/l)に、12時間浸漬して、色素を多孔質酸化物半導体層3,4に担持させた。その後、多孔質酸化物半導体層3,4をエタノールにて洗浄し乾燥させ、導電性基板2、色素を担持した多孔質酸化物半導体層3,4から成る光作用極側基板を作製した。   A conductive substrate 2 in which porous oxide semiconductor layers 3 and 4 are laminated, a dye obtained by dissolving a ruthenium complex dye N719 (manufactured by Solaronics SA) in acetonitrile and t-butanol (1: 1 by volume) as solvents. The dye was supported on the porous oxide semiconductor layers 3 and 4 by immersing in a solution (0.3 mmol / l) for 12 hours. Thereafter, the porous oxide semiconductor layers 3 and 4 were washed with ethanol and dried to produce a light working electrode side substrate composed of the conductive substrate 2 and the porous oxide semiconductor layers 3 and 4 carrying the dye.

次に、対極側基板用として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板を用いた。この透明導電層上に、触媒層としてのPt層をスパッタリング法で厚さ50nmに形成し、これを対極側基板とした。   Next, a glass substrate with a transparent conductive layer made of fluorine-doped tin oxide was used for the counter electrode side substrate. On this transparent conductive layer, a Pt layer as a catalyst layer was formed to a thickness of 50 nm by sputtering, and this was used as a counter electrode side substrate.

これらの光作用極側基板と対極側基板とを、多孔質酸化物半導体層3,4と触媒層とが対向するように配置し、それらの基板の外周部に枠状に形成したオレフィン系樹脂(三井・デュポン ポリケミカル(株)製商品名「ハイミラン」)から成る封止部9を挟んで、両基板を押し付けて加熱し封止した。そして、予め開けておいた対極側基板の貫通孔を通して電解質を注入した。本実施例1では、電解質は液体電解質である沃素(I)と沃化リチウム(LiI)とアセトニトリル溶液とを用いて作製した。 These optical working electrode side substrate and counter electrode side substrate are arranged so that the porous oxide semiconductor layers 3 and 4 and the catalyst layer face each other, and an olefin resin formed in a frame shape on the outer periphery of these substrates Both substrates were pressed and sealed by sandwiching a sealing portion 9 made of (Mitsui / DuPont Polychemical Co., Ltd., trade name “Himiran”). And electrolyte was inject | poured through the through-hole of the counter electrode side board | substrate opened beforehand. In Example 1, the electrolyte was prepared using iodine (I 2 ), lithium iodide (LiI), and acetonitrile solution, which are liquid electrolytes.

こうして得られた光電変換装置の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率5.1%を示した。 When the photoelectric conversion characteristics of the photoelectric conversion device thus obtained were evaluated, the conversion efficiency was 5.1% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例1においては、本発明の光電変換装置1が簡便に作製でき、しかも高い変換効率を実現することができた。   As described above, in Example 1, the photoelectric conversion device 1 of the present invention could be easily produced, and high conversion efficiency could be realized.

本発明の光電変換装置の実施例2について以下に説明する。図1の構成の光電変換装置1を以下のようにして作製した。   Example 2 of the photoelectric conversion device of the present invention will be described below. A photoelectric conversion device 1 having the configuration shown in FIG. 1 was produced as follows.

まず、導電性基板2として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板(縦3cm×横2cm)を用いた。この導電性基板2上に二酸化チタンから成る光入射側の多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3は上記実施例1と同様に形成し、約7μmの厚みの多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3のRaをサーフテスト装置で多孔質酸化物半導体層3の表面を測定したところ、Ra=20nmであり、可視光下の目視で透明であった。   First, a glass substrate (3 cm long × 2 cm wide) with a transparent conductive layer made of fluorine-doped tin oxide was used as the conductive substrate 2. On the conductive substrate 2, a light incident side porous oxide semiconductor layer 3 made of titanium dioxide was formed. The porous oxide semiconductor layer 3 was formed in the same manner as in Example 1, and the porous oxide semiconductor layer 3 having a thickness of about 7 μm was formed. When the surface of the porous oxide semiconductor layer 3 was measured for Ra of the porous oxide semiconductor layer 3 with a surf test apparatus, Ra was 20 nm, and the surface was transparent under visible light.

なお、多孔質酸化物半導体層4を形成した導電性基板2を破断し、その多孔質酸化物半導体層4の破断面のAFM測定を5μmの範囲で行ったところ、Ra=22nmであり、サーフテスト装置で測定した値(Ra=20nm)とほぼ同じ値が得られた。   When the conductive substrate 2 on which the porous oxide semiconductor layer 4 was formed was broken and AFM measurement of the fracture surface of the porous oxide semiconductor layer 4 was performed in the range of 5 μm, Ra = 22 nm, A value almost the same as the value measured with the test apparatus (Ra = 20 nm) was obtained.

次に、この多孔質酸化物半導体層3上に二酸化チタンから成る光出射側の多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4は以下のようにして形成した。まず、TiOのアナターゼ粉末にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子(平均粒径0.15μm)を10重量%添加した後、脱イオン水とともに混練し、酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層3上に静かに滴下し、バーコート法で塗布し、大気中で450℃で30分間焼成し、約5μmの厚みの多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4のRaをサーフテスト装置で多孔質酸化物半導体層4の表面を測定したところ、Ra=62nmであり、可視光下の目視で不透明であった。 Next, the light emitting side porous oxide semiconductor layer 4 made of titanium dioxide was formed on the porous oxide semiconductor layer 3. This porous oxide semiconductor layer 4 was formed as follows. First, 10% by weight of spherical fine particles (average particle size 0.15 μm) of acrylic resin (methacrylic ester copolymer) was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide liquid paste. Produced. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste is gently dropped onto the porous oxide semiconductor layer 3 and applied by a bar coating method, followed by baking at 450 ° C. for 30 minutes in the air to form a porous oxide semiconductor layer 4 having a thickness of about 5 μm. Formed. When the surface of the porous oxide semiconductor layer 4 was measured with a surf test apparatus, Ra of the porous oxide semiconductor layer 4 was Ra = 62 nm, and was visually opaque under visible light.

次に、多孔質酸化物半導体層3,4を形成した導電性基板2を、上記実施例1と同様に色素溶液に12時間浸漬して、色素を多孔質酸化物半導体層3,4に担持させ、洗浄し乾燥させ、光作用極側基板を作製した。   Next, the conductive substrate 2 on which the porous oxide semiconductor layers 3 and 4 are formed is dipped in a dye solution for 12 hours in the same manner as in Example 1 to carry the dye on the porous oxide semiconductor layers 3 and 4. And washed and dried to produce a photo-active electrode side substrate.

次に、対極側基板として、実施例1と同様のものを作製した。   Next, the same substrate as Example 1 was produced as a counter electrode side substrate.

これらの光作用極側基板と対極側基板とを、多孔質酸化物半導体層3,4と触媒層とが対向するように配置し、それらの基板の外周部に枠状に形成した上記実施例1と同様の封止部9を挟んで、両基板を押し付けて加熱し封止した。そして、予め開けておいた対極側基板の貫通孔を通して上記実施例1と同様の電解質を注入した。こうして得られた光電変換装置の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率5.5%を示した。 The optical working electrode side substrate and the counter electrode side substrate are arranged so that the porous oxide semiconductor layers 3 and 4 and the catalyst layer face each other, and are formed in a frame shape on the outer periphery of the substrates. Both substrates were pressed against each other with the same sealing portion 9 as that of No. 1 and sealed by heating. And the electrolyte similar to the said Example 1 was inject | poured through the through-hole of the counter electrode side board | substrate opened beforehand. When the photoelectric conversion characteristics of the photoelectric conversion device thus obtained were evaluated, the conversion efficiency was 5.5% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例2においては、本発明の光電変換装置1が簡便に作製でき、しかも高い変換効率を実現することができた。   As described above, in Example 2, the photoelectric conversion device 1 of the present invention could be easily produced, and high conversion efficiency could be realized.

本発明の光電変換装置の実施例3について以下に説明する。図2の構成の光電変換装置1を以下のようにして作製した。   Example 3 of the photoelectric conversion device of the present invention will be described below. The photoelectric conversion device 1 having the configuration shown in FIG. 2 was produced as follows.

まず、導電性基板2として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板(縦3cm×横2cm)を用いた。この導電性基板2上に二酸化チタンから成る光入射側の多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3は上記実施例1と同様に形成し、約7μmの厚みの多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3のRaをサーフテスト装置で多孔質酸化物半導体層3の表面を測定したところ、Ra=21nmであり、可視光下の目視で透明であった。   First, a glass substrate (3 cm long × 2 cm wide) with a transparent conductive layer made of fluorine-doped tin oxide was used as the conductive substrate 2. On the conductive substrate 2, a light incident side porous oxide semiconductor layer 3 made of titanium dioxide was formed. The porous oxide semiconductor layer 3 was formed in the same manner as in Example 1, and the porous oxide semiconductor layer 3 having a thickness of about 7 μm was formed. When the surface of the porous oxide semiconductor layer 3 was measured for Ra of the porous oxide semiconductor layer 3 with a surf test apparatus, Ra was 21 nm, and the surface was transparent under visible light.

次に、この多孔質酸化物半導体層3上に二酸化チタンから成る中間の多孔質酸化物半導体層5を形成した。この多孔質酸化物半導体層5は以下のようにして形成した。まず、TiOのアナターゼ粉末にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子(平均粒径0.15μm)を5重量%添加した後、脱イオン水とともに混練し、二酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層3上に静かに滴下し、バーコート法で塗布した。次に、大気中で450℃にて30分間焼成し、約4μmの厚みの多孔質酸化物半導体層5を得た。この多孔質酸化物半導体層5のRaをサーフテスト装置で多孔質酸化物半導体層5の表面を測定したところ、Ra=48nmであり、可視光下の目視で半透明であった。 Next, an intermediate porous oxide semiconductor layer 5 made of titanium dioxide was formed on the porous oxide semiconductor layer 3. This porous oxide semiconductor layer 5 was formed as follows. First, 5 wt% of acrylic resin (methacrylic acid ester copolymer) spherical fine particles (average particle size 0.15 μm) were added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium dioxide liquid paste. Produced. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste was gently dropped onto the porous oxide semiconductor layer 3 and applied by a bar coating method. Next, the porous oxide semiconductor layer 5 having a thickness of about 4 μm was obtained by baking at 450 ° C. for 30 minutes in the air. When the surface of the porous oxide semiconductor layer 5 was measured with a surf test apparatus, Ra of the porous oxide semiconductor layer 5 was Ra = 48 nm, and it was translucent when viewed under visible light.

次に、この多孔質酸化物半導体層5上に二酸化チタンから成る光出射側の多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4は以下のようにして形成した。まず、TiOのアナターゼ粉末にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子(平均粒径1.5μm)を10重量%添加した後、脱イオン水とともに混練し、酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層5上にスプレー塗布法にて気泡を含ませた液体ペーストとして均一に塗布した。次に、大気中で450℃にて30分間焼成し、約2μmの厚みの多孔質酸化物半導体層5を形成した。この多孔質酸化物半導体層5のRaをサーフテスト装置で多孔質酸化物半導体層4の表面を測定したところ、Ra=110nmであり、可視光下の目視で不透明であった。 Next, a light emitting side porous oxide semiconductor layer 4 made of titanium dioxide was formed on the porous oxide semiconductor layer 5. This porous oxide semiconductor layer 4 was formed as follows. First, 10% by weight of spherical fine particles (average particle size: 1.5 μm) of acrylic resin (methacrylic ester copolymer) was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide. Produced. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste was uniformly applied on the porous oxide semiconductor layer 5 as a liquid paste containing bubbles by spray coating. Next, the porous oxide semiconductor layer 5 having a thickness of about 2 μm was formed by baking at 450 ° C. for 30 minutes in the atmosphere. When the surface of the porous oxide semiconductor layer 4 was measured for Ra of the porous oxide semiconductor layer 5 with a surf test apparatus, Ra was 110 nm, and it was opaque by visual observation under visible light.

多孔質酸化物半導体層3〜5を形成した導電性基板2を、上記実施例1と同様に色素溶液に15時間浸漬して、色素を多孔質酸化物半導体層3〜5に担持させ、洗浄し乾燥させ、光作用極側基板を作製した。   The conductive substrate 2 on which the porous oxide semiconductor layers 3 to 5 are formed is dipped in a dye solution for 15 hours in the same manner as in Example 1 to carry the dye on the porous oxide semiconductor layers 3 to 5 and washed. And dried to prepare a photo-active electrode side substrate.

次に、対極側基板として、実施例1と同様のものを作製した。   Next, the same substrate as Example 1 was produced as a counter electrode side substrate.

これらの光作用極側基板と対極側基板とを、多孔質酸化物半導体層3〜5と触媒層とが対向するように配置し、それらの基板の外周部に枠状に形成した上記実施例1と同様の封止部9を挟んで、両基板を押し付けで加熱し封止した。そして、予め開けておいた対極側基板の貫通孔を通して上記実施例1と同様の電解質を注入した。こうして得られた光電変換装置の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率5.7%を示した。 The optical working electrode side substrate and the counter electrode side substrate are arranged so that the porous oxide semiconductor layers 3 to 5 and the catalyst layer face each other, and are formed in a frame shape on the outer peripheral portion of these substrates. Both substrates were pressed and heated to be sealed with a sealing portion 9 similar to 1 sandwiched therebetween. And the electrolyte similar to the said Example 1 was inject | poured through the through-hole of the counter electrode side board | substrate opened beforehand. When the photoelectric conversion characteristics of the photoelectric conversion device thus obtained were evaluated, the conversion efficiency was 5.7% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例3においては、本発明の光電変換装置1が簡便に作製でき、しかも高い変換効率を実現することができた。   As described above, in Example 3, the photoelectric conversion device 1 of the present invention could be easily produced, and high conversion efficiency could be realized.

本発明の光電変換装置について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the photoelectric conversion apparatus of this invention. 本発明の光電変換装置について実施の形態の他例を示す断面図である。It is sectional drawing which shows the other example of embodiment about the photoelectric conversion apparatus of this invention. 多孔質酸化物半導体層の表面の算術平均粗さと多孔質酸化物半導体層に吸収される光の吸収波長との関係を示すグラフである。It is a graph which shows the relationship between the arithmetic mean roughness of the surface of a porous oxide semiconductor layer, and the absorption wavelength of the light absorbed by a porous oxide semiconductor layer.

符号の説明Explanation of symbols

1:光電変換装置
2:導電性基板
3:光入射側の多孔質酸化物半導体層
4:光出射側の多孔質酸化物半導体層
5:中間の多孔質酸化物半導体層
7:電解質層
8:対極
9:封止部
1: Photoelectric conversion device 2: Conductive substrate 3: Porous oxide semiconductor layer on light incident side 4: Porous oxide semiconductor layer on light emitting side 5: Intermediate porous oxide semiconductor layer 7: Electrolyte layer 8: Counter electrode 9: Sealing part

Claims (6)

導電性基板上に色素を担持した多孔質酸化物半導体層及び電解質層が形成された色素増感型の光電変換装置において、前記多孔質酸化物半導体層は、複数層が積層されて成るとともに、光入射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さが光出射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の前記多孔質酸化物半導体層の厚みが光出射側の前記多孔質酸化物半導体層の厚みよりも厚いことを特徴とする光電変換装置。   In a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer supporting a dye and an electrolyte layer are formed on a conductive substrate, the porous oxide semiconductor layer is formed by laminating a plurality of layers, The arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light incident side or the surface of the fracture surface is smaller than the arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light emission side or the surface of the fracture surface, A photoelectric conversion device, wherein the thickness of the porous oxide semiconductor layer on the light incident side is thicker than the thickness of the porous oxide semiconductor layer on the light emission side. 複数層が積層されて成る前記多孔質酸化物半導体層は酸化物半導体微粒子の焼結体から成り、光出射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径が、光入射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径よりも大きいことを特徴とする請求項1記載の光電変換装置。   The porous oxide semiconductor layer formed by laminating a plurality of layers is composed of a sintered body of oxide semiconductor fine particles, and an average of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light emission side. 2. The photoelectric conversion device according to claim 1, wherein a particle diameter is larger than an average particle diameter of sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. 導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成することを特徴とする光電変換装置の製造方法。   A dye-sensitized photoelectric conversion in which a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles and an electrolyte layer are formed by laminating a plurality of layers and supporting a dye on a conductive substrate. In the device manufacturing method, the average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers is the same, and A porous oxide semiconductor layer is formed by applying and baking a colloidal liquid paste in which a dispersed phase is a primary particle of the oxide semiconductor fine particles and a dispersion medium is a liquid, and the porous oxide on the light emitting side is formed. A method for producing a photoelectric conversion device, wherein the semiconductor layer is formed by spraying and baking an aerosol obtained by adding a gas as a dispersion medium to the liquid paste. 導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成することを特徴とする光電変換装置の製造方法。   A dye-sensitized photoelectric conversion in which a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles and an electrolyte layer are formed by laminating a plurality of layers and supporting a dye on a conductive substrate. In the device manufacturing method, the average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers is the same, and A porous oxide semiconductor layer is formed by applying and baking a colloidal liquid paste in which a dispersed phase is a primary particle of the oxide semiconductor fine particles and a dispersion medium is a liquid, and the porous oxide on the light emitting side is formed. A method for producing a photoelectric conversion device, wherein the semiconductor layer is formed by applying and baking a liquid paste obtained by adding fine particles of an organic resin as a dispersed phase to the liquid paste. 導電性基板上に、複数層が積層されて成るとともに色素を担持した、酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、及び電解質層が形成された色素増感型の光電変換装置の製造方法において、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルをスプレー塗布し焼成して形成することを特徴とする光電変換装置の製造方法。   A dye-sensitized photoelectric conversion in which a porous oxide semiconductor layer made of a sintered body of oxide semiconductor fine particles and an electrolyte layer are formed by laminating a plurality of layers and supporting a dye on a conductive substrate. In the device manufacturing method, the average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating a plurality of layers is the same, and A porous oxide semiconductor layer is formed by applying and baking a colloidal liquid paste in which a dispersed phase is a primary particle of the oxide semiconductor fine particles and a dispersion medium is a liquid, and the porous oxide on the light emitting side is formed. A method for producing a photoelectric conversion device, characterized in that the semiconductor layer is formed by spraying and baking an aerosol in which fine particles of an organic resin are added as a dispersed phase to the liquid paste and a gas is added as a dispersion medium. . 請求項1または2記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。

A photovoltaic device comprising the photoelectric conversion device according to claim 1 or 2 as a power generation means, and the power generated by the power generation means is supplied to a load.

JP2005337010A 2005-11-22 2005-11-22 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE Expired - Fee Related JP4901194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337010A JP4901194B2 (en) 2005-11-22 2005-11-22 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337010A JP4901194B2 (en) 2005-11-22 2005-11-22 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE

Publications (2)

Publication Number Publication Date
JP2007141764A JP2007141764A (en) 2007-06-07
JP4901194B2 true JP4901194B2 (en) 2012-03-21

Family

ID=38204369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337010A Expired - Fee Related JP4901194B2 (en) 2005-11-22 2005-11-22 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE

Country Status (1)

Country Link
JP (1) JP4901194B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019749B2 (en) * 2006-01-05 2012-09-05 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP5171139B2 (en) * 2007-07-18 2013-03-27 日新製鋼株式会社 Electrode materials for dye-sensitized solar cells
JP5543823B2 (en) * 2010-03-30 2014-07-09 積水化学工業株式会社 Method for producing porous layer-containing laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device
JP2003100359A (en) * 2001-09-25 2003-04-04 Fuji Xerox Co Ltd Functional film and manufacturing method therefor, and optical semiconductor electrode and photoelectric conversion element using the film
JP4856089B2 (en) * 2005-10-11 2012-01-18 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE

Also Published As

Publication number Publication date
JP2007141764A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4856089B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP4856079B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
KR20080079894A (en) Dye-sensitized solar cell and preparing method thereof
JP2007280761A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device
CN102810405A (en) Photoelectrode structure and method of manufacturing the same, and dye-sensitized solar cell
JP5493369B2 (en) Composition for forming underlayer, method for producing underlayer, method for producing photoelectrode, and method for producing solar cell
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JPWO2012108520A1 (en) Dye-sensitized solar cell
JP2005285472A (en) Photoelectric conversion device
JP2008010237A (en) Photoelectric conversion device, its manufacturing method, and optical power generation device
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
KR101172361B1 (en) Manufacturing method of photo electrode for dye-sensitized solar cell
JP2012064485A (en) Dye-sensitized photoelectric conversion device
JP5078367B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2008176993A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic generator device
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP5019749B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2008204881A (en) Photoelectric conversion module
JP5127261B2 (en) Manufacturing method of photoelectric conversion module
JP2007227260A (en) Photoelectric converter and photovoltaic generator
JP2002314108A (en) Solar cell
JP2007227062A (en) Photoelectric converter, manufacturing method thereof, and photovoltaic generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees