JP2007227062A - Photoelectric converter, manufacturing method thereof, and photovoltaic generator - Google Patents

Photoelectric converter, manufacturing method thereof, and photovoltaic generator Download PDF

Info

Publication number
JP2007227062A
JP2007227062A JP2006045019A JP2006045019A JP2007227062A JP 2007227062 A JP2007227062 A JP 2007227062A JP 2006045019 A JP2006045019 A JP 2006045019A JP 2006045019 A JP2006045019 A JP 2006045019A JP 2007227062 A JP2007227062 A JP 2007227062A
Authority
JP
Japan
Prior art keywords
oxide semiconductor
layer
porous oxide
semiconductor layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045019A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Rui Kamata
塁 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006045019A priority Critical patent/JP2007227062A/en
Publication of JP2007227062A publication Critical patent/JP2007227062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converter having high photoelectric conversion efficiency that can be composed of a small number of materials easily. <P>SOLUTION: In the photoelectric converter 1, porous oxide semiconductor layers 3, 4 adsorbing a coloring matter, and a permeation layer 7 and a counter electrode layer 8 that permeate an electrolyte solution and hold the permeated solution, are formed successively on a conductive substrate 2. The arithmetic mean roughness of the surface of the porous oxide semiconductor layer 3 at a light incident side or the surface of a rupture surface is smaller than that of the surface of the porous oxide semiconductor layer 4 at a light emission side or the surface of the rupture surface. Then, the thickness of the porous oxide semiconductor layer 3 at a light incident side is larger than that of the porous oxide semiconductor layer 4 at a light emission side. Since the hole of the permeation layer 7 can be set so that the electrolyte solution can be permeated independently of the size of the vacancy of the porous oxide semiconductor layers 3, 4, the electrolyte solution can be injected after forming a laminate, thus thinning the laminate containing the electrolyte solution where light is scattered appropriately. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電変換効率に優れた太陽電池や受光素子等の色素増感型の光電変換装置及びその製造方法並びに光発電装置に関する。   The present invention relates to a dye-sensitized photoelectric conversion device such as a solar cell or a light receiving element excellent in photoelectric conversion efficiency, a manufacturing method thereof, and a photovoltaic device.

従来、光電変換装置の一種である色素増感型太陽電池は、その製造に際して真空装置を必要としないことから、低コストで低環境負荷型の太陽電池であると考えられ、活発に研究開発が行われている。   Conventionally, a dye-sensitized solar cell, which is a type of photoelectric conversion device, does not require a vacuum device for its production, so it is considered to be a low-cost, low-environmental load-type solar cell, and is actively researched and developed. Has been done.

この色素増感型太陽電池は、通常、導電性ガラス基板上に平均粒径20nm程度の酸化チタンの微粒子を450℃程度で焼結して得られる厚み10μm程度の多孔質酸化チタン層を設け、この多孔質酸化チタン層の酸化チタン粒子の表面に色素を単分子吸着させた光作用極層を形成した光作用極基板と、導電性ガラス基板上に白金やカーボンの対極層を形成した対極基板とを、多孔質酸化チタン層と対極層とを互いに対向させ、スペーサ兼封止材として枠状の熱可塑性樹脂シートを用い、ホットプレスにより両基板を貼り合わせ、これら基板間にヨウ素/ヨウ化物レドックス対を含む電解質溶液を注入して得られる。このようにして得られた太陽電池において、多孔質酸化物半導体層としての多孔質酸化チタン層に吸着した色素が照射された光エネルギーを吸収し、生成した電子は多孔質酸化物半導体層へ移動し、外部の負荷回路を経由して、対極層よりイオンとして電解質を移動し、色素に戻ることにより、電気エネルギーとして取り出される仕組みである(下記の非特許文献1参照)。   This dye-sensitized solar cell is usually provided with a porous titanium oxide layer having a thickness of about 10 μm obtained by sintering fine particles of titanium oxide having an average particle size of about 20 nm on a conductive glass substrate at about 450 ° C. A photoactive electrode substrate in which a single molecule of a dye is adsorbed on the surface of the titanium oxide particles of the porous titanium oxide layer, and a counter electrode substrate in which a platinum or carbon counter electrode layer is formed on a conductive glass substrate The porous titanium oxide layer and the counter electrode layer are opposed to each other, a frame-shaped thermoplastic resin sheet is used as a spacer and sealing material, and both substrates are bonded by hot pressing, and iodine / iodide is interposed between these substrates. It is obtained by injecting an electrolyte solution containing a redox couple. In the solar cell thus obtained, the dye adsorbed on the porous titanium oxide layer as the porous oxide semiconductor layer absorbs the irradiated light energy, and the generated electrons move to the porous oxide semiconductor layer. Then, the electrolyte is transferred as ions from the counter electrode layer via an external load circuit and returned to the pigment, thereby being taken out as electric energy (see Non-Patent Document 1 below).

しかし、この色素増感型太陽電池は、通常、単層の多孔質酸化物半導体層を用いるために、光電変換に寄与する光吸収量が小さく光透過量が大きくなり、高い光電変換効率(以下、変換効率ともいう)が得られないという問題があった。そこで、多孔質酸化物半導体層の裏面に光反射粒子層を設けた特許文献1の構成、多孔質酸化物半導体層を複数層としそれぞれ異なる微粒子サイズから成るものとしたり、一部の多孔質酸化物半導体層中に大きめの光散乱粒子を混合して散乱層としても機能するようにした特許文献2,3の構成がある。   However, since this dye-sensitized solar cell normally uses a single-layer porous oxide semiconductor layer, the amount of light absorption contributing to photoelectric conversion is small and the amount of light transmission is large. , Also referred to as conversion efficiency). Therefore, the configuration of Patent Document 1 in which a light-reflecting particle layer is provided on the back surface of the porous oxide semiconductor layer, the porous oxide semiconductor layer having a plurality of layers, each having a different fine particle size, There are configurations of Patent Documents 2 and 3 in which large light scattering particles are mixed in a physical semiconductor layer so as to function as a scattering layer.

特許文献1には、ガラス基板の裏面に電極が設けられ、その電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、その光吸収粒子層を含んで電極の下面に電解液部が設けられ、その電解液部の下面に対向電極が設けられた色素増感太陽電池において、電極と光吸収粒子層との間に高屈折材料薄膜が設けられると共に、光吸収粒子層の下面に粒径を制御した高屈折材料粒子を堆積させた光反射粒子層が設けられた色素増感太陽電池が記載されている。この構成により、従来の構造では半導体微粒子から成る光吸収粒子層を透過していた光のエネルギーの多くを、この光吸収粒子層に吸収させて閉じ込めることができるため、色素増感太陽電池のセルの出力電流を増やすことが可能になる。   In Patent Document 1, an electrode is provided on the back surface of a glass substrate, a light absorbing particle layer in which semiconductor fine particles adsorbing a dye are deposited is formed on the lower surface of the electrode, and the lower surface of the electrode includes the light absorbing particle layer. In the dye-sensitized solar cell in which the electrolyte portion is provided and the counter electrode is provided on the lower surface of the electrolyte portion, a highly refractive material thin film is provided between the electrode and the light-absorbing particle layer, and the light-absorbing particles A dye-sensitized solar cell is described in which a light-reflecting particle layer in which high refractive material particles having a controlled particle size are deposited is provided on the lower surface of the layer. With this configuration, most of the energy of light that has been transmitted through the light-absorbing particle layer composed of semiconductor fine particles in the conventional structure can be absorbed and confined in this light-absorbing particle layer. The output current can be increased.

特許文献2には、透明導電体層と、微粒子を積層して形成されたn型酸化物半導体電極と、このn型酸化物半導体電極上に吸着された色素と、この色素と接する電荷輸送層と、この電荷輸送層と接する対向電極とを具備する光電変換素子において、透明導電体層近傍の微粒子の平均粒径に比べて、電荷輸送層側の微粒子の平均粒径が大きい光電変換素子が記載されている。また、透明導電体層近傍の微粒子の平均粒径が5〜50nmであり、且つ電荷輸送層近傍の微粒子の平均粒径が30〜500nmである。また、透明導電体層側では光を散乱させることなく入射させる必要があるため、n型酸化物半導体電極を成す微粒子の粒径はできる限り小さいことが望ましい。一方、電荷輸送層側においては、電荷担体であるイオン等が色素近傍まで容易に拡散できるように、ポーラス体であるn型酸化物半導体電極内部の気孔径はできる限り大きいことが望ましい。この構成により、錯体色素でより多くの光吸収をさせるとともに、電荷輸送層中の電荷担体の拡散を容易にし、結果としてエネルギー変換効率を高めることができる。   Patent Document 2 discloses a transparent conductor layer, an n-type oxide semiconductor electrode formed by laminating fine particles, a dye adsorbed on the n-type oxide semiconductor electrode, and a charge transport layer in contact with the dye And a counter electrode in contact with the charge transport layer, the photoelectric conversion element having a larger average particle size of the fine particles on the charge transport layer side than the average particle size of the fine particles in the vicinity of the transparent conductor layer. Are listed. The average particle size of the fine particles near the transparent conductor layer is 5 to 50 nm, and the average particle size of the fine particles near the charge transport layer is 30 to 500 nm. Further, since it is necessary to make the light incident on the transparent conductor layer side without scattering, it is desirable that the particle diameter of the fine particles forming the n-type oxide semiconductor electrode be as small as possible. On the other hand, on the charge transport layer side, it is desirable that the pore diameter inside the n-type oxide semiconductor electrode, which is a porous body, is as large as possible so that ions as charge carriers can easily diffuse to the vicinity of the dye. With this configuration, more light can be absorbed by the complex dye, and the diffusion of charge carriers in the charge transport layer can be facilitated, resulting in an increase in energy conversion efficiency.

特許文献3の光電変換素子は、少なくとも色素の吸着した半導体微粒子膜の層と導電性支持体とを有する光電変換素子であって、半導体微粒子膜の層が光散乱性の異なる複数の層から成り、光の入射側に光散乱性の最も低い層が配される光電変換素子である。また、光散乱性の低い層は平均粒径5〜50nmの半導体微粒子から成り、光散乱性が高い層は少なくとも平均粒径100〜500nmの半導体微粒子を含有し、光散乱性が中程度の層は平均粒径100〜500nmの半導体微粒子と平均粒径5〜50nmの半導体微粒子の混合物を含有する。   The photoelectric conversion element of Patent Document 3 is a photoelectric conversion element having at least a layer of a semiconductor fine particle film on which a dye is adsorbed and a conductive support, and the layer of the semiconductor fine particle film is composed of a plurality of layers having different light scattering properties. A photoelectric conversion element in which a layer having the lowest light scattering property is disposed on the light incident side. Further, the layer having low light scattering property is composed of semiconductor fine particles having an average particle diameter of 5 to 50 nm, and the layer having high light scattering property contains at least semiconductor fine particles having an average particle size of 100 to 500 nm and has a medium light scattering property. Contains a mixture of semiconductor fine particles having an average particle diameter of 100 to 500 nm and semiconductor fine particles having an average particle diameter of 5 to 50 nm.

この特許文献3においては、感光層が膜厚方向に対して均質な単層構成の場合よりも、光の入射側は光散乱性が低く光が進むに従い光散乱性が高くなるような多層構成の場合の方が光の捕獲率が高く、ひいては変換効率が高い。   In Patent Document 3, the light-incident side has a low light scattering property and a light scattering property becomes higher as the light travels than in the case where the photosensitive layer has a uniform single layer structure in the film thickness direction. In the case of, the light capture rate is higher and the conversion efficiency is higher.

また、感光層の光散乱性は、用いる半導体微粒子の種類や粒子径、空隙率、または空隙のサイズによって調節することができる。このうち半導体微粒子の粒子径で調節するのが好ましい。   The light scattering property of the photosensitive layer can be adjusted by the type, particle diameter, porosity, or void size of the semiconductor fine particles used. Among these, it is preferable to adjust by the particle diameter of the semiconductor fine particles.

さらに、感光層が低散乱層と高散乱層の2層構成の場合、高散乱層の構成成分は単一の半導体微粒子を用いるよりも、2種以上の微粒子を混合した方が好ましい。詳しくは高散乱層は平均粒径5〜50nmの半導体微粒子と、平均粒径100〜500nmの半導体微粒子とを混合した場合が、特に好ましい。このとき、大きい方の半導体微粒子の含有率は10〜90重量%が好ましく、10〜50重量%がより好ましい。   Further, when the photosensitive layer has a two-layer structure of a low scattering layer and a high scattering layer, it is preferable to mix two or more kinds of fine particles as constituents of the high scattering layer rather than using a single semiconductor fine particle. Specifically, the high scattering layer is particularly preferably a mixture of semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm. At this time, the content of the larger semiconductor fine particles is preferably 10 to 90% by weight, and more preferably 10 to 50% by weight.

さらに、低散乱層、中散乱層、高散乱層の3層構成の場合、中散乱層は単一の半導体微粒子を用いるよりも、2種以上の微粒子を混合した方が好ましい。詳しくは中散乱層は、平均粒径5〜50nmの半導体微粒子と平均粒径100〜500nmの半導体微粒子とを混合した場合が、特に好ましい。このとき大きい方の半導体微粒子の含有率は5〜70重量%が好ましく、10〜50重量%がより好ましい。   Furthermore, in the case of a three-layer configuration of a low scattering layer, a medium scattering layer, and a high scattering layer, it is preferable that two or more kinds of fine particles are mixed in the middle scattering layer rather than using a single semiconductor fine particle. Specifically, the medium scattering layer is particularly preferably a mixture of semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm. At this time, the content of the larger semiconductor fine particles is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.

さらに、4層以上の場合では、低光散乱層側から高光散乱層に向かって光散乱率が上昇して行く組成が望ましい。高散乱層は、平均粒径100〜500nmの単一の半導体微粒子であっても、2種以上の半導体微粒子を混合したものであっても良い。高散乱層が、平均粒径5〜50nmの半導体微粒子と平均粒径100〜500nmの半導体微粒子との混合物から成る場合、その混合比率は、大きい方の半導体微粒子の含有率が30〜100重量%であるのが好ましく、50〜100重量%がより好ましい。また、大きい方の半導体粒子の含有率は中散乱層よりも大きい。   Further, in the case of four or more layers, a composition in which the light scattering rate increases from the low light scattering layer side toward the high light scattering layer is desirable. The high scattering layer may be a single semiconductor fine particle having an average particle diameter of 100 to 500 nm or a mixture of two or more kinds of semiconductor fine particles. When the high scattering layer is composed of a mixture of semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm, the mixing ratio is such that the content of the larger semiconductor fine particles is 30 to 100% by weight. It is preferable that it is 50 to 100 weight%. Moreover, the content rate of the larger semiconductor particle is larger than that of the middle scattering layer.

感光層に用いる増感色素は、光電変換の波長域をできるだけ広くし、かつ変換効率を上げるため、2種類以上の色素を併用または混合することができる。この場合、目的とする光源の波長域と強度分布に合わせるように、併用または混合する色素とその割合を選ぶことができる。そして、特許文献3には、従来よりも変換効率の改善された色素増感光電変換素子が得られたと記載されている。
特開平10−255863号公報 特開2001−93591号公報 特開2002−222968号公報 (株)情報機構発行「色素増感太陽電池及び太陽電池の最前線と将来展望」P26−P27
The sensitizing dye used in the photosensitive layer can be used in combination or mixed with two or more kinds of dyes in order to make the wavelength range of photoelectric conversion as wide as possible and increase the conversion efficiency. In this case, the dye to be used or mixed and the ratio thereof can be selected so as to match the wavelength range and intensity distribution of the target light source. Patent Document 3 describes that a dye-sensitized photoelectric conversion element having improved conversion efficiency than the conventional one is obtained.
JP-A-10-255863 JP 2001-93591 A JP 2002-222968 A Published by Information Technology Co., Ltd. “Frontiers and Future Prospects of Dye-Sensitized Solar Cells and Solar Cells” P26-P27

従来の色素増感型太陽電池のように、単層の多孔質酸化物半導体層を用いたのでは光の利用効率が低く、高い変換効率が得られないという問題点があった。そこで、多孔質酸化物半導体層の裏面に光反射粒子層を設けた特許文献1の構成や、多孔質酸化物半導体層を複数層としそれぞれ異なる微粒子サイズから成るものとしたり、一部の多孔質酸化物半導体層に大きめの光散乱粒子を混合して散乱層としても機能させた特許文献2,3の構成があったが、下記のような問題点がそれぞれあった。   When a single porous oxide semiconductor layer is used as in a conventional dye-sensitized solar cell, there is a problem in that light use efficiency is low and high conversion efficiency cannot be obtained. Therefore, the configuration of Patent Document 1 in which a light-reflecting particle layer is provided on the back surface of the porous oxide semiconductor layer, a plurality of porous oxide semiconductor layers having different fine particle sizes, Although there existed the structure of the patent documents 2 and 3 which mixed the large light-scattering particle | grains with the oxide semiconductor layer and made it function also as a scattering layer, there existed the following problems, respectively.

特許文献1の太陽電池は以下のような問題点があった。光反射粒子層は、粒径が約200〜500nmの例えば酸化チタン(ルチル)からなる高屈折材料粒子により構成され、この光反射粒子層の厚さは約5〜10μmが好ましいとしているが、このように大きな粒径の粒子を500℃程度で焼結させることは困難であり、膜形成ができず、また導電パスの抵抗が大きくて色素からの電流を効率よく取り出すことができない。また、焼結させるために温度を上げると、電極や透明導電層の電気抵抗が上がって、変換効率の低下を引き起こす。また、光反射粒子層の粒径が光吸収粒子層の粒径よりも1桁大きいので、粒子の表面積は100分の1となり、そのため吸着色素量が極めて少なく、ほとんど変換効率の向上に寄与しない。また、高屈折材料粒子からなる光反射粒子層の薄膜を設けることは、製造において工程が煩雑となり、またコストも上がる。   The solar cell of Patent Document 1 has the following problems. The light reflecting particle layer is composed of high refractive material particles made of, for example, titanium oxide (rutile) having a particle size of about 200 to 500 nm. The thickness of the light reflecting particle layer is preferably about 5 to 10 μm. Thus, it is difficult to sinter particles having such a large particle size at about 500 ° C., film formation cannot be performed, and the resistance of the conductive path is large, so that the current from the dye cannot be taken out efficiently. Further, when the temperature is raised for sintering, the electrical resistance of the electrode and the transparent conductive layer is increased, and the conversion efficiency is lowered. In addition, since the particle size of the light reflecting particle layer is an order of magnitude larger than the particle size of the light absorbing particle layer, the surface area of the particles becomes 1/100, so the amount of adsorbed dye is extremely small and hardly contributes to the improvement of the conversion efficiency. . In addition, providing a light-reflecting particle layer thin film made of highly refractive material particles complicates the manufacturing process and increases the cost.

特許文献2の光電変換装置は以下のような問題点があった。透明導電体層近傍の微粒子の平均粒径が5〜50nmであり、且つ電荷輸送層近傍の微粒子の平均粒径が30〜500nmでより大きいとしているが、このように大きな粒径の粒子を500℃程度で焼結させることは困難であり、膜形成ができず、また導電パスの抵抗が大きくて色素からの電流を効率よく取り出すことができない。また、焼結させるために温度を上げると、電極や透明導電体層の電気抵抗が上がって、変換効率の低下を引き起こす。また、小さな粒径の微粒子に大きな粒径の微粒子を混合した場合、分散が難しくなってペーストの調製が良好にできず、成膜のための塗布が困難になる。また、光反射粒子層の粒径が光吸収粒子層の粒径よりも1桁大きいので、粒子の表面積は100分の1となり、吸着色素量が極めて少なく、ほとんど変換効率の向上に寄与しない。また、色素が1種では広い吸収波長域の光を光電変換することができない。   The photoelectric conversion device of Patent Document 2 has the following problems. The average particle size of the fine particles in the vicinity of the transparent conductor layer is 5 to 50 nm, and the average particle size of the fine particles in the vicinity of the charge transport layer is 30 to 500 nm, which is larger. It is difficult to sinter at about 0 ° C., a film cannot be formed, and the resistance of the conductive path is so large that the current from the dye cannot be taken out efficiently. Further, when the temperature is raised for sintering, the electrical resistance of the electrode and the transparent conductor layer is increased, and the conversion efficiency is lowered. In addition, when fine particles with a large particle size are mixed with fine particles with a small particle size, dispersion becomes difficult and the paste cannot be prepared well, and coating for film formation becomes difficult. Further, since the particle size of the light reflecting particle layer is an order of magnitude larger than the particle size of the light absorbing particle layer, the surface area of the particles becomes 1/100, the amount of adsorbed dye is extremely small, and hardly contributes to the improvement of the conversion efficiency. In addition, it is not possible to photoelectrically convert light in a wide absorption wavelength range with one kind of dye.

特許文献3の光電変換素子においては、感光層の光散乱性は、用いる半導体微粒子の種類や粒子径、空隙率または空隙のサイズによって調節することができ、このうち半導体微粒子の粒子径で調節するのが好ましいとしているが、以下のような問題点があった。即ち、平均粒径100〜500nmの半導体微粒子のように大きな粒径の粒子をペーストとして調製することは、分散性が低下して粒子が凝集しやすくなり、ペースト調製は困難であった。   In the photoelectric conversion element of Patent Document 3, the light scattering property of the photosensitive layer can be adjusted by the type, particle diameter, porosity or void size of the semiconductor fine particles to be used. However, there are the following problems. That is, preparing a particle having a large particle size such as semiconductor fine particles having an average particle size of 100 to 500 nm as a paste is difficult to prepare the paste because the dispersibility is lowered and the particles are likely to aggregate.

また、平均粒径100〜500nmの半導体微粒子のように大きな粒径の粒子を500℃程度で焼結させることは困難であり、膜形成ができず、導電パスの抵抗が大きくて色素からの電流を効率よく取り出すことができない。また、焼結させるために温度を上げると、電極や透明導電層の電気抵抗が上がって、変換効率の低下を引き起こす。また、高光散乱層の粒径が低光散乱層の粒径よりも最大1桁大きいので、粒子の表面積は100分の1となり、吸着色素量が極めて少なく、ほとんど変換効率の向上に寄与しない。これらの問題点は、平均粒径5〜50nmの半導体微粒子と平均粒径100〜500nmの半導体微粒子とを混合することで少しは軽減されるが、これらの問題点は完全には解消されない。   In addition, it is difficult to sinter particles having a large particle size, such as semiconductor fine particles having an average particle size of 100 to 500 nm, at about 500 ° C., film formation is impossible, the resistance of the conductive path is large, and the current from the dye Cannot be taken out efficiently. Further, when the temperature is raised for sintering, the electrical resistance of the electrode and the transparent conductive layer is increased, and the conversion efficiency is lowered. Further, since the particle size of the high light scattering layer is one order of magnitude larger than the particle size of the low light scattering layer, the surface area of the particles is 1/100, the amount of adsorbed dye is extremely small, and hardly contributes to the improvement of the conversion efficiency. These problems are slightly reduced by mixing semiconductor fine particles having an average particle diameter of 5 to 50 nm and semiconductor fine particles having an average particle diameter of 100 to 500 nm, but these problems are not completely solved.

従って、本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目的は以下の点にある。   Therefore, the present invention has been completed in view of the above problems in the prior art, and the object thereof is as follows.

(1)光出射側の多孔質酸化物半導体層に光散乱性を付与するに際して、光入射側の多孔質酸化物半導体層の半導体微粒子より平均粒径が大きい散乱粒子を用いることなく、光入射側の多孔質酸化物半導体層の半導体微粒子と同じ平均粒径の半導体微粒子を光出射側の多孔質酸化物半導体層にも用いることにより、上述した様々な問題点を解消すること。 (1) When light scattering property is imparted to the light emitting side porous oxide semiconductor layer, light incident is performed without using scattering particles having an average particle size larger than that of the semiconductor fine particles of the light incident side porous oxide semiconductor layer. The above-described various problems are solved by using semiconductor fine particles having the same average particle diameter as the semiconductor fine particles of the porous oxide semiconductor layer on the light emitting side for the porous oxide semiconductor layer on the light emitting side.

(2)平均粒径が小さい半導体微粒子を光出射側の多孔質酸化物半導体層に用いても、光出射側の多孔質酸化物半導体層に光散乱性を付与できるようにすること。 (2) Even when semiconductor fine particles having a small average particle diameter are used in the porous oxide semiconductor layer on the light emitting side, light scattering properties can be imparted to the porous oxide semiconductor layer on the light emitting side.

(3)焼成温度が光入射側の多孔質酸化物半導体層と光出射側の多孔質酸化物半導体層とで同じ低い温度で確実に焼成できること。 (3) The firing temperature can be surely fired at the same low temperature in the porous oxide semiconductor layer on the light incident side and the porous oxide semiconductor layer on the light exit side.

(4)光出射側の多孔質酸化物半導体層の生産性と信頼性を高め、且つその導電パスを確実にし、変換効率を高めること。 (4) To increase the productivity and reliability of the porous oxide semiconductor layer on the light emitting side, to ensure the conductive path, and to increase the conversion efficiency.

(5)光出射側の多孔質酸化物半導体層を形成しても、電極や透明導電層の電気抵抗が上がらないようにすること。 (5) Even when the light emitting side porous oxide semiconductor layer is formed, the electrical resistance of the electrode and the transparent conductive layer should not be increased.

(6)光出射側の多孔質酸化物半導体層を充分な多孔性を有する多孔質体として、大きな表面積を有するものとすることにより、色素の吸着量を増やし、より長波長側の光を変換効率に寄与させること。 (6) The porous oxide semiconductor layer on the light emitting side is made of a porous body having sufficient porosity, and has a large surface area, thereby increasing the amount of dye adsorbed and converting light on the longer wavelength side. To contribute to efficiency.

(7)光透過性の高い光入射側の多孔質酸化物半導体層の膜厚を厚くして、色素の吸着量を増やして変換効率を高め、光反射性の高い光出射側の多孔質酸化物半導体層の膜厚を薄くして、多孔質酸化物半導体層の電気抵抗の増加を抑制すること。 (7) Increasing the film thickness of the porous oxide semiconductor layer on the light incident side with high light transmittance, increasing the adsorption amount of the dye to increase the conversion efficiency, and porous oxidation on the light emitting side with high light reflectivity Reducing the electrical resistance of the porous oxide semiconductor layer by reducing the thickness of the physical semiconductor layer.

(8)平均粒径が小さい半導体微粒子を光出射側の多孔質酸化物半導体層に用いても、光出射側の多孔質酸化物半導体層に光散乱性を付与できる多孔質酸化物半導体層の製造方法を提供すること。 (8) A porous oxide semiconductor layer that can impart light scattering properties to a light emitting side porous oxide semiconductor layer even if semiconductor fine particles having a small average particle diameter are used in the light emitting side porous oxide semiconductor layer Providing a manufacturing method.

(9)1枚の導電性基板上に各層を積層した一体型積層構造として、少ない構成部材で簡単に構成できる薄型、軽量の光電変換装置とすること。 (9) As a monolithic laminated structure in which each layer is laminated on a single conductive substrate, a thin and light photoelectric conversion device that can be easily configured with a small number of components.

(10)一体型積層構造の積層体を形成した後に、浸透層を通して色素を多孔質酸化物半導体層に吸着させ、また電解質の溶液を浸透層を通して積層体内部に浸透させることによって、従来のように色素及び電解質を注入した後の対極層形成時の熱処理等によって色素及び電解質の劣化が生じるのを防ぎ、変換効率を高めること。 (10) After forming a laminate having an integral laminate structure, the dye is adsorbed to the porous oxide semiconductor layer through the permeation layer, and the electrolyte solution is permeated into the laminate through the permeation layer. To prevent deterioration of the dye and electrolyte due to heat treatment during the formation of the counter electrode layer after the dye and electrolyte are injected into the substrate, and to increase the conversion efficiency.

即ち、本発明の目的は、要約すると、少ない構成部材で簡単に構成することができる光電変換効率の高い光電変換装置を提供することにある。   That is, in summary, an object of the present invention is to provide a photoelectric conversion device with high photoelectric conversion efficiency that can be easily configured with a small number of components.

本発明の光電変換装置は、導電性基板上に、色素を吸着するとともに電解質を含有した多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成されており、前記多孔質酸化物半導体層は、複数層が積層されて成るとともに、光入射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さが光出射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の前記多孔質酸化物半導体層の厚みが光出射側の前記多孔質酸化物半導体層の厚みよりも厚いことを特徴とする。   The photoelectric conversion device of the present invention includes a porous oxide semiconductor layer that adsorbs a dye and contains an electrolyte on a conductive substrate, a permeation layer and a counter electrode layer in which the electrolyte solution permeates and the permeated solution is retained. The porous oxide semiconductor layer is formed by laminating a plurality of layers, and the arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light incident side or the surface of the fracture surface is light. The thickness of the porous oxide semiconductor layer on the light incident side is smaller than the arithmetic mean roughness of the surface of the porous oxide semiconductor layer on the emission side or the surface of the fracture surface, and the porous oxide semiconductor layer on the light emission side It is characterized by being thicker than the thickness.

また、本発明の光電変換装置は好ましくは、前記浸透層の表面または破断面の表面の算術平均粗さが前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも大きいことを特徴とする。   In the photoelectric conversion device of the present invention, preferably, the arithmetic average roughness of the surface of the permeation layer or the surface of the fracture surface is larger than the arithmetic average roughness of the surface of the porous oxide semiconductor layer or the surface of the fracture surface. It is characterized by.

また、本発明の光電変換装置は好ましくは、前記浸透層は、絶縁体粒子及び酸化物半導体粒子の少なくとも一方を焼成した焼成体から成ることを特徴とする。   In the photoelectric conversion device of the present invention, it is preferable that the permeation layer is made of a fired body obtained by firing at least one of insulator particles and oxide semiconductor particles.

また、本発明の光電変換装置は好ましくは、前記浸透層は、酸化アルミニウム粒子及び酸化チタン粒子の少なくとも一方を焼成した焼成体から成ることを特徴とする。   The photoelectric conversion device of the present invention is preferably characterized in that the permeation layer is made of a fired body obtained by firing at least one of aluminum oxide particles and titanium oxide particles.

また、本発明の光電変換装置は好ましくは、前記導電性基板上に前記多孔質酸化物半導体層、前記浸透層及び対極層が順次形成されて成る積層体の上面及び側面を覆って前記電解質を封止する封止部材が形成されていることを特徴とする。   Moreover, the photoelectric conversion device of the present invention preferably covers the upper surface and the side surface of the laminate in which the porous oxide semiconductor layer, the permeation layer, and the counter electrode layer are sequentially formed on the conductive substrate. A sealing member for sealing is formed.

また、本発明の光電変換装置は好ましくは、複数層が積層されて成る前記多孔質酸化物半導体層は酸化物半導体微粒子の焼結体から成り、光出射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径が、光入射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径よりも大きいことを特徴とする。   In the photoelectric conversion device of the present invention, preferably, the porous oxide semiconductor layer formed by laminating a plurality of layers is formed of a sintered body of oxide semiconductor fine particles, and the porous oxide semiconductor layer on the light emitting side is The average particle size of the sintered particles of the oxide semiconductor fine particles is larger than the average particle size of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. .

本発明の光電変換装置の第1の製造方法は、導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に前記多孔質酸化物半導体層上に前記浸透層を形成した後、前記導電性基板上に前記多孔質酸化物半導体層及び前記浸透層が形成されて成る積層体の前記浸透層を通して前記電解質の溶液を浸透させることを特徴とする。   The first manufacturing method of the photoelectric conversion device of the present invention is a porous oxidation comprising a sintered body of oxide semiconductor fine particles formed by laminating a plurality of layers, which adsorbs a dye and contains an electrolyte on a conductive substrate. A method for producing a dye-sensitized photoelectric conversion device in which a semiconductor layer, an infiltration layer in which an electrolyte solution permeates and the infiltrated solution is retained and a counter electrode layer are sequentially formed, wherein a plurality of layers are laminated The average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer is the same, and the porous oxide semiconductor layer on the light incident side has a dispersed phase as the dispersion phase. A colloidal liquid paste in which a dispersion medium is a liquid and is a primary particle of oxide semiconductor fine particles is applied and baked, and the porous oxide semiconductor layer on the light emitting side is formed into a gas as a dispersion medium in the liquid paste. D with The porous oxide semiconductor layer and the osmotic layer are formed on the conductive substrate after the osmotic layer is formed on the porous oxide semiconductor layer. The electrolyte solution is permeated through the permeation layer of the laminate.

また、本発明の光電変換装置の第2の製造方法は、導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成し、次に前記多孔質酸化物半導体層上に前記浸透層を形成した後、前記導電性基板上に前記多孔質酸化物半導体層及び前記浸透層が形成されて成る積層体の前記浸透層を通して前記電解質の溶液を浸透させることを特徴とする。   Further, the second method for producing the photoelectric conversion device of the present invention is a porous structure comprising a sintered body of oxide semiconductor fine particles formed by laminating a plurality of layers, which adsorbs a dye and contains an electrolyte on a conductive substrate. A method of manufacturing a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer, an electrolyte solution permeates and a permeation layer that retains the permeated solution and a counter electrode layer are sequentially formed, wherein a plurality of layers are laminated The average particle diameter of primary particles before sintering of the oxide semiconductor fine particles constituting each of the porous oxide semiconductor layers is the same, and the porous oxide semiconductor layer on the light incident side is dispersed in a dispersed phase. Is formed by applying and baking a colloidal liquid paste in which the dispersion medium is a liquid and is a primary particle of the oxide semiconductor fine particles, and the porous oxide semiconductor layer on the light emission side is dispersed in the liquid paste. As organic resin A liquid paste to which particles are added is applied and baked, and then the permeation layer is formed on the porous oxide semiconductor layer, and then the porous oxide semiconductor layer and the permeation are formed on the conductive substrate. The electrolyte solution is infiltrated through the infiltration layer of the laminate formed with the layers.

また、本発明の光電変換装置の第3の製造方法は、導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に前記多孔質酸化物半導体層上に前記浸透層を形成した後、前記導電性基板上に前記多孔質酸化物半導体層及び前記浸透層が形成されて成る積層体の前記浸透層を通して前記電解質の溶液を浸透させることを特徴とする。   The third method for producing a photoelectric conversion device according to the present invention is a porous structure comprising a sintered body of oxide semiconductor fine particles formed by laminating a plurality of layers, which adsorbs a dye and contains an electrolyte on a conductive substrate. A method of manufacturing a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer, an electrolyte solution permeates and a permeation layer that retains the permeated solution and a counter electrode layer are sequentially formed, wherein a plurality of layers are laminated The average particle diameter of primary particles before sintering of the oxide semiconductor fine particles constituting each of the porous oxide semiconductor layers is the same, and the porous oxide semiconductor layer on the light incident side is dispersed in a dispersed phase. Is formed by applying and baking a colloidal liquid paste in which the dispersion medium is a liquid and is a primary particle of the oxide semiconductor fine particles, and the porous oxide semiconductor layer on the light emission side is dispersed in the liquid paste. As organic resin Applying and firing an aerosol to which gas is added as a dispersion medium and baking, and then forming the permeation layer on the porous oxide semiconductor layer, and then forming the porous on the conductive substrate The electrolyte solution is allowed to permeate through the permeation layer of the laminate including the oxide semiconductor layer and the permeation layer.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする。   The photovoltaic power generation device of the present invention is characterized in that the photoelectric conversion device of the present invention is used as a power generation means, and the generated power of the power generation means is supplied to a load.

本発明の光電変換装置によれば、導電性基板上に、色素を吸着するとともに電解質を含有した多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成されており、多孔質酸化物半導体層は、複数層が積層されて成るとともに、光入射側の多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さが光出射側の多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の多孔質酸化物半導体層の厚みが光出射側の多孔質酸化物半導体層の厚みよりも厚いことから、浸透層上に対極層を一体的に積層した薄い一体型積層構造の積層体を形成した後に、浸透層を通して電解質の溶液を積層体の内部に均一かつ速やかに浸透させることができる。従って、従来のように色素及び電解質を注入した後の対極層形成時の熱処理等によって色素及び電解質の劣化が生じるのを防ぐことができ、その結果変換効率を高めることができる。   According to the photoelectric conversion device of the present invention, a porous oxide semiconductor layer that adsorbs a dye and contains an electrolyte on a conductive substrate, a permeation layer in which the electrolyte solution permeates and the permeated solution is retained, and The counter electrode layer is sequentially formed, and the porous oxide semiconductor layer is formed by laminating a plurality of layers, and the arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light incident side or the surface of the fracture surface is light. The arithmetic average roughness of the surface of the porous oxide semiconductor layer on the emission side or the surface of the fracture surface is smaller than the thickness of the porous oxide semiconductor layer on the light emission side. Therefore, it is possible to uniformly and quickly infiltrate the electrolyte solution into the laminate through the permeation layer after forming a thin monolithic laminate having the counter electrode layer integrally laminated on the permeation layer. it can. Therefore, it is possible to prevent the deterioration of the dye and the electrolyte due to the heat treatment at the time of forming the counter electrode layer after injecting the dye and the electrolyte as in the conventional case, and as a result, the conversion efficiency can be increased.

また、浸透層は浸透した電解質の溶液を、例えば表面張力で保持するため、一旦浸透した溶液を外部に漏れないようにすることができる。その結果、電解質の溶液を必要量のみ浸透させることができるため、低コストに製造できる光電変換装置となる。   Further, since the permeation layer holds the permeated electrolyte solution with, for example, surface tension, the permeated solution can be prevented from leaking outside. As a result, since only a necessary amount of the electrolyte solution can be permeated, a photoelectric conversion device that can be manufactured at low cost is obtained.

また、多孔質酸化物半導体層に含まれる空孔の大きさであって、その多孔質酸化物半導体層の表面等の算術平均粗さに依存するその空孔の大きさが小さくても、その空孔の大きさに依存することなく、浸透層を通して多孔質酸化物半導体層全体に電解質の溶液を万遍なく均一に行き渡らせるようにすることができる。   In addition, even if the size of the pores included in the porous oxide semiconductor layer and the size of the pores depending on the arithmetic average roughness such as the surface of the porous oxide semiconductor layer is small, Regardless of the size of the pores, the electrolyte solution can be distributed uniformly and uniformly throughout the porous oxide semiconductor layer through the permeation layer.

また、1枚の導電性基板上に各層を積層した一体型積層構造とすることができるため、対極層側基板が不要となり、少ない構成部材で簡単に構成することができる薄型、軽量の光電変換装置となる。   In addition, since it is possible to have an integrated laminated structure in which each layer is laminated on a single conductive substrate, a counter electrode layer side substrate is not required, and a thin and light photoelectric conversion that can be easily configured with few components. It becomes a device.

また、浸透層によって、その上に形成される対極層と多孔質酸化物半導体層との電気的絶縁を確保することができるため、対極層と多孔質酸化物半導体層との電気的な短絡を防いで、電荷導電型の光電変換装置として好適な特性を得ることができる。   In addition, since the penetration layer can ensure electrical insulation between the counter electrode layer formed on the porous layer and the porous oxide semiconductor layer, an electrical short circuit between the counter electrode layer and the porous oxide semiconductor layer is prevented. Therefore, characteristics suitable for a charge conductive photoelectric conversion device can be obtained.

また、光入射側の多孔質酸化物半導体層は、短波長光(400〜600nm)をよく散乱して閉じ込めるが長波長光(600〜900nm)をよく透過させるものであり、長波長光が透過しやすいため厚く形成できる。よって、光入射側の多孔質酸化物半導体層が吸着(担持)した色素によって、よく短波長光を吸収するとともに、算術平均粗さが小さいため表面積が大きくなり、色素の吸着量が多くなるので、色素からの光電流を増やすことができる。   Moreover, the porous oxide semiconductor layer on the light incident side scatters and confines short wavelength light (400 to 600 nm) well, but transmits long wavelength light (600 to 900 nm) well, and transmits long wavelength light. Because it is easy to do, it can be formed thick. Therefore, the dye adsorbed (supported) by the porous oxide semiconductor layer on the light incident side absorbs short-wavelength light well, and since the arithmetic mean roughness is small, the surface area becomes large and the amount of dye adsorbed increases. , The photocurrent from the dye can be increased.

光出射側の多孔質酸化物半導体層は、その内部で長波長光を散乱して閉じ込めるものであり、薄く形成できるので導電パスの抵抗を小さくできる。よって、光出射側の多孔質酸化物半導体層に吸着された色素によって長波長光をよく吸収して、色素からの光電流を増やすとともに、色素からの電流を低い抵抗で効率よく取り出すことができる。   The porous oxide semiconductor layer on the light emitting side scatters and confines long-wavelength light inside thereof and can be formed thin, so that the resistance of the conductive path can be reduced. Therefore, long wavelength light is well absorbed by the dye adsorbed on the porous oxide semiconductor layer on the light emitting side, and the photocurrent from the dye is increased, and the current from the dye can be efficiently extracted with low resistance. .

また、本発明の光電変換装置によれば、浸透層の表面または破断面の表面の算術平均粗さが多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも大きいときには、浸透層は、それを構成する微粒子の平均粒径が多孔質酸化物半導体層の平均粒径より大きいものとなり、その場合浸透層内部の空孔が大きくなるため、対極層に隣接する浸透層の内部により多くの電解質が存在することができ、浸透層に含まれる電解質による電気抵抗が小さくなり、変換効率を高めることができる。   Further, according to the photoelectric conversion device of the present invention, when the arithmetic average roughness of the surface of the permeation layer or the surface of the fracture surface is larger than the arithmetic average roughness of the surface of the porous oxide semiconductor layer or the surface of the fracture surface, In the layer, the average particle size of the fine particles constituting the layer is larger than the average particle size of the porous oxide semiconductor layer, and in this case, the pores in the permeation layer become larger, so the inside of the permeation layer adjacent to the counter electrode layer Therefore, more electrolyte can be present, the electrical resistance due to the electrolyte contained in the permeation layer is reduced, and the conversion efficiency can be increased.

また、本発明の光電変換装置によれば、浸透層は、絶縁体粒子及び酸化物半導体粒子の少なくとも一方を焼成した焼成体から成るときに、浸透層は、多孔質酸化物半導体層を固定して支える固定層としての役割を果たすことから、2枚の基板を貼り合せることなく1枚の基板で光電変換装置を構成することができる。   According to the photoelectric conversion device of the present invention, when the osmotic layer is composed of a fired body obtained by firing at least one of the insulator particles and the oxide semiconductor particles, the osmotic layer fixes the porous oxide semiconductor layer. Thus, the photoelectric conversion device can be configured with a single substrate without bonding the two substrates.

また、本発明の光電変換装置によれば、絶縁体粒子及び酸化物半導体粒子の少なくとも一方を焼成する構成において、浸透層は、酸化アルミニウム粒子及び酸化チタン粒子の少なくとも一方を焼成した焼成体から成るときには、浸透層と多孔質酸化物半導体層との密着性を高めることができ、変換効率及び信頼性を高めることができる。   According to the photoelectric conversion device of the present invention, in the configuration in which at least one of the insulator particles and the oxide semiconductor particles is fired, the permeation layer is made of a fired body obtained by firing at least one of the aluminum oxide particles and the titanium oxide particles. Sometimes, the adhesion between the osmotic layer and the porous oxide semiconductor layer can be improved, and the conversion efficiency and reliability can be improved.

また、本発明の光電変換装置によれば、導電性基板上に多孔質酸化物半導体層及び浸透層が形成されて成る積層体の上面及び側面を覆って電解質を封止する封止部材が形成されているときには、色素や電解質の外気からの汚染による劣化を抑制して信頼性を確保することができる。   In addition, according to the photoelectric conversion device of the present invention, the sealing member for sealing the electrolyte is formed covering the upper surface and the side surface of the laminate formed by forming the porous oxide semiconductor layer and the permeation layer on the conductive substrate. In this case, it is possible to ensure the reliability by suppressing the deterioration due to the contamination of the dye and the electrolyte from the outside air.

また、本発明の光電変換装置によれば、複数層が積層されて成る多孔質酸化物半導体層は酸化物半導体微粒子の焼結体から成り、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径が、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きいときには、光入射側の多孔質酸化物半導体層は、短波長光をよく散乱して閉じ込めるが長波長光をよく透過させるものであり、長波長光が透過しやすいため厚く形成できる。よって、光入射側の多孔質酸化物半導体層が吸着した色素によって、よく短波長光を吸収するとともに、算術平均粗さが小さいため表面積が大きくなり、色素の吸着量が多くなるので、色素からの光電流を増やすことができる光電変換装置となる。   Further, according to the photoelectric conversion device of the present invention, the porous oxide semiconductor layer formed by laminating a plurality of layers is composed of a sintered body of oxide semiconductor fine particles, and the oxidation forming the porous oxide semiconductor layer on the light emitting side. When the average particle size of the sintered particles of the oxide semiconductor particles is larger than the average particle size of the sintered particles of the oxide semiconductor particles forming the porous oxide semiconductor layer on the light incident side, the porous oxide on the light incident side The semiconductor layer scatters and confines short-wavelength light well but transmits long-wavelength light well, and can be formed thick because long-wavelength light is easily transmitted. Therefore, the dye adsorbed by the porous oxide semiconductor layer on the light incident side absorbs short-wavelength light well, and since the arithmetic mean roughness is small, the surface area is increased, and the amount of adsorbed dye is increased. The photoelectric conversion device can increase the photocurrent.

本発明の光電変換装置の第1の製造方法によれば、導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層を、液体ペーストに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に多孔質酸化物半導体層上に浸透層を形成した後、導電性基板上に多孔質酸化物半導体層及び浸透層が形成されて成る積層体の浸透層を通して電解質の溶液を浸透させることから、浸透層が電解質の溶液を多孔質酸化物半導体層の端部側から浸透層自体に浸透させて、それを速やかに多孔質酸化物半導体層全体に行き渡らせる働きをするため、多孔質酸化物半導体層上にスペーサとしての浸透層及びその他の層が既に形成された後であっても、電解質の溶液を多孔質酸化物半導体層に適切に注入することができる。従って、多孔質酸化物半導体層、スペーサとしての浸透層及びその他の層を積層体として、少ない材料で簡単に製造することができる。   According to the first method for producing a photoelectric conversion device of the present invention, a porous body comprising a sintered body of oxide semiconductor fine particles comprising a plurality of layers laminated to adsorb a dye and contain an electrolyte on a conductive substrate. A method of manufacturing a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer, an electrolyte solution permeates and a permeation layer that retains the permeated solution and a counter electrode layer are sequentially formed, wherein a plurality of layers are laminated The average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer is the same, and the porous oxide semiconductor layer on the light incident side is oxidized by the dispersed phase. The colloidal liquid paste, which is the primary particle of the solid semiconductor particle and the dispersion medium is a liquid, is applied and fired, and the porous oxide semiconductor layer on the light emission side is added to the liquid paste as a dispersion medium. Apply aerosol After forming by baking and then forming a permeation layer on the porous oxide semiconductor layer, the electrolyte is passed through the permeation layer of the laminate in which the porous oxide semiconductor layer and the permeation layer are formed on the conductive substrate. Since the solution is permeated, the permeation layer functions to permeate the electrolyte solution from the end side of the porous oxide semiconductor layer itself to the permeation layer itself, and quickly spread it throughout the porous oxide semiconductor layer. Therefore, even after the permeation layer as a spacer and other layers have already been formed on the porous oxide semiconductor layer, the electrolyte solution can be appropriately injected into the porous oxide semiconductor layer. Therefore, a porous oxide semiconductor layer, a permeation layer as a spacer, and other layers can be easily manufactured with a small amount of material as a laminate.

また、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径を、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きくすることができるので、上記の優れた効果を有する光電変換装置を製造することができる。なお、上記積層体において、その他の層としては、電極として機能する導電層や積層体全体を気密封止するための封止層等が含まれる。   Further, the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light emitting side is the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. Since it can be made larger than the particle size, a photoelectric conversion device having the above-described excellent effects can be manufactured. Note that in the stacked body, the other layers include a conductive layer functioning as an electrode, a sealing layer for hermetically sealing the entire stacked body, and the like.

また、本発明の光電変換装置の第2の製造方法によれば、導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層を、液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成し、次に多孔質酸化物半導体層上に浸透層を形成した後、導電性基板上に多孔質酸化物半導体層及び浸透層が形成されて成る積層体の浸透層を通して電解質の溶液を浸透させることから、浸透層が電解質の溶液を多孔質酸化物半導体層の端部側から浸透層自体に浸透させて、それを速やかに多孔質酸化物半導体層全体に行き渡らせる働きをするため、多孔質酸化物半導体層上にスペーサとしての浸透層及びその他の層が既に形成された後であっても、電解質の溶液を多孔質酸化物半導体層に適切に注入することができる。従って、多孔質酸化物半導体層、スペーサとしての浸透層及びその他の層を積層体として、少ない材料で簡単に製造することができる。   In addition, according to the second method for producing a photoelectric conversion device of the present invention, from a sintered body of oxide semiconductor fine particles formed by laminating a plurality of layers, which adsorbs a dye and contains an electrolyte, on a conductive substrate. A method for producing a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer, an infiltration layer into which an electrolyte solution permeates and a permeation layer in which the infiltrated solution is retained, and a counter electrode layer are sequentially formed The average particle diameters of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating are the same, and the porous oxide semiconductor layer on the light incident side is dispersed in the dispersed phase. Is a primary particle of oxide semiconductor fine particles and the dispersion medium is formed by applying and baking a colloidal liquid paste composed of a liquid, and the porous oxide semiconductor layer on the light emitting side is formed into an organic resin as a dispersed phase in the liquid paste Of fine particles A laminate formed by applying and baking a liquid paste and then forming a permeation layer on the porous oxide semiconductor layer and then forming the porous oxide semiconductor layer and the permeation layer on the conductive substrate. Since the electrolyte solution is allowed to permeate through the permeation layer, the permeation layer permeates the electrolyte solution from the end side of the porous oxide semiconductor layer to the permeation layer itself, and quickly penetrates the entire porous oxide semiconductor layer. In order to spread, the electrolyte solution is appropriately injected into the porous oxide semiconductor layer even after the penetration layer and other layers as spacers have already been formed on the porous oxide semiconductor layer. be able to. Therefore, a porous oxide semiconductor layer, a permeation layer as a spacer, and other layers can be easily manufactured with a small amount of material as a laminate.

また、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径を、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きくすることができるので、上記の優れた効果を有する光電変換装置を製造することができる。なお、上記積層体において、その他の層としては、電極として機能する導電層や積層体全体を気密封止するための封止層等が含まれる。   Further, the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light emitting side is the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. Since it can be made larger than the particle size, a photoelectric conversion device having the above-described excellent effects can be manufactured. Note that in the stacked body, the other layers include a conductive layer functioning as an electrode, a sealing layer for hermetically sealing the entire stacked body, and the like.

また、本発明の光電変換装置の第3の製造方法によれば、導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層を、液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に多孔質酸化物半導体層上に浸透層を形成した後、導電性基板上に多孔質酸化物半導体層及び浸透層が形成されて成る積層体の浸透層を通して電解質の溶液を浸透させることから、浸透層が電解質の溶液を多孔質酸化物半導体層の端部側から浸透層自体に浸透させてそれを速やかに多孔質酸化物半導体層全体に行き渡らせる働きをするため、多孔質酸化物半導体層上にスペーサとしての浸透層及びその他の層が既に形成された後であっても、電解質の溶液を多孔質酸化物半導体層に適切に注入することができる。従って、多孔質酸化物半導体層、スペーサとしての浸透層及びその他の層を積層体として、少ない材料で簡単に製造することができる。   In addition, according to the third method for producing a photoelectric conversion device of the present invention, the oxide semiconductor fine particle sintered body formed by laminating a plurality of layers, which adsorbs a dye and contains an electrolyte, on a conductive substrate. A method for producing a dye-sensitized photoelectric conversion device in which a porous oxide semiconductor layer, an infiltration layer into which an electrolyte solution permeates and a permeation layer in which the infiltrated solution is retained, and a counter electrode layer are sequentially formed The average particle diameters of the primary particles before sintering of the oxide semiconductor fine particles constituting each layer of the porous oxide semiconductor layer formed by laminating are the same, and the porous oxide semiconductor layer on the light incident side is dispersed in the dispersed phase. Is a primary particle of oxide semiconductor fine particles and the dispersion medium is formed by applying and baking a colloidal liquid paste composed of a liquid, and the porous oxide semiconductor layer on the light emitting side is formed into an organic resin as a dispersed phase in the liquid paste Of fine particles In addition, an aerosol added with a gas as a dispersion medium is applied and baked, and then a permeation layer is formed on the porous oxide semiconductor layer, and then the porous oxide semiconductor layer and the permeation layer are formed on the conductive substrate. Since the electrolyte solution is permeated through the permeation layer of the formed laminate, the permeation layer permeates the permeation layer itself from the end side of the porous oxide semiconductor layer so that the permeation layer itself becomes porous. Even after the permeation layer and other layers as spacers have already been formed on the porous oxide semiconductor layer, the electrolyte solution can be used to spread the entire oxide semiconductor layer. The layer can be properly injected. Therefore, a porous oxide semiconductor layer, a permeation layer as a spacer, and other layers can be easily manufactured with a small amount of material as a laminate.

また、光出射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径を、光入射側の多孔質酸化物半導体層を成す酸化物半導体微粒子の焼結粒子の平均粒径よりも大きくすることができるので、上記の優れた効果を有する光電変換装置を製造することができる。なお、上記積層体において、その他の層としては、電極として機能する対極層等の導電層や積層体全体を気密封止するための封止層等が含まれる。   Further, the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light emitting side is the average particle diameter of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. Since it can be made larger than the particle size, a photoelectric conversion device having the above-described excellent effects can be manufactured. Note that in the stacked body, the other layers include a conductive layer such as a counter electrode layer functioning as an electrode, a sealing layer for hermetically sealing the entire stacked body, and the like.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、発電手段の発電電力を負荷へ供給するように成したことにより、上記本発明の光電変換装置の作用効果である、光入射側の色素を吸着した多孔質酸化物半導体層は短波長光をよく散乱し閉じ込めてよく吸収し、光出射側の色素を吸着した多孔質酸化物半導体層は長波長光をよく散乱し閉じ込めてよく吸収し、光電流を増やして変換効率を高める、また少ない材料で簡単に構成することができる、という作用効果を利用した、高変換効率を有する高信頼性の光発電装置となる。   The photovoltaic device of the present invention uses the photoelectric conversion device of the present invention as a power generation means, and supplies the generated power of the power generation means to a load. This is the operational effect of the photoelectric conversion device of the present invention. The porous oxide semiconductor layer that adsorbs the dye on the light incident side well scatters and absorbs short wavelength light well, and the porous oxide semiconductor layer that adsorbs the dye on the light exit side scatters long wavelength light well. It becomes a highly reliable photovoltaic device with high conversion efficiency utilizing the effect that it can be confined and absorbed well, the photocurrent is increased to increase the conversion efficiency, and it can be easily configured with few materials. .

本発明の光電変換装置、その製造方法及び光発電装置についての実施の形態を、図1及び図2に基づき以下に詳細に説明する。なお、各図において、同一部材には同一符号を付している。   DESCRIPTION OF EMBODIMENTS Embodiments of a photoelectric conversion device, a manufacturing method thereof, and a photovoltaic device of the present invention will be described below in detail with reference to FIGS. In addition, in each figure, the same code | symbol is attached | subjected to the same member.

本発明の光電変換装置の断面図を図1に示す。図1の光電変換装置1は、多孔質酸化物半導体層が2層から成るもので、基板2a及びその一主面に形成された透明導電層2bからなる導電性基板2上に形成された、色素(図示せず)を吸着した第1の多孔質酸化物半導体層3、色素を吸着した第2の多孔質酸化物半導体層4、浸透層7、対極層8及び封止部材としての封止部9、多孔質酸化物半導体層3,4及び浸透層7に注入された電解質の溶液(図示せず)を具備した構成である。   A cross-sectional view of the photoelectric conversion device of the present invention is shown in FIG. The photoelectric conversion device 1 of FIG. 1 has a porous oxide semiconductor layer composed of two layers, and is formed on a conductive substrate 2 composed of a substrate 2a and a transparent conductive layer 2b formed on one main surface thereof. 1st porous oxide semiconductor layer 3 which adsorb | sucked pigment | dye (not shown), 2nd porous oxide semiconductor layer 4 which adsorb | sucked pigment | dye, osmosis | permeation layer 7, counter electrode layer 8, and sealing as a sealing member In this configuration, the electrolyte solution (not shown) injected into the portion 9, the porous oxide semiconductor layers 3 and 4, and the permeation layer 7 is provided.

即ち、本発明の光電変換装置1は、導電性基板2上に色素を吸着(担持)した多孔質酸化物半導体層3,4、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層7及び対極層8が順次形成された色素増感型の光電変換装置1であって、多孔質酸化物半導体層3,4は、複数層が積層されて成るとともに、光入射側の多孔質酸化物半導体層3の表面または破断面の表面の算術平均粗さが光出射側の多孔質酸化物半導体層4の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の多孔質酸化物半導体層3の厚みが光出射側の多孔質酸化物半導体層4の厚みよりも厚い構成である。   That is, the photoelectric conversion device 1 of the present invention has a porous oxide semiconductor layer 3 and 4 that has adsorbed (supported) a dye on the conductive substrate 2 and the permeation in which the electrolyte solution permeates and the permeated solution is retained. In the dye-sensitized photoelectric conversion device 1 in which the layer 7 and the counter electrode layer 8 are sequentially formed, the porous oxide semiconductor layers 3 and 4 are formed by laminating a plurality of layers and are porous on the light incident side. The arithmetic average roughness of the surface of the oxide semiconductor layer 3 or the surface of the fractured surface is smaller than the arithmetic average roughness of the surface of the porous oxide semiconductor layer 4 on the light emitting side or the surface of the fractured surface, and is porous on the light incident side. The oxide semiconductor layer 3 is thicker than the porous oxide semiconductor layer 4 on the light emission side.

本発明の浸透層7は、多孔質酸化物半導体層3の上面ばかりでなく、側面を覆っていてもよい。   The permeation layer 7 of the present invention may cover not only the upper surface of the porous oxide semiconductor layer 3 but also the side surfaces.

また、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層7とは、多孔質のものであり、好ましくは表面または破断面の表面の算術平均粗さが0.01〜1μm程度のものである。この算術平均粗さの値は、浸透層7の内部の空孔の大きさにほぼ相当するものであり、電解質の溶液が浸透し易い値(0.01μm)以上で、浸透した前記溶液が例えば表面張力によって保持される値(1μm)以下に相当する。より好適には、算術平均粗さは0.1〜0.3μmであるのがよい。   The permeation layer 7 in which the electrolyte solution permeates and the permeated solution is retained is porous, and preferably has an arithmetic average roughness of the surface or the surface of the fractured surface of about 0.01 to 1 μm. belongs to. The value of the arithmetic average roughness is substantially equivalent to the size of the pores in the permeation layer 7, and is not less than a value (0.01 μm) at which the electrolyte solution easily permeates. This corresponds to a value (1 μm) or less held by the surface tension. More preferably, the arithmetic average roughness is 0.1 to 0.3 μm.

上記構成において、浸透層7は、その上に形成される対極層8と多孔質酸化物半導体層3,4との間に介在してそれらが直接触れ合わないようにするとともに一定の間隔を確保するスペーサとして主に機能するものであり、また好ましくは多数の空孔を含む多孔質状のものとして光を適度に散乱させるものである。そのような多孔質状のものとしては、焼結体が好適である。また、浸透層7は、光電変換装置1の製造過程においては、色素を含む溶液や電解質の溶液を浸透層7自体に浸透させて、多孔質酸化物半導体層3,4の全体に色素を吸着させたり、色素を吸着した多孔質酸化物半導体層3,4の全体に電解質の溶液を行き渡らせる働きをも有する。   In the above configuration, the osmotic layer 7 is interposed between the counter electrode layer 8 and the porous oxide semiconductor layers 3 and 4 formed thereon so that they do not come into direct contact with each other and ensure a certain distance. It functions mainly as a spacer and preferably scatters light moderately as a porous material including a large number of pores. A sintered body is suitable as such a porous material. Further, in the manufacturing process of the photoelectric conversion device 1, the osmotic layer 7 adsorbs the dye to the entire porous oxide semiconductor layers 3, 4 by allowing a solution containing a dye or an electrolyte solution to penetrate into the osmotic layer 7 itself. Or having the electrolyte solution spread all over the porous oxide semiconductor layers 3 and 4 to which the dye is adsorbed.

また、多孔質酸化物半導体層3,4は内部に多数の空孔を含む半導体から成る層であり、発電のメカニズムにおいて色素で光励起された電子を受け取るとともに光を散乱させて色素に光を効果的に入射させる働きをするものである。多孔質酸化物半導体層3,4において光が散乱される特性は波長依存性を有しており、その特性は多孔質酸化物半導体層3,4の表面(層の上面及び下面)、またはその破断面の算術平均粗さで制御することができる。光入射側の多孔質酸化物半導体層3の表面または破断面の表面の算術平均粗さが光出射側の多孔質酸化物半導体層4の表面または破断面の表面の算術平均粗さよりも小さいため、光入射側の多孔質酸化物半導体層3は短波長光(400〜600nm)をよく散乱して閉じ込めるが長波長光(600〜900nm)をよく透過させるものとなる。また、多孔質酸化物半導体層3は長波長光を透過させやすいため厚く形成できることから、光入射側の多孔質酸化物半導体層3が吸着した色素によって、よく短波長光を吸収するとともに、算術平均粗さが小さいため表面積が大きくなり、色素の吸着量が多くなるので、多孔質酸化物半導体層3において短波長光による色素からの光電流を増やすことができる。   The porous oxide semiconductor layers 3 and 4 are layers made of a semiconductor containing a large number of vacancies inside, and receive electrons photoexcited by the dye in the power generation mechanism and scatter light to effect light on the dye. It works to make it incident. The characteristic that light is scattered in the porous oxide semiconductor layers 3 and 4 has wavelength dependency, and the characteristic is the surface of the porous oxide semiconductor layers 3 and 4 (the upper surface and the lower surface of the layer), or its It can be controlled by the arithmetic average roughness of the fracture surface. The arithmetic average roughness of the surface of the porous oxide semiconductor layer 3 on the light incident side or the surface of the fracture surface is smaller than the arithmetic average roughness of the surface of the porous oxide semiconductor layer 4 on the light emission side or the surface of the fracture surface. The porous oxide semiconductor layer 3 on the light incident side scatters and confines short wavelength light (400 to 600 nm) well, but transmits long wavelength light (600 to 900 nm) well. In addition, since the porous oxide semiconductor layer 3 can be formed thick because it easily transmits long-wavelength light, it absorbs short-wavelength light well by the dye adsorbed by the porous oxide semiconductor layer 3 on the light incident side, and arithmetically. Since the average roughness is small, the surface area is increased and the amount of the dye adsorbed is increased, so that the photocurrent from the dye due to the short wavelength light can be increased in the porous oxide semiconductor layer 3.

一方、光出射側の多孔質酸化物半導体層4は、その内部で長波長光を散乱して閉じ込めることができる。また、多孔質酸化物半導体層4は長波長光を吸収するものであり、特に厚さを厚くする必要はないため導電パスの抵抗を小さくすることができることから、光出射側の多孔質酸化物半導体層4に吸着された色素によって長波長光をよく吸収して、多孔質酸化物半導体層4において長波長光による色素からの光電流を増やすとともに、色素からの電流を低い抵抗で効率よく取り出すことができる。   On the other hand, the porous oxide semiconductor layer 4 on the light emitting side can scatter and confine long wavelength light inside thereof. In addition, the porous oxide semiconductor layer 4 absorbs long wavelength light, and since it is not necessary to increase the thickness, the resistance of the conductive path can be reduced. Long-wavelength light is well absorbed by the dye adsorbed on the semiconductor layer 4 to increase the photocurrent from the dye by the long-wavelength light in the porous oxide semiconductor layer 4 and to efficiently take out the current from the dye with low resistance. be able to.

なお、多孔質酸化物半導体層3,4の算術平均粗さについて、その表面(層の上面及び下面)、またはその破断面の算術平均粗さを、光入射側と光出射側とで大小関係を規定しているが、少なくとも多孔質酸化物半導体層3,4の表面の算術平均粗さが上記の大小関係になっていてもよい。即ち、光入射側の多孔質酸化物半導体層3の表面の算術平均粗さが、光出射側の多孔質酸化物半導体層4の表面の算術平均粗さよりも小さくなっていれば、当然に、光入射側の多孔質酸化物半導体層3の焼結表面に対応する破断面の表面の算術平均粗さが、光出射側の多孔質酸化物半導体層4の焼結表面に対応する破断面の表面の算術平均粗さよりも小さくなっていると考えられるからである。   Note that the arithmetic average roughness of the porous oxide semiconductor layers 3 and 4 has a magnitude relationship between the surface (the upper surface and the lower surface of the layer) or the arithmetic average roughness of the fractured surface between the light incident side and the light emitting side. However, the arithmetic average roughness of at least the surfaces of the porous oxide semiconductor layers 3 and 4 may be in the above magnitude relationship. That is, if the arithmetic average roughness of the surface of the porous oxide semiconductor layer 3 on the light incident side is smaller than the arithmetic average roughness of the surface of the porous oxide semiconductor layer 4 on the light emitting side, naturally, The arithmetic mean roughness of the surface of the fracture surface corresponding to the sintered surface of the porous oxide semiconductor layer 3 on the light incident side is that of the fracture surface corresponding to the sintered surface of the porous oxide semiconductor layer 4 on the light emission side. This is because it is considered to be smaller than the arithmetic average roughness of the surface.

なお、浸透層7の表面または破断面の表面の算術平均粗さは、多孔質酸化物半導体層3,4のそれよりも大きいほうが好ましい。この場合、浸透層7は、それを構成する微粒子の平均粒径が多孔質酸化物半導体層3の平均粒径より大きいものとなり、浸透層7内部の空孔が大きくなるため、対極層8に隣接する浸透層7の内部により多くの電解質が存在することができ、浸透層7に含まれる電解質による電気抵抗が小さくなり、変換効率を高めることができる。   The arithmetic average roughness of the surface of the permeation layer 7 or the surface of the fracture surface is preferably larger than that of the porous oxide semiconductor layers 3 and 4. In this case, the permeation layer 7 has an average particle size of the fine particles constituting it larger than the average particle size of the porous oxide semiconductor layer 3, and the pores inside the permeation layer 7 become larger. More electrolyte can exist in the inside of the adjacent osmosis | permeation layer 7, the electrical resistance by the electrolyte contained in the osmosis | permeation layer 7 becomes small, and conversion efficiency can be improved.

なお、多孔質酸化物半導体層3,4の表面または破断面の表面の算術平均粗さは、露出した表面である多孔質酸化物半導体層4の上面等を測定する場合、サーフテスト装置(触針式表面粗さ測定装置)、原子間力顕微鏡(AFM)等で測定することができる。また、多孔質酸化物半導体層3,4の破断面の表面を測定する場合、原子間力顕微鏡,レーザ顕微鏡で測定することが好ましい。それは、多孔質酸化物半導体層3の膜厚は3〜25μm、より好適には6〜18μmであり、破断面の幅(膜厚)が狭く、数μmの範囲で測定可能な手段としては原子間力顕微鏡(AFM)やレーザ顕微鏡が優れているからである。   The arithmetic average roughness of the surface of the porous oxide semiconductor layers 3 and 4 or the surface of the fractured surface is determined by measuring the surface of the porous oxide semiconductor layer 4 which is an exposed surface, etc. It can be measured with a needle type surface roughness measuring device), an atomic force microscope (AFM) or the like. Moreover, when measuring the surface of the torn surface of the porous oxide semiconductor layers 3 and 4, it is preferable to measure with an atomic force microscope and a laser microscope. The porous oxide semiconductor layer 3 has a film thickness of 3 to 25 μm, more preferably 6 to 18 μm. The width (thickness) of the fracture surface is narrow, and a means that can be measured within a range of several μm is an atom. This is because an atomic force microscope (AFM) and a laser microscope are excellent.

図1の光電変換装置1の製造方法は、導電性基板2上に、第1の多孔質酸化物半導体層3を塗布形成して焼成し、次に第2の多孔質酸化物半導体層4を塗布形成して焼成し、次に浸透層7を塗布形成して焼成し、次に対極層8を形成し、次に色素溶液に導電性基板2を浸漬して多孔質酸化物半導体層3,4に色素を吸着させ、次に対極層8と導電性基板2との間に電解質の溶液を注入し、しかる後対極層8と導電性基板2の外周部を封止部9にて封止して完成する。   In the method of manufacturing the photoelectric conversion device 1 in FIG. 1, the first porous oxide semiconductor layer 3 is applied and formed on the conductive substrate 2 and baked, and then the second porous oxide semiconductor layer 4 is formed. Coating and baking, and then applying and baking the permeation layer 7, then forming the counter electrode layer 8, and then immersing the conductive substrate 2 in the dye solution to saturate the porous oxide semiconductor layer 3 4, the dye is adsorbed, and then an electrolyte solution is injected between the counter electrode layer 8 and the conductive substrate 2, and then the outer periphery of the counter electrode layer 8 and the conductive substrate 2 is sealed with the sealing portion 9. And completed.

即ち、本発明の光電変換装置の第1の製造方法は、導電性基板2上に、色素を吸着持するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層3,4、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層7及び対極層8が順次形成された色素増感型の光電変換装置1の製造方法であって、複数層が積層されて成る多孔質酸化物半導体層3,4の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層3を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層4を、液体ペーストに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に多孔質酸化物半導体層4上に浸透層7を形成した後、導電性基板2上に多孔質酸化物半導体層3,4及び浸透層7が形成されて成る積層体の浸透層7を通して電解質の溶液を浸透させる構成である。なお、電解質の溶液を積層体の側面及び浸透層7を通して浸透させることもできる。   That is, the first manufacturing method of the photoelectric conversion device of the present invention is based on a sintered body of oxide semiconductor fine particles that are formed by laminating a plurality of layers, adsorbing and holding a dye on a conductive substrate 2. Porous dye semiconductor layers 3 and 4, a method for producing a dye-sensitized photoelectric conversion device 1 in which an electrolyte solution permeates and a permeation layer 7 and a counter electrode layer 8 in which the permeated solution is retained are sequentially formed And the average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each of the porous oxide semiconductor layers 3 and 4 formed by laminating a plurality of layers is the same, The porous oxide semiconductor layer 3 is formed by applying and baking a colloidal liquid paste in which the dispersed phase is primary particles of oxide semiconductor fine particles and the dispersion medium is liquid. 4 gas as a dispersion medium in liquid paste The applied aerosol is applied and baked, and then a permeation layer 7 is formed on the porous oxide semiconductor layer 4. Then, the porous oxide semiconductor layers 3 and 4 and the permeation layer 7 are formed on the conductive substrate 2. The electrolyte solution is allowed to permeate through the permeation layer 7 of the laminate formed by forming. It is also possible to permeate the electrolyte solution through the side surface of the laminate and the permeation layer 7.

また、本発明の光電変換装置の第2の製造方法は、導電性基板2上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層3,4、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層7及び対極層8が順次形成された色素増感型の光電変換装置1の製造方法であって、複数層が積層されて成る多孔質酸化物半導体層3,4の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層3を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層4を、液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成し、次に多孔質酸化物半導体層4上に浸透層7を形成した後、導電性基板2上に多孔質酸化物半導体層3,4及び浸透層7が形成されて成る積層体の浸透層7を通して電解質の溶液を浸透させる構成である。なお、電解質の溶液を積層体の側面及び浸透層7を通して浸透させることもできる。   The second method for producing a photoelectric conversion device of the present invention comprises a sintered body of oxide semiconductor fine particles that are formed by adsorbing a dye and containing an electrolyte and laminating a plurality of layers on a conductive substrate 2. In the manufacturing method of the dye-sensitized photoelectric conversion device 1 in which the porous oxide semiconductor layers 3 and 4, the permeation layer 7 in which the electrolyte solution permeates and the permeated solution is held, and the counter electrode layer 8 are sequentially formed. The average particle diameter of the primary particles before sintering of the oxide semiconductor fine particles constituting each of the porous oxide semiconductor layers 3 and 4 formed by laminating a plurality of layers is the same, and the porous material on the light incident side The oxide semiconductor layer 3 is formed by applying and baking a colloidal liquid paste in which the dispersed phase is primary particles of oxide semiconductor fine particles and the dispersion medium is a liquid, and the porous oxide semiconductor layer 4 on the light emitting side is formed. Organic tree as a dispersed phase in a liquid paste A liquid paste to which fine particles are added is applied and fired, and then a permeation layer 7 is formed on the porous oxide semiconductor layer 4, and then the porous oxide semiconductor layers 3, 4 are formed on the conductive substrate 2. The electrolyte solution is permeated through the permeation layer 7 of the laminate formed with the permeation layer 7. It is also possible to permeate the electrolyte solution through the side surface of the laminate and the permeation layer 7.

また、本発明の光電変換装置の第3の製造方法は、導電性基板2上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層3,4、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層7及び対極層8が順次形成された色素増感型の光電変換装置1の製造方法において、複数層が積層されて成る多孔質酸化物半導体層3,4の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の多孔質酸化物半導体層3を、分散相が酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の多孔質酸化物半導体層4を、液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に多孔質酸化物半導体層4上に浸透層7を形成した後、導電性基板2上に多孔質酸化物半導体層3,4及び浸透層7が形成されて成る積層体の浸透層7を通して電解質の溶液を浸透させる構成である。なお、電解質の溶液を積層体の側面及び浸透層7を通して浸透させることもできる。   The third method for producing a photoelectric conversion device of the present invention comprises a sintered body of oxide semiconductor fine particles comprising a plurality of layers laminated to adsorb a pigment and contain an electrolyte on a conductive substrate 2. In the method of manufacturing the dye-sensitized photoelectric conversion device 1 in which the porous oxide semiconductor layers 3 and 4, the permeation layer 7 in which the electrolyte solution permeates and the permeated solution is held, and the counter electrode layer 8 are sequentially formed. The average particle diameter of primary particles before sintering of the oxide semiconductor fine particles constituting each of the porous oxide semiconductor layers 3 and 4 formed by laminating a plurality of layers is the same, and the porous oxide on the light incident side The semiconductor layer 3 is formed by applying and baking a colloidal liquid paste in which the dispersed phase is primary particles of oxide semiconductor fine particles and the dispersion medium is a liquid, and the porous oxide semiconductor layer 4 on the light emitting side is formed. Organic tree as dispersed phase in liquid paste In addition, an aerosol added with a fine particle and a gas added as a dispersion medium is applied and baked, and then a permeation layer 7 is formed on the porous oxide semiconductor layer 4, and then a porous material is formed on the conductive substrate 2. In this structure, the electrolyte solution is permeated through the permeation layer 7 of the laminated body in which the oxide semiconductor layers 3 and 4 and the permeation layer 7 are formed. It is also possible to permeate the electrolyte solution through the side surface of the laminate and the permeation layer 7.

ここで、第1の多孔質酸化物半導体層3の焼成を低温での仮焼成(乾燥)とし、次に第2の多孔質酸化物半導体層4を塗布形成してから、まとめて焼成してもよい。   Here, the firing of the first porous oxide semiconductor layer 3 is preliminarily fired (dried) at a low temperature, and then the second porous oxide semiconductor layer 4 is applied and formed, and then fired together. Also good.

本発明の光電変換装置について実施の形態の他の例の断面図を図2に示す。図2の光電変換装置1’は、多孔質酸化物半導体層が3層から成るもので、導電性基板2上に形成された、色素(図示せず)を吸着した第1の多孔質酸化物半導体層3、色素を吸着した第2の多孔質酸化物半導体層4、色素を吸着した第3の多孔質酸化物半導体層5、浸透層7、対極層8、封止部9、多孔質酸化物半導体層3,4,5及び浸透層7に注入された電解質の溶液(図示せず)を具備した構成である。   FIG. 2 shows a cross-sectional view of another example of the embodiment of the photoelectric conversion device of the present invention. The photoelectric conversion device 1 ′ shown in FIG. 2 has a porous oxide semiconductor layer composed of three layers, and is formed on a conductive substrate 2 and is a first porous oxide that adsorbs a dye (not shown). Semiconductor layer 3, second porous oxide semiconductor layer 4 adsorbing dye, third porous oxide semiconductor layer 5 adsorbing dye, permeation layer 7, counter electrode layer 8, sealing part 9, porous oxidation In this configuration, the electrolyte solution (not shown) injected into the physical semiconductor layers 3, 4, 5 and the permeation layer 7 is provided.

図2の光電変換装置1’の製造方法は、導電性基板2上に、第1の多孔質酸化物半導体層3を塗布形成して焼成し、次に中間層としての第3の多孔質酸化物半導体層5を塗布形成して焼成し、次に第2の多孔質酸化物半導体層4を塗布形成して焼成し、次に浸透層7を塗布形成して焼成し、次に対極層8を形成し、次に色素溶液に導電性基板2を浸漬して多孔質酸化物半導体層3,4,5に色素を吸着させ、次に対極層8と導電性基板2との間に電解質の溶液を注入し、しかる後対極層8と導電性基板2の外周部を封止部9にて封止して完成する。   In the method of manufacturing the photoelectric conversion device 1 ′ of FIG. 2, the first porous oxide semiconductor layer 3 is applied and formed on the conductive substrate 2, fired, and then the third porous oxidation as an intermediate layer. The organic semiconductor layer 5 is applied and fired, then the second porous oxide semiconductor layer 4 is applied and fired, then the permeation layer 7 is applied and fired, and then the counter electrode layer 8 Next, the conductive substrate 2 is immersed in the dye solution so that the dye is adsorbed to the porous oxide semiconductor layers 3, 4, and 5, and then the electrolyte is interposed between the counter electrode layer 8 and the conductive substrate 2. The solution is injected, and thereafter the outer peripheral portion of the counter electrode layer 8 and the conductive substrate 2 is sealed by the sealing portion 9 to complete.

本発明の光電変換装置1,1’によれば、このように導電性基板2と対極層8との間に、薄い積層体を形成してから電解質の溶液を注入するため、導電性基板2と対極層8との間隔を極力薄くすることができ、また対極層8側の基板は不要であるため少ない材料で簡単に構成することができる点で有利である。しかも、多孔質酸化物半導体層3,4(,5)に含まれる空孔の大きさが小さくても、浸透層7が多孔質酸化物半導体層3,4(,5)全体に電解質の溶液を確実に行き渡らせることができ、また多孔質酸化物半導体層3,4(,5)に含まれる空孔の大きさを適正に設定することで所望の波長の光が効果的に散乱するようにできるため、光電変換効率が向上する点でも有利である。   According to the photoelectric conversion devices 1 and 1 ′ of the present invention, in order to inject the electrolyte solution after forming a thin laminate between the conductive substrate 2 and the counter electrode layer 8 in this way, the conductive substrate 2 The counter electrode layer 8 is advantageous in that the distance between the counter electrode layer 8 and the counter electrode layer 8 can be made as thin as possible. Moreover, even though the pores contained in the porous oxide semiconductor layers 3 and 4 (5) are small, the permeation layer 7 is an electrolyte solution throughout the porous oxide semiconductor layers 3 and 4 (5). Can be reliably distributed, and light of a desired wavelength can be effectively scattered by appropriately setting the size of the pores included in the porous oxide semiconductor layers 3, 4 (, 5). Therefore, it is advantageous in that the photoelectric conversion efficiency is improved.

次に、上述した光電変換装置1,1’を構成する各要素について詳細に説明する。   Next, each element constituting the above-described photoelectric conversion devices 1 and 1 ′ will be described in detail.

<導電性基板>
導電性基板2としては、透光性を有する基板2a上に透明導電層2bを設けたものがよい。この基板2aの材料としては、白板ガラス,ソーダガラス,硼珪酸ガラス等のガラス、セラミックス等の無機材料等が多孔質酸化物半導体層3等の焼成温度に耐えられてよい。この基板2aの厚みは、機械的強度の点で0.05〜8mm、好ましくは0.2〜4mmがよい。
<Conductive substrate>
As the conductive substrate 2, a substrate having a transparent conductive layer 2b on a light-transmitting substrate 2a is preferable. As the material of the substrate 2a, glass such as white plate glass, soda glass, borosilicate glass, or an inorganic material such as ceramics may be able to withstand the firing temperature of the porous oxide semiconductor layer 3 and the like. The thickness of the substrate 2a is 0.05 to 8 mm, preferably 0.2 to 4 mm in terms of mechanical strength.

透明導電層2bとしては、弗素や金属をドープした金属酸化物の透明導電層が用いられる。例えば、不純物(F,Sb等)ドープの酸化スズ膜(SnO膜)、不純物(Ga,Al等)ドープの酸化亜鉛膜(ZnO膜)、スズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)、ニオブドープの酸化チタン膜等でもよい。 As the transparent conductive layer 2b, a transparent conductive layer of metal oxide doped with fluorine or metal is used. For example, impurities (F, Sb, etc.) doped tin oxide film (SnO 2 film), impurities (Ga, Al, etc.) doped zinc oxide film (ZnO film), tin doped indium oxide film (ITO film) and impurity doped oxidation An indium film (In 2 O 3 film), a niobium-doped titanium oxide film, or the like may be used.

この中では、熱CVD法やスプレー熱分解法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)が、耐熱性を有し安価な材料コストを有して最もよい。透明導電層2bの成膜法としては、熱CVD法、スプレー熱分解法、スパッタリング法、真空蒸着法、イオンプレーティング法、ディップコート法、溶液成長法、ゾルゲル法等がある。 Among these, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by thermal CVD or spray pyrolysis is best because it has heat resistance and low material cost. Examples of the method for forming the transparent conductive layer 2b include a thermal CVD method, a spray pyrolysis method, a sputtering method, a vacuum deposition method, an ion plating method, a dip coating method, a solution growth method, and a sol-gel method.

透明導電層2bの厚みは0.001〜10μm、好ましくは0.05〜2.0μmがよい。   The thickness of the transparent conductive layer 2b is 0.001 to 10 μm, preferably 0.05 to 2.0 μm.

また、透明導電層2bは、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の極薄い金属膜でもよい。また、これらの金属膜を種々の組合せで積層して用いてもよい。例えば、透明導電層2bとして、Ti層,ITO層,Ti層を順次積層したものでもよく、密着性と耐食性を高めた積層膜となる。   Further, the transparent conductive layer 2b may be an extremely thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method. Further, these metal films may be laminated and used in various combinations. For example, as the transparent conductive layer 2b, a Ti layer, an ITO layer, and a Ti layer may be sequentially laminated, and a laminated film with improved adhesion and corrosion resistance is obtained.

また、導電性基板2の基板2aとしては、逆方向(図1では上側)から光を入射させる場合、非透光性でもよく、チタン,ステンレススチール,ニッケル等からなる薄い金属シート、またはカーボン等からなる薄いシート、または絶縁基板等の表面に、多孔質酸化物半導体層3,4及び浸透層7に含まれる電解質による腐食防止のためにチタン層,ステンレススチール層,導電性の金属酸化物層等を被覆したものでもよい。   Further, the substrate 2a of the conductive substrate 2 may be non-translucent when light is incident from the opposite direction (upper side in FIG. 1), a thin metal sheet made of titanium, stainless steel, nickel or the like, or carbon A titanium sheet, a stainless steel layer, a conductive metal oxide layer for preventing corrosion due to electrolyte contained in the porous oxide semiconductor layers 3 and 4 and the permeation layer 7 on the surface of a thin sheet made of, or an insulating substrate Etc. may be coated.

本発明では多孔質酸化物半導体層3,4,5を焼成(焼成温度400℃〜550℃)することから、耐熱性の低い樹脂基板等に直接多孔質酸化物半導体層3,4,5を形成することができない。このような場合、まず耐熱性の支持基板(アルミニウムなどの金属シート)上に多孔質酸化物半導体層3,4,5を形成し焼成した後、透明導電層2bを形成もしくは透明導電層2bを被膜した樹脂から成る基板2a上に多孔質酸化物半導体膜3,4,5を転写して接着し、次に支持基板を剥がすとよい。   In the present invention, the porous oxide semiconductor layers 3, 4 and 5 are fired (firing temperature 400 ° C. to 550 ° C.), so that the porous oxide semiconductor layers 3, 4, 5 are directly applied to a resin substrate having low heat resistance. Cannot be formed. In such a case, the porous oxide semiconductor layers 3, 4, 5 are first formed and fired on a heat-resistant support substrate (a metal sheet such as aluminum), and then the transparent conductive layer 2 b is formed or the transparent conductive layer 2 b is formed. The porous oxide semiconductor films 3, 4 and 5 may be transferred and bonded onto the substrate 2a made of the coated resin, and then the supporting substrate may be peeled off.

樹脂から成る基板2aの材料としては、ポリカーボネート(PC),アクリル樹脂,ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド等の材料がよい。上記のような転写型の製造法であれば、低コストの基板2aが利用できる上に、基板2aに可撓性(フレキシブル性)も付与できるので用途が拡がる。樹脂からなる基板2aも考慮すると、導電性基板2の厚みは、機械的強度の点で0.005〜5mm、好ましくは0.01〜2mmがよい。   The material of the substrate 2a made of resin is preferably a material such as polycarbonate (PC), acrylic resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, or the like. With the transfer type manufacturing method as described above, the low-cost substrate 2a can be used, and flexibility (flexibility) can be imparted to the substrate 2a. Considering the substrate 2a made of resin, the thickness of the conductive substrate 2 is 0.005 to 5 mm, preferably 0.01 to 2 mm in terms of mechanical strength.

<多孔質酸化物半導体層>
多孔質酸化物半導体層3,4,5としては、二酸化チタン等からなる多孔質のn型酸化物半導体層等がよい。図1,図2に示すように、導電性基板2上に多孔質酸化物半導体層3,4、または多孔質酸化物半導体層3〜5を順次形成する。
<Porous oxide semiconductor layer>
As the porous oxide semiconductor layers 3, 4 and 5, a porous n-type oxide semiconductor layer made of titanium dioxide or the like is preferable. As shown in FIGS. 1 and 2, porous oxide semiconductor layers 3 and 4 or porous oxide semiconductor layers 3 to 5 are sequentially formed on a conductive substrate 2.

多孔質酸化物半導体層3〜5の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、また窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有してもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。また、多孔質酸化物半導体層3〜5は、電子エネルギー準位においてその伝導帯が色素の伝導帯よりも低いn型半導体がよい。 As the material and composition of the porous oxide semiconductor layers 3 to 5, titanium oxide (TiO 2 ) is optimal, and as other materials, titanium (Ti), zinc (Zn), tin (Sn), niobium ( Nb), indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium ( V), at least one metal oxide semiconductor of a metal element such as tungsten (W) is preferable, and nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), You may contain 1 or more types of nonmetallic elements, such as phosphorus (P). Titanium oxide or the like is preferable because it has an electron energy band gap in the range of 2 to 5 eV, which is larger than the energy of visible light. The porous oxide semiconductor layers 3 to 5 are preferably n-type semiconductors whose conduction band is lower than the conduction band of the dye in the electron energy level.

多孔質酸化物半導体層3〜5は、いずれも同じ一次粒子の酸化物半導体微粒子から成り、一次粒子の平均粒径は1〜40nmであるのがよく、より好適には5〜30nmがよい。ここで、平均粒径における下限値1nmは、これ未満になると材料の微細化ができず、上限値40nmは、これを超えると接合面積が小さくなり光電流が著しく小さくなることによる。   The porous oxide semiconductor layers 3 to 5 are all composed of oxide semiconductor fine particles having the same primary particles, and the average particle size of the primary particles is preferably 1 to 40 nm, and more preferably 5 to 30 nm. Here, if the lower limit value 1 nm of the average particle diameter is less than this, the material cannot be refined, and if the upper limit value 40 nm is exceeded, the junction area is reduced and the photocurrent is significantly reduced.

本発明の多孔質酸化物半導体層3〜5は、このように微細な一次粒子の酸化物半導体微粒子を分散相とし、水系あるいは非水系の溶液を分散媒としてペーストを調製し、この調製したペーストを導電性基板2上に、順次塗布し焼成して形成する。このように、微細な酸化物半導体によって多孔質酸化物半導体層3〜5を形成し多孔質化することにより、全ての多孔質酸化物半導体層3〜5について光作用極層としての表面積を高めることができ、光吸収と光電変換と電子伝導を効率よく行うことができる。   The porous oxide semiconductor layers 3 to 5 of the present invention are prepared by using a fine primary oxide semiconductor fine particle as a dispersion phase, and preparing a paste using an aqueous or non-aqueous solution as a dispersion medium. Are sequentially applied and fired on the conductive substrate 2. In this way, by forming the porous oxide semiconductor layers 3 to 5 with a fine oxide semiconductor and making them porous, the surface area of all the porous oxide semiconductor layers 3 to 5 as the photoactive electrode layer is increased. Therefore, light absorption, photoelectric conversion, and electron conduction can be performed efficiently.

光入射側の多孔質酸化物半導体層3は、焼成後の表面または破断面の表面の算術平均粗さRaが0.01〜0.06μmであるのがよく、より好適には0.015〜0.055μmであるのがよい。この多孔質酸化物半導体層3は、可視光下の目視にて透明に見えるのがよい。光入射側の多孔質酸化物半導体層3は、焼結後の算術平均粗さRaが小さいことにより、短波長光(400〜600nm)をよく散乱して閉じ込めるが長波長光(600〜900nm)をよく透過させるものであり、長波長光が透過しやすいため厚く形成できる。よって、多孔質酸化物半導体層3に吸着された色素によってよく短波長光を吸収するとともに、色素の吸着量が多いので、色素からの光電流を増やすことができる。   The porous oxide semiconductor layer 3 on the light incident side preferably has an arithmetic average roughness Ra of 0.01 to 0.06 μm, more preferably 0.015 to 0.05 μm, on the surface after firing or the surface of the fracture surface. It may be 0.055 μm. The porous oxide semiconductor layer 3 should be transparent when viewed under visible light. Since the porous oxide semiconductor layer 3 on the light incident side has a small arithmetic average roughness Ra after sintering, it scatters and confines short wavelength light (400 to 600 nm) well, but long wavelength light (600 to 900 nm). Can be formed thick because long wavelength light is easily transmitted. Therefore, short-wavelength light is well absorbed by the dye adsorbed on the porous oxide semiconductor layer 3, and the amount of dye adsorbed is large, so that the photocurrent from the dye can be increased.

この光入射側の多孔質酸化物半導体層3を形成するには、まず液体ペーストを作製する。液体ペーストの作製は、例えば、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストを塗布する前に、遠心脱泡及び真空脱法をして気泡を含まない液体ペーストとし、次に静かに導電性基板2上にこの液体ペーストを滴下し、ドクターブレード法、バーコート法またはスピンナーコーター法等によって、一定速度で均一に静かに塗布するとよい。 In order to form the porous oxide semiconductor layer 3 on the light incident side, first, a liquid paste is prepared. The liquid paste is prepared, for example, by adding acetylacetone to TiO 2 anatase powder, kneading with deionized water, and preparing a titanium oxide paste stabilized with a surfactant. Before applying the prepared paste, centrifugal defoaming and vacuum degassing are performed to obtain a liquid paste that does not contain bubbles, and then this liquid paste is gently dropped on the conductive substrate 2, and the doctor blade method and bar coating method. Alternatively, it may be applied uniformly and gently at a constant speed by a spinner coater method or the like.

次に、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質酸化物半導体層3を形成する。この光入射側の多孔質酸化物半導体層3の厚みは、3〜25μmがよく、より好適には6〜18μmがよい。   Next, the porous oxide semiconductor layer 3 is formed by heat treatment in the atmosphere at 300 to 600 ° C., preferably 400 to 500 ° C., for 10 to 60 minutes, preferably 20 to 40 minutes. The thickness of the porous oxide semiconductor layer 3 on the light incident side is preferably 3 to 25 μm, and more preferably 6 to 18 μm.

光出射側の多孔質酸化物半導体層4は、焼成後の表面または破断面の表面の算術平均粗さRaが0.03〜0.2μmであるのがよく、より好適には0.04〜0.15μmであるのがよい。この多孔質酸化物半導体層4は可視光下の目視にて不透明に見えるのがよい。焼結後にこのような表面粗さであることにより、この光出射側の多孔質酸化物半導体層4は、その内部で長波長光を散乱して閉じ込めるものであり、薄く形成できるので導電パスの抵抗を小さくできる。よって、光出射側の多孔質酸化物半導体層4が吸着した色素によって長波長光をよく吸収して、色素からの光電流を増やすとともに、色素からの電流を低い抵抗で効率よく取り出すことができる。   The porous oxide semiconductor layer 4 on the light emitting side may have an arithmetic average roughness Ra of 0.03 to 0.2 μm, more preferably 0.04 to 0.2 μm, on the surface after firing or the surface of the fracture surface. It is good that it is 0.15 μm. The porous oxide semiconductor layer 4 should appear opaque when viewed under visible light. Due to such surface roughness after sintering, the porous oxide semiconductor layer 4 on the light emitting side scatters and confines long-wavelength light inside thereof and can be formed thin, so that the conductive path Resistance can be reduced. Therefore, the long-wavelength light is well absorbed by the dye adsorbed by the porous oxide semiconductor layer 4 on the light emitting side, and the photocurrent from the dye is increased, and the current from the dye can be efficiently extracted with low resistance. .

この多孔質酸化物半導体層4を形成するには、液体ペーストの作製方法と塗布膜形成方法を用いるが、以下の3つの方法が特によい。   In order to form the porous oxide semiconductor layer 4, a liquid paste preparation method and a coating film formation method are used, and the following three methods are particularly preferable.

第1の方法は、まず液体ペーストを多孔質酸化物半導体層3の場合と同様に作製する。この液体ペーストを遠心脱泡して気泡を含まない液体ペーストとする。次に、導電性基板2上にスプレー塗布法等を用いて、気泡を含む液体ペーストとして導電性基板2上に滴下し、均一に塗布する。あるいは、液体ペーストを攪拌して気泡を含ませ、この液体ペーストを導電性基板2上に滴下し、ドクターブレード法、バーコート法、スピンナーコーター法等で均一に塗布する。   In the first method, a liquid paste is first prepared in the same manner as in the case of the porous oxide semiconductor layer 3. This liquid paste is centrifugally defoamed to obtain a liquid paste containing no bubbles. Next, using a spray coating method or the like on the conductive substrate 2, it is dropped onto the conductive substrate 2 as a liquid paste containing bubbles and applied uniformly. Alternatively, the liquid paste is stirred to include bubbles, and the liquid paste is dropped on the conductive substrate 2 and uniformly applied by a doctor blade method, a bar coat method, a spinner coater method, or the like.

第2の方法は、まず液体ペーストを上記と同様に作製する際に、有機樹脂の微粒子を混合して混練し、この調製ペーストを遠心脱泡して気泡を含まない液体ペーストとする。次に、この液体ペーストを導電性基板2上に滴下し、均一に静かにドクターブレード法、バーコート法、スピンナーコーター法等で均一に塗布する。   In the second method, when a liquid paste is first prepared in the same manner as described above, organic resin fine particles are mixed and kneaded, and the prepared paste is centrifugally defoamed to obtain a liquid paste containing no bubbles. Next, this liquid paste is dropped onto the conductive substrate 2 and uniformly and uniformly applied by a doctor blade method, a bar coat method, a spinner coater method or the like.

第3の方法は、液体ペーストを上記第2の方法と同様に作製する。次に、この液体ペーストを導電性基板2上にスプレー塗布法等を用いて、気泡を含む液体ペーストとして滴下し、均一に塗布する。   In the third method, a liquid paste is produced in the same manner as the second method. Next, this liquid paste is dropped onto the conductive substrate 2 as a liquid paste containing bubbles using a spray coating method or the like, and uniformly applied.

上記第2及び第3の方法に用いる有機樹脂の微粒子として、特にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子がよく、他にPEG(ポリエチレングリコール)のフレーク等でもよい。   As the organic resin fine particles used in the second and third methods, spherical fine particles of acrylic resin (methacrylic ester copolymer) are particularly good, and PEG (polyethylene glycol) flakes may be used.

こうして上記第1〜第3の方法のいずれかの方法で得られた塗布膜を、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質酸化物半導体層4が得られる。この多孔質酸化物半導体層4は可視光下の目視にて不透明を示すのがよい。   Thus, the coating film obtained by any one of the first to third methods is 300 to 600 ° C., preferably 400 to 500 ° C. in the atmosphere, and 10 to 60 minutes, preferably 20 to 40 in the atmosphere. By performing the partial heat treatment, the porous oxide semiconductor layer 4 is obtained. The porous oxide semiconductor layer 4 should be opaque by visual observation under visible light.

ここで、第1の方法では分散した気泡が多孔質酸化物半導体層4に所望の表面粗さを与え、第2の方法では分散した有機樹脂の微粒子が焼成で気化して多孔質酸化物半導体層4に所望の表面粗さを与え、第3の方法では分散した気泡が多孔質酸化物半導体層4に所望の表面粗さの一部を与えるとともに、分散した有機樹脂の微粒子が焼成で気化して所望の表面粗さの一部を与える。   Here, in the first method, the dispersed bubbles give the porous oxide semiconductor layer 4 a desired surface roughness, and in the second method, the dispersed organic resin fine particles are vaporized by firing to form a porous oxide semiconductor. In the third method, a desired surface roughness is given to the layer 4, and dispersed bubbles give part of the desired surface roughness to the porous oxide semiconductor layer 4, and fine particles of the dispersed organic resin are removed by firing. To give part of the desired surface roughness.

多孔質酸化物半導体層4の厚みは、1〜12μmがよく、より好適には2〜10μmがよく、多孔質酸化物半導体膜3より薄く形成できる。   The thickness of the porous oxide semiconductor layer 4 is preferably 1 to 12 μm, more preferably 2 to 10 μm, and can be formed thinner than the porous oxide semiconductor film 3.

多孔質酸化物半導体層5は、光入射側と光出射側の多孔質酸化物半導体層3,4の中間に設けられたものであり、焼成後の表面または破断面の表面の算術平均粗さRaが0.02〜0.12μmであるのがよく、より好適には0.03〜0.1μmであるのがよい。この中間の多孔質酸化物半導体層5は、可視光下の目視にて半透明に見えるのがよい。この多孔質酸化物半導体層5の作製方法は、上記の第1〜第3の方法と同様に行えばよく、ペースト粘度を低い方に調整したり、有機樹脂の微粒子の混合量を減らしたりして、焼成後の表面粗さRaを中間の大きさにすることができる。   The porous oxide semiconductor layer 5 is provided between the light incident side and light emitting side porous oxide semiconductor layers 3 and 4, and the arithmetic average roughness of the surface after firing or the surface of the fracture surface Ra should be 0.02-0.12 μm, more preferably 0.03-0.1 μm. The intermediate porous oxide semiconductor layer 5 should look translucent when viewed under visible light. The method for producing the porous oxide semiconductor layer 5 may be performed in the same manner as in the first to third methods, and the paste viscosity is adjusted to a lower value or the amount of organic resin fine particles mixed is reduced. Thus, the surface roughness Ra after firing can be set to an intermediate size.

焼結後に多孔質酸化物半導体層5の表面または破断面の表面の算術平均粗さを中間の大きさとすることにより、短波長光と長波長光との中間波長光(550〜650nm)を散乱して閉じ込めることができ、多孔質酸化物半導体層5に吸着された色素によって中間波長光をよく吸収して、色素からの光電流を増やすことができる。   The intermediate wavelength light (550 to 650 nm) of short wavelength light and long wavelength light is scattered by setting the arithmetic average roughness of the surface of the porous oxide semiconductor layer 5 or the surface of the fractured surface to an intermediate size after sintering. Thus, the intermediate wavelength light is well absorbed by the dye adsorbed on the porous oxide semiconductor layer 5, and the photocurrent from the dye can be increased.

この多孔質酸化物半導体層5の膜厚は、1〜10μmがよく、より好適には3〜8μmがよく、多孔質酸化物半導体膜3より薄く、多孔質酸化物半導体膜4より厚くできる。   The film thickness of the porous oxide semiconductor layer 5 is preferably 1 to 10 μm, more preferably 3 to 8 μm, which is thinner than the porous oxide semiconductor film 3 and thicker than the porous oxide semiconductor film 4.

図3のグラフに、このようにして得られたTiOからなる多孔質酸化物半導体層の表面粗さRaと吸収波長との関係を示す。ここで、算術平均粗さRaはサーフテスト装置(ミツトヨ社製、製品名「SJ−400」)にてJIS規格のB0601−1994に基づき評価した。また、吸収波長は、導電性基板2上に多孔質酸化物半導体層を形成する前後の光透過率の差より、多孔質酸化物半導体層が吸収する光スペクトルの吸収ピーク波長を割り出し評価した。 The graph of FIG. 3 shows the relationship between the surface roughness Ra of the porous oxide semiconductor layer made of TiO 2 thus obtained and the absorption wavelength. Here, arithmetic average roughness Ra was evaluated based on JIS standard B0601-1994 with a surf test apparatus (product name “SJ-400” manufactured by Mitutoyo Corporation). The absorption wavelength was evaluated by determining the absorption peak wavelength of the light spectrum absorbed by the porous oxide semiconductor layer from the difference in light transmittance before and after forming the porous oxide semiconductor layer on the conductive substrate 2.

図3より、吸収波長は、多孔質酸化物半導体層のRaとほぼ比例関係にあることが分かる。従って、本発明のように、多孔質酸化物半導体層のRaを調整することにより、吸収波長を制御することができる。   FIG. 3 shows that the absorption wavelength is substantially proportional to Ra of the porous oxide semiconductor layer. Therefore, the absorption wavelength can be controlled by adjusting Ra of the porous oxide semiconductor layer as in the present invention.

また、多孔質酸化物半導体層3〜5の表面に対して、TiCl処理、即ちTiCl溶液に10時間程度浸漬し、水洗し、450℃で30分間焼成する処理を施すと、電子電導性がさらによくなって変換効率が高まる。 Further, when the surface of the porous oxide semiconductor layers 3 to 5 is treated with TiCl 4 , that is, immersed in a TiCl 4 solution for about 10 hours, washed with water, and baked at 450 ° C. for 30 minutes, the electronic conductivity is increased. Improves the conversion efficiency.

また、多孔質酸化物半導体層3と導電性基板2との間に、n型酸化物半導体の極薄の緻密層を挿入するとよく、逆電流が抑制できるので変換効率が高まる。   In addition, an extremely thin dense layer of an n-type oxide semiconductor may be inserted between the porous oxide semiconductor layer 3 and the conductive substrate 2, and the reverse current can be suppressed, so that the conversion efficiency is increased.

<色素>
増感色素である色素としては、例えば、ルテニウム−トリス,ルテニウム−ビス,オスミウム−トリス,オスミウム−ビス型の遷移金属錯体、多核錯体、またはルテニウム−シス−ジアクア−ビピリジル錯体、またはフタロシアニンやポルフィリン、多環芳香族化合物、ローダミンB等のキサンテン系色素であることが好ましい。
<Dye>
Examples of the sensitizing dye include a ruthenium-tris, ruthenium-bis, osmium-tris, osmium-bis transition metal complex, a polynuclear complex, or a ruthenium-cis-diaqua-bipyridyl complex, or a phthalocyanine or porphyrin. Xanthene dyes such as polycyclic aromatic compounds and rhodamine B are preferred.

多孔質酸化物半導体層3〜5に色素を吸着させるためには、色素に少なくとも1個以上のカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基を置換基として有することが有効である。ここで、置換基は色素自身を多孔質酸化物半導体層3〜5に強固に化学吸着させることができ、励起状態の色素から多孔質酸化物半導体層3〜5へ容易に電荷移動できるものであればよい。   In order to adsorb the dye to the porous oxide semiconductor layers 3 to 5, the dye has at least one carboxyl group, sulfonyl group, hydroxamic acid group, alkoxy group, aryl group, phosphoryl group as a substituent. It is valid. Here, the substituent can strongly chemisorb the dye itself to the porous oxide semiconductor layers 3 to 5 and can easily transfer charges from the excited state dye to the porous oxide semiconductor layers 3 to 5. I just need it.

多孔質酸化物半導体層3〜5に色素を吸着させる方法としては、例えば導電性基板2上に形成された多孔質酸化物半導体層3〜5を、色素を溶解した溶液に浸漬する方法が挙げられる。色素を溶解させる溶液の溶媒は、エタノール等のアルコール類、アセトン等のケトン類、ジエチルエーテル等のエーテル類、アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の色素濃度は5×10−5〜2×10−3mol/l(l(リットル):1000cm)程度が好ましい。 Examples of the method of adsorbing the dye on the porous oxide semiconductor layers 3 to 5 include a method of immersing the porous oxide semiconductor layers 3 to 5 formed on the conductive substrate 2 in a solution in which the dye is dissolved. It is done. Examples of the solvent of the solution for dissolving the dye include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like. The dye concentration in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l (liter): 1000 cm 3 ).

多孔質酸化物半導体層3〜5を形成した導電性基板2を、色素を溶解した溶液に浸漬する際、溶液及び雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下もしくは真空中、室温もしくは導電性基板2加熱の条件が挙げられる。浸漬時間は色素及び溶液の種類、溶液の濃度等により適宜調整することができる。これにより、色素を多孔質酸化物半導体層3〜5に吸着させることができる。   When the conductive substrate 2 on which the porous oxide semiconductor layers 3 to 5 are formed is immersed in the solution in which the dye is dissolved, the temperature conditions of the solution and the atmosphere are not particularly limited, and for example, under atmospheric pressure or vacuum Among these, room temperature or conditions for heating the conductive substrate 2 may be mentioned. The immersion time can be appropriately adjusted depending on the type of the dye and the solution, the concentration of the solution, and the like. Thereby, a pigment | dye can be made to adsorb | suck to the porous oxide semiconductor layers 3-5.

<浸透層>
浸透層7としては、例えば、酸化アルミニウム等の微粒子等を焼結させた、電解質の溶液が毛細管現象により浸透可能であるとともに前記溶液が例えば例えば表面張力によって保持される多孔質体からなる薄膜であるのがよい。図1及び図2に示すように、多孔質酸化物半導体層4上に浸透層7を形成する。なお、電解質の溶液が例えば表面張力によって浸透層7に保持されている状態は、一旦浸透層7に浸透し吸収された電解質の溶液が外部に漏れないようになっている状態であり、目視による観察によって容易に判別できる。
<Penetration layer>
The permeation layer 7 is, for example, a thin film made of a porous body in which fine particles such as aluminum oxide are sintered and the electrolyte solution can permeate by capillary action and the solution is held, for example, by surface tension. There should be. As shown in FIGS. 1 and 2, a permeation layer 7 is formed on the porous oxide semiconductor layer 4. The state in which the electrolyte solution is held in the osmotic layer 7 by, for example, surface tension is a state in which the electrolyte solution that has once penetrated and absorbed the osmotic layer 7 does not leak to the outside. It can be easily distinguished by observation.

浸透層7の表面または破断面の算術平均粗さが多孔質酸化物半導体層3,4,5の表面または破断面の表面の算術平均粗さよりも大きいことが好ましく、この場合、浸透層7は、それを構成する微粒子の平均粒径が多孔質酸化物半導体層3,4,5の平均粒径より大きいものとなる。その結果、浸透層7内部の空孔が大きくなるため、対極層8に隣接する浸透層7の内部により多くの電解質が存在することができ、浸透層7に含まれる電解質による電気抵抗が小さくなり、変換効率を高めることができる。   The arithmetic average roughness of the surface or fractured surface of the permeation layer 7 is preferably larger than the arithmetic average roughness of the surface of the porous oxide semiconductor layers 3, 4, 5 or the surface of the fractured surface. The average particle size of the fine particles constituting the same is larger than the average particle size of the porous oxide semiconductor layers 3, 4, 5. As a result, since the pores in the permeation layer 7 are increased, more electrolyte can be present in the permeation layer 7 adjacent to the counter electrode layer 8, and the electric resistance due to the electrolyte contained in the permeation layer 7 is reduced. , Conversion efficiency can be increased.

また、浸透層7は、多孔質酸化物半導体層4と対極層8とのギャップを狭くかつ一定に保つことができ、従って浸透層7の厚みは均一で、できるだけ薄く、色素の溶液及び電解質の溶液を浸透できるよう多孔質であるのがよい。浸透層7の厚みが薄くなるほど、即ち酸化還元反応距離もしくは正孔輸送距離が短くなるほど、変換効率が高くなり、また浸透層7の厚みが均一であるほど、信頼性が高く、大面積の光電変換装置を実現できる。   Further, the osmotic layer 7 can keep the gap between the porous oxide semiconductor layer 4 and the counter electrode layer 8 narrow and constant. Therefore, the thickness of the osmotic layer 7 is uniform and as thin as possible. It should be porous so that the solution can penetrate. The thinner the permeation layer 7 is, that is, the shorter the redox reaction distance or the hole transport distance, the higher the conversion efficiency. The more uniform the permeation layer 7 is, the higher the reliability and A conversion device can be realized.

浸透層7の厚さは、好ましくは0.01〜300μmであり、より好適には0.05〜50μmがよい。0.01μm未満では、浸透層7に保持される電解質の溶液が少なくなるため電解質の電気抵抗が大きくなり、変換効率が低下し易いものとなる。300μmを超えると、多孔質酸化物半導体層4と対極層8との間のギャップが大きくなるため、電解質による電気抵抗が大きくなり、変換効率が低下し易いものとなる。   The thickness of the osmotic layer 7 is preferably 0.01 to 300 μm, and more preferably 0.05 to 50 μm. If the thickness is less than 0.01 μm, the electrolyte solution retained in the permeation layer 7 is reduced, so that the electrical resistance of the electrolyte increases and the conversion efficiency tends to decrease. If it exceeds 300 μm, the gap between the porous oxide semiconductor layer 4 and the counter electrode layer 8 becomes large, so that the electrical resistance due to the electrolyte becomes large and the conversion efficiency tends to decrease.

浸透層7が絶縁体粒子からなる場合、その材料としてはAl,SiO,ZrO,CaO,SrTiO,BaTiO等がよい。特にこれらのうち、Alが、対極層8と多孔質酸化物半導体層4との短絡を防ぐ絶縁性、及び機械的強度(硬度)等の点で優れており、また白色であるため特定の色の光を吸収せず、変換効率の低下を防ぐことができ、好ましい。 When the permeation layer 7 is made of insulator particles, the material is preferably Al 2 O 3 , SiO 2 , ZrO 2 , CaO, SrTiO 3 , BaTiO 3 or the like. Among these, Al 2 O 3 is particularly excellent in terms of insulation, mechanical strength (hardness) and the like that prevent short circuit between the counter electrode layer 8 and the porous oxide semiconductor layer 4 and is white. It is preferable because it does not absorb light of a specific color and can prevent a decrease in conversion efficiency.

また、浸透層7が酸化物半導体粒子からなる場合、その材料としては、TiO,SnO,ZnO,CoO,NiO,FeO,Nb,Bi,MoO,MoS,Cr,SrCu,WO,La,Ta,CaO−Al,In,CuO,CuAlO,CuAlO,CuGaO等がよい。特にこれらのうち、TiOが、色素を吸着するので変換効率の向上に寄与でき、また半導体であるため対極層8と多孔質酸化物半導体層4との短絡を抑えることができる。 Also, if the permeation layer 7 is formed of an oxide semiconductor particles, as the material thereof, TiO 2, SnO 2, ZnO , CoO, NiO, FeO, Nb 2 O 5, Bi 2 O 3, MoO 2, MoS 2, Cr 2 O 3 , SrCu 2 O 2 , WO 3 , La 2 O 3 , Ta 2 O 5 , CaO—Al 2 O 3 , In 2 O 3 , Cu 2 O, CuAlO, CuAlO 2 , CuGaO 2 and the like are preferable. Among these, in particular, TiO 2 adsorbs the dye, so that it can contribute to the improvement of conversion efficiency, and since it is a semiconductor, a short circuit between the counter electrode layer 8 and the porous oxide semiconductor layer 4 can be suppressed.

浸透層7がこれらの材料の粒状体、針状体、柱状体等が集合してなるものであって多孔質体であることにより、電解質の溶液(図示せず)を含有することができ、変換効率を高めることができる。また、浸透層7を成す粒状体、針状体、柱状体等の平均粒径もしくは平均線径は5〜800nmであるのがよく、より好適には10〜400nmがよい。ここで、平均粒径もしくは平均線径の5〜800nmにおける下限値は、これ未満になると材料の微細化ができず、上限値は、これを超えると焼結温度が高くなる、という理由による。   When the osmotic layer 7 is a porous body made up of granular materials, needle-like bodies, columnar bodies, etc. of these materials, it can contain an electrolyte solution (not shown), Conversion efficiency can be increased. Moreover, the average particle diameter or average line diameter of the granular material, needle-like body, columnar body, and the like constituting the permeation layer 7 may be 5 to 800 nm, and more preferably 10 to 400 nm. Here, if the lower limit of the average particle diameter or the average wire diameter of 5 to 800 nm is less than this, the material cannot be refined, and if the upper limit is exceeded, the sintering temperature is increased.

また、浸透層7を多孔質体とすることにより、浸透層7や多孔質酸化物半導体層4の表面、及びこれらの界面が凹凸状となり、光閉じ込め効果をもたらして、変換効率をより高めることができる。   Moreover, by making the osmotic layer 7 a porous body, the surface of the osmotic layer 7 and the porous oxide semiconductor layer 4 and their interfaces become uneven, thereby providing a light confinement effect and further improving the conversion efficiency. Can do.

浸透層7の低温成長法としては、電析法、泳動電着法、水熱合成法等がよい。   As the low temperature growth method of the osmotic layer 7, an electrodeposition method, an electrophoretic electrodeposition method, a hydrothermal synthesis method, or the like is preferable.

浸透層7は、表面または破断面の表面の算術平均粗さ(Ra)が0.1μm以上であることがよく、より好適には0.1〜1μmであることがよく、さらに好適には0.1〜0.3μmであることがよい。浸透層7の表面または破断面の表面のRaが0.1μm未満では、色素の溶液や電解質の溶液が浸透しにくくなる。また、浸透層7の表面または破断面の表面のRaが1μmを超えると、浸透層7と多孔質酸化物半導体層4との密着性が劣化し易くなる。また、Raが1μmを超える場合、そもそも浸透層7の積層形成が困難になる。ここで、Raの定義は、JIS−B−0601及びISO−4287の規定に従う。   The penetrating layer 7 may have an arithmetic average roughness (Ra) of 0.1 μm or more, more preferably 0.1 to 1 μm, and even more preferably 0. It is good that it is 1-0.3 micrometer. When Ra on the surface of the permeation layer 7 or the surface of the fracture surface is less than 0.1 μm, the dye solution or the electrolyte solution is difficult to permeate. Moreover, when Ra of the surface of the osmosis | permeation layer 7 or the surface of a torn surface exceeds 1 micrometer, the adhesiveness of the osmosis | permeation layer 7 and the porous oxide semiconductor layer 4 will deteriorate easily. Further, when Ra exceeds 1 μm, it is difficult to form the penetration layer 7 in the first place. Here, the definition of Ra follows the provisions of JIS-B-0601 and ISO-4287.

なお、浸透層7の表面または破断面の表面のRaは、浸透層7の内部の空孔の大きさにほぼ相当するものであり、Raが0.1μmであれば空孔の大きさもほぼ0.1μmとなる。   The Ra of the surface of the permeation layer 7 or the surface of the fractured surface is substantially equivalent to the size of the pores inside the permeation layer 7, and if Ra is 0.1 μm, the size of the pores is also substantially 0. .1 μm.

浸透層7の表面のRaは、例えば、次のようにして測定すればよい。触針式表面粗さ測定機、例えば、株式会社ミツトヨ製サーフテスト(SJ−400)を用い、浸透層7の表面を測定する。測定の方式及び手順は、JIS−B−0633及びISO−4288に規定される表面形状評価の方式及び手順に従えばよい。測定箇所はスクラッチなどの表面欠陥を避けることとする。浸透層7の表面が等方性の場合、測定方向は任意に設定してよい。測定距離、すなわち評価長さはRaの値に応じて適切に設定すればよい。具体例として、例えば、Raが0.02μmより大きくかつ0.1μm以下である場合、評価長さは1.25mmとすればよい。また、この場合、粗さ曲線用カットオフ値は0.25mmとすればよい。また、浸透層7の破断面の表面の算術平均粗さRaは、浸透層7の表面と同様に測定すればよい。   The Ra on the surface of the permeation layer 7 may be measured, for example, as follows. The surface of the permeation layer 7 is measured using a stylus type surface roughness measuring machine, for example, a surf test (SJ-400) manufactured by Mitutoyo Corporation. The measurement method and procedure may follow the surface shape evaluation method and procedure defined in JIS-B-0633 and ISO-4288. Measurement points should avoid surface defects such as scratches. When the surface of the osmotic layer 7 is isotropic, the measurement direction may be set arbitrarily. What is necessary is just to set a measurement distance, ie, evaluation length, appropriately according to the value of Ra. As a specific example, for example, when Ra is larger than 0.02 μm and smaller than or equal to 0.1 μm, the evaluation length may be 1.25 mm. In this case, the cut-off value for the roughness curve may be 0.25 mm. Further, the arithmetic mean roughness Ra of the surface of the fracture surface of the permeation layer 7 may be measured in the same manner as the surface of the permeation layer 7.

また、浸透層7は、例えば、次のようにして破断すればよい。まず、透光性基板2の透明導電層とは反対側の面の表面に、ダイヤモンドカッターを用いてキズをつける。この際に加える力は、目視でキズが確認できる程度に強く、かつ、ガラス粉が出ない程度に弱くすればよい。次に、プライヤーを用いて積層体を挟み込み、透光性基板2につけたキズに沿って浸透層7を含む積層体を破断する。   Moreover, what is necessary is just to fracture | rupture the osmosis | permeation layer 7, for example as follows. First, the surface of the translucent substrate 2 opposite to the transparent conductive layer is scratched using a diamond cutter. The force applied at this time may be so strong that scratches can be visually confirmed and weak enough that no glass powder is produced. Next, the laminated body is sandwiched using pliers, and the laminated body including the osmotic layer 7 is broken along the scratches attached to the light-transmitting substrate 2.

また、透光性基板2にキズをつけた後の破断は、次のようにしてもよい。まず、ブロック状の台の上に、透光性基板2を上側にして積層体を置く。この際、ブロック状の台の縁と透光性基板2につけたキズを並行にし、また、透光性基板2につけたキズがブロック状の台の縁から1mm程度離れて空中に保持されるようにして積層体を固定する。次に、積層体よりも長い幅をもつ板状の治具、例えば、ステンレス板等を、透光性基板2につけたキズの両側に載置する。次に、ブロック状の台の上の積層体の部分に載置した治具を固定しながら、積層体の空中に保持された部分に載置した治具を下向きに押下することにより、浸透層7を含む積層体を破断する。なお、浸透層7の破断の際には、破断面を直線的にすると破断面の観察が容易になってよい。   Further, the breakage after scratching the translucent substrate 2 may be as follows. First, a laminated body is placed on a block-like table with the translucent substrate 2 facing upward. At this time, the edge of the block-shaped base and the scratch attached to the translucent substrate 2 are made parallel, and the scratch attached to the translucent board 2 is held in the air at a distance of about 1 mm from the edge of the block-shaped base. Then, the laminate is fixed. Next, a plate-shaped jig having a width longer than that of the laminated body, for example, a stainless plate or the like is placed on both sides of the scratch attached to the translucent substrate 2. Next, while fixing the jig placed on the part of the laminated body on the block-like base, pressing the jig placed on the part held in the air of the laminated body downward, the permeation layer The laminate including 7 is broken. When the permeation layer 7 is broken, the fracture surface may be easily observed by making the fracture surface linear.

また、浸透層7は、空孔率が好ましくは20〜80%、より好適には40〜60%の多孔質体であるのがよい。20%未満では、色素の溶液や電解質の溶液が浸透しにくくなり、80%を超えると、浸透層7と多孔質酸化物半導体層4との密着性が劣化し易くなる。   The permeation layer 7 is preferably a porous body having a porosity of preferably 20 to 80%, and more preferably 40 to 60%. If it is less than 20%, it is difficult for the dye solution or the electrolyte solution to permeate, and if it exceeds 80%, the adhesion between the permeation layer 7 and the porous oxide semiconductor layer 4 tends to deteriorate.

なお、浸透層7の空孔率は、ガス吸着測定装置を用いて窒素ガス吸着法によって試料の等温吸着曲線を求め、BJH法,CI法,DH法などによって空孔容積を求め、これと試料の粒子密度から得ることができる。   For the porosity of the permeation layer 7, the isothermal adsorption curve of the sample is obtained by a nitrogen gas adsorption method using a gas adsorption measuring device, the void volume is obtained by the BJH method, CI method, DH method, etc. Can be obtained from the particle density.

また、浸透層7の空孔率を上記の範囲内で大きくすると、色素の溶液の浸透が早くなり、確実に多孔質酸化物半導体層3,4,5に色素を吸着させることができ、さらに、電解質の抵抗が小さくなり、変換効率をより高めることができる。空孔率の大きな浸透層7を形成する具体例として、例えば、酸化アルミニウム(Al)の微粒子(平均粒径31nm)とポリエチレングリコール(分子量約2万)とを混合したペーストを焼成すればよい。またこの場合、酸化アルミニウムの微粒子(平均粒径31nm)の70wt(重量)%に、平均粒径がより大きな酸化チタン(TiO)の微粒子(平均粒径180nm)の30wt%を混合して使用してもよい。これらの重量比、平均粒径、材料を調整することで、より大きな空孔率を得ることもできる。 Further, when the porosity of the permeation layer 7 is increased within the above range, the penetration of the dye solution can be accelerated, and the dye can be reliably adsorbed to the porous oxide semiconductor layers 3, 4, 5. The resistance of the electrolyte is reduced, and the conversion efficiency can be further increased. As a specific example of forming the permeation layer 7 having a large porosity, for example, a paste in which aluminum oxide (Al 2 O 3 ) fine particles (average particle size 31 nm) and polyethylene glycol (molecular weight of about 20,000) are mixed is fired. That's fine. In this case, 70 wt.% Of aluminum oxide fine particles (average particle size 31 nm) are mixed with 30 wt% of titanium oxide (TiO 2 ) fine particles (average particle size 180 nm) having a larger average particle size. May be. By adjusting these weight ratios, average particle diameters, and materials, a larger porosity can be obtained.

また、浸透層7に浸透した電解質の溶液は、例えば表面張力によって浸透層7に保持されるものとする。電解質の溶液を浸透層7に保持させるためには、浸透層7の空孔径を、電解質の溶液の表面張力及び密度、電解質の溶液と浸透層7との接触角に応じた適宜の値とすればよい。具体例として、例えば、炭酸エチレン,アセトニトリルまたはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合して調製した電解質の溶液を用い、酸化アルミニウムまたは酸化チタンを用いて浸透層7を形成する場合、浸透層7の空孔径を1μm以下とすれば、電解質の溶液を浸透層7に保持させることができる。   The electrolyte solution that has permeated into the permeation layer 7 is held in the permeation layer 7 by, for example, surface tension. In order to hold the electrolyte solution in the permeation layer 7, the pore size of the permeation layer 7 is set to an appropriate value according to the surface tension and density of the electrolyte solution and the contact angle between the electrolyte solution and the permeation layer 7. That's fine. As a specific example, for example, an electrolyte solution prepared by mixing tetrapropylammonium iodide, lithium iodide, iodine, or the like with ethylene carbonate, acetonitrile, methoxypropionitrile, or the like is used, and aluminum oxide or titanium oxide is used. When the permeation layer 7 is formed, the electrolyte solution can be held in the permeation layer 7 if the pore diameter of the permeation layer 7 is 1 μm or less.

酸化アルミニウムからなる浸透層7は以下のようにして形成される。まず、Alの微粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた後、ポリエチレングリコールを添加して酸化アルミニウムのペーストを作製する。このペーストをドクターブレード法やバーコート法等で多孔質酸化物半導体層4上に一定速度で塗布し、大気中で300〜600℃、好適には400〜500℃で、10〜60分、好適には20〜40分加熱処理することにより、浸透層7を形成する。 The permeation layer 7 made of aluminum oxide is formed as follows. First, acetylacetone is added to Al 2 O 3 fine powder, then kneaded with deionized water, stabilized with a surfactant, and then polyethylene glycol is added to prepare an aluminum oxide paste. This paste is applied onto the porous oxide semiconductor layer 4 at a constant speed by a doctor blade method, a bar coating method, or the like, and is 300 to 600 ° C., preferably 400 to 500 ° C., preferably 10 to 60 minutes in the atmosphere. Then, the permeation layer 7 is formed by heat treatment for 20 to 40 minutes.

<対極層>
対極層8としては、触媒機能を有する白金,カーボン等の極薄膜がよい。他に、金(Au),パラジウム(Pd),アルミニウム(Al)等の極薄膜を電析したものがよい。また、導電性有機材料からなる薄膜が挙げられる。また、これらの材料の微粒子等から成る多孔質膜、例えばカーボン微粒子の多孔質膜等がよく、対極層8の表面積が増え、気孔部に電解質の溶液の電解質成分を含有させることができ、変換効率を高めることができる。対極層8を薄膜だけで形成し導電性基板2側に一体化したり、対極層8を厚くしたりして、支持体としての対極基板を用いないことが可能である。
<Counter electrode layer>
As the counter electrode layer 8, a very thin film of platinum, carbon or the like having a catalytic function is preferable. In addition, an electrodeposited ultrathin film of gold (Au), palladium (Pd), aluminum (Al) or the like is preferable. Moreover, the thin film which consists of an electroconductive organic material is mentioned. Further, a porous film made of fine particles of these materials, for example, a porous film of carbon fine particles, etc. is good, the surface area of the counter electrode layer 8 is increased, and the electrolyte component of the electrolyte solution can be contained in the pores. Efficiency can be increased. It is possible to form the counter electrode layer 8 only with a thin film and integrate it on the conductive substrate 2 side, or to increase the thickness of the counter electrode layer 8 so that the counter electrode substrate as a support is not used.

また、浸透層7側の面にPt等からなる対極層(触媒層)8を設けた対極基板を用いても構わない。この場合、浸透層7上に対極層8を対極基板とともに設けるようにする。対極基板を用いる場合には封止が容易になるという利点がある。   Moreover, you may use the counter electrode board | substrate which provided the counter electrode layer (catalyst layer) 8 which consists of Pt etc. in the surface at the side of the osmosis | permeation layer 7. FIG. In this case, the counter electrode layer 8 is provided on the permeation layer 7 together with the counter electrode substrate. When the counter electrode substrate is used, there is an advantage that sealing becomes easy.

対極層8が、触媒層と対極基板(図示せず)とから成る場合、対極基板としては、上記の導電性基板2と同様のものが利用できる。例えば、対極基板としては、電気抵抗が小さく耐食性に優れた金属からなるものがよく、例えば、チタニウム、ステンレス等の金属シートがよい。また、導電層を被覆した樹脂基板を用いてもよい。このような樹脂基板として、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド,ポリカーボネート等のシートがよく、導電層として、チタニウム、ステンレス等の金属薄膜がよい。さらに、上記の金属シートや導電層付き樹脂シートと、触媒層との間に、腐食防止のために導電性の金属酸化物層(ITO膜,SnO:F膜,ZnO:Al膜等)を設けると信頼性が高まる。これらの対極基板の厚みは、機械的強度の点で0.01〜5mm、好ましくは0.1〜3mmがよい。 When the counter electrode layer 8 is composed of a catalyst layer and a counter electrode substrate (not shown), the same substrate as the conductive substrate 2 can be used as the counter electrode substrate. For example, the counter electrode substrate is preferably made of a metal having low electrical resistance and excellent corrosion resistance, and for example, a metal sheet such as titanium or stainless steel is preferable. Alternatively, a resin substrate coated with a conductive layer may be used. Such a resin substrate is preferably a sheet of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polycarbonate or the like, and a metal thin film such as titanium or stainless steel is preferable as the conductive layer. Furthermore, a conductive metal oxide layer (ITO film, SnO 2 : F film, ZnO: Al film, etc.) is provided between the metal sheet or the resin sheet with a conductive layer and the catalyst layer to prevent corrosion. If provided, reliability is increased. The thickness of these counter electrode substrates is 0.01 to 5 mm, preferably 0.1 to 3 mm in terms of mechanical strength.

<封止部>
図1及び図2において、光電変換装置1,1’の側壁を構成する封止部9は、電解質の溶液の電解質成分が外部に漏れるのを防ぐことができる機械的強度を付与するとともに、外部環境と直接接して光電変換装置1の内部を保護し、光電変換機能が劣化するのを防ぐために設ける。
<Sealing part>
1 and 2, the sealing portion 9 constituting the side walls of the photoelectric conversion devices 1 and 1 ′ provides mechanical strength capable of preventing the electrolyte component of the electrolyte solution from leaking to the outside, and externally. Provided in direct contact with the environment to protect the inside of the photoelectric conversion device 1 and prevent deterioration of the photoelectric conversion function.

封止部9の材料としては、吸湿防止機能を有し充分な接着強度を有するものがよく、エチレン酢酸ビニル共重合樹脂(EVA),ポリビニルブチラール(PVB),エチレン−アクリル酸エチル共重合体(EEA),フッ素樹脂,エポキシ樹脂,アクリル樹脂,飽和ポリエステル樹脂,アミノ樹脂,フェノール樹脂,ポリアミドイミド樹脂,UV硬化樹脂,シリコーン樹脂,フッ素樹脂,ウレタン樹脂,金属屋根に利用される塗布樹脂等がよい。   The material of the sealing portion 9 is preferably a material having a moisture absorption preventing function and sufficient adhesive strength, such as ethylene vinyl acetate copolymer resin (EVA), polyvinyl butyral (PVB), ethylene-ethyl acrylate copolymer ( EEA), fluorine resin, epoxy resin, acrylic resin, saturated polyester resin, amino resin, phenol resin, polyamideimide resin, UV curable resin, silicone resin, fluorine resin, urethane resin, coating resin used for metal roof, etc. are good .

封止部9の厚みは0.01μm〜6mm、好ましくは1μm〜4mmがよい。また、防眩性、遮熱性、耐熱性、低汚染性、抗菌性、防かび性、意匠性、高加工性、耐疵付き・耐摩耗性、滑雪性、帯電防止性、遠赤外線放射性、耐酸性、耐食性、環境対応性等を封止部9に付与することにより、信頼性や商品性をより高めることができる。   The thickness of the sealing part 9 is 0.01 μm to 6 mm, preferably 1 μm to 4 mm. In addition, antiglare, heat shield, heat resistance, low contamination, antibacterial, antifungal, design, high workability, rust and abrasion resistance, snow sliding, antistatic, far infrared radiation, acid resistance By providing the sealing part 9 with properties, corrosion resistance, environmental compatibility, and the like, reliability and merchantability can be further improved.

<電解質>
電解質としては、電解質溶液、ゲル電解質、固体電解質等のイオン伝導性の電解質、有機正孔輸送剤等が挙げられる。
<Electrolyte>
Examples of the electrolyte include electrolyte solutions, gel electrolytes, ion conductive electrolytes such as solid electrolytes, and organic hole transport agents.

電解質溶液としては、第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては、例えば炭酸エチレン,アセトニトリルまたはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合し調製したものを用いることができる。   As the electrolyte solution, a quaternary ammonium salt, a Li salt, or the like is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing tetrapropylammonium iodide, lithium iodide, iodine or the like with ethylene carbonate, acetonitrile, methoxypropionitrile, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルに分けられる。化学ゲルは、架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル,エチレンカーボネート,プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を多孔質酸化物半導体層3〜5に含有させ、加熱、紫外線照射、電子線照射等の手段で二次元、三次元の架橋反応をおこさせることによってゲル化または固体化できる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature by a physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide into acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When using a gel electrolyte or a solid electrolyte, a low-viscosity precursor is contained in the porous oxide semiconductor layers 3 to 5, and two-dimensional or three-dimensional crosslinking is performed by means such as heating, ultraviolet irradiation, or electron beam irradiation. It can be gelled or solidified by reacting.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド,ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩をもつ固体電解質が好ましい。ヨウ化物の溶融塩としては、イミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide or polyethylene having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

上記光電変換装置1,1’を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成した光発電装置とすることができる。即ち、上記光電変換装置1,1’を1つ用いるか、または複数用いる場合には直列、並列または直並列に接続したものを発電手段として用い、この発電手段から直接直流負荷へ発電電力を供給するようにしてもよい。また、上記発電手段をインバータ等の電力変換手段を介して発電電力を適当な交流電力に変換した後で、この交流電力を商用電源系統や各種の電気機器等の交流負荷に供給することが可能な光発電装置としてもよい。さらに、このような光発電装置を日当たりのよい建物に設置する等して、各種態様の太陽光発電システム等の光発電装置として利用することも可能であり、これにより高変換効率で耐久性のある光発電装置を提供することができる。   The photoelectric conversion device 1 or 1 ′ can be used as a power generation unit, and a photovoltaic power generation device configured to supply generated power from the power generation unit to a load can be obtained. That is, when one or a plurality of the photoelectric conversion devices 1 and 1 'are used, a generator connected in series, parallel or series-parallel is used as a power generation means, and the generated power is directly supplied from this power generation means to a DC load. You may make it do. In addition, after the power generation means converts the generated power to appropriate AC power via power conversion means such as an inverter, it is possible to supply this AC power to an AC load such as a commercial power system or various electric devices. It is good also as a simple photovoltaic device. Furthermore, it is possible to use such a photovoltaic power generation device as a photovoltaic power generation device such as a photovoltaic power generation system in various aspects by installing it in a building with good sunlight, which enables high conversion efficiency and durability. A photovoltaic device can be provided.

また、本発明の光発電装置は、上記本発明の光電変換装置1,1’を発電手段として用い、発電手段の発電電力を負荷に供給するように成したことから、上記種々の効果により、変換効率が高まる、信頼性が高まる、用途が拡がる、製造が容易となり低コスト化が実現できる、という効果を有する。また、本発明の光電変換装置1,1’は、その用途として太陽電池に限定されるものではなく、光電変換機能を有するものであれば適用でき、各種受光素子や光センサ等にも適用可能である。   In addition, the photovoltaic device of the present invention uses the photoelectric conversion device 1, 1 ′ of the present invention as a power generation means and supplies the generated power of the power generation means to a load. There are effects that conversion efficiency is increased, reliability is increased, applications are expanded, manufacturing is facilitated, and cost can be reduced. In addition, the photoelectric conversion devices 1 and 1 ′ of the present invention are not limited to solar cells, but can be applied as long as they have a photoelectric conversion function, and can be applied to various light receiving elements and optical sensors. It is.

本発明の光電変換装置の実施例1について以下に説明する。図1の構成の光電変換装置1を以下のようにして作製した。   Example 1 of the photoelectric conversion device of the present invention will be described below. A photoelectric conversion device 1 having the configuration shown in FIG. 1 was produced as follows.

まず、導電性基板2として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板(縦3cm×横2cm)を用いた。この導電性基板2上に二酸化チタンから成る光入射側の多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3は以下のようにして形成した。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置及び真空装置にて液体ペーストの気泡を無くした。この液体ペーストを導電性基板2上に静かに滴下し、バーコート法で塗布し、大気中、450℃で30分間焼成し、約7μmの厚みの多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3の表面の算術平均粗さRaをサーフテスト装置で多孔質酸化物半導体層3の表面を測定したところ、Ra=0.018μmであり、可視光下の目視で透明であった。 First, a glass substrate (3 cm long × 2 cm wide) with a transparent conductive layer made of fluorine-doped tin oxide was used as the conductive substrate 2. On the conductive substrate 2, a light incident side porous oxide semiconductor layer 3 made of titanium dioxide was formed. This porous oxide semiconductor layer 3 was formed as follows. First, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide stabilized with a surfactant. Next, bubbles of the liquid paste were eliminated with a centrifugal defoaming device and a vacuum device. This liquid paste was gently dropped onto the conductive substrate 2, applied by a bar coating method, and baked at 450 ° C. for 30 minutes in the air to form a porous oxide semiconductor layer 3 having a thickness of about 7 μm. When the surface of the porous oxide semiconductor layer 3 was measured for the arithmetic average roughness Ra of the surface of the porous oxide semiconductor layer 3 with a surf test apparatus, Ra = 0.018 μm, which was transparent by visual observation under visible light. Met.

次に、この多孔質酸化物半導体層3上に二酸化チタンから成る光出射側の多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4は以下のようにして形成した。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層3上にスプレー塗布法にて気泡を含ませた液体ペーストとして均一に塗布した。次に、大気中で450℃で30分間焼成し、約4μmの厚みの多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4の表面のRaをサーフテスト装置で多孔質酸化物半導体層4の表面を測定したところ、Ra=0.084μmであり、可視光下の目視で不透明であった。 Next, the light emitting side porous oxide semiconductor layer 4 made of titanium dioxide was formed on the porous oxide semiconductor layer 3. This porous oxide semiconductor layer 4 was formed as follows. First, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide stabilized with a surfactant. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste was uniformly coated on the porous oxide semiconductor layer 3 as a liquid paste containing bubbles by spray coating. Next, the porous oxide semiconductor layer 4 having a thickness of about 4 μm was formed by firing at 450 ° C. for 30 minutes in the air. When the surface of the surface of the porous oxide semiconductor layer 4 was measured with a surf test apparatus, the surface of the porous oxide semiconductor layer 4 was Ra = 0.084 μm, and it was opaque when viewed under visible light.

次に、この多孔質酸化物半導体層4上に酸化アルミニウムから成る浸透層7を形成した。この浸透層7は以下のようにして形成した。まず、Alの粉末(平均粒径31nm)にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化アルミニウムのペーストを作製した。作製したペーストをドクターブレード法で多孔質酸化物半導体層4上に一定速度で塗布し、大気中で450℃で30分間焼成し、浸透層7を形成した。浸透層7の表面の算術平均粗さは0.276μmであった。 Next, a permeation layer 7 made of aluminum oxide was formed on the porous oxide semiconductor layer 4. This permeation layer 7 was formed as follows. First, acetylacetone was added to Al 2 O 3 powder (average particle size 31 nm), and then kneaded with deionized water to prepare an aluminum oxide paste stabilized with a surfactant. The prepared paste was applied onto the porous oxide semiconductor layer 4 at a constant speed by a doctor blade method, and baked at 450 ° C. for 30 minutes in the air to form the permeation layer 7. The arithmetic average roughness of the surface of the permeation layer 7 was 0.276 μm.

この浸透層7上に対極層8を次のように形成した。スパッタリング装置を用いて、白金(Pt)のターゲットを用いて、白金膜をシート抵抗で0.6Ω/□(スクエア)となるよう、厚み約200nmで堆積させた。   A counter electrode layer 8 was formed on the permeation layer 7 as follows. Using a sputtering device, a platinum (Pt) target was used to deposit a platinum film with a thickness of about 200 nm so that the sheet resistance would be 0.6Ω / □ (square).

このような多孔質酸化物半導体層3,4、浸透層7及び対極層8から成る積層体の一部を機械的に除去して浸透層7の側面を露出させた後、色素溶液に38時間浸漬し、浸透層7を通して多孔質酸化物半導体層3,4に色素を吸着させた。色素溶液(色素含有量が0.3mモル/l)は、色素(ソラロニクス・エスエー社製「N719」)を溶媒のアセトニトリルとt−ブタノール(容積比で1:1)に溶解したものを用いた。   A part of the laminated body composed of the porous oxide semiconductor layers 3 and 4, the osmotic layer 7 and the counter electrode layer 8 is mechanically removed to expose the side surface of the osmotic layer 7, and then exposed to the dye solution for 38 hours. It was immersed, and the dye was adsorbed to the porous oxide semiconductor layers 3 and 4 through the permeation layer 7. The dye solution (the dye content is 0.3 mmol / l) was prepared by dissolving the dye ("N719" manufactured by Solaronics SA) in the solvent acetonitrile and t-butanol (1: 1 by volume). .

次に、導電性基板2のフッ素ドープ酸化スズから成る透明導電層2bに超音波を用いて半田付けして取り出し電極を形成した。さらに、対極層8を成す白金膜上の一部にAgペーストを塗布して加熱し、取り出し電極を形成した。   Next, the transparent conductive layer 2b made of fluorine-doped tin oxide on the conductive substrate 2 was soldered using ultrasonic waves to form an extraction electrode. Further, an Ag paste was applied to a part of the platinum film constituting the counter electrode layer 8 and heated to form an extraction electrode.

次に、浸透層7を通して電解質の溶液を多孔質酸化物半導体層3,4に浸透させた。本実施例1では、電解質の溶液は液体電解質である沃素(I)と沃化リチウム(LiI)とアセトニトリル溶液とを調製して用いた。次に、オレフィン系樹脂から成る封止材のシートを対極層8上に被せ、加熱し、封止部9を形成した。 Next, the electrolyte solution was infiltrated into the porous oxide semiconductor layers 3 and 4 through the infiltration layer 7. In Example 1, an electrolyte solution prepared by using iodine (I 2 ), lithium iodide (LiI), and acetonitrile as liquid electrolytes was used. Next, a sealing material sheet made of an olefin resin was placed on the counter electrode layer 8 and heated to form the sealing portion 9.

こうして得られた光電変換装置の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率5.4%を示した。 When the photoelectric conversion characteristics of the photoelectric conversion device thus obtained were evaluated, the conversion efficiency was 5.4% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例1においては、本発明の光電変換装置を少ない材料で簡便に作製でき、しかも良好な変換効率が得られることを確認できた。   As described above, in Example 1, it was confirmed that the photoelectric conversion device of the present invention can be easily produced with a small amount of material and that good conversion efficiency can be obtained.

本発明の光電変換装置の実施例2について以下に説明する。図1の構成の光電変換装置1を以下のようにして作製した。   Example 2 of the photoelectric conversion device of the present invention will be described below. A photoelectric conversion device 1 having the configuration shown in FIG. 1 was produced as follows.

まず、導電性基板2として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板(縦3cm×横2cm)を用いた。この導電性基板2上に二酸化チタンから成る光入射側の多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3は上記実施例1と同様に形成し、約7μmの厚みの多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3のRaをサーフテスト装置で多孔質酸化物半導体層3の表面を測定したところ、Ra=0.02μmであり、可視光下の目視で透明であった。   First, a glass substrate (3 cm long × 2 cm wide) with a transparent conductive layer made of fluorine-doped tin oxide was used as the conductive substrate 2. A light incident side porous oxide semiconductor layer 3 made of titanium dioxide was formed on the conductive substrate 2. The porous oxide semiconductor layer 3 was formed in the same manner as in Example 1, and the porous oxide semiconductor layer 3 having a thickness of about 7 μm was formed. When the surface of the porous oxide semiconductor layer 3 was measured with a surf test apparatus, Ra of the porous oxide semiconductor layer 3 was Ra = 0.02 μm, and was transparent by visual observation under visible light.

なお、多孔質酸化物半導体層3を形成した導電性基板2を破断し、その多孔質酸化物半導体層3の破断面のAFM測定を5μmの範囲で行ったところ、Ra=0.022μmであり、サーフテスト装置で測定した値(Ra=0.02μm)とほぼ同じ値が得られた。   When the conductive substrate 2 on which the porous oxide semiconductor layer 3 was formed was broken and AFM measurement of the fracture surface of the porous oxide semiconductor layer 3 was performed in the range of 5 μm, Ra = 0.022 μm. A value almost the same as the value measured with the surf test apparatus (Ra = 0.02 μm) was obtained.

次に、この多孔質酸化物半導体層3上に二酸化チタンから成る光出射側の多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4は以下のようにして形成した。まず、TiOのアナターゼ粉末にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子(平均粒径0.15μm)を10重量%添加した後、脱イオン水とともに混練し、酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層3上に静かに滴下し、バーコート法で塗布し、大気中で450℃で30分間焼成し、約5μmの厚みの多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4のRaをサーフテスト装置で多孔質酸化物半導体層4の表面を測定したところ、Ra=0.062μmであり、可視光下の目視で不透明であった。 Next, the light emitting side porous oxide semiconductor layer 4 made of titanium dioxide was formed on the porous oxide semiconductor layer 3. This porous oxide semiconductor layer 4 was formed as follows. First, 10% by weight of spherical fine particles (average particle size 0.15 μm) of acrylic resin (methacrylic acid ester copolymer) was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide. Produced. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste is gently dropped onto the porous oxide semiconductor layer 3 and applied by a bar coating method, followed by baking at 450 ° C. for 30 minutes in the air to form a porous oxide semiconductor layer 4 having a thickness of about 5 μm. Formed. When the surface of the porous oxide semiconductor layer 4 was measured for Ra of the porous oxide semiconductor layer 4 with a surf test apparatus, Ra was 0.062 μm, and it was opaque by visual observation under visible light.

次に、多孔質酸化物半導体層3,4を形成した導電性基板2を、上記実施例1と同様に浸透層7、対極層8を形成した後、多孔質酸化物半導体層3,4に色素を吸着し、取り出し電極を形成し、電解質の溶液を注入してから封止部9を形成して光電変換装置1を作製した。   Next, after forming the permeation layer 7 and the counter electrode layer 8 in the same manner as in Example 1 above, the conductive substrate 2 on which the porous oxide semiconductor layers 3 and 4 are formed is formed on the porous oxide semiconductor layers 3 and 4. The photoelectric conversion device 1 was manufactured by adsorbing the dye, forming an extraction electrode, injecting an electrolyte solution, and forming the sealing portion 9.

こうして得られた光電変換装置1の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率5.7%を示した。 When the photoelectric conversion characteristics of the photoelectric conversion device 1 thus obtained were evaluated, the conversion efficiency was 5.7% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例2においては、本発明の光電変換装置1が少ない材料で簡便に作製でき、しかも高い変換効率を実現することができた。   As described above, in Example 2, the photoelectric conversion device 1 of the present invention can be easily manufactured with a small amount of material, and high conversion efficiency can be realized.

本発明の光電変換装置の実施例3について以下に説明する。図2の構成の光電変換装置1を以下のようにして作製した。   Example 3 of the photoelectric conversion device of the present invention will be described below. The photoelectric conversion device 1 having the configuration shown in FIG. 2 was produced as follows.

まず、導電性基板2として、フッ素ドープ酸化スズから成る透明導電層付きのガラス基板(縦3cm×横2cm)を用いた。この導電性基板2上に二酸化チタンから成る光入射側の多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3は上記実施例1と同様に形成し、約7μmの厚みの多孔質酸化物半導体層3を形成した。この多孔質酸化物半導体層3のRaをサーフテスト装置で多孔質酸化物半導体層3の表面を測定したところ、Ra=0.021μmであり、可視光下の目視で透明であった。   First, a glass substrate (3 cm long × 2 cm wide) with a transparent conductive layer made of fluorine-doped tin oxide was used as the conductive substrate 2. A light incident side porous oxide semiconductor layer 3 made of titanium dioxide was formed on the conductive substrate 2. The porous oxide semiconductor layer 3 was formed in the same manner as in Example 1, and the porous oxide semiconductor layer 3 having a thickness of about 7 μm was formed. When the surface of the porous oxide semiconductor layer 3 was measured for the surface of the porous oxide semiconductor layer 3 with a surf test apparatus, Ra was 0.021 μm and it was transparent by visual observation under visible light.

次に、この多孔質酸化物半導体層3上に二酸化チタンから成る中間の多孔質酸化物半導体層5を形成した。この多孔質酸化物半導体層5は以下のようにして形成した。まず、TiOのアナターゼ粉末にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子(平均粒径0.15μm)を5重量%添加した後、脱イオン水とともに混練し、二酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層3上に静かに滴下し、バーコート法で塗布した。次に、大気中で450℃にて30分間焼成し、約4μmの厚みの多孔質酸化物半導体層5を得た。この多孔質酸化物半導体層5のRaをサーフテスト装置で多孔質酸化物半導体層5の表面を測定したところ、Ra=0.048μmであり、可視光下の目視で半透明であった。 Next, an intermediate porous oxide semiconductor layer 5 made of titanium dioxide was formed on the porous oxide semiconductor layer 3. This porous oxide semiconductor layer 5 was formed as follows. First, 5 wt% of acrylic resin (methacrylic acid ester copolymer) spherical fine particles (average particle size 0.15 μm) were added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium dioxide liquid paste. Produced. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste was gently dropped onto the porous oxide semiconductor layer 3 and applied by a bar coating method. Next, the porous oxide semiconductor layer 5 having a thickness of about 4 μm was obtained by baking at 450 ° C. for 30 minutes in the air. When the surface of the porous oxide semiconductor layer 5 was measured for the surface of the porous oxide semiconductor layer 5 with a surf test apparatus, Ra was 0.048 μm, and it was translucent when viewed under visible light.

次に、この多孔質酸化物半導体層5上に二酸化チタンから成る光出射側の多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4は以下のようにして形成した。まず、TiOのアナターゼ粉末にアクリル樹脂(メタクリル酸エステル共重合物)の球状微粒子(平均粒径1.5μm)を10重量%添加した後、脱イオン水とともに混練し、酸化チタンの液体ペーストを作製した。次に、遠心脱泡装置にて液体ペーストの気泡を無くした。この液体ペーストを上記多孔質酸化物半導体層5上にスプレー塗布法にて気泡を含ませた液体ペーストとして均一に塗布した。次に、大気中で450℃にて30分間焼成し、約2μmの厚みの多孔質酸化物半導体層4を形成した。この多孔質酸化物半導体層4のRaをサーフテスト装置で多孔質酸化物半導体層4の表面を測定したところ、Ra=0.11μmであり、可視光下の目視で不透明であった。 Next, a light emitting side porous oxide semiconductor layer 4 made of titanium dioxide was formed on the porous oxide semiconductor layer 5. This porous oxide semiconductor layer 4 was formed as follows. First, 10% by weight of spherical fine particles (average particle size: 1.5 μm) of acrylic resin (methacrylic ester copolymer) was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a liquid paste of titanium oxide. Produced. Next, bubbles of the liquid paste were eliminated with a centrifugal defoamer. This liquid paste was uniformly applied on the porous oxide semiconductor layer 5 as a liquid paste containing bubbles by spray coating. Next, the porous oxide semiconductor layer 4 having a thickness of about 2 μm was formed by baking at 450 ° C. for 30 minutes in the air. When the surface of the porous oxide semiconductor layer 4 was measured for Ra of the porous oxide semiconductor layer 4 with a surf test apparatus, it was Ra = 0.11 μm, and it was opaque by visual observation under visible light.

多孔質酸化物半導体層3〜5を形成した導電性基板2を、上記実施例1と同様に浸透層7、対極層8を形成した後、多孔質酸化物半導体層3,4,5に色素を吸着させ、取り出し電極を形成し、電解質の溶液を注入してから封止部9を形成して光電変換装置1’を作製した。   After forming the permeation layer 7 and the counter electrode layer 8 in the same manner as in Example 1 above, the conductive substrate 2 on which the porous oxide semiconductor layers 3 to 5 are formed is dyed on the porous oxide semiconductor layers 3, 4, and 5. Was adsorbed, an extraction electrode was formed, an electrolyte solution was injected, and then a sealing portion 9 was formed to produce a photoelectric conversion device 1 ′.

こうして得られた光電変換装置1’の光電変換特性を評価したところ、AM1.5、100mW/cmで変換効率6.0%を示した。 When the photoelectric conversion characteristics of the photoelectric conversion device 1 ′ thus obtained were evaluated, the conversion efficiency was 6.0% at AM 1.5 and 100 mW / cm 2 .

以上のように、本実施例3においては、本発明の光電変換装置1’が少ない材料で簡便に作製でき、しかも高い変換効率を実現することができた。   As described above, in Example 3, the photoelectric conversion device 1 ′ of the present invention can be easily manufactured with a small amount of material, and high conversion efficiency can be realized.

本発明の光電変換装置について実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment about the photoelectric conversion apparatus of this invention. 本発明の光電変換装置について実施の形態の他例を示す断面図である。It is sectional drawing which shows the other example of embodiment about the photoelectric conversion apparatus of this invention. 多孔質酸化物半導体層の表面の算術平均粗さと多孔質酸化物半導体層に吸収される光の吸収波長との関係を示すグラフである。It is a graph which shows the relationship between the arithmetic mean roughness of the surface of a porous oxide semiconductor layer, and the absorption wavelength of the light absorbed by a porous oxide semiconductor layer.

符号の説明Explanation of symbols

1:光電変換装置
2:導電性基板
2a:基板
2b:透明導電層
3:光入射側の多孔質酸化物半導体層
4:光出射側の多孔質酸化物半導体層
5:中間の多孔質酸化物半導体層
7:浸透層
8:対極層
9:封止部
1: Photoelectric conversion device 2: Conductive substrate 2a: Substrate 2b: Transparent conductive layer 3: Light incident side porous oxide semiconductor layer 4: Light emitting side porous oxide semiconductor layer 5: Intermediate porous oxide Semiconductor layer 7: Penetration layer 8: Counter electrode layer 9: Sealing portion

Claims (10)

導電性基板上に、色素を吸着するとともに電解質を含有した多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成されており、前記多孔質酸化物半導体層は、複数層が積層されて成るとともに、光入射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さが光出射側の前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも小さく、光入射側の前記多孔質酸化物半導体層の厚みが光出射側の前記多孔質酸化物半導体層の厚みよりも厚いことを特徴とする光電変換装置。   A porous oxide semiconductor layer that adsorbs a dye and contains an electrolyte, and a permeation layer and a counter electrode layer in which the electrolyte solution permeates and holds the permeated solution are sequentially formed on the conductive substrate, The porous oxide semiconductor layer is formed by laminating a plurality of layers, and the arithmetic average roughness of the surface of the porous oxide semiconductor layer on the light incident side or the surface of the fracture surface is the porous oxide on the light emitting side. It is smaller than the arithmetic mean roughness of the surface of the semiconductor layer or the surface of the fracture surface, and the thickness of the porous oxide semiconductor layer on the light incident side is thicker than the thickness of the porous oxide semiconductor layer on the light emission side A photoelectric conversion device. 前記浸透層の表面または破断面の表面の算術平均粗さが前記多孔質酸化物半導体層の表面または破断面の表面の算術平均粗さよりも大きいことを特徴とする請求項1記載の光電変換装置。   2. The photoelectric conversion device according to claim 1, wherein the arithmetic average roughness of the surface of the permeation layer or the surface of the fractured surface is larger than the arithmetic average roughness of the surface of the porous oxide semiconductor layer or the surface of the fractured surface. . 前記浸透層は、絶縁体粒子及び酸化物半導体粒子の少なくとも一方を焼成した焼成体から成ることを特徴とする請求項1または2記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein the permeation layer is made of a fired body obtained by firing at least one of insulator particles and oxide semiconductor particles. 前記浸透層は、酸化アルミニウム粒子及び酸化チタン粒子の少なくとも一方を焼成した焼成体から成ることを特徴とする請求項3記載の光電変換装置。   4. The photoelectric conversion device according to claim 3, wherein the permeation layer is made of a fired body obtained by firing at least one of aluminum oxide particles and titanium oxide particles. 前記導電性基板上に前記多孔質酸化物半導体層、前記浸透層及び対極層が順次形成されて成る積層体の上面及び側面を覆って前記電解質を封止する封止部材が形成されていることを特徴とする請求項1乃至4のいずれか記載の光電変換装置。   A sealing member for sealing the electrolyte is formed on the conductive substrate so as to cover an upper surface and a side surface of a laminate in which the porous oxide semiconductor layer, the permeation layer, and the counter electrode layer are sequentially formed. The photoelectric conversion device according to claim 1, wherein: 複数層が積層されて成る前記多孔質酸化物半導体層は酸化物半導体微粒子の焼結体から成り、光出射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径が、光入射側の前記多孔質酸化物半導体層を成す前記酸化物半導体微粒子の焼結粒子の平均粒径よりも大きいことを特徴とする請求項1乃至5のいずれか記載の光電変換装置。   The porous oxide semiconductor layer formed by laminating a plurality of layers is composed of a sintered body of oxide semiconductor fine particles, and an average of the sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light emission side. 6. The photoelectric conversion according to claim 1, wherein a particle diameter is larger than an average particle diameter of sintered particles of the oxide semiconductor fine particles forming the porous oxide semiconductor layer on the light incident side. apparatus. 導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に前記多孔質酸化物半導体層上に前記浸透層を形成した後、前記導電性基板上に前記多孔質酸化物半導体層及び前記浸透層が形成されて成る積層体の前記浸透層を通して前記電解質の溶液を浸透させることを特徴とする光電変換装置の製造方法。   A porous oxide semiconductor layer composed of a sintered body of oxide semiconductor fine particles formed by adsorbing a pigment and containing an electrolyte and laminating a plurality of layers on a conductive substrate, the electrolyte solution penetrating and penetrating A method for manufacturing a dye-sensitized photoelectric conversion device in which a permeation layer for holding a solution and a counter electrode layer are sequentially formed, and oxidation of each porous oxide semiconductor layer formed by stacking a plurality of layers The average particle diameter of the primary particles before sintering of the semiconductor fine particles is the same, the porous oxide semiconductor layer on the light incident side is dispersed, the dispersed phase is the primary particles of the oxide semiconductor fine particles, and the dispersion medium is liquid. The colloidal liquid paste is applied and baked to form the porous oxide semiconductor layer on the light emitting side by applying and baking an aerosol obtained by adding a gas as a dispersion medium to the liquid paste. To the above After the permeation layer is formed on the porous oxide semiconductor layer, the electrolyte solution is passed through the permeation layer of the laminate formed by forming the porous oxide semiconductor layer and the permeation layer on the conductive substrate. A method for producing a photoelectric conversion device, characterized in that it is permeated. 導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加した液体ペーストを塗布し焼成して形成し、次に前記多孔質酸化物半導体層上に前記浸透層を形成した後、前記導電性基板上に前記多孔質酸化物半導体層及び前記浸透層が形成されて成る積層体の前記浸透層を通して前記電解質の溶液を浸透させることを特徴とする光電変換装置の製造方法。   A porous oxide semiconductor layer composed of a sintered body of oxide semiconductor fine particles formed by adsorbing a pigment and containing an electrolyte and laminating a plurality of layers on a conductive substrate, the electrolyte solution penetrating and penetrating A method for manufacturing a dye-sensitized photoelectric conversion device in which a permeation layer for holding a solution and a counter electrode layer are sequentially formed, and oxidation of each porous oxide semiconductor layer formed by stacking a plurality of layers The average particle diameter of the primary particles before sintering of the semiconductor fine particles is the same, the porous oxide semiconductor layer on the light incident side is dispersed, the dispersed phase is the primary particles of the oxide semiconductor fine particles, and the dispersion medium is liquid. The colloidal liquid paste is applied and baked, and the porous oxide semiconductor layer on the light emitting side is applied and baked by applying a liquid paste in which fine particles of organic resin are added as a dispersed phase to the liquid paste. form Then, after the penetration layer is formed on the porous oxide semiconductor layer, the porous oxide semiconductor layer and the penetration layer are formed on the conductive substrate. A method for manufacturing a photoelectric conversion device, wherein the electrolyte solution is infiltrated. 導電性基板上に、色素を吸着するとともに電解質を含有した、複数層が積層されて成る酸化物半導体微粒子の焼結体から成る多孔質酸化物半導体層、電解質の溶液が浸透するとともに浸透した前記溶液が保持される浸透層及び対極層が順次形成された色素増感型の光電変換装置の製造方法であって、複数層が積層されて成る前記多孔質酸化物半導体層の各層を構成する酸化物半導体微粒子の焼結前の一次粒子の平均粒径が同じであり、光入射側の前記多孔質酸化物半導体層を、分散相が前記酸化物半導体微粒子の一次粒子であり分散媒が液体から成るコロイド状の液体ペーストを塗布し焼成して形成し、光出射側の前記多孔質酸化物半導体層を、前記液体ペーストに分散相として有機樹脂の微粒子を付加するとともに分散媒として気体を付加したエアロゾルを塗布し焼成して形成し、次に前記多孔質酸化物半導体層上に前記浸透層を形成した後、前記導電性基板上に前記多孔質酸化物半導体層及び前記浸透層が形成されて成る積層体の前記浸透層を通して前記電解質の溶液を浸透させることを特徴とする光電変換装置の製造方法。   A porous oxide semiconductor layer composed of a sintered body of oxide semiconductor fine particles formed by adsorbing a pigment and containing an electrolyte and laminating a plurality of layers on a conductive substrate, the electrolyte solution penetrating and penetrating A method for manufacturing a dye-sensitized photoelectric conversion device in which a permeation layer for holding a solution and a counter electrode layer are sequentially formed, and oxidation of each porous oxide semiconductor layer formed by stacking a plurality of layers The average particle diameter of the primary particles before sintering of the semiconductor fine particles is the same, the porous oxide semiconductor layer on the light incident side is dispersed, the dispersed phase is the primary particles of the oxide semiconductor fine particles, and the dispersion medium is liquid. The colloidal liquid paste is applied and baked to form the porous oxide semiconductor layer on the light emitting side, and fine particles of organic resin are added to the liquid paste as a dispersed phase and gas is added as a dispersion medium. An aerosol is applied and fired, and then the permeation layer is formed on the porous oxide semiconductor layer, and then the porous oxide semiconductor layer and the permeation layer are formed on the conductive substrate. A method for manufacturing a photoelectric conversion device, wherein the electrolyte solution is permeated through the permeation layer of the laminate. 請求項1乃至6のいずれか記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。

7. A photovoltaic power generation apparatus characterized in that the photoelectric conversion device according to claim 1 is used as a power generation means, and the power generated by the power generation means is supplied to a load.

JP2006045019A 2006-02-22 2006-02-22 Photoelectric converter, manufacturing method thereof, and photovoltaic generator Pending JP2007227062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045019A JP2007227062A (en) 2006-02-22 2006-02-22 Photoelectric converter, manufacturing method thereof, and photovoltaic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045019A JP2007227062A (en) 2006-02-22 2006-02-22 Photoelectric converter, manufacturing method thereof, and photovoltaic generator

Publications (1)

Publication Number Publication Date
JP2007227062A true JP2007227062A (en) 2007-09-06

Family

ID=38548694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045019A Pending JP2007227062A (en) 2006-02-22 2006-02-22 Photoelectric converter, manufacturing method thereof, and photovoltaic generator

Country Status (1)

Country Link
JP (1) JP2007227062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142010A (en) * 2010-01-07 2011-07-21 Nisshin Steel Co Ltd Manufacturing method of photoelectrode for dye-sensitized solar cell
WO2013008642A1 (en) * 2011-07-08 2013-01-17 ソニー株式会社 Photoelectric conversion element, method for manufacturing same, electronic device, counter electrode for photoelectric conversion elements, and building
CN106549190A (en) * 2015-09-18 2017-03-29 松下知识产权经营株式会社 Charge storage element and its manufacture method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142010A (en) * 2010-01-07 2011-07-21 Nisshin Steel Co Ltd Manufacturing method of photoelectrode for dye-sensitized solar cell
WO2013008642A1 (en) * 2011-07-08 2013-01-17 ソニー株式会社 Photoelectric conversion element, method for manufacturing same, electronic device, counter electrode for photoelectric conversion elements, and building
CN106549190A (en) * 2015-09-18 2017-03-29 松下知识产权经营株式会社 Charge storage element and its manufacture method

Similar Documents

Publication Publication Date Title
JP4856089B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP4856079B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2007280761A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device
JP4659955B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module using the same, and manufacturing method thereof
JP2007018909A (en) Manufacturing method for photoelectric conversion device
JP2008176993A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic generator device
JP2000285974A (en) Photosensitized photovolatic power generation element
JP2010177109A (en) Composition for forming underlayer, method of manufacturing underlayer, method of manufacturing photoelectrode, method of manufacturing solar cell, and solar cell module
JP5078367B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2008257893A (en) Method of manufacturing substrate for dye-sensitized solar cell, method of manufacturing dye-sensitized solar cell, and substrate for dye-sensitized solar cell and dye-sensitized solar cell manufactured by these methods
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2008010237A (en) Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2005285472A (en) Photoelectric conversion device
KR101172361B1 (en) Manufacturing method of photo electrode for dye-sensitized solar cell
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP5019749B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP4601285B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP2008204881A (en) Photoelectric conversion module
JP4601284B2 (en) Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP4901194B2 (en) PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2007227062A (en) Photoelectric converter, manufacturing method thereof, and photovoltaic generator
JP5127261B2 (en) Manufacturing method of photoelectric conversion module
JP2007227260A (en) Photoelectric converter and photovoltaic generator
JP2009289571A (en) Photoelectric conversion module