JP5171139B2 - Electrode materials for dye-sensitized solar cells - Google Patents

Electrode materials for dye-sensitized solar cells Download PDF

Info

Publication number
JP5171139B2
JP5171139B2 JP2007186984A JP2007186984A JP5171139B2 JP 5171139 B2 JP5171139 B2 JP 5171139B2 JP 2007186984 A JP2007186984 A JP 2007186984A JP 2007186984 A JP2007186984 A JP 2007186984A JP 5171139 B2 JP5171139 B2 JP 5171139B2
Authority
JP
Japan
Prior art keywords
less
dye
stainless steel
sensitized solar
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007186984A
Other languages
Japanese (ja)
Other versions
JP2009026532A (en
Inventor
孝浩 藤井
義勝 西田
圭二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007186984A priority Critical patent/JP5171139B2/en
Publication of JP2009026532A publication Critical patent/JP2009026532A/en
Application granted granted Critical
Publication of JP5171139B2 publication Critical patent/JP5171139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型太陽電池の電極を構成する材料であって、受光面と反対側に設けられる透明性が要求されない「対極」や「光電極」に使用する電極材料に関する。   The present invention relates to a material constituting an electrode of a dye-sensitized solar cell, and relates to an electrode material used for a “counter electrode” or a “photo electrode” which is not required to be provided on the side opposite to a light receiving surface.

太陽電池は現在、シリコンを光電変換素子に用いたものが主流となっているが、これに替わるより経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。   Currently, solar cells using silicon as the photoelectric conversion element are the mainstream, but the practical application of “dye-sensitized solar cells” is being studied as a more economical next-generation solar cell to replace this. .

図1に、従来の色素増感型太陽電池の構成を模式的に示す。(a)は入射光側の電極に光電変換層を有するタイプ、(b)は入射光側の電極が溶液中のイオンに電子を渡すための「対極」になっているタイプである。   FIG. 1 schematically shows the structure of a conventional dye-sensitized solar cell. (A) is a type having a photoelectric conversion layer on the incident light side electrode, and (b) is a type in which the incident light side electrode is a “counter electrode” for passing electrons to ions in the solution.

図1(a)のタイプでは、透明基板2の表面に形成された光電極3と、基板4の表面に形成された対極5が向かい合って太陽電池1を構成している。このタイプの光電極3は光を透過する必要があることから、通常、ITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)等の透明導電膜で構成される。透明基板2にはガラスなどが使用される。光電極3の表面には光電変換層6が形成されている。光電変換層6は比表面積の大きいTiO2粒子7からなる多孔質層であり、TiO2粒子7の表面にはRu色素8がドープされている。光電変換層6と対極5の間にはヨウ化物イオンを含む電解質溶液9が満たされている。対極5はヨウ化物イオンを含む電解質溶液9に対して優れた耐食性を示す必要があることから、白金等の貴金属や、ITO、FTO、TOで構成されている。太陽電池1の外部には光電極3と対極5の間に負荷10が導線で結ばれ、回路を形成している。 In the type of FIG. 1A, the solar cell 1 is configured by the photoelectrode 3 formed on the surface of the transparent substrate 2 and the counter electrode 5 formed on the surface of the substrate 4 facing each other. Since this type of photoelectrode 3 needs to transmit light, it is usually composed of a transparent conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), or TO (tin oxide). . Glass or the like is used for the transparent substrate 2. A photoelectric conversion layer 6 is formed on the surface of the photoelectrode 3. The photoelectric conversion layer 6 are porous layer made of large TiO 2 particles 7 of the specific surface area, the surface of the TiO 2 particles 7 Ru dyes 8 is doped. An electrolyte solution 9 containing iodide ions is filled between the photoelectric conversion layer 6 and the counter electrode 5. Since the counter electrode 5 needs to exhibit excellent corrosion resistance with respect to the electrolyte solution 9 containing iodide ions, the counter electrode 5 is made of noble metal such as platinum, ITO, FTO, or TO. A load 10 is connected by a conducting wire between the photoelectrode 3 and the counter electrode 5 outside the solar cell 1 to form a circuit.

入射光20がRu色素8に到達すると、Ru色素8は光を吸収して励起され、その電子がTiO2粒子7へと注入される。励起状態になったRu色素8は電解質溶液9のヨウ化物イオンI-から電子を受け取り、基底状態に戻る。I-は酸化されてI3 -となり、対極5へ拡散し、対極5から電子を受け取ってI-に戻る。これにより、電子はRu色素8→TiO2粒子7→光電極3→負荷10→対極5→電解質溶液9→Ru色素8の経路で移動する。その結果、負荷10を作動させる電流が発生する。 When the incident light 20 reaches the Ru dye 8, the Ru dye 8 absorbs light and is excited, and its electrons are injected into the TiO 2 particles 7. The excited Ru dye 8 receives electrons from the iodide ion I − in the electrolyte solution 9 and returns to the ground state. I is oxidized to I 3 , diffuses to the counter electrode 5, receives electrons from the counter electrode 5, and returns to I . As a result, electrons move along the route of Ru dye 8 → TiO 2 particles 7 → photoelectrode 3 → load 10 → counter electrode 5 → electrolyte solution 9 → Ru dye 8. As a result, a current for operating the load 10 is generated.

図1(b)のタイプでは、対極5が光を透過するITO、FTO、TO等の透明導電膜で構成され、他方の電極である光電極3の表面に光電変換層6が形成されている。この場合の光電極3は必ずしも透明である必要はない。電流が発生する原理は、基本的に図1(a)のタイプと同じである。   In the type of FIG. 1B, the counter electrode 5 is made of a transparent conductive film such as ITO, FTO, or TO that transmits light, and the photoelectric conversion layer 6 is formed on the surface of the photoelectrode 3 that is the other electrode. . In this case, the photoelectrode 3 is not necessarily transparent. The principle of current generation is basically the same as the type shown in FIG.

特許文献1〜6には、色素増感型太陽電池の電極に白金などの耐食性金属からなる導電膜を使用することが記載されている。また、対極を厚さ1mmの白金板で構成する例もある(特許文献6)。   Patent Documents 1 to 6 describe that a conductive film made of a corrosion-resistant metal such as platinum is used for an electrode of a dye-sensitized solar cell. There is also an example in which the counter electrode is formed of a platinum plate having a thickness of 1 mm (Patent Document 6).

特開平11−273753号公報Japanese Patent Laid-Open No. 11-273753 特開2004−311197号公報JP 2004-3111197 A 特開2006−147261号公報JP 2006-147261 A 特開2007−48659号公報JP 2007-48659 A 特開2004−165015号公報JP 2004-165015 A 特開2005−235644号公報JP 2005-235644 A

色素増感型太陽電池の普及を図るうえで、更なる性能向上とコスト低減をもたらす技術の構築が強く望まれている。その1つとして、電極での導電性をできるだけ安価な方法で向上させる要素技術の開発が重要事項として挙げられる。   In order to promote the spread of dye-sensitized solar cells, there is a strong demand for the construction of technology that can further improve performance and reduce costs. One of the important matters is the development of elemental technology that improves the electrical conductivity of the electrode by a method that is as inexpensive as possible.

色素増感型太陽電池では、「光電極」と「対極」の両方に透明電極を用いると導電性の低下が大きくなるので、これを緩和するためには、光を透過する必要のない「光電極」または「対極」を電気抵抗の小さい金属材料で構成することが有利となる。ただし、電解質溶液としてヨウ化物イオンを含むものが使用されるため、ヨウ化物イオンに対する耐食性を十分に備えた金属材料を採用する必要がある。   In a dye-sensitized solar cell, if a transparent electrode is used for both the “photoelectrode” and the “counter electrode”, the decrease in conductivity becomes large. To alleviate this, it is not necessary to transmit light. It is advantageous that the “electrode” or “counter electrode” is made of a metal material having a low electric resistance. However, since an electrolyte solution containing iodide ions is used, it is necessary to employ a metal material having sufficient corrosion resistance against iodide ions.

そのような耐食材料としては金(Au)、白金(Pt)などの貴金属材料が挙げられる。なかでも白金は触媒作用を有するので電極材としては好適である。しかし、貴金属は高価であるため、例えば特許文献6に示されるような白金板からなる電極材は実用的な太陽電池の構成部材として採用できない。基板上に白金膜を設けて電極を構成する場合であっても、電極内の電気伝導を白金膜だけに負担させる場合には十分な導電性を得るために白金膜の厚さをかなり厚くする必要があり、必然的にコストは高くなる。したがって、電極の表面を白金で覆う場合は、下地に別の導電材を使用することによって電極内の導電性を確保することが望まれる。   Examples of such a corrosion-resistant material include noble metal materials such as gold (Au) and platinum (Pt). Of these, platinum is suitable as an electrode material because it has a catalytic action. However, since noble metals are expensive, for example, an electrode material made of a platinum plate as disclosed in Patent Document 6 cannot be used as a practical component of a solar cell. Even when the electrode is configured by providing a platinum film on the substrate, the thickness of the platinum film is considerably increased in order to obtain sufficient conductivity when the electric conduction in the electrode is to be borne only by the platinum film. Necessary and inevitably the cost is high. Therefore, when the surface of the electrode is covered with platinum, it is desirable to ensure conductivity in the electrode by using another conductive material for the base.

白金は、色素増感型太陽電池の電解質溶液に含まれるヨウ化物イオンに対しても良好な耐食性を呈する。しかし、電極の表面を白金膜で覆ったとしても、下地の材料の耐食性が不要になるわけではない。白金膜は種々のめっき法によって形成できるが、その膜にはピンホールなどの欠陥が生じることは通常避けられない。白金膜の厚さをできるだけ薄くしたい場合にはなおさらである。また、製造工程で白金膜に疵が付き、下地材料が露出することも想定される。このようなことから、白金膜の下地となる材料についても、ヨウ化物イオンを含む電解質溶液に曝されたとき十分な耐食性を呈することが望まれる。具体的には、当該材料を白金などでコーティングせずに直接、ヨウ化物イオンを含む電解質溶液に浸漬したときにも、腐食が進行しないだけの優れた耐食性を呈する材料を下地に使用することが好ましい。白金膜に限らず、カーボンブラックや、有機金属錯体などを用いた触媒層で表面を覆った場合でも、その下地材料には、ヨウ化物イオンを含む電解質溶液中での優れた耐食性が要求される点に変わりはない。   Platinum also exhibits good corrosion resistance against iodide ions contained in the electrolyte solution of the dye-sensitized solar cell. However, even if the surface of the electrode is covered with a platinum film, the corrosion resistance of the underlying material is not unnecessary. A platinum film can be formed by various plating methods, but defects such as pinholes are usually unavoidable in the film. This is especially true when it is desired to make the platinum film as thin as possible. It is also assumed that the platinum film is wrinkled in the manufacturing process and the underlying material is exposed. For this reason, it is desirable that the material used as the base of the platinum film also exhibits sufficient corrosion resistance when exposed to an electrolyte solution containing iodide ions. Specifically, when the material is directly coated with an electrolyte solution containing iodide ions without being coated with platinum or the like, a material exhibiting excellent corrosion resistance so that corrosion does not proceed may be used as a base. preferable. Even when the surface is covered with a catalyst layer using carbon black or an organometallic complex as well as a platinum film, the underlying material is required to have excellent corrosion resistance in an electrolyte solution containing iodide ions. The point remains the same.

本来耐食性に優れた金属材料としてステンレス鋼がある。しかし、ヨウ化物イオンを含む電解質溶液中での耐食性に関しては十分把握されておらず、少なくともSUS430やSUS304といった汎用ステンレス鋼種では当該電解質溶液で激しい腐食を起こすことがわかっている。また、ステンレス鋼は表面が不動態皮膜に覆われているため、ステンレス鋼板をそのまま電解質溶液に曝すようにして使用すると、液との間で接触抵抗が大きくなることが懸念される。このようなことから、色素増感型太陽電池の電極材料としてステンレス鋼を安易に採用するわけにはいかない。特許文献5には対極用の基板として、ガラスやステンレス鋼等の金属が挙げられており(段落0003)、特許文献6には、金、銀、銅、白金、ニッケル、チタン、タンタル、タングステン、アルミニウム、ステンレスといった様々な耐食材料が列挙されている(段落0015)。しかしながら、それらの文献には白金以外の金属材料を電極に用いた例は示されていない。実際、電極材料としてステンレス鋼を使用して成功した色素増感型太陽電池は未だ例を見ない。   Stainless steel is a metal material that is inherently excellent in corrosion resistance. However, the corrosion resistance in an electrolyte solution containing iodide ions is not sufficiently grasped, and it is known that at least general-purpose stainless steel types such as SUS430 and SUS304 cause severe corrosion in the electrolyte solution. Further, since the surface of stainless steel is covered with a passive film, there is a concern that the contact resistance between the stainless steel plate and the solution increases when the stainless steel plate is used as it is exposed to the electrolyte solution. For this reason, stainless steel cannot be easily adopted as the electrode material of the dye-sensitized solar cell. Patent Document 5 lists metals such as glass and stainless steel as substrates for the counter electrode (paragraph 0003), and Patent Document 6 discloses gold, silver, copper, platinum, nickel, titanium, tantalum, tungsten, Various corrosion resistant materials such as aluminum and stainless steel are listed (paragraph 0015). However, those documents do not show an example in which a metal material other than platinum is used for the electrode. In fact, a dye-sensitized solar cell that has succeeded in using stainless steel as an electrode material has not been seen yet.

このように、色素増感型太陽電池の電極用金属材料としては白金等の貴金属が採用されているのが現状であり、高価な貴金属材料を使用することによるコストの増大を伴っている。白金や、カーボンブラックその他の材料で「膜」を形成するタイプの電極では、電極内での電気伝導性についても改善の余地がある。
本発明はこのような現状に鑑み、色素増感型太陽電池のヨウ化物イオンを含む電解質溶液中で優れた耐食性を示す金属材料で構成され、良好な電気伝導が確保される安価な電極材料を提供しようというものである。
As described above, a noble metal such as platinum is currently used as a metal material for an electrode of a dye-sensitized solar cell, which is accompanied by an increase in cost due to the use of an expensive noble metal material. In the type of electrode in which a “film” is formed of platinum, carbon black or other materials, there is room for improvement in electrical conductivity within the electrode.
In view of such a current situation, the present invention is an inexpensive electrode material that is composed of a metal material exhibiting excellent corrosion resistance in an electrolyte solution containing iodide ions of a dye-sensitized solar cell and ensures good electrical conduction. It is to provide.

上記目的を達成するために、本発明では、質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:17〜32%、Mo:0.8〜3%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、O:0.01%以下、B:0〜0.01%であり、必要に応じてさらにCu:0.01〜%を含有し、残部がFeおよび不可避的不純物である組成を有し、フェライト相組織を呈するステンレス鋼板を基板に持ち、その基板の片側の表面に平均膜厚5〜50nmの白金触媒層が形成されている金属板からなる色素増感型太陽電池の電極材料が提供される。 In order to achieve the above object, in the present invention, in mass%, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Cr: 17-32%, Mo: 0.8-3%, Nb: 0-1%, Ti: 0-1%, Al: 0-0. 2%, N: 0.025% or less, O: 0.01% or less, B: 0 to 0.01%, further containing Cu: 0.01 to 1 % as necessary, the balance being Fe And a pigment comprising a metal plate having a composition that is an inevitable impurity and having a stainless steel plate exhibiting a ferrite phase structure on a substrate, and a platinum catalyst layer having an average film thickness of 5 to 50 nm formed on one surface of the substrate An electrode material for a sensitized solar cell is provided.

また、質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、Cu:3.5%以下、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、O:0.01%以下、B:0〜0.01%であり、必要に応じてさらにCu:0.01〜3.5%を含有し、残部がFeおよび不可避的不純物である組成を有し、オーステナイト相組織またはオーステナイト+フェライト2相組織を呈するステンレス鋼板を基板に持ち、その基板の片側の表面に平均膜厚5〜50nmの白金触媒層が形成されている金属板からなる色素増感型太陽電池の電極材料が提供される。 Further, by mass, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 3 to 28% Cr: 17 to 32%, Mo: 0.8 to 7%, Cu: 3.5% or less, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N: 0.3% or less, O: 0.01% or less, B: 0 to 0.01% , and if necessary, further contains Cu: 0.01 to 3.5 % , the balance being Fe and inevitable A metal having a composition which is an impurity and having a stainless steel plate having an austenite phase structure or an austenite + ferrite two-phase structure on a substrate, and a platinum catalyst layer having an average film thickness of 5 to 50 nm formed on one surface of the substrate An electrode material for a dye-sensitized solar cell comprising a plate is provided.

の電極材料は、触媒層を有する側の表面を電解質溶液に曝して使用される This electrode material is used in exposing the surface of the side having the catalyst layer to the electrolyte solution.

本発明の色素増感型太陽電池の電極材料は以下のようなメリットを有する。
(1)ステンレス鋼板をベースにしているので、ITO、FTO、TO等の透明導電膜と比べ導電性が高い。
(2)電解質溶液に曝される側の表面に触媒層が設けられているので、電極面での反応が促進されるとともに、液との接触抵抗が軽減される。
(3)基板のステンレス鋼は、それ自体が色素増感型太陽電池に使用される電解液中で優れた耐食性を示すものであるため、触媒層の欠陥・表面疵の存在に対して強い。
(4)触媒層の欠陥・表面疵の存在に対して強いことから、触媒層の厚さ(白金等の触媒物質の使用量)を必要最小限にすることができ、コストが低減される。
(5)ステンレス鋼板がベースであるため、この電極材料自体で基板の機能を有し、かつ従来一般的なガラス基板よりも強度が高い。
したがって、本発明は色素増感型太陽電池の普及に寄与するものである。
The electrode material of the dye-sensitized solar cell of the present invention has the following merits.
(1) Since it is based on a stainless steel plate, it has higher conductivity than transparent conductive films such as ITO, FTO, and TO.
(2) Since the catalyst layer is provided on the surface exposed to the electrolyte solution, the reaction on the electrode surface is promoted and the contact resistance with the liquid is reduced.
(3) Since the stainless steel of the substrate itself exhibits excellent corrosion resistance in the electrolyte solution used for the dye-sensitized solar cell, it is strong against the presence of defects and surface flaws in the catalyst layer.
(4) Since it is strong against the presence of defects and surface flaws in the catalyst layer, the thickness of the catalyst layer (amount of catalyst material such as platinum) can be minimized and the cost can be reduced.
(5) Since the stainless steel plate is the base, this electrode material itself has the function of a substrate and has higher strength than a conventional general glass substrate.
Therefore, the present invention contributes to the spread of dye-sensitized solar cells.

現在実用化の検討が進められている色素増感型太陽電池には、有機溶媒中にヨウ化物イオンを含む電解質溶液が使用されている。したがって、電極材料はヨウ化物イオンに対し、長期間安定して優れた耐食性を呈する素材で構成する必要がある。図1(a)のタイプの対極5や図1(b)のタイプの光電極3は、光を透過する必要がないことから、ITO、FTO、TO等の透明な酸化物系材料ではなく、電気抵抗の小さい金属材料で構成することが望ましい。しかし、実用化段階の色素増感型太陽電池では、透明でなくてもよい電極についても、過去のデータ等により信頼性が把握されているITO、FTO等の酸化物系材料を採用する傾向が高い。金属材料については、白金等の貴金属材料以外にはほとんど目が向けられていない。   In dye-sensitized solar cells that are currently being studied for practical use, an electrolyte solution containing iodide ions in an organic solvent is used. Therefore, the electrode material must be composed of a material that exhibits stable corrosion resistance for a long period of time and exhibits excellent corrosion resistance. Since the counter electrode 5 of FIG. 1A type and the photoelectrode 3 of FIG. 1B type do not need to transmit light, they are not transparent oxide-based materials such as ITO, FTO, TO, It is desirable to use a metal material with low electrical resistance. However, dye-sensitized solar cells in practical use tend to employ oxide-based materials such as ITO and FTO, whose reliability is known from past data, etc. for electrodes that may not be transparent. high. As for metal materials, little attention is paid to other than noble metal materials such as platinum.

発明者らは種々検討の結果、ステンレス鋼において、一定量以上のCrとMoを含有させることによって、有機溶媒を用いたヨウ化物含有電解質溶液中での溶解がほとんど進行しない優れた耐食性が付与できることを発見した。その性質を利用すると、ステンレス鋼材料をベースとした色素増感型太陽電池の電極材料が実現可能になる。すなわち、特定の組成を有するステンレス鋼材料において新たな用途が見出された。   As a result of various studies, the inventors have been able to impart excellent corrosion resistance that hardly dissolves in an iodide-containing electrolyte solution using an organic solvent by including a certain amount of Cr and Mo in stainless steel. I found By utilizing this property, an electrode material for a dye-sensitized solar cell based on a stainless steel material can be realized. That is, a new application has been found in a stainless steel material having a specific composition.

一般にステンレス鋼は塩化物イオンCl-を含む水溶液に対する耐食性において弱点を有するとされ、その耐食性を改善するにはCrの増量やMoの添加が有効であるとされる。例えば温水器に適したフェライト系のSUS444ではCr:17質量%以上、Mo:1.75質量%以上の含有量が確保されており、高耐食性オーステナイト系汎用鋼種であるSUS316でもCr:16質量%以上、Mo:2質量%以上の含有量が確保されている。しかし、ヨウ化物イオンに対するステンレス鋼の耐食性については意外に報告が少ない。その理由として、ヨウ化物イオンに曝されるような環境は自然界や日常においてほとんど存在しないことが挙げられる。特に、溶媒が水ではなく、有機物質である場合のヨウ化物イオン含有電解質溶液に関し、ステンレス鋼の組成と耐食性の関係はほとんど把握されていない。汎用鋼種であるSUS304が当該電解質溶液に対して激しく腐食することはわかっており、色素増感型太陽電池の電極用途へのステンレス鋼材料の適用は敬遠されてきた。このことが、詳細な検討を試みる動機付けをそぐ要因となっていた。 Generally stainless steel chloride ion Cl - is to have a weak point in corrosion resistance to an aqueous solution containing, to improve its corrosion resistance the addition of increasing or Mo and Cr is to be effective. For example, in ferrite type SUS444 suitable for water heaters, Cr: 17% by mass or more and Mo: 1.75% by mass or more are ensured. Even in SUS316, which is a high corrosion resistance austenitic general-purpose steel grade, Cr: 16% by mass. As mentioned above, Mo: Content of 2 mass% or more is ensured. However, there are surprisingly few reports on the corrosion resistance of stainless steel against iodide ions. The reason for this is that there is almost no environment exposed to iodide ions in nature or in daily life. In particular, regarding the iodide ion-containing electrolyte solution when the solvent is not water but an organic substance, the relationship between the composition of stainless steel and the corrosion resistance is hardly grasped. It has been found that SUS304, which is a general-purpose steel type, corrodes severely with respect to the electrolyte solution, and the application of stainless steel materials for electrode applications of dye-sensitized solar cells has been avoided. This was a factor that motivated me to make a detailed examination.

発明者らは詳細な検討の結果、ステンレス鋼材料においてCr含有量を17質量%以上とし、かつMo含有量を0.8質量%以上としたとき、色素増感型太陽電池に適用されるヨウ化物含有電解質溶液中での溶解がほとんど生じない優れた耐食性が発現することを見出した。上記のように、用途が日常の温水環境である場合でも、それに十分耐え得る耐食性をステンレス鋼に付与するには、例えば1.75質量%以上という比較的多量のMoを添加する措置が必要である。これに比べると、有機溶媒中にヨウ化物イオンが存在する色素増感型太陽電池の電解質溶液に対する耐食性は、より少ないMo添加量範囲から顕著に改善されることが明らかになった。しかも、この傾向はオーステナイト系やフェライト系といった鋼種の影響をあまり受けず、その他の添加元素の影響も少ない。この点は、塩化物イオンに対するステンレス鋼の耐食性傾向とは大きく異なる。したがって、CrやMo等によってもたらされる耐食性向上のメカニズムについても、塩化物イオンに対する場合と同一視することはできないと考えられる。   As a result of detailed studies, the inventors have found that when the Cr content in the stainless steel material is 17% by mass or more and the Mo content is 0.8% by mass or more, the iodine applied to the dye-sensitized solar cell. It has been found that excellent corrosion resistance that hardly dissolves in a fluoride-containing electrolyte solution is exhibited. As described above, even when the application is a daily hot water environment, in order to give the stainless steel sufficient corrosion resistance, it is necessary to add a relatively large amount of Mo, for example, 1.75% by mass or more. is there. Compared to this, it has been clarified that the corrosion resistance of the dye-sensitized solar cell in which iodide ions are present in the organic solvent to the electrolyte solution is remarkably improved from a smaller Mo addition range. Moreover, this tendency is not significantly affected by steel types such as austenitic and ferritic, and is less affected by other additive elements. This point is very different from the corrosion resistance tendency of stainless steel against chloride ions. Therefore, it is considered that the mechanism for improving corrosion resistance caused by Cr, Mo and the like cannot be equated with the case of chloride ions.

本発明では、フェライト系鋼種と、オーステナイト系およびオーステナイト+フェライト2相系鋼種において、それぞれ以下の組成範囲のステンレス鋼を適用する。合金元素の含有量に関する「%」は特に断らない限り「質量%」を意味する。   In the present invention, stainless steels having the following composition ranges are applied to each of the ferritic steel types and the austenitic and austenite + ferrite two-phase steel types. Unless otherwise specified, “%” with respect to the alloy element content means “mass%”.

〔フェライト系〕
「C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、Cr:17〜32%、Mo:0.8〜3%、N:0.025%以下、残部実質的にFe」の組成が採用できる。
このうち、C、Si、Mn、Nはステンレス鋼の大量生産現場における溶製工程で混入が避けられない元素であり、上記の範囲で含有が許容される。ただし、製造性等の諸性質を考慮しすると、例えばC:0.01%以下、Si:0.5%以下あるいは0.3%以下、Mn:0.5%以下あるいは0.3%以下、N:0.020%以下にコントロールすることが有効である。
[Ferrite]
“C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, Cr: 17 to 32%, Mo: 0.8 to 3%, N: 0.025% or less, balance A composition of “Fe” can be employed.
Among these, C, Si, Mn, and N are elements that are unavoidable in the melting process at the mass production site of stainless steel, and are allowed to be contained within the above range. However, considering various properties such as manufacturability, for example, C: 0.01% or less, Si: 0.5% or less or 0.3% or less, Mn: 0.5% or less or 0.3% or less, N: It is effective to control to 0.020% or less.

Cr含有量が17%未満またはMo含有量が0.8%未満だと、色素増感型太陽電池に適用されるヨウ化物含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、Crは18%以上、Moは1%以上含有させることが好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は3%以下とすることが望ましく、2%以下が一層好ましい。   When the Cr content is less than 17% or the Mo content is less than 0.8%, it is excellent that the material hardly dissolves in the iodide-containing electrolyte solution applied to the dye-sensitized solar cell. It becomes difficult to stably obtain corrosion resistance. In order to further improve the reliability, it is preferable to contain 18% or more of Cr and 1% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. The Mo content is preferably 3% or less, and more preferably 2% or less.

その他の元素として、Cu:1%以下、例えば0.01〜1%を含む組成を採用することができる。この場合、Cu含有量をさらに厳しく、例えば0.1%以下の範囲でコントロールしてもよい。   As other elements, a composition containing Cu: 1% or less, for example, 0.01 to 1% can be adopted. In this case, the Cu content may be more severely controlled, for example, within a range of 0.1% or less.

これら以外の残部は実質的にFeで構成すればよいが、一般にステンレス鋼への混入が許容される元素として以下のようなものを挙げることができる。許容範囲も併せて示す。
P:0.04%以下、S:0.03%以下好ましくは0.005%以下、Ni:0.6%以下好ましくは0.25質量%以下、Nb:1%以下好ましくは0.5%以下、Ti:1%以下好ましくは0.3%以下、Al:0.2%以下、O:0.01%以下好ましくは0.005%以下、B:0.01%以下、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下
The remainder other than these may be substantially composed of Fe, but the following elements can be generally listed as elements that are allowed to be mixed into stainless steel. The allowable range is also shown.
P: 0.04% or less, S: 0.03% or less, preferably 0.005% or less, Ni: 0.6% or less, preferably 0.25% by mass or less, Nb: 1% or less, preferably 0.5% Ti: 1% or less, preferably 0.3% or less, Al: 0.2% or less, O: 0.01% or less, preferably 0.005% or less, B: 0.01% or less, V: 0.00% 3% or less, Zr: 0.3% or less, Ca, Mg, Co, and REM (rare earth elements): 0.1% or less in total

上記の許容元素を含むフェライト系鋼種の具体的な組成を例示すると、以下のものを挙げることができる。
(1)質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:17〜32%、Mo:0.8〜3%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、O:0.01%以下、B:0〜0.01%であり、残部がFeおよび不可避的不純物
(2)質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:17〜32%、Mo:0.8〜3%、Cu:1%以下、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、O:0.01%以下、B:0〜0.01%であり、残部がFeおよび不可避的不純物
The following can be mentioned when the concrete composition of the ferritic steel type containing said tolerance element is illustrated.
(1) By mass%, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0 0.6% or less, Cr: 17 to 32%, Mo: 0.8 to 3%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, N: 0.025% Hereinafter, O: 0.01% or less, B: 0 to 0.01%, the balance being Fe and inevitable impurities (2) mass%, C: 0.15% or less, Si: 1.2% or less Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Cr: 17-32%, Mo: 0.8-3%, Cu 1% or less, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, N: 0.025% or less, O: 0.01% or less, B: 0 to 0.00. 01% with the balance being Fe and inevitable impurities

ここで、Nb、Ti、Al、Bの下限0%は、当該元素の含有量が製鋼工程での通常の分析手法において測定限界以下の場合である(後述のオーステナイト系、オーステナイト+フェライト2相系において同様)。   Here, the lower limit 0% of Nb, Ti, Al, and B is the case where the content of the element is below the measurement limit in a normal analysis method in the steelmaking process (the austenite system, austenite + ferrite two-phase system described later) The same in).

〔オーステナイト系、オーステナイト+フェライト2相系〕
「C:0.15%以下、Si:4%以下、Mn:2.5%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、N:0.3%以下、残部実質的にFe」の組成が採用できる。
このうち、C、Si、Mn、Nはステンレス鋼の大量生産現場における溶製工程で混入が避けられない元素であり、上記の範囲で含有が許容される。ただし、製造性等の諸性質を考慮しすると、例えばC:0.08%以下あるいは0.03%以下、Si:1%以下あるいは0.6%以下、Mn:2%以下、N:0.03%以下あるいは0.01%以下にコントロールすることが有効である。
オーステナイト系の場合は、Niを7%以上、好ましくは10%以上含有させる。
[Austenitic, austenitic + ferrite two-phase]
“C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, Ni: 3 to 28%, Cr: 17 to 32%, Mo: 0.8 to 7%, N: 0.00. A composition of 3% or less and the balance substantially Fe "can be employed.
Among these, C, Si, Mn, and N are elements that are unavoidable in the melting process at the mass production site of stainless steel, and are allowed to be contained within the above range. However, considering various properties such as manufacturability, for example, C: 0.08% or less or 0.03% or less, Si: 1% or less or 0.6% or less, Mn: 2% or less, N: 0.00 It is effective to control to 03% or less or 0.01% or less.
In the case of an austenitic system, Ni is contained in an amount of 7% or more, preferably 10% or more.

Cr含有量が17%未満またはMo含有量が0.8%未満だと、フェライト系の場合と同様、色素増感型太陽電池に適用されるヨウ化物含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、Moを2%以上含有させることが好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は7%以下とすることが望ましく、4%以下が一層好ましい。   When the Cr content is less than 17% or the Mo content is less than 0.8%, the material is dissolved in the iodide-containing electrolyte solution applied to the dye-sensitized solar cell as in the case of the ferrite type. It becomes difficult to stably obtain excellent corrosion resistance that hardly occurs. In order to further improve the reliability, it is preferable to contain 2% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. The Mo content is preferably 7% or less, and more preferably 4% or less.

その他の元素として、Cu:3.5%以下、例えば0.01〜3.5%を含む組成を採用することができる。この場合、Cu含有量をさらに厳しく、例えば1%以下、あるいは0.5%以下の範囲でコントロールしてもよい。   As other elements, a composition containing Cu: 3.5% or less, for example, 0.01 to 3.5% can be employed. In this case, the Cu content may be more severely controlled, for example, within a range of 1% or less, or 0.5% or less.

これら以外の残部は実質的にFeで構成すればよいが、一般にステンレス鋼への混入が許容される元素として以下のようなものを挙げることができる。許容範囲も併せて示す。
P:0.045%以下、S:0.03%以下好ましくは0.005%以下、Nb:1%以下好ましくは0.5%以下、Ti:1%以下好ましくは0.3%以下、Al:0.1%以下好ましくは0.01%以下、O:0.01%以下好ましくは0.005%以下、B:0.01%以下、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下
The remainder other than these may be substantially composed of Fe, but the following elements can be generally listed as elements that are allowed to be mixed into stainless steel. The allowable range is also shown.
P: 0.045% or less, S: 0.03% or less, preferably 0.005% or less, Nb: 1% or less, preferably 0.5% or less, Ti: 1% or less, preferably 0.3% or less, Al : 0.1% or less, preferably 0.01% or less, O: 0.01% or less, preferably 0.005% or less, B: 0.01% or less, V: 0.3% or less, Zr: 0.3 % Or less, Ca, Mg, Co and REM (rare earth elements): 0.1% or less in total

上記の許容元素を含むオーステナイト系鋼種、オーステナイト+フェライト2相系鋼種の具体的な組成を例示すると、以下のものを挙げることができる。
(1)質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、O:0.01%以下、B:0〜0.01%であり、残部がFeおよび不可避的不純物
(2)質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、Cu:3.5%以下、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、O:0.01%以下、B:0〜0.01%であり、残部がFeおよび不可避的不純物
Examples of the specific composition of the austenitic steel types including the above-mentioned allowable elements and the austenite + ferrite two-phase steel types include the following.
(1) By mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 3 to 28 %, Cr: 17 to 32%, Mo: 0.8 to 7%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N: 0.3% or less, O : 0.01% or less, B: 0 to 0.01%, the balance being Fe and inevitable impurities (2) mass%, C: 0.15% or less, Si: 4% or less, Mn: 2. 5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 3 to 28%, Cr: 17 to 32%, Mo: 0.8 to 7%, Cu: 3.5% or less Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N: 0.3% or less, O: 0.01% or less, B: 0 to 0.01% , The balance is Fe and inevitable impurities

以上のように組成調整された鋼は、一般的なステンレス鋼板製造工程によって必要な板厚の鋼板とすればよい。これを基板として、その片側の表面に触媒層を設ける。触媒物質としては、白金、パラジウムなどの触媒活性の高い遷移金属、カーボンブラック、ポルフィリンなどの有機金属錯体が挙げられる。白金を用いた触媒層を形成させる手法としては、スパッタコーティング、電気めっきなど、公知の手法が利用できるが、できるだけ薄く均一な白金膜を形成させるという点ではスパッタコーティングが適している。この場合、触媒層の平均厚さは5〜100nm程度の範囲でコントロールすればよい。例えば5〜50nmと薄くすることができる。カーボンブラックの場合にはバインダーと混合したペーストを塗布、乾燥する方法などによって触媒層を形成できる。表面に触媒層を有するこの金属板は、色素増感型太陽電池の「対極」または「光電極」を構成する部材として、触媒層を形成した側の表面が電解質溶液に接触するような状態で使用される。   The steel whose composition is adjusted as described above may be a steel plate having a necessary thickness by a general stainless steel plate manufacturing process. Using this as a substrate, a catalyst layer is provided on the surface on one side. Examples of the catalyst substance include transition metals having high catalytic activity such as platinum and palladium, and organometallic complexes such as carbon black and porphyrin. As a method for forming a catalyst layer using platinum, known methods such as sputter coating and electroplating can be used. Sputter coating is suitable in terms of forming a platinum film that is as thin and uniform as possible. In this case, the average thickness of the catalyst layer may be controlled in the range of about 5 to 100 nm. For example, it can be as thin as 5 to 50 nm. In the case of carbon black, the catalyst layer can be formed by a method of applying and drying a paste mixed with a binder. This metal plate having a catalyst layer on the surface is a member constituting the “counter electrode” or “photoelectrode” of the dye-sensitized solar cell, with the surface on the side where the catalyst layer is formed in contact with the electrolyte solution. used.

図2に、上記の金属板からなる本発明の電極材料を使用した色素増感型太陽電池の構成例を模式的に示す。図2(a)は、図1(a)に示されるタイプの従来の色素増感型太陽電池において、基板4と対極5を、本発明の電極材料からなる対極30に変えたものである。図2(b)は、図1(b)に示されるタイプの従来の色素増感型太陽電池において、基板4と光電極3を、本発明の電極材からなる光電極40に変えたものである。   In FIG. 2, the structural example of the dye-sensitized solar cell using the electrode material of this invention which consists of said metal plate is shown typically. FIG. 2A shows a conventional dye-sensitized solar cell of the type shown in FIG. 1A in which the substrate 4 and the counter electrode 5 are changed to a counter electrode 30 made of the electrode material of the present invention. FIG. 2B shows a conventional dye-sensitized solar cell of the type shown in FIG. 1B in which the substrate 4 and the photoelectrode 3 are replaced with a photoelectrode 40 made of the electrode material of the present invention. is there.

表1に示す組成の各種ステンレス鋼を溶製し、一般的なステンレス鋼板製造工程により板厚0.28〜0.81mmの冷延焼鈍鋼板(2D仕上げ材)を製造した。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。Cu、Nb、Ti、Alにおけるハイフン「−」は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。
各鋼板の組織観察を行うことにより、フェライト系のものはマトリクスがフェライト相であり、オーステナイト系のものはマトリクスがオーステナイト相であることを確認している。
Various stainless steels having the compositions shown in Table 1 were melted, and cold-rolled annealed steel sheets (2D finishing materials) having a thickness of 0.28 to 0.81 mm were manufactured by a general stainless steel sheet manufacturing process. In Table 1, in the structure column, “α” means ferrite and “γ” means austenite. The hyphen “-” in Cu, Nb, Ti, and Al means that it is below the measurement limit in a normal analysis method at a steelmaking site.
By observing the structure of each steel sheet, it has been confirmed that the ferrite type matrix has a ferrite phase and the austenitic type matrix has an austenitic phase.

Figure 0005171139
Figure 0005171139

ベース材であるステンレス鋼板そのものの耐食性を評価するために、各供試材から35×35mmの試験片を切り出し、表面(端面を含む)を#600乾式エメリー研磨で仕上げることにより、耐食性試験片とした。また、一部の試験片については触媒層を形成した状態での耐食性を確認するために、さらにスパッタコーティングにより白金を片面に平均膜厚約50nmまたは10nmで被覆した。
色素増感型太陽電池の電解質溶液を模擬した試験液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
In order to evaluate the corrosion resistance of the stainless steel plate itself as a base material, a test piece of 35 × 35 mm was cut out from each test material, and the surface (including the end face) was finished by # 600 dry emery polishing. did. In addition, in order to confirm the corrosion resistance in a state where a catalyst layer was formed on some test pieces, platinum was further coated on one side with an average film thickness of about 50 nm or 10 nm by sputtering coating.
As a test solution simulating an electrolyte solution of a dye-sensitized solar cell, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

テフロン(登録商標)製の容器に前記試験液10mLを入れ、この液中に前記耐食性試験片を浸漬した。容器には蓋をして溶媒の揮発を抑えた。この容器を80℃の恒温槽中に保持し、浸漬開始から500h経過後に試験片を取り出した。各鋼種ともサンプル数n=3で実施した。   10 mL of the test solution was placed in a Teflon (registered trademark) container, and the corrosion resistance test piece was immersed in the solution. The container was covered to suppress the volatilization of the solvent. This container was hold | maintained in the 80 degreeC thermostat, and the test piece was taken out after 500-hour progress from the immersion start. For each steel type, the number of samples was n = 3.

500h浸漬後の各試験片について、重量変化(浸漬後の試験片重量−初期の試験片重量)を測定した。n=3の重量変化値のうち最も低い値(すなわち重量減少の最も大きいもの)をその鋼種の重量変化の成績として採用した。また、表面を目視観察し、外観を調べた。この場合も、n=3のうち最も腐食の程度が激しかった試験片の外観をその鋼種の成績として採用した。500h浸漬後の外観において全面腐食または端面の腐食が認められた鋼種を除き、観察後の試験片を再び上記の浸漬試験に供した。その際、試験液は新たなものを使用した。初期状態からのトータル浸漬時間が1000hの時点で試験片を取り出し、上記と同様に重量変化および外観を調べた。   About each test piece after 500-hour immersion, the weight change (The test piece weight after immersion-Initial test piece weight) was measured. The lowest value (that is, the largest weight loss value) among the weight change values of n = 3 was adopted as the result of the weight change of the steel type. Moreover, the surface was visually observed and the external appearance was investigated. Also in this case, the appearance of the test piece having the most severe degree of corrosion among n = 3 was adopted as the grade of the steel type. Except for the steel type in which the overall corrosion or end face corrosion was recognized in the appearance after immersion for 500 hours, the specimen after observation was again subjected to the above immersion test. At that time, a new test solution was used. The test piece was taken out when the total immersion time from the initial state was 1000 h, and the weight change and appearance were examined in the same manner as described above.

浸漬試験後の重量変化の値は、マイナス側に大きい値ほど腐食による溶解量が多いことを意味する。1000h浸漬試験後のトータル重量変化が−0.05g/m2よりプラス側のものは、事実上、腐食による溶解がほとんど進行しないものと評価され、これを合格と判定した。
外観については、溶解した部分が認められず、かつ点錆も認められないものを「異常なし」と表示し、1000h浸漬試験後に「異常なし」と評価されたものを合格と判定した。
結果を表2に示す。
The value of the weight change after the immersion test means that the larger the value on the negative side, the more the amount of dissolution due to corrosion. When the total weight change after the 1000 h immersion test was on the plus side of −0.05 g / m 2 , it was evaluated that the dissolution due to corrosion hardly proceeded, and this was determined to be acceptable.
As for the appearance, those having no dissolved part and no rusting were indicated as “no abnormality”, and those evaluated as “no abnormality” after the 1000 h immersion test were determined to be acceptable.
The results are shown in Table 2.

Figure 0005171139
Figure 0005171139

表1、表2から判るように、Cr:17%以上、かつMo:0.8%以上を含有する本発明例のものは、ベースとなるステンレス鋼板そのもの(以下「ベース試料」いう)において、ヨウ化物イオン含有電解質溶液中で腐食による溶解がほとんど認められず、点錆の発生も観察されない優れた耐食性を示した。また、そのステンレス鋼板に50nmあるいは10nmといった薄い白金膜を形成した試料では、白金膜を形成していない部位(ステンレス鋼表面)での耐食性が、試料全体の耐食性を支配して、同じ鋼種のベース試料と同等の耐食性評価となったが、白金膜を形成した部位での耐食性がステンレス鋼露出表面の耐食性より劣ることはなかった。したがって、本発明例の各ステンレス鋼種を使用した金属板からなる電極材料は、色素増感型太陽電池の電極に要求される耐久性を十分具備すると考えられる。   As can be seen from Tables 1 and 2, in the present invention containing Cr: 17% or more and Mo: 0.8% or more, in the stainless steel sheet itself (hereinafter referred to as “base sample”) as a base, Almost no dissolution due to corrosion was observed in the iodide ion-containing electrolyte solution, and excellent corrosion resistance was observed with no occurrence of spot rust. In addition, in a sample in which a thin platinum film such as 50 nm or 10 nm is formed on the stainless steel plate, the corrosion resistance at the site where the platinum film is not formed (stainless steel surface) dominates the corrosion resistance of the entire sample, and the base of the same steel type Although the corrosion resistance evaluation was the same as that of the sample, the corrosion resistance at the site where the platinum film was formed was not inferior to the corrosion resistance of the exposed surface of the stainless steel. Therefore, it is thought that the electrode material which consists of a metal plate which uses each stainless steel kind of the example of this invention has sufficient durability requested | required of the electrode of a dye-sensitized solar cell.

実施例1で用意したステンレス鋼板から100×100mmの試験片を切り出し、表面を#600乾式エメリー研磨で仕上げた。一部の試験片については実施例1と同様の方法でさらに白金を平均膜厚約50nmまたは10nmで被覆した。また、参考のためにネサガラス(TO(酸化錫)の透明導電膜をガラス基板上に蒸着したもの)を用意した。
これらの表面(白金被覆試料は白金表面、ネサガラスは導電膜表面)について、低抵抗率計(三菱化学(株)製、ロレスターGP)を用いて4探針法により表面抵抗率を測定した。サンプル数n=3で行い、平均値を採用した。
結果を表3に示す。
A test piece of 100 × 100 mm was cut out from the stainless steel plate prepared in Example 1, and the surface was finished by # 600 dry emery polishing. Some test pieces were further coated with platinum with an average film thickness of about 50 nm or 10 nm in the same manner as in Example 1. For reference, Nesa glass (a transparent conductive film of TO (tin oxide) deposited on a glass substrate) was prepared.
For these surfaces (platinum-coated samples were platinum surfaces, and nesa glass was conductive film surfaces), the surface resistivity was measured by a four-probe method using a low resistivity meter (manufactured by Mitsubishi Chemical Corporation, Lorester GP). The number of samples was n = 3, and an average value was adopted.
The results are shown in Table 3.

Figure 0005171139
Figure 0005171139

表3に見られるように、ステンレス鋼をベースとする金属材料は、酸化物系導電膜に比べ、表面の電気抵抗が非常に小さい。白金を被覆したものでも、概ね下地のステンレス鋼板の導電性を反映した表面抵抗率が得られた。したがって、ステンレス鋼板の表面に触媒層を形成した構造の金属板からなる本発明の電極材料は、導電性のない基板の上に形成された「膜」からなる従来の電極材料に比べ、電気伝導性が飛躍的に改善されることがわかる。また、ステンレス鋼板の表面を直接電解質に曝した電極では、不動態皮膜により液との接触抵抗が増大することが懸念されるが、白金その他の触媒層を表面に設けることによりこの問題も解消される。   As can be seen in Table 3, the metal material based on stainless steel has a very low surface electrical resistance compared to the oxide-based conductive film. Even with the platinum coating, a surface resistivity substantially reflecting the conductivity of the underlying stainless steel plate was obtained. Therefore, the electrode material of the present invention made of a metal plate having a structure in which a catalyst layer is formed on the surface of a stainless steel plate is more electrically conductive than a conventional electrode material made of a “film” formed on a non-conductive substrate. It can be seen that the sex is dramatically improved. In addition, in the electrode where the surface of the stainless steel plate is directly exposed to the electrolyte, there is a concern that the contact resistance with the liquid is increased by the passive film, but this problem is also solved by providing platinum or other catalyst layer on the surface. The

従来の色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the conventional dye-sensitized solar cell. 本発明の電極材料を用いた色素増感型太陽電池の構成例を模式的に示した図。The figure which showed typically the structural example of the dye-sensitized solar cell using the electrode material of this invention.

符号の説明Explanation of symbols

1 太陽電池
2 透明基板
3 光電極
4 基板
5 対極
6 光電変換層
7 TiO2粒子
8 Ru色素
9 電解質溶液
10 負荷
20 入射光
21 ステンレス鋼板
22 触媒層
30 本発明の電極材料からなる対極
40 本発明の電極材料からなる光電極
1 counter 40 present invention comprising the electrode material of the solar cell 2 transparent substrate 3 photoelectrode 4 substrate 5 counter 6 photoelectric conversion layer 7 TiO 2 particles 8 Ru dye 9 electrolytic solution 10 loads 20 the incident light 21 stainless steel 22 catalyst layer 30 present invention Photoelectrode made of any electrode material

Claims (4)

質量%で、C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:17〜32%、Mo:0.8〜3%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、O:0.01%以下、B:0〜0.01%であり、残部がFeおよび不可避的不純物である組成を有し、フェライト相組織を呈するステンレス鋼板を基板に持ち、その基板の片側の表面に平均膜厚5〜50nmの白金触媒層が形成されている金属板からなる色素増感型太陽電池の電極材料。 C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% Hereinafter, Cr: 17 to 32%, Mo: 0.8 to 3%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, N: 0.025% or less, O : 0.01% or less, B: 0 to 0.01%, with the balance being Fe and inevitable impurities, with a stainless steel plate having a ferrite phase structure on the substrate, the surface on one side of the substrate An electrode material for a dye-sensitized solar cell comprising a metal plate on which a platinum catalyst layer having an average film thickness of 5 to 50 nm is formed. 前記ステンレス鋼板は、さらにCu:0.01〜%を含有する組成を有するものである請求項1に記載の色素増感型太陽電池の電極材料。 The electrode material for a dye-sensitized solar cell according to claim 1, wherein the stainless steel plate further has a composition containing Cu: 0.01 to 1 % . 質量%で、C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:3〜28%、Cr:17〜32%、Mo:0.8〜7%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、O:0.01%以下、B:0〜0.01%であり、残部がFeおよび不可避的不純物である組成を有し、オーステナイト相組織またはオーステナイト+フェライト2相組織を呈するステンレス鋼板を基板に持ち、その基板の片側の表面に平均膜厚5〜50nmの白金触媒層が形成されている金属板からなる色素増感型太陽電池の電極材料。 C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 3 to 28%, Cr : 17-32%, Mo: 0.8-7%, Nb: 0-1%, Ti: 0-1%, Al: 0-0.1%, N: 0.3% or less, O: 0.3. 01% or less, B: 0 to 0.01%, with the balance being Fe and inevitable impurities, and having a stainless steel plate having an austenite phase structure or an austenite + ferrite two phase structure on the substrate. The electrode material of the dye-sensitized solar cell which consists of a metal plate in which the platinum catalyst layer with an average film thickness of 5-50 nm is formed in the surface of one side. 前記ステンレス鋼板は、さらにCu:0.01〜3.5%を含有する組成を有するものである請求項3に記載の色素増感型太陽電池の電極材料。 The electrode material for a dye-sensitized solar cell according to claim 3, wherein the stainless steel plate further has a composition containing Cu: 0.01 to 3.5 % .
JP2007186984A 2007-07-18 2007-07-18 Electrode materials for dye-sensitized solar cells Expired - Fee Related JP5171139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186984A JP5171139B2 (en) 2007-07-18 2007-07-18 Electrode materials for dye-sensitized solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186984A JP5171139B2 (en) 2007-07-18 2007-07-18 Electrode materials for dye-sensitized solar cells

Publications (2)

Publication Number Publication Date
JP2009026532A JP2009026532A (en) 2009-02-05
JP5171139B2 true JP5171139B2 (en) 2013-03-27

Family

ID=40398179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186984A Expired - Fee Related JP5171139B2 (en) 2007-07-18 2007-07-18 Electrode materials for dye-sensitized solar cells

Country Status (1)

Country Link
JP (1) JP5171139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321732B2 (en) 2019-03-18 2023-08-07 株式会社東芝 Cold storage material particles, cold storage device, refrigerator, superconducting magnet, nuclear magnetic resonance imaging device, nuclear magnetic resonance device, cryopump, and magnetic field applied single crystal pulling device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114072A (en) * 2008-10-10 2010-05-20 Nisshin Steel Co Ltd Dye-sensitized solar cell
JP5430658B2 (en) * 2009-07-10 2014-03-05 日新製鋼株式会社 Electrode of dye-sensitized solar cell
EP2469641B1 (en) * 2009-08-20 2014-07-23 Nisshin Steel Co., Ltd. Dye-sensitized solar cell and method for manufacturing the same
JP2011044318A (en) * 2009-08-20 2011-03-03 Nisshin Steel Co Ltd Dye-sensitized solar cell and method of manufacturing the same
JP5566082B2 (en) * 2009-11-16 2014-08-06 日新製鋼株式会社 Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
JP2011108463A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
JP5582821B2 (en) * 2010-02-25 2014-09-03 日新製鋼株式会社 Manufacturing method of dye-sensitized solar cell module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102104A (en) * 1999-09-30 2001-04-13 Fuji Photo Film Co Ltd Photoelectric conversion device and photoelectric cell
JP4754892B2 (en) * 2005-07-12 2011-08-24 シャープ株式会社 Photoelectric conversion element and dye-sensitized solar cell module
JP4901194B2 (en) * 2005-11-22 2012-03-21 京セラ株式会社 PHOTOELECTRIC CONVERSION DEVICE, MANUFACTURING METHOD THEREOF, AND PHOTOVOLTAIC GENERATION DEVICE
JP2008010237A (en) * 2006-06-28 2008-01-17 Kyocera Corp Photoelectric conversion device, its manufacturing method, and optical power generation device
JP2008034110A (en) * 2006-07-26 2008-02-14 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7321732B2 (en) 2019-03-18 2023-08-07 株式会社東芝 Cold storage material particles, cold storage device, refrigerator, superconducting magnet, nuclear magnetic resonance imaging device, nuclear magnetic resonance device, cryopump, and magnetic field applied single crystal pulling device

Also Published As

Publication number Publication date
JP2009026532A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5171139B2 (en) Electrode materials for dye-sensitized solar cells
Geiger et al. Stability limits of tin-based electrocatalyst supports
EP2337144B1 (en) Dye-sensitized solar cells
JP2008034110A (en) Electrode material of dye-sensitized solar cell
Wang et al. Electrolytic generation of ozone on antimony-and nickel-doped tin oxide electrode
Noori et al. Carbon supported Cu-Sn bimetallic alloy as an excellent low-cost cathode catalyst for enhancing oxygen reduction reaction in microbial fuel cell
Msindo et al. Electrochemical and physical characterisation of lead-based anodes in comparison to Ti–(70%) IrO 2/(30%) Ta 2 O 5 dimensionally stable anodes for use in copper electrowinning
Kim et al. Non-precious metal electrocatalysts for hydrogen production in proton exchange membrane water electrolyzer
JP2009200008A (en) Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
Miettunen et al. Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells?
EP2469641B1 (en) Dye-sensitized solar cell and method for manufacturing the same
Legeai et al. Economic bismuth-film microsensor for anodic stripping analysis of trace heavy metals using differential pulse voltammetry
JP4620794B1 (en) Dye-sensitized solar cell
Sugawara et al. EQCM study on dissolution of ruthenium in sulfuric acid
Kim et al. Iridium oxide dendrite as a highly efficient dual electro-catalyst for water splitting and sensing of H2O2
Palaniappan et al. Hydrogen evolution reaction kinetics on electrodeposited Pt-M (M= Ir, Ru, Rh, and Ni) cathodes for ammonia electrolysis
Christensen et al. Structure and activity of Ni-and Sb–doped SnO2 ozone anodes
Yadav et al. Channel-flow double-electrode study on the dissolution and deposition potentials of platinum under potential cycles
Jiang et al. Improved anodic stripping voltammetric detection of arsenic (III) using nanoporous gold microelectrode
Qian et al. Study on electrodeposition and corrosion resistance of Cu-Sn alloy prepared in ChCl-EG deep eutectic solvent
Elaissaoui et al. Electrochemical degradation of dye on lead dioxide electrodeposited on stainless steel: effect of cyclic voltammetry parameters
Noh et al. Iridium catalyst based counter electrodes for dye-sensitized solar cells
Yano et al. Electrochemical and UV-visible spectroscopic study on direct oxidation of ascorbic acid on polyaniline for fuel cells
Reynolds et al. Corrosion resistance of metallic substrates for the fabrication dye-sensitized solar cells
Sun et al. Phase separation in electrodeposited Ag-Pd alloy films from acidic nitrate bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees