JP2011044318A - Dye-sensitized solar cell and method of manufacturing the same - Google Patents

Dye-sensitized solar cell and method of manufacturing the same Download PDF

Info

Publication number
JP2011044318A
JP2011044318A JP2009191348A JP2009191348A JP2011044318A JP 2011044318 A JP2011044318 A JP 2011044318A JP 2009191348 A JP2009191348 A JP 2009191348A JP 2009191348 A JP2009191348 A JP 2009191348A JP 2011044318 A JP2011044318 A JP 2011044318A
Authority
JP
Japan
Prior art keywords
dye
stainless steel
sensitized solar
solar cell
photoelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009191348A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Nishida
義勝 西田
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009191348A priority Critical patent/JP2011044318A/en
Publication of JP2011044318A publication Critical patent/JP2011044318A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive dye-sensitized solar cell having improved photoelectric conversion efficiency. <P>SOLUTION: The dye-sensitized solar cell includes a photoelectrode using a stainless steel plate, and a counter electrode using a translucent conductive material. The photoelectrode using the stainless steel plate as a substrate which has a chemical composition containing Cr: 16 mass% or more and Mo: 0.3 mass% or more and whose roughened surface is formed with pitting-corrosive recesses and reconditioned at an arithmetic average roughness Ra of 0.2 μm or more, has a semiconductor layer supporting sensitizing dye on the roughened surface of the substrate. The counter electrode has a catalyst thin film layer formed on the surface of the translucent conductive material and having visible light permeability. The semiconductor layer of the photoelectrode and the catalyst thin film layer of the counter electrode face each other via electrolyte. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電極(負極)の構成材料としてステンレス鋼を用いた色素増感型太陽電池、およびその製造方法に関する。   The present invention relates to a dye-sensitized solar cell using stainless steel as a constituent material of a photoelectrode (negative electrode), and a method for producing the same.

太陽電池は現在、シリコンを光電変換素子に用いたものが主流となっているが、これに替わるより経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。色素増感型太陽電池は「光電極」の内側(セル内部側)に担持されている増感色素に外部からの光が届く必要があることから、光の入射側となる電極の通電部材を透光性導電材料で構成する必要がある。一方、光の入射側と反対側の電極を構成する材料は透光性を有していなくても構わないため、導電性の良好な金属材料を適用することが有利となる。最近ではそのような金属材料として比較的安価な耐食材料であるステンレス鋼が適用可能であることが確認され、それにより色素増感型太陽電池のコスト低減が期待されている。特許文献1には、ステンレス鋼板を光の入射側と反対側の電極に使用した色素増感型太陽電池が開示されている。   Currently, solar cells using silicon as the photoelectric conversion element are the mainstream, but the practical application of “dye-sensitized solar cells” is being studied as a more economical next-generation solar cell to replace this. . Dye-sensitized solar cells require light from the outside to reach the sensitizing dye carried inside the “photoelectrode” (inside the cell). It is necessary to comprise a translucent conductive material. On the other hand, since the material constituting the electrode on the side opposite to the light incident side does not have to be translucent, it is advantageous to apply a metal material having good conductivity. Recently, it has been confirmed that stainless steel, which is a relatively inexpensive corrosion-resistant material, can be used as such a metal material, and thereby, cost reduction of the dye-sensitized solar cell is expected. Patent Document 1 discloses a dye-sensitized solar cell using a stainless steel plate as an electrode on the side opposite to the light incident side.

図1、図2に、ステンレス鋼板を電極に使用した従来の色素増感型太陽電池の構成を模式的に示す。図1は入射光側の電極が溶液中のイオンに電子を渡すための「対向電極」になっているタイプ、図2は入射光側の電極が半導体層(光電変換層)を有する「光電極」になっているタイプである。   1 and 2 schematically show the structure of a conventional dye-sensitized solar cell using a stainless steel plate as an electrode. FIG. 1 shows a type in which an electrode on the incident light side is a “counter electrode” for passing electrons to ions in the solution. FIG. 2 shows a “photo electrode” in which the electrode on the incident light side has a semiconductor layer (photoelectric conversion layer). It is a type that is.

図1のタイプでは、透光性基板2の表面に形成された透光性導電材料3と、ステンレス鋼板4が向かい合って色素増感型太陽電池1を構成している。   In the type of FIG. 1, a dye-sensitized solar cell 1 is configured by a translucent conductive material 3 formed on the surface of a translucent substrate 2 and a stainless steel plate 4 facing each other.

ステンレス鋼板4の表面には半導体層6が形成されている。半導体層6は例えば比表面積の大きいTiO2粒子などからなる酸化物半導体粒子を焼結させた多孔質層であり、その酸化物半導体7の表面にはルテニウム錯体色素等の増感色素8が担持されている。この例では、ステンレス鋼板4と、その表面に存在する半導体層6により光電極40が構成されている。なお、図中の半導体層6は説明の便宜のために酸化物半導体7および増感色素8の構成を概念的に描いたものであり、実際の半導体層6の構造をそのまま反映したものではない(図2、図3において同じ)。一方、透光性基板2としてはガラス板やPEN(ポリエチレンナフタレート)フィルムなどが使用される。透光性導電材料3は、通常、ITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)等の透光性導電膜で構成される。透光性導電材料3の表面には白金等の触媒薄膜層5が形成されている。この例では、透光性導電材料3と、その表面に存在する触媒薄膜層5により対向電極30が構成されている。対向電極30の触媒薄膜層5と光電極40の半導体層6の間には例えばヨウ化物イオンを含む電解液9が満たされている。色素増感型太陽電池1の外部には対向電極30と光電極40の間に負荷11が導線で結ばれ、回路を形成している。 A semiconductor layer 6 is formed on the surface of the stainless steel plate 4. The semiconductor layer 6 is a porous layer obtained by sintering oxide semiconductor particles made of, for example, TiO 2 particles having a large specific surface area, and a sensitizing dye 8 such as a ruthenium complex dye is supported on the surface of the oxide semiconductor 7. Has been. In this example, the photoelectrode 40 is constituted by the stainless steel plate 4 and the semiconductor layer 6 existing on the surface thereof. Note that the semiconductor layer 6 in the figure is conceptually drawn from the structure of the oxide semiconductor 7 and the sensitizing dye 8 for convenience of explanation, and does not reflect the actual structure of the semiconductor layer 6 as it is. (Same in FIGS. 2 and 3). On the other hand, a glass plate, a PEN (polyethylene naphthalate) film, or the like is used as the translucent substrate 2. The translucent conductive material 3 is usually composed of a translucent conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), or TO (tin oxide). A catalyst thin film layer 5 such as platinum is formed on the surface of the translucent conductive material 3. In this example, the counter electrode 30 is constituted by the translucent conductive material 3 and the catalyst thin film layer 5 present on the surface thereof. Between the catalyst thin film layer 5 of the counter electrode 30 and the semiconductor layer 6 of the photoelectrode 40, for example, an electrolytic solution 9 containing iodide ions is filled. A load 11 is connected to the outside of the dye-sensitized solar cell 1 between the counter electrode 30 and the photoelectrode 40 with a conductive wire to form a circuit.

酸化物半導体7がTiO2、増感色素8がルテニウム錯体色素、電解液9がヨウ化物イオンを含む溶液である場合を例に挙げて電池の作動原理を簡単に説明する。入射光20が増感色素(ルテニウム錯体色素)8に到達すると、増感色素8は光を吸収して励起され、その電子が酸化物半導体(TiO2)7へと注入される。励起状態になった増感色素(ルテニウム錯体色素)8は電解液9のヨウ化物イオンI-から電子を受け取り、基底状態に戻る。I-は酸化されてI3 -となり、対向電極30の触媒薄膜層5の方へ拡散し、対向電極30側から電子を受け取ってI-に戻る。これにより、電子は増感色素(ルテニウム錯体色素)8→酸化物半導体(TiO2)7→ステンレス鋼板4→負荷11→透光性導電材料3→触媒薄膜層5→電解液9→増感色素(ルテニウム錯体色素)8の経路で移動する。その結果、負荷11を作動させる電流が発生する。 The operating principle of the battery will be briefly described by taking as an example the case where the oxide semiconductor 7 is TiO 2 , the sensitizing dye 8 is a ruthenium complex dye, and the electrolytic solution 9 is a solution containing iodide ions. When the incident light 20 reaches the sensitizing dye (ruthenium complex dye) 8, the sensitizing dye 8 is excited by absorbing light, and its electrons are injected into the oxide semiconductor (TiO 2 ) 7. The sensitizing dye (ruthenium complex dye) 8 in the excited state receives electrons from the iodide ion I − in the electrolyte 9 and returns to the ground state. I is oxidized to I 3 , diffuses toward the catalyst thin film layer 5 of the counter electrode 30, receives electrons from the counter electrode 30, and returns to I . As a result, electrons are sensitized dye (ruthenium complex dye) 8 → oxide semiconductor (TiO 2 ) 7 → stainless steel plate 4 → load 11 → translucent conductive material 3 → catalytic thin film layer 5 → electrolyte 9 → sensitizing dye. (Ruthenium complex dye) It moves by the route of 8. As a result, a current for operating the load 11 is generated.

図2のタイプでは、対向電極30にステンレス鋼板4を用い、光電極40にITO、FTO、TO等の透光性導電材料3を用いている。電流が発生する原理は、基本的に図1のタイプと同じである。この場合、電子は増感色素(ルテニウム錯体色素)8→酸化物半導体(TiO2)7→透光性導電材料3→負荷11→ステンレス鋼板4→触媒薄膜層5→電解液9→増感色素(ルテニウム錯体色素)8の経路で移動する。その結果、負荷11を作動させる電流が発生する。 In the type of FIG. 2, the stainless steel plate 4 is used for the counter electrode 30, and the translucent conductive material 3 such as ITO, FTO, or TO is used for the photoelectrode 40. The principle of current generation is basically the same as that of the type shown in FIG. In this case, the electrons are sensitizing dye (ruthenium complex dye) 8 → oxide semiconductor (TiO 2 ) 7 → translucent conductive material 3 → load 11 → stainless steel plate 4 → catalyst thin film layer 5 → electrolytic solution 9 → sensitizing dye. (Ruthenium complex dye) It moves by the route of 8. As a result, a current for operating the load 11 is generated.

特開2008−34110号公報JP 2008-34110 A

図1、図2に示されるタイプの色素増感型太陽電池では、片方の電極にステンレス鋼板を使用することにより低コスト化および導電性向上が実現された。しかしながら、色素増感型太陽電池の普及を図るためには光電変換効率の更なる向上が望まれるところである。 本発明は、このような要求に応えるべく、片方の電極にステンレス鋼板を使用した色素増感型太陽電池において、光電変換効率の向上を図る技術を提供しようというものである。   In the dye-sensitized solar cell of the type shown in FIGS. 1 and 2, cost reduction and conductivity improvement are realized by using a stainless steel plate for one of the electrodes. However, in order to promote the spread of dye-sensitized solar cells, further improvement in photoelectric conversion efficiency is desired. The present invention is intended to provide a technique for improving the photoelectric conversion efficiency in a dye-sensitized solar cell using a stainless steel plate for one of the electrodes in order to meet such a demand.

色素増感型太陽電池の光電極は、上述のように半導体層を有するものである。この半導体層は通常、導電性基材の上に形成され、その基材を通して電流が取り出される。図1のタイプではステンレス鋼板4、図2のタイプでは透光性導電材料3がそれぞれ上記の導電性基材に該当する。発明者らは種々検討の結果、半導体層と導電性基材との密着性が、光電変換効率に多大な影響を及ぼすことを知見した。半導体層と導電性基材の密着性を増大させると両者の接合部における電気抵抗が低減し、これが光電変換効率の改善に寄与するものと考えられる。発明者らは電池の構成を詳細に検討した結果、図1のタイプにおいて、光電極40を構成するステンレス鋼板4に特定の表面形態を有する粗面化ステンレス鋼板を適用することによって、半導体層6とステンレス鋼板4の密着性が増大し、光電変換効率を従来よりも向上させることが可能になることを見出した。   The photoelectrode of the dye-sensitized solar cell has a semiconductor layer as described above. This semiconductor layer is usually formed on a conductive substrate, and current is taken through the substrate. In the type of FIG. 1, the stainless steel plate 4 corresponds to the conductive base material, and in the type of FIG. As a result of various studies, the inventors have found that the adhesion between the semiconductor layer and the conductive base material greatly affects the photoelectric conversion efficiency. When the adhesion between the semiconductor layer and the conductive substrate is increased, the electrical resistance at the joint between the two is reduced, which is considered to contribute to the improvement of the photoelectric conversion efficiency. As a result of examining the configuration of the battery in detail, the inventors applied the roughened stainless steel plate having a specific surface form to the stainless steel plate 4 constituting the photoelectrode 40 in the type of FIG. It has been found that the adhesion between the stainless steel plate 4 and the stainless steel plate 4 is increased, and the photoelectric conversion efficiency can be improved as compared with the prior art.

また、特許文献1では色素増感型太陽電池の電極材に適用するステンレス鋼としてCr含有量が17質量%以上、且つMo含有量が0.8質量%以上の鋼種を選択すべきであると教示している。しかし、発明者らはその後、実用性を考慮した検討を重ねたところ、Cr含有量が16質量%以上、且つMo含有量が0.3質量%以上のステンレス鋼を色素増感型太陽電池の電極材に適用できることがわかった。
本発明はこれらの知見に基づいて完成したものである。
In Patent Document 1, as a stainless steel to be applied to the electrode material of the dye-sensitized solar cell, a steel type having a Cr content of 17% by mass or more and a Mo content of 0.8% by mass or more should be selected. Teaching. However, the inventors subsequently conducted a study considering practicality, and as a result, stainless steel having a Cr content of 16% by mass or more and a Mo content of 0.3% by mass or more was replaced with a dye-sensitized solar cell. It was found that it can be applied to electrode materials.
The present invention has been completed based on these findings.

すなわち本発明では、ステンレス鋼板を用いた光電極および透光性導電材料を用いた対向電極を有する色素増感型太陽電池であって、
光電極は、下記(A)〜(D)のいずれかの化学組成を有するステンレス鋼種からなり、孔食状凹部が形成され算術平均粗さRaが0.2μm以上に調整された粗面化表面を有するステンレス鋼板を基材として、増感色素を担持した半導体層を前記基材の粗面化表面上に備えるものであり、
対向電極は、透光性導電材料の表面に触媒薄膜層を形成して可視光透過性を有するものであり、
光電極の半導体層と対向電極の触媒薄膜層が電解液を介して向き合っている色素増感型太陽電池が提供される。
That is, in the present invention, a dye-sensitized solar cell having a photoelectrode using a stainless steel plate and a counter electrode using a translucent conductive material,
The photoelectrode is made of a stainless steel species having any one of the following chemical compositions (A) to (D), and has a roughened surface in which a pitting corrosion-like recess is formed and the arithmetic average roughness Ra is adjusted to 0.2 μm or more. With a stainless steel plate having a base material, a semiconductor layer carrying a sensitizing dye is provided on the roughened surface of the base material,
The counter electrode has visible light permeability by forming a catalyst thin film layer on the surface of the translucent conductive material,
Provided is a dye-sensitized solar cell in which a semiconductor layer of a photoelectrode and a catalyst thin film layer of a counter electrode are opposed to each other through an electrolyte.

〔ステンレス鋼種〕
(A)Cr:16質量%以上、Mo:0.3質量%以上を含有し且つJIS G4305:2005に規定されるフェライト系ステンレス鋼種に相当するもの。
(B)Cr:16質量%以上、Mo:0.3質量%以上を含有し且つJIS G4305:2005に規定されるオーステナイト系ステンレス鋼種に相当するもの。
(C)質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼種。
(D)質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼種。
[Stainless steel grade]
(A) Cr: 16% by mass or more, Mo: 0.3% by mass or more, and corresponding to a ferritic stainless steel type specified in JIS G4305: 2005.
(B) A material containing Cr: 16% by mass or more, Mo: 0.3% by mass or more and corresponding to an austenitic stainless steel type specified in JIS G4305: 2005.
(C) In mass%, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.0 6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, remaining ferritic stainless steel grade consisting of Fe and inevitable impurities.
(D)% by mass C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6-28% Cr: 16 to 32%, Mo: 0.3 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N : 0.3% or less, B: 0 to 0.01%, balance of Fe and austenitic stainless steel composed of inevitable impurities.

上記の色素増感型太陽電池において、対向電極は波長500nmの光の透過率が55%以上となる可視光透過性を有するものが特に好適である。対向電極の触媒薄膜層を構成する触媒としては白金、ニッケルまたは導電性高分子が挙げられる。ここで、触媒が白金またはニッケルである場合には、触媒薄膜層の膜厚を0.5〜5nmとすることが好ましい。触媒が導電性高分子である場合には、触媒薄膜層の膜厚を1〜10nmとすることが好ましい。   In the above-described dye-sensitized solar cell, the counter electrode is particularly preferably one having visible light transmittance such that the transmittance of light having a wavelength of 500 nm is 55% or more. Platinum, nickel, or a conductive polymer is mentioned as a catalyst which comprises the catalyst thin film layer of a counter electrode. Here, when the catalyst is platinum or nickel, the thickness of the catalyst thin film layer is preferably 0.5 to 5 nm. When the catalyst is a conductive polymer, the thickness of the catalyst thin film layer is preferably 1 to 10 nm.

光電極に用いる基材ステンレス鋼板の前記粗面化表面は、隣り合う凹部同士が接している部分にエッジ状境界を有するものが特に好適である。   The roughened surface of the base stainless steel plate used for the photoelectrode is particularly preferably one having an edge-like boundary at a portion where adjacent concave portions are in contact with each other.

また本発明では上記の色素増感型太陽電池の製造方法として、
ステンレス鋼板を3価の鉄イオンが存在する水溶液中でエッチングして孔食状凹部を形成させることにより算術平均粗さRaが0.2μm以上の粗面化表面を有する基材を得る工程、
前記粗面化表面上に酸化物半導体粒子を含有する塗膜を形成させる工程、
前記塗膜を焼成して多孔質の半導体層とする工程、
増感色素が分散した溶媒に前記半導体層を浸漬することにより増感色素を半導体層に担持させ、基材ステンレス鋼板の粗面化表面上に増感色素を担持した半導体層を備える光電極とする工程、
前記光電極と、透光性導電材料の表面に触媒薄膜層を形成してなる可視光透過性の対向電極とを、光電極の半導体層と対向電極の触媒薄膜層が向き合うように配置させ、両電極間に電解液を封入する工程、
を有する色素増感型太陽電池の製造方法が提供される。
3価の鉄イオンが存在する水溶液は例えば塩化第二鉄含有水溶液である。
In the present invention, as a method for producing the dye-sensitized solar cell,
A step of obtaining a base material having a roughened surface having an arithmetic average roughness Ra of 0.2 μm or more by etching a stainless steel plate in an aqueous solution containing trivalent iron ions to form a pitting corrosion-like recess;
Forming a coating film containing oxide semiconductor particles on the roughened surface;
Baking the coating film into a porous semiconductor layer;
A photoelectrode comprising a semiconductor layer having a sensitizing dye supported on the roughened surface of the base stainless steel plate, the sensitizing dye being supported on the semiconductor layer by immersing the semiconductor layer in a solvent in which the sensitizing dye is dispersed; The process of
The photoelectrode and a visible light transmissive counter electrode formed by forming a catalyst thin film layer on the surface of the translucent conductive material are arranged so that the semiconductor layer of the photo electrode and the catalyst thin film layer of the counter electrode face each other, A step of encapsulating an electrolyte between both electrodes,
A method for producing a dye-sensitized solar cell having the following is provided.
An aqueous solution containing trivalent iron ions is, for example, an aqueous solution containing ferric chloride.

本発明によれば、片側の電極にステンレス鋼板を用いた色素増感型太陽電池において、従来よりも光電変換効率を向上させることが可能となった。また本発明の色素増感型太陽電池では従来よりCr含有量およびMo含有量の少ないステンレス鋼種を電極に使用することも可能であり、より低廉な鋼種の使用が望まれる用途への適用が期待される。   According to the present invention, in a dye-sensitized solar cell using a stainless steel plate as an electrode on one side, it has become possible to improve the photoelectric conversion efficiency as compared with the related art. In addition, in the dye-sensitized solar cell of the present invention, it is possible to use a stainless steel type having a lower Cr content and a lower Mo content for the electrode, and it is expected to be applied to applications where a cheaper steel type is desired. Is done.

ステンレス鋼板を光電極に使用した従来の色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the conventional dye-sensitized solar cell which used the stainless steel plate for the photoelectrode. ステンレス鋼板を対向電極に使用した従来の色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the conventional dye-sensitized solar cell which used the stainless steel plate for the counter electrode. 本発明の色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the composition of the dye sensitizing type solar cell of the present invention. 隣り合う凹部同士の境界がなだらかである粗面化表面の断面構造を模式的に例示した図。The figure which illustrated typically the cross-section of the roughening surface where the boundary of adjacent recessed parts is gentle. 隣り合う凹部同士が接している部分にエッジ状境界を有する粗面化表面の断面構造を模式的に例示した図。The figure which illustrated typically the cross-section of the roughening surface which has an edge-like boundary in the part which adjacent recessed parts contact | connect. 3価の鉄イオン含有水溶液中でエッチングすることにより孔食状凹部を形成した粗面化ステンレス鋼板表面のSEM写真の一例。An example of the SEM photograph of the surface of the roughened stainless steel plate which formed the pitting corrosion-like recessed part by etching in a trivalent iron ion containing aqueous solution.

図3に、本発明の色素増感型太陽電池の構成を模式的に例示する。電池の基本的な構成および電流の発生原理は図1のものと同様である。ただし、光電極40を構成するステンレス鋼板4として半導体層6が存在する表面を粗面化表面10とした点が大きく異なる。   FIG. 3 schematically illustrates the configuration of the dye-sensitized solar cell of the present invention. The basic configuration of the battery and the principle of current generation are the same as those in FIG. However, the stainless steel plate 4 constituting the photoelectrode 40 is greatly different in that the surface on which the semiconductor layer 6 exists is a roughened surface 10.

〔ステンレス鋼板の粗面化形態〕
本発明では孔食状凹部を形成することにより粗面化したステンレス鋼板を光電極の導電性基材(半導体層を保持するとともに通電を担う部材)に使用する。孔食状凹部は、電解質水溶液中での化学的エッチングによりステンレス鋼板の表面に局部腐食の1形態である「孔食」を生じさせることによって形成される凹部である。多数の孔食状凹部が形成されることによって粗面化された表面は、その上に存在させる半導体層に対してアンカー効果を発揮し、ステンレス鋼板と半導体層の密着性向上に寄与する。これにより両者の間の接合力が増大するとともに、接触面積も増大し、その結果両者の接合界面における電気抵抗が低減する。種々検討の結果、孔食状凹部が形成された粗面化表面の算術平均粗さRaが0.2μm以上となっているステンレス鋼板を使用したとき、光電変換効率の明らかな上昇が認められる。Raがそれより小さい場合は上記の作用が不十分となりやすく、安定して光電変換効率を顕著に向上させることが難しい。孔食状凹部を有する粗面化表面は後述のように3価の鉄イオンを含有する電解質水溶液中でエッチングすることにより形成できるが、エッチングを過度に進行させても、孔食が板厚方向(深さ方向)に成長するとともに隣り合う凹部同士の境界も厚みを減じながら板厚方向に消失していくので、Raが無制限に増大することはない。したがってRaの上限は特に規定する必要はないが、現実的には概ねRaの範囲は0.2〜5μm程度において良好な光電変換効率改善効果が得られやすい。
[Roughening form of stainless steel sheet]
In this invention, the stainless steel plate roughened by forming a pitting corrosion-like recessed part is used for the electroconductive base material (member which bears electricity while holding a semiconductor layer). The pitting corrosion-like recess is a recess formed by causing “pitting corrosion” which is one form of local corrosion on the surface of the stainless steel plate by chemical etching in an electrolyte aqueous solution. The surface roughened by the formation of a large number of pitting corrosion-like recesses exerts an anchor effect on the semiconductor layer existing thereon, and contributes to improving the adhesion between the stainless steel plate and the semiconductor layer. As a result, the bonding force between the two increases and the contact area also increases, and as a result, the electrical resistance at the bonding interface between the two decreases. As a result of various studies, when a stainless steel plate having an arithmetic average roughness Ra of 0.2 μm or more on the roughened surface on which pitting corrosion-like recesses are formed, a clear increase in photoelectric conversion efficiency is recognized. When Ra is smaller than that, the above-mentioned action tends to be insufficient, and it is difficult to stably improve the photoelectric conversion efficiency. A roughened surface having pitting corrosion-like recesses can be formed by etching in an aqueous electrolyte solution containing trivalent iron ions, as will be described later. Ra grows in the (depth direction) and disappears in the plate thickness direction while reducing the thickness of the adjacent recesses, so Ra does not increase indefinitely. Therefore, the upper limit of Ra does not need to be specified in particular, but in practice, a good photoelectric conversion efficiency improvement effect is likely to be obtained when the range of Ra is approximately 0.2 to 5 μm.

ステンレス鋼板表面に占める孔食状凹部発生部分の面積率は、粗面化表面を真上から見た場合の投影面積率において20%以上であることが好ましい。鋼板表面の全面に孔食状凹部が形成されていて、孔食状凹部発生部分の面積率が100%であっても構わない。   It is preferable that the area ratio of the pitting-corrugated concave portion occurrence portion on the stainless steel plate surface is 20% or more in the projected area ratio when the roughened surface is viewed from directly above. The pitting corrosion-like recessed part may be formed in the whole surface of the steel plate surface, and the area ratio of the pitting corrosion-like recessed part generating part may be 100%.

図4に、隣り合う凹部同士の境界がなだらかである粗面化表面の断面構造を模式的に例示する。ステンレス鋼板50の表面に凹部60が形成されているが、凹部境界70はなだらかな形態を呈している。このような粗面化形態は、3価の鉄イオンが存在しない電解質水溶液中でステンレス鋼板をエッチングした場合や、研磨、ショットブラスト等の物理的除去手段により粗面化した場合に得られやすい。凹部境界70が過度になだらかになると、半導体層に対するアンカー効果が小さくなり、密着性の向上効果が不十分となりやすい。この場合、光電変換効率の向上効果も小さくなる。   FIG. 4 schematically illustrates a cross-sectional structure of a roughened surface where the boundary between adjacent recesses is gentle. Although the recessed part 60 is formed in the surface of the stainless steel plate 50, the recessed part boundary 70 is exhibiting a gentle form. Such a roughened form is easily obtained when a stainless steel plate is etched in an aqueous electrolyte solution in which trivalent iron ions do not exist, or when the surface is roughened by physical removal means such as polishing or shot blasting. When the recess boundary 70 becomes excessively gentle, the anchor effect on the semiconductor layer is reduced, and the effect of improving the adhesion tends to be insufficient. In this case, the improvement effect of photoelectric conversion efficiency is also reduced.

図5に、隣り合う凹部同士が接している部分にエッジ状境界を有する粗面化表面の断面構造を模式的に例示する。この粗面化形態は本発明に適用するステンレス鋼板として特に好適なものである。ステンレス鋼板50の表面に凹部60が形成されているが、この凹部は孔食状凹部であり、孔食が深さ方向に成長する過程で孔食の開口径も少しずつ大きくなり、隣り合う凹部60の壁面同士がぶつかって、凹部境界70はエッジ状境界を呈するようになる。このような粗面化形態は、3価の鉄イオンが存在する電解質水溶液中でのエッチングにより得ることができる。エッジ状境界の存在によって半導体層に対する優れたアンカー効果が発揮され、ステンレス鋼板と半導体層の密着性が向上する。その結果、ステンレス鋼板と半導体層の接合部における電気抵抗が低減し、光電変換効率は顕著に向上する。   FIG. 5 schematically illustrates a cross-sectional structure of a roughened surface having an edge-like boundary at a portion where adjacent concave portions are in contact with each other. This roughened form is particularly suitable as a stainless steel plate applied to the present invention. A concave portion 60 is formed on the surface of the stainless steel plate 50. This concave portion is a pitting corrosion-like concave portion, and the opening diameter of the pitting corrosion gradually increases in the process of growing the pitting corrosion in the depth direction. The 60 wall surfaces collide with each other, and the recess boundary 70 becomes an edge-shaped boundary. Such a roughened form can be obtained by etching in an aqueous electrolyte solution in which trivalent iron ions are present. Due to the presence of the edge-like boundary, an excellent anchor effect for the semiconductor layer is exhibited, and the adhesion between the stainless steel plate and the semiconductor layer is improved. As a result, the electrical resistance at the junction between the stainless steel plate and the semiconductor layer is reduced, and the photoelectric conversion efficiency is significantly improved.

図6に、本発明の色素増感型太陽電池に適用する粗面化ステンレス鋼板として好適な粗面化表面のSEM写真を例示する。隣り合う孔食状凹部の間にエッジ状境界が観察される。   In FIG. 6, the SEM photograph of the roughening surface suitable as a roughening stainless steel plate applied to the dye-sensitized solar cell of this invention is illustrated. An edge boundary is observed between adjacent pitting-like recesses.

〔ステンレス鋼板の化学組成〕
本発明において光電極の導電性基材に適用するステンレス鋼板は、色素増感型太陽電池の電解液に対して優れた耐久性を呈するステンレス鋼種を採用する必要がある。発明者らの詳細な検討の結果、Crを16質量%以上、且つMoを0.3質量%以上含有するステンレス鋼種を使用することによって、実用に耐えうる色素増感型太陽電池が構築可能となることがわかった。
[Chemical composition of stainless steel sheet]
In the present invention, the stainless steel plate applied to the conductive substrate of the photoelectrode needs to employ a stainless steel type exhibiting excellent durability against the electrolyte solution of the dye-sensitized solar cell. As a result of detailed studies by the inventors, it is possible to construct a dye-sensitized solar cell that can withstand practical use by using a stainless steel type containing 16 mass% or more of Cr and 0.3 mass% or more of Mo. I found out that

一般にステンレス鋼は塩化物イオンCl-を含む水溶液に対する耐食性において弱点を有するとされ、その耐食性を改善するにはCrの増量やMoの添加が有効であるとされる。例えば温水器に適したフェライト系のSUS444ではCr:17質量%以上、Mo:1.75質量%以上の含有量が確保されており、高耐食性オーステナイト系汎用鋼種であるSUS316でもCr:16質量%以上、Mo:2質量%以上の含有量が確保されている。しかし、ヨウ化物イオンに対するステンレス鋼の耐食性については報告が少なく、特に色素増感型太陽電池の光電極用途における実用的な検討は十分になされていない。そこで発明者らは詳細に調査したところ、色素増感型太陽電池のセルを構築した直後に測定した初期の光電変換効率η0(%)に対して、そのセルを65℃で100h放置した後に測定した光電変換効率η1(%)の変化率(後述(2)式による変換効率保持率)が80%以上となる色素増感型太陽電池は、日常的なパーソナルユースの製品に組み込む用途において実用的な耐久性を有すると評価できる。この変換効率保持率が90%となるもの、あるいはさらに95%以上となるものがより好ましい。そして、さらに検討を進めた結果、上記のようにCrを16質量%以上、且つMoを0.3質量%以上含有するステンレス鋼種を採用すれば、変換効率保持率が80%以上となる色素増感型太陽電池を十分に構築可能であることが明らかとなった。 Generally stainless steel chloride ion Cl - is to have a weak point in corrosion resistance to an aqueous solution containing, to improve its corrosion resistance the addition of increasing or Mo and Cr is to be effective. For example, in ferrite type SUS444 suitable for water heaters, Cr: 17% by mass or more and Mo: 1.75% by mass or more are ensured. Even in SUS316, which is a high corrosion resistance austenitic general-purpose steel grade, Cr: 16% by mass. As mentioned above, Mo: Content of 2 mass% or more is ensured. However, there are few reports on the corrosion resistance of stainless steel against iodide ions, and practical studies have not been sufficiently conducted especially for photoelectrode applications of dye-sensitized solar cells. Therefore, the inventors investigated in detail and found that after the cell was left at 65 ° C. for 100 hours with respect to the initial photoelectric conversion efficiency η 0 (%) measured immediately after the cell of the dye-sensitized solar cell was constructed. Dye-sensitized solar cells that have a measured rate of change in photoelectric conversion efficiency η 1 (%) (conversion efficiency retention rate according to formula (2) described later) of 80% or more are used in applications incorporated into everyday personal use products. It can be evaluated as having practical durability. It is more preferable that the conversion efficiency retention is 90% or even 95% or more. As a result of further investigation, as described above, if a stainless steel type containing Cr of 16% by mass or more and Mo of 0.3% by mass or more is adopted, the conversion efficiency retention becomes 80% or more. It was revealed that a sensitive solar cell can be sufficiently constructed.

具体的には、前記(A)〜(D)に示すステンレス鋼種が好適な対象として挙げられる。なお、より一層の耐食性を望む場合は、Cr含有量は17質量%以上とすることが好ましい。また、Mo含有量は0.5質量%以上とすることが好ましく、0.8質量%以上、あるいは1.0質量%以上の範囲に管理しても構わない。Crの上限は32質量%とすればよく、25質量%以下の範囲で成分調整してもよい。Moの上限は3質量%とすればよく、2質量%以下の範囲で成分調整してもよい。   Specifically, the stainless steel types shown in the above (A) to (D) are suitable targets. In addition, when further corrosion resistance is desired, it is preferable that Cr content shall be 17 mass% or more. Further, the Mo content is preferably 0.5% by mass or more, and may be controlled in a range of 0.8% by mass or more, or 1.0% by mass or more. The upper limit of Cr should just be 32 mass%, and you may adjust a component in 25 mass% or less. The upper limit of Mo should just be 3 mass%, and you may adjust a component in the range of 2 mass% or less.

〔ステンレス鋼板の粗面化処理〕
上記のような特異な粗面化形態は、通常の焼鈍・酸洗仕上げ、BA焼鈍仕上げ、あるいはスキンパス圧延仕上げなど、粗面化していない表面性状のステンレス鋼板に対して、3価の鉄イオンが存在する水溶液中でエッチングを施すことにより得ることができる。エッチングの方法として、液中に浸漬保持する手法、液中で交番電解する手法などが採用できる。いずれの場合も、3価の鉄イオン供給源として塩化第二鉄(FeCl3)が好適に使用できる。
[Roughening of stainless steel sheet]
The above-mentioned specific roughening form is that trivalent iron ions are present on a stainless steel plate having a surface texture that is not roughened, such as normal annealing / pickling finish, BA annealing finish, or skin pass rolling finish. It can be obtained by etching in an existing aqueous solution. As an etching method, a technique of dipping and holding in a liquid, a technique of alternating electrolysis in a liquid, or the like can be employed. In either case, ferric chloride (FeCl 3 ) can be suitably used as a trivalent iron ion source.

浸漬保持の場合、塩化第二鉄(FeCl3)と塩酸(HCl)の混合水溶液中でエッチングする方法が極めて有効である。具体的には例えば、Fe3+イオン濃度:15〜100g/L、HCl濃度:20〜200g/L、温度:35〜70℃、浸漬時間:3〜120secという条件範囲内において、孔食状凹部を有し且つRaが0.2μm以上である粗面化表面が得られる条件を見出すことができる。 In the case of immersion holding, a method of etching in a mixed aqueous solution of ferric chloride (FeCl 3 ) and hydrochloric acid (HCl) is extremely effective. Specifically, for example, within the condition ranges of Fe 3+ ion concentration: 15 to 100 g / L, HCl concentration: 20 to 200 g / L, temperature: 35 to 70 ° C., immersion time: 3 to 120 sec, pitting corrosion-like recesses And a condition for obtaining a roughened surface with Ra of 0.2 μm or more can be found.

交番電解の場合、例えば電解液として塩化第二鉄水溶液を用い、Fe3+イオン濃度:1〜50g/L、温度:30〜70℃、アノード電解電流密度:1.0〜10.0kA/m2、カソード電解電流密度:0.1〜3.0kA/m2、交番電解サイクル:1〜20Hzの範囲、電解時間:10〜300secという条件範囲内において、孔食状凹部を有し且つRaが0.2μm以上である粗面化表面が得られる条件を見出すことができる。交番電解サイクルを小さくすると1サイクル当りの通電時間が長くなるので孔食状凹部のサイズを増大させることができ、逆に交番電解サイクルを大きくすると孔食状凹部のサイズを小さくすることができる。 In the case of alternating electrolysis, for example, a ferric chloride aqueous solution is used as an electrolytic solution, Fe 3+ ion concentration: 1 to 50 g / L, temperature: 30 to 70 ° C., anode electrolytic current density: 1.0 to 10.0 kA / m 2. Cathodic electrolysis current density: 0.1 to 3.0 kA / m 2 , alternating electrolysis cycle: 1 to 20 Hz, electrolysis time: 10 to 300 sec. It is possible to find a condition for obtaining a roughened surface of 0.2 μm or more. If the alternating electrolysis cycle is made smaller, the energization time per cycle becomes longer, so that the size of the pitting corrosion-like recess can be increased, and conversely, if the alternating electrolysis cycle is made larger, the size of the pitting corrosion-like depression can be made smaller.

〔光電極の製造〕
光電極は、例えば以下のような方法により製造することができる。まず上記の粗面化ステンレス鋼板の粗面化表面上に、酸化物半導体粒子を含有する塗料(ペースト状または液状のもの)を塗布して乾燥させ、塗膜を形成させる。その後、その塗膜を焼成して酸化物粒子を焼結させ、多孔質の半導体層を形成させる。焼成はステンレス鋼板ごと加熱炉に装入して、焼結が適度に進行する温度(例えば400〜600℃)に保持すればよい。酸化物半導体としてはTiO2が一般的であるが、ZnO、SnO2、ZrO2などを用いることもできる。これらの酸化物を複合で使用してもよい。このようにして得られた多孔質の半導体層を、増感色素が分散している有機溶媒中に浸漬することにより、半導体層に増感色素を担持させる。ステンレス鋼板ごと前記有機溶媒中に浸漬すればよい。増感色素としてはルテニウム錯体色素が代表的である。
[Manufacture of photoelectrodes]
The photoelectrode can be manufactured, for example, by the following method. First, on the roughened surface of the above-mentioned roughened stainless steel plate, a paint (paste or liquid) containing oxide semiconductor particles is applied and dried to form a coating film. Thereafter, the coating film is baked to sinter the oxide particles, thereby forming a porous semiconductor layer. The firing may be performed by inserting the stainless steel plate into a heating furnace and maintaining the temperature at which the sintering proceeds moderately (for example, 400 to 600 ° C.). TiO 2 is generally used as the oxide semiconductor, but ZnO, SnO 2 , ZrO 2, or the like can also be used. These oxides may be used in combination. The porous semiconductor layer thus obtained is immersed in an organic solvent in which the sensitizing dye is dispersed, whereby the sensitizing dye is supported on the semiconductor layer. The stainless steel plate may be immersed in the organic solvent. A typical example of the sensitizing dye is a ruthenium complex dye.

〔対向電極の製造〕
対向電極は、透光性導電材料を、ガラス板やPEN(ポリエチレンナフタレート)フィルムなどの透光性基板の表面に保持させ、さらに透光性導電材料の表面に触媒薄膜層を形成させることにより製造することができる。透光性導電材料は、ITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)等の導電膜を使用することができる。触媒薄膜層としては白金、ニッケルなどの金属膜、またはポリアニリン、ポリエチレンジオキシチオフェンなどの導電性高分子膜が好適である。金属膜は例えばスパッタリング法により形成することができる。導電性高分子膜は例えばスピンコート法により形成することができる。対向電極は波長500nmの光の透過率が55%以上である可視光透過性を有するものが特に好適である。この場合に高い光電変換効率が得られる。光の透過率は触媒薄膜層の厚さによって変動する。触媒薄膜層が薄いほど透過率は高くなる。しかし、触媒薄膜層を過度に薄くすると、触媒作用が低下することに起因して光電変換効率が低下するようになる。種々検討の結果、触媒が白金またはニッケルである場合には、触媒薄膜層の膜厚を0.5〜5nmの範囲で調整することが好ましい。触媒がポリアニリンである場合には、触媒薄膜層の膜厚を1〜10nmの範囲で調整することが好ましい。
[Production of counter electrode]
The counter electrode is formed by holding a translucent conductive material on the surface of a translucent substrate such as a glass plate or a PEN (polyethylene naphthalate) film, and further forming a catalyst thin film layer on the surface of the translucent conductive material. Can be manufactured. As the translucent conductive material, a conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), or TO (tin oxide) can be used. As the catalyst thin film layer, a metal film such as platinum or nickel, or a conductive polymer film such as polyaniline or polyethylenedioxythiophene is suitable. The metal film can be formed by, for example, a sputtering method. The conductive polymer film can be formed by, for example, a spin coating method. The counter electrode is particularly preferably one having a visible light transmittance with a transmittance of light having a wavelength of 500 nm of 55% or more. In this case, high photoelectric conversion efficiency can be obtained. The light transmittance varies depending on the thickness of the catalyst thin film layer. The thinner the catalyst thin film layer, the higher the transmittance. However, if the catalyst thin film layer is excessively thinned, the photoelectric conversion efficiency decreases due to the decrease in the catalytic action. As a result of various studies, when the catalyst is platinum or nickel, the thickness of the catalyst thin film layer is preferably adjusted in the range of 0.5 to 5 nm. When the catalyst is polyaniline, the thickness of the catalyst thin film layer is preferably adjusted in the range of 1 to 10 nm.

〔電池の構築〕
前記光電極と、対向電極とを、光電極の半導体層と対向電極の触媒薄膜層が電解液を介して向き合うように配置させることにより、本発明の色素増感型太陽電池が構築される。
[Battery construction]
The dye-sensitized solar cell of the present invention is constructed by arranging the photoelectrode and the counter electrode so that the semiconductor layer of the photoelectrode and the catalyst thin film layer of the counter electrode face each other through the electrolytic solution.

表1に示す組成のステンレス鋼を溶製し、一般的なステンレス鋼板製造工程により板厚0.2mmの冷延焼鈍鋼板(No.2D仕上)を製造した。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。表中における「−」(ハイフン)は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。   Stainless steel having the composition shown in Table 1 was melted, and a cold-rolled annealed steel sheet (No. 2D finish) having a thickness of 0.2 mm was manufactured by a general stainless steel sheet manufacturing process. In Table 1, in the structure column, “α” means ferrite and “γ” means austenite. “-” (Hyphen) in the table means that it is below the measurement limit by a normal analysis method in the steelmaking field.

〔粗面化処理〕
上記鋼板から切り出した試料に、浸漬保持または交番電解により粗面化処理を施し、供試材とした。一部、粗面化処理を施していないNo.2D仕上げのままの供試材も用意した。表2中に、浸漬保持によるものを「浸漬」、交番電解によるものを「電解」と表示してある。
浸漬保持による粗面化処理は、試験片をFe3+イオン濃度:30g/L、HCl濃度:30g/L、温度:50℃の塩化第二鉄+塩酸混合水溶液中に40秒間浸漬させる方法で行った。
交番電解による粗面化処理は、Fe3+イオン濃度:5〜50g/L、温度:35〜65℃の塩化第二鉄水溶液を用いて、アノード電解電流密度:3kA/m2、カソード電解電流密度:0.3kA/m2、交番電解サイクル:10Hz、電解時間:10〜120secの範囲の条件で行った。
SEM観察の結果、ここで得られたいずれの粗面化表面にも孔食状凹部が面積率20%以上で生成しており、隣り合う凹部同士が接している部分にはエッジ状境界が存在していることが確認された。
(Roughening treatment)
A sample cut out from the steel sheet was subjected to a surface roughening treatment by dipping and alternating electrolysis to obtain a test material. Part of the test material was also prepared with a No. 2D finish that had not been roughened. In Table 2, “immersion” indicates the immersion retention, and “electrolysis” indicates the alternating electrolysis.
The roughening treatment by dipping is a method in which the test piece is immersed for 40 seconds in a ferric chloride + hydrochloric acid mixed aqueous solution of Fe 3+ ion concentration: 30 g / L, HCl concentration: 30 g / L, temperature: 50 ° C. went.
The roughening treatment by alternating electrolysis is performed using an aqueous ferric chloride solution having an Fe 3+ ion concentration of 5 to 50 g / L and a temperature of 35 to 65 ° C., an anode electrolysis current density of 3 kA / m 2 , and a cathode electrolysis current. Density: 0.3 kA / m 2 , alternating electrolysis cycle: 10 Hz, electrolysis time: 10 to 120 sec.
As a result of SEM observation, pitting corrosion-like recesses are generated at an area ratio of 20% or more on any roughened surface obtained here, and there is an edge-like boundary at a portion where adjacent recesses are in contact with each other. It was confirmed that

〔Raの測定〕
得られた粗面化表面の算術平均粗さRaを微細形状測定機(株式会社小坂研究所製;Surfcorder ET4000A)を用いて測定した。
[Measurement of Ra]
The arithmetic average roughness Ra of the roughened surface obtained was measured using a fine shape measuring instrument (manufactured by Kosaka Laboratory Ltd .; Surfcorder ET4000A).

〔光電極の作製〕
半導体層を得るための材料としてTiO2ペースト(ペクセルテクノロジーズ社製;PECC−01−06)を用意した。上記供試材の表面(粗面化処理したものは粗面化表面)にTiO2ペーストをドクターブレード法にて塗布し、乾燥させることにより、TiO2含有塗膜を形成させた。その後、基材のステンレス鋼板ごと450℃のオーブン中に装入して焼成し、TiO2粒子を焼結させることにより半導体層を形成させた。得られた半導体層の平均厚さは10μmであった。増感色素としてルテニウム錯体色素(同社製PECD−07)を用い、これをアセトニトリルとtert−ブタノールの混合溶媒に分散させ色素溶液を得た。この色素溶液中に、前記の半導体層を形成したステンレス鋼基材を浸漬させ、半導体層に増感色素が担持されている光電極を得た。
[Production of photoelectrode]
A TiO 2 paste (Peccell Technologies, Inc .; PECC-01-06) was prepared as a material for obtaining a semiconductor layer. A TiO 2 -containing coating film was formed by applying a TiO 2 paste to the surface of the test material (roughened surface is a roughened surface) by a doctor blade method and drying. Thereafter, the stainless steel plate as a base material was placed in an oven at 450 ° C. and fired, and the semiconductor layer was formed by sintering the TiO 2 particles. The average thickness of the obtained semiconductor layer was 10 μm. A ruthenium complex dye (PECD-07 manufactured by the same company) was used as a sensitizing dye, and this was dispersed in a mixed solvent of acetonitrile and tert-butanol to obtain a dye solution. The stainless steel substrate on which the semiconductor layer was formed was immersed in this dye solution to obtain a photoelectrode in which a sensitizing dye was supported on the semiconductor layer.

〔対向電極の作製〕
対向電極用の透光性導電材料としてPENフィルム基板上にITO膜を形成した「ITO−PENフィルム」(ペクセルテクノロジーズ社製;PECF−IP)を用意した。これをスパッタリング装置内にセットし、白金をターゲットとしてスパッタを1分間行い、ITO膜上に白金触媒薄膜層を形成して対向電極を得た。この場合、白金の膜厚は約3nmとなる。
[Preparation of counter electrode]
An “ITO-PEN film” (Peccell Technologies, Inc .; PECF-IP) in which an ITO film was formed on a PEN film substrate was prepared as a translucent conductive material for the counter electrode. This was set in a sputtering apparatus and sputtered for 1 minute using platinum as a target to form a platinum catalyst thin film layer on the ITO film to obtain a counter electrode. In this case, the film thickness of platinum is about 3 nm.

〔電池の作製〕
前記の光電極と対向電極とを、セルとなる部分を取り囲むようにして配置した熱融着フィルム(ペクセルテクノロジーズ社製のサーリンフィルム)を挟んで組み合わせ、光電極のステンレス鋼表面と対向電極の距離が50μmとなるセル構造体とした。このセル構造体をホットプレス機で加熱圧縮してセルを封止し、さらにセルの周囲にエポキシ樹脂を塗布し硬化させた。対向電極に設けた電解液注入口より、セル内部に電解液(同社製;PECE−K01)をマイクロシリンダにて注入した。その後、前記電解液注入口をエポキシ樹脂で封止し、色素増感型太陽電池を得た。
[Production of battery]
Combining the photoelectrode and the counter electrode with a heat-sealing film (Serlin film manufactured by Pexel Technologies Co., Ltd.) arranged so as to surround the cell portion, the photoelectrode stainless steel surface and the counter electrode A cell structure having a distance of 50 μm was obtained. The cell structure was heated and compressed with a hot press to seal the cell, and an epoxy resin was applied around the cell and cured. An electrolytic solution (manufactured by the same company; PECE-K01) was injected into the inside of the cell from the electrolytic solution injection port provided in the counter electrode. Thereafter, the electrolyte solution injection port was sealed with an epoxy resin to obtain a dye-sensitized solar cell.

〔光電変換効率の測定〕
作製した色素増感型太陽電池の変換効率の測定を以下の手順で行った。
色素増感型太陽電池に、ソーラーシミュレータ(山下電装社製;YSS−100)を用いてAM1.5、100mW/cm2の擬似太陽光を対向電極側から照射しながら、KEITHLEY社製;2400型ソースメータによりI−V特性を測定して、短絡電流JSC、開放電圧VOC、形状因子FFの値を得た。これらの値から下記(1)式により光電変換効率ηの値を求めた。
光電変換効率η(%)=短絡電流JSC(mA/cm2)×開放電圧VOC(V)×形状因子FF/入射光100(mW/cm2)×100 …(1)
[Measurement of photoelectric conversion efficiency]
The conversion efficiency of the produced dye-sensitized solar cell was measured according to the following procedure.
Using a solar simulator (Yamashita Denso Co., Ltd .; YSS-100) to the dye-sensitized solar cell, irradiating AM1.5, 100 mW / cm 2 pseudo sunlight from the counter electrode side, manufactured by KEITHLEY; 2400 type The IV characteristics were measured with a source meter, and the values of the short circuit current JSC, the open circuit voltage VOC, and the form factor FF were obtained. From these values, the value of photoelectric conversion efficiency η was determined by the following formula (1).
Photoelectric conversion efficiency η (%) = short circuit current JSC (mA / cm 2 ) × open circuit voltage VOC (V) × form factor FF / incident light 100 (mW / cm 2 ) × 100 (1)

電池作製直後に測定した初期の光電変換効率をここではη0(%)と表示する。η0測定後、太陽電池を65℃の恒温漕中に100h放置させた。その後、同様に光電変換効率を測定した。65℃、100h放置後の光電変換効率をここではη1(%)と表示する。前記条件下での放置による光電変換効率の変化の程度を下記(2)式で定義される変換効率保持率(%)により評価した。
変換効率保持率(%)=η1/η0×100 …(2)
結果を表2に示す。
Here, the initial photoelectric conversion efficiency measured immediately after the production of the battery is expressed as η 0 (%). After the η 0 measurement, the solar cell was left in a constant temperature bath at 65 ° C. for 100 hours. Thereafter, the photoelectric conversion efficiency was measured in the same manner. Here, the photoelectric conversion efficiency after being left at 65 ° C. for 100 hours is expressed as η 1 (%). The degree of change in photoelectric conversion efficiency due to standing under the above conditions was evaluated by the conversion efficiency retention rate (%) defined by the following formula (2).
Conversion efficiency retention ratio (%) = η 1 / η 0 × 100 (2)
The results are shown in Table 2.

表2からわかるように、本発明例のものはCr含有量およびMo含有量が適正範囲にあり、且つ孔食状凹部が形成されRaが0.2μm以上である粗面化ステンレス鋼板を使用したものであり、光電変換効率がη0、η1とも高く、変換効率保持率は極めて高い値であった。 As can be seen from Table 2, the examples of the present invention used a roughened stainless steel plate having a Cr content and a Mo content in appropriate ranges, a pitting corrosion-like recess formed, and Ra of 0.2 μm or more. The photoelectric conversion efficiency was high for both η 0 and η 1, and the conversion efficiency retention was extremely high.

これに対し、比較例である試験No.1〜5はMo含有量が低いステンレス鋼板を使用したものであり、65℃、100h放置後の光電変換効率が著しく低下して、変換効率保持率が悪かった。これは電解液中での耐食性が不足したことにより、電解液中にステンレス鋼成分のFeやCrが溶出したことが原因であると考えられる。試験No.6〜8は粗面化処理を施していないステンレス鋼板を使用したことにより光電極のステンレス鋼板と半導体層の密着性が低かったものと考えられ、光電変換効率はη0、η1とも低い値となった。 On the other hand, Test Nos. 1 to 5, which are comparative examples, are those using a stainless steel plate having a low Mo content, and the photoelectric conversion efficiency after leaving at 65 ° C. for 100 hours is remarkably lowered, so that the conversion efficiency retention ratio is high. It was bad. This is thought to be due to the fact that the stainless steel components Fe and Cr were eluted in the electrolyte due to the lack of corrosion resistance in the electrolyte. In Test Nos. 6 to 8, it was considered that the adhesion between the stainless steel plate of the photoelectrode and the semiconductor layer was low due to the use of a stainless steel plate that had not been roughened, and the photoelectric conversion efficiency was η 0 , η 1 Both were low.

光電極として、実施例1と同様の方法で作製した表2中のNo.11(鋼G)に相当するものを用意した。
対向電極としては、ここでは触媒を白金、ニッケルまたはポリアニリンとし、触媒薄膜層の膜厚を種々変えたものを以下のようにして作製した。実施例1と同様にPENフィルム基板上にITO膜を形成した「ITO−PENフィルム」を用意した。白金またはニッケルを採用する場合は、実施例1と同様にスパッタリング装置により触媒薄膜層を形成しし、スパッタリング時間を変化させることにより膜厚を制御した。ポリアニリンを採用する場合は、トルエン溶媒中にポリアニリンを溶解させた液をITO膜上に滴下し、スピンコート法により触媒薄膜層を形成し、スピンコートの回転速度を変化させることにより膜厚を制御した。得られた対向電極について、波長500nmの光の透過率を分光光度計(日立ハイテクノロジーズ製;U−4100)で測定した。
これらの光電極と対向電極を用いて実施例1と同様の方法で色素増感型太陽電池を作製し、光電変換効率η0を測定した。結果を表3に示す。
A photoelectrode corresponding to No. 11 (steel G) in Table 2 prepared in the same manner as in Example 1 was prepared.
As the counter electrode, here, the catalyst was made of platinum, nickel or polyaniline, and the thickness of the catalyst thin film layer was variously changed as follows. As in Example 1, an “ITO-PEN film” in which an ITO film was formed on a PEN film substrate was prepared. When platinum or nickel was employed, the catalyst thin film layer was formed by a sputtering apparatus in the same manner as in Example 1, and the film thickness was controlled by changing the sputtering time. When using polyaniline, a solution of polyaniline dissolved in a toluene solvent is dropped onto the ITO film, a catalyst thin film layer is formed by spin coating, and the film thickness is controlled by changing the spin coating rotation speed. did. About the obtained counter electrode, the transmittance | permeability of the light of wavelength 500nm was measured with the spectrophotometer (Hitachi High-Technologies make; U-4100).
Using these photoelectrodes and counter electrode, a dye-sensitized solar cell was produced in the same manner as in Example 1, and the photoelectric conversion efficiency η 0 was measured. The results are shown in Table 3.

表3からわかるように、良好な光電変換効率を実現するためには対向電極の光の透過率を一定以上に増大させることが重要である。   As can be seen from Table 3, in order to achieve good photoelectric conversion efficiency, it is important to increase the light transmittance of the counter electrode above a certain level.

1 色素増感型太陽電池
2 透光性基板
3 透光性導電材料
4 ステンレス鋼板
5 触媒薄膜層
6 半導体層
7 酸化物半導体
8 増感色素
9 電解液
10 粗面化表面
11 負荷
30 対向電極
40 光電極
50 ステンレス鋼板
60 凹部
70 凹部境界
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell 2 Translucent substrate 3 Translucent conductive material 4 Stainless steel plate 5 Catalyst thin film layer 6 Semiconductor layer 7 Oxide semiconductor 8 Sensitizing dye 9 Electrolytic solution 10 Roughened surface 11 Load 30 Counter electrode 40 Photoelectrode 50 Stainless steel plate 60 Recess 70 Recess boundary

Claims (11)

ステンレス鋼板を用いた光電極および透光性導電材料を用いた対向電極を有する色素増感型太陽電池であって、
光電極は、Cr:16質量%以上、Mo:0.3質量%以上を含有し且つJIS G4305:2005に規定されるフェライト系ステンレス鋼種に相当する化学組成を有し、孔食状凹部が形成され算術平均粗さRaが0.2μm以上に調整された粗面化表面を有するステンレス鋼板を基材として、増感色素を担持した半導体層を前記基材の粗面化表面上に備えるものであり、
対向電極は、透光性導電材料の表面に触媒薄膜層を形成して可視光透過性を有するものであり、
光電極の半導体層と対向電極の触媒薄膜層が電解液を介して向き合っている色素増感型太陽電池。
A dye-sensitized solar cell having a photoelectrode using a stainless steel plate and a counter electrode using a translucent conductive material,
The photoelectrode contains Cr: 16% by mass or more, Mo: 0.3% by mass or more, and has a chemical composition corresponding to a ferritic stainless steel type specified in JIS G4305: 2005, and a pitting corrosion-like recess is formed. A stainless steel plate having a roughened surface with an arithmetic average roughness Ra adjusted to 0.2 μm or more is used as a base material, and a semiconductor layer carrying a sensitizing dye is provided on the roughened surface of the base material. Yes,
The counter electrode has visible light permeability by forming a catalyst thin film layer on the surface of the translucent conductive material,
A dye-sensitized solar cell in which a semiconductor layer of a photoelectrode and a catalyst thin film layer of a counter electrode face each other through an electrolyte.
光電極に用いるステンレス鋼が、Cr:16質量%以上、Mo:0.3質量%以上を含有し且つJIS G4305:2005に規定されるオーステナイト系ステンレス鋼種に相当する化学組成を有するものである請求項1に記載の色素増感型太陽電池。   The stainless steel used for the photoelectrode contains Cr: 16% by mass or more, Mo: 0.3% by mass or more, and has a chemical composition corresponding to the austenitic stainless steel type specified in JIS G4305: 2005. Item 2. The dye-sensitized solar cell according to Item 1. 光電極に用いるステンレス鋼が、質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼である請求項1に記載の色素増感型太陽電池。   Stainless steel used for the photoelectrode is C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less in mass%. Ni: 0.6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0% 2. The dye-sensitized solar cell according to claim 1, which is a ferritic stainless steel made of 0.2%, N: 0.025% or less, B: 0 to 0.01%, the balance Fe and unavoidable impurities. 光電極に用いるステンレス鋼が、質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼である請求項1に記載の色素増感型太陽電池。   The stainless steel used for the photoelectrode is, by mass%, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni : 6-28%, Cr: 16-32%, Mo: 0.3-7%, Cu: 0-3.5%, Nb: 0-1%, Ti: 0-1%, Al: 0-0 The dye-sensitized solar cell according to claim 1, which is an austenitic stainless steel comprising 0.1%, N: 0.3% or less, B: 0 to 0.01%, the balance Fe and unavoidable impurities. 対向電極は波長500nmの光の透過率が55%以上となる可視光透過性を有するものである請求項1〜4のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the counter electrode has visible light transmittance such that the transmittance of light having a wavelength of 500 nm is 55% or more. 対向電極の触媒薄膜層を構成する触媒が白金、ニッケルまたは導電性高分子である請求項1〜5のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 5, wherein the catalyst constituting the catalyst thin film layer of the counter electrode is platinum, nickel, or a conductive polymer. 触媒が白金またはニッケルであり、触媒薄膜層の膜厚が0.5〜5nmである請求項6に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 6, wherein the catalyst is platinum or nickel, and the thickness of the catalyst thin film layer is 0.5 to 5 nm. 触媒が導電性高分子であり、触媒薄膜層の膜厚が1〜10nmである請求項6に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 6, wherein the catalyst is a conductive polymer, and the thickness of the catalyst thin film layer is 1 to 10 nm. 光電極に用いる基材ステンレス鋼板の前記粗面化表面は、隣り合う凹部同士が接している部分にエッジ状境界を有するものである請求項1〜8のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar according to any one of claims 1 to 8, wherein the roughened surface of the base stainless steel plate used for the photoelectrode has an edge-like boundary at a portion where adjacent concave portions are in contact with each other. battery. ステンレス鋼板を3価の鉄イオンが存在する水溶液中でエッチングして孔食状凹部を形成させることにより算術平均粗さRaが0.2μm以上の粗面化表面を有する基材を得る工程、
前記粗面化表面上に酸化物半導体粒子を含有する塗膜を形成させる工程、
前記塗膜を焼成して多孔質の半導体層とする工程、
増感色素が分散した溶媒に前記半導体層を浸漬することにより増感色素を半導体層に担持させ、基材ステンレス鋼板の粗面化表面上に増感色素を担持した半導体層を備える光電極とする工程、
前記光電極と、透光性導電材料の表面に触媒薄膜層を形成してなる可視光透過性の対向電極とを、光電極の半導体層と対向電極の触媒薄膜層が向き合うように配置させ、両電極間に電解液を封入する工程、
を有する請求項1〜9のいずれかに記載の色素増感型太陽電池の製造方法。
A step of obtaining a base material having a roughened surface having an arithmetic average roughness Ra of 0.2 μm or more by etching a stainless steel plate in an aqueous solution containing trivalent iron ions to form a pitting corrosion-like recess;
Forming a coating film containing oxide semiconductor particles on the roughened surface;
Baking the coating film into a porous semiconductor layer;
A photoelectrode comprising a semiconductor layer having a sensitizing dye supported on the roughened surface of the base stainless steel plate, the sensitizing dye being supported on the semiconductor layer by immersing the semiconductor layer in a solvent in which the sensitizing dye is dispersed; The process of
The photoelectrode and a visible light transmissive counter electrode formed by forming a catalyst thin film layer on the surface of the translucent conductive material are arranged so that the semiconductor layer of the photo electrode and the catalyst thin film layer of the counter electrode face each other, A step of encapsulating an electrolyte between both electrodes,
The manufacturing method of the dye-sensitized solar cell in any one of Claims 1-9 which have these.
3価の鉄イオンが存在する水溶液は塩化第二鉄含有水溶液である請求項10に記載の色素増感型太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 10, wherein the aqueous solution containing trivalent iron ions is a ferric chloride-containing aqueous solution.
JP2009191348A 2009-08-20 2009-08-20 Dye-sensitized solar cell and method of manufacturing the same Pending JP2011044318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191348A JP2011044318A (en) 2009-08-20 2009-08-20 Dye-sensitized solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191348A JP2011044318A (en) 2009-08-20 2009-08-20 Dye-sensitized solar cell and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011044318A true JP2011044318A (en) 2011-03-03

Family

ID=43831593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191348A Pending JP2011044318A (en) 2009-08-20 2009-08-20 Dye-sensitized solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011044318A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259499A (en) * 1997-03-19 1998-09-29 Nisshin Steel Co Ltd Method for roughening stainless steel sheet surface
JP2000150005A (en) * 1998-11-05 2000-05-30 Nikon Corp Manufacture of coloring material sensitizing solar battery
JP2007042494A (en) * 2005-08-04 2007-02-15 Fujikura Ltd Action pole and its manufacturing method and solar cell and its manufacturing method
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007134328A (en) * 2005-11-11 2007-05-31 Samsung Sdi Co Ltd Solar cell and its manufacturing method
JP2008034110A (en) * 2006-07-26 2008-02-14 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009026532A (en) * 2007-07-18 2009-02-05 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009129574A (en) * 2007-11-20 2009-06-11 Toyo Seikan Kaisha Ltd Dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
WO2009154314A1 (en) * 2008-06-17 2009-12-23 日本電気硝子株式会社 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
WO2010041732A1 (en) * 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259499A (en) * 1997-03-19 1998-09-29 Nisshin Steel Co Ltd Method for roughening stainless steel sheet surface
JP2000150005A (en) * 1998-11-05 2000-05-30 Nikon Corp Manufacture of coloring material sensitizing solar battery
JP2007042460A (en) * 2005-08-03 2007-02-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its sealing method
JP2007042494A (en) * 2005-08-04 2007-02-15 Fujikura Ltd Action pole and its manufacturing method and solar cell and its manufacturing method
JP2007134328A (en) * 2005-11-11 2007-05-31 Samsung Sdi Co Ltd Solar cell and its manufacturing method
JP2008034110A (en) * 2006-07-26 2008-02-14 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009026532A (en) * 2007-07-18 2009-02-05 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009129574A (en) * 2007-11-20 2009-06-11 Toyo Seikan Kaisha Ltd Dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
WO2009154314A1 (en) * 2008-06-17 2009-12-23 日本電気硝子株式会社 Substrate for solar cell and oxide semiconductor electrode for dye-sensitized solar cell
WO2010041732A1 (en) * 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells

Similar Documents

Publication Publication Date Title
WO2011021299A1 (en) Dye-sensitized solar cell and method for manufacturing the same
Lin et al. Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells
Fabregat-Santiago et al. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping
EP2337144B1 (en) Dye-sensitized solar cells
Chen et al. Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells
Wang et al. High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm
Chang et al. Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production
Wu et al. Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells
JP2009200008A (en) Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
Xu et al. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets
Liu et al. Low-cost and flexible poly (3, 4-ethylenedioxythiophene) based counter electrodes for efficient energy conversion in dye-sensitized solar cells
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
Kim et al. Novel application of platinum ink for counter electrode preparation in dye sensitized solar cells
Chang et al. Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet
Yun et al. Cost-effective dye-sensitized solar cells consisting of two metal foils instead of transparent conductive oxide glass
Su et al. Electrodeposited TiO2 Film with Mossy Nanostructure for Efficient Compact Layer in Scaffold‐Type Perovskite Solar Cell
JP2011044318A (en) Dye-sensitized solar cell and method of manufacturing the same
JP5566082B2 (en) Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
Kim et al. Counter electrode system of Pt on stainless steel (SS) for electron injection into iodide redox couple
JP5430658B2 (en) Electrode of dye-sensitized solar cell
Song et al. Efficiency Enhancement of Dye-Sensitized Solar Cells Using Ti–Nb Alloy Photoanodes with Mesoporous Oxide Surface
JP2011108463A (en) Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
TW201232579A (en) Planar ultracapacitor
JP2015082549A (en) Photoelectrode, method of manufacturing the same, and marine microbial fuel cell including the same
JP2014093184A (en) Dye-sensitized solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617