JP2011108463A - Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery - Google Patents

Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery Download PDF

Info

Publication number
JP2011108463A
JP2011108463A JP2009261380A JP2009261380A JP2011108463A JP 2011108463 A JP2011108463 A JP 2011108463A JP 2009261380 A JP2009261380 A JP 2009261380A JP 2009261380 A JP2009261380 A JP 2009261380A JP 2011108463 A JP2011108463 A JP 2011108463A
Authority
JP
Japan
Prior art keywords
stainless steel
dye
photoelectrode
less
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009261380A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Nishida
義勝 西田
Yoshikazu Morita
芳和 守田
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009261380A priority Critical patent/JP2011108463A/en
Publication of JP2011108463A publication Critical patent/JP2011108463A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectrode of a dye-sensitized solar cell applying a metal material as a current collector member, which does not require concurrently a translucent conductive film and is of low cost and in which a high photoelectric transfer efficiency can be obtained. <P>SOLUTION: The photoelectrode of a dye-sensitized solar cell has a stainless steel sheet having through holes and a porous semiconductor layer carrying sensitized dyes integrated together. The stainless steel sheet contains Cr: 16 mass% or more and Mo: 0.3 mass% or more, and has a through hole of which the surface area ratio of the penetrating part occupied in a projected area viewed in thickness direction of the stainless steel sheet is 5% or more and the average diameter of the penetration part is 5-500 μm. The through hole can be formed by a method in which a stainless steel rolled sheet is immersed in a ferric chloride aqueous solution of trivalent iron concentration of 30-100 g/L and hydrochloric acid concentration of 0-50 g/L, and a pitting corrosion-like pit is grown in the solution. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、色素増感型太陽電池の光電極であって、集電部材としてステンレス鋼を用いたもの、およびその製造方法、並びにその光電極を用いた色素増感型太陽電池に関する。   The present invention relates to a photoelectrode of a dye-sensitized solar cell, which uses stainless steel as a current collecting member, a manufacturing method thereof, and a dye-sensitized solar cell using the photoelectrode.

太陽電池は従来、主としてシリコンを光電変換素子に用いたものが使われているが、より経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。   Conventionally, solar cells using mainly silicon as a photoelectric conversion element have been used, but the practical application of “dye-sensitized solar cells” has been studied as a more economical next-generation solar cell.

図1に、一般的な色素増感型太陽電池の構成を模式的に示す。透光性板状体2の表面に透光性導電膜3が設けられ、透光性導電膜3の表面には増感色素を担持した多孔質半導体層4が形成されている。透光性導電膜3と多孔質半導体層4により光電極10が構成されている。透光性導電膜3は、例えばITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)、ZnO(酸化亜鉛)等の酸化物導電膜で構成され、透光性板状体2にはガラスやプラスチックフィルムなどが使用される。光電極10と向かい合うように対向電極20が配置されており、光電極10、対向電極20、および両電極間に介在する電解液8によって色素増感型太陽電池1が構成されている。対向電極20は導電材料6とその表面に設けられた触媒層7によって構成される。必要に応じて対向電極20を支持するための基板5が設けられる。   FIG. 1 schematically shows the configuration of a general dye-sensitized solar cell. A translucent conductive film 3 is provided on the surface of the translucent plate-like body 2, and a porous semiconductor layer 4 carrying a sensitizing dye is formed on the surface of the translucent conductive film 3. A photoelectrode 10 is constituted by the translucent conductive film 3 and the porous semiconductor layer 4. The translucent conductive film 3 is composed of an oxide conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), TO (tin oxide), ZnO (zinc oxide), and the like. The plate-like body 2 is made of glass or plastic film. A counter electrode 20 is disposed so as to face the photoelectrode 10, and the dye-sensitized solar cell 1 is configured by the photoelectrode 10, the counter electrode 20, and the electrolytic solution 8 interposed between the two electrodes. The counter electrode 20 is composed of a conductive material 6 and a catalyst layer 7 provided on the surface thereof. A substrate 5 for supporting the counter electrode 20 is provided as necessary.

光電極10を構成する多孔質半導体層4は比表面積の大きいTiO2等の半導体粒子を用いた多孔質層であり、半導体粒子の表面にはルテニウム錯体等の増感色素が担持されている。電解液としてはヨウ素(I2)およびヨウ化物イオンを含むものを使用することが一般的である。入射光30が多孔質半導体層4に担持されている増感色素に到達すると、増感色素(例えばルテニウム錯体)は光を吸収して励起され、その電子が半導体粒子(例えばTiO2)へと注入される。励起電子を注入して酸化状態になった増感色素は電解液8のイオン(例えばヨウ化物イオンI-)から電子を受け取り、基底状態に戻る。このとき液中のイオン(例えばI-)は酸化されて価数の異なるイオン(例えばI3 -)となり、対向電極20へ拡散し、対向電極20から電子を受け取って元のイオン(例えばI-)に戻る。これにより、電子は「多孔質半導体層4→透光性導電膜3→負荷40→導電材料6→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。 The porous semiconductor layer 4 constituting the photoelectrode 10 is a porous layer using semiconductor particles such as TiO 2 having a large specific surface area, and a sensitizing dye such as a ruthenium complex is supported on the surface of the semiconductor particles. In general, an electrolytic solution containing iodine (I 2 ) and iodide ions is used. When the incident light 30 reaches the sensitizing dye supported on the porous semiconductor layer 4, the sensitizing dye (for example, ruthenium complex) is excited by absorbing light, and the electrons are converted into semiconductor particles (for example, TiO 2 ). Injected. The sensitizing dye that is in an oxidized state by injecting excited electrons receives electrons from ions (for example, iodide ions I ) in the electrolyte 8 and returns to the ground state. At this time, ions (for example, I ) in the liquid are oxidized to ions having different valences (for example, I 3 ), diffuse to the counter electrode 20, receive electrons from the counter electrode 20, and receive original ions (for example, I −). Return to). As a result, electrons move along the path “porous semiconductor layer 4 → translucent conductive film 3 → load 40 → conductive material 6 → catalyst layer 7 → electrolytic solution 8 → porous semiconductor layer 4”. As a result, a current for operating the load 40 is generated.

光電極10には集電部材として機能する導電材料が必要であるが、その導電材料を図1に示されるように多孔質半導体層4の受光面側(入射光が差し込む側)に配置する場合には、ITO、FTOなど透光性の酸化物導電膜が採用されるのが通常である。しかし、これらの導電膜は金属材料に比べると導電性が低く、発電効率の向上を妨げる一因となっている。そこで、集電部材として金属材料を使用する手法が種々提案されている。この場合、多孔質半導体層4の受光面側に集電部材を配置するためには光の入射をできるだけ妨害しないように、多数の孔を設けた金属膜(特許文献1)、グリッド(特許文献2)、金属線(特許文献3)などを適用する必要がある。そのような構成の光電極を形成することは複雑な工程を必要とし、コスト増を余儀なくされる。   When the photoelectrode 10 requires a conductive material that functions as a current collecting member, the conductive material is disposed on the light receiving surface side (the side into which incident light is inserted) of the porous semiconductor layer 4 as shown in FIG. In general, a light-transmitting oxide conductive film such as ITO or FTO is employed. However, these conductive films have lower conductivity than metal materials, which is one factor that hinders improvement in power generation efficiency. Therefore, various methods using a metal material as a current collecting member have been proposed. In this case, in order to dispose the current collecting member on the light receiving surface side of the porous semiconductor layer 4, a metal film (Patent Document 1) provided with a large number of holes and a grid (Patent Document) so as not to disturb the incidence of light as much as possible. 2) It is necessary to apply a metal wire (Patent Document 3). Forming the photoelectrode having such a configuration requires a complicated process, and the cost is inevitably increased.

一方、集電部材を多孔質半導体層4の内部または多孔質半導体層4と電解質8の間に配置するためには、集電部材を回避してイオンによる電荷移動が確保される必要があることから、単純に金属シートを適用するわけにはいかない。そこで、ステンレス鋼メッシュを光電極の集電部材として使用する技術が知られている。しかしながら、この場合、光電変換効率を向上させることが難しいという問題がある。これは、ステンレス鋼メッシュの表面にTiO2半導体層を形成させるための焼成工程(加熱温度450〜500℃程度)において、TiO2とステンレス鋼の熱膨張係数差が大きいことに起因して、ステンレス鋼メッシュの表面でTiO2のクラックが生じることが主たる原因であるとされる。メッシュを構成する線材は、板状材料とは異なり平面内での拘束力に乏しいことから、熱膨張による長さ変化を起こしやすいという本質的な問題を抱えていると言える。この問題を解消するために、非特許文献1にはステンレス鋼メッシュの表面に傾斜組成を持つTiOX層を形成させる手法が提案されている。しかし、その手法は、組成を変えながらのプラズマ蒸着など、複雑な処理を必要とし、生産性およびコストの面で工業的な実用化は容易でない。 On the other hand, in order to arrange the current collecting member inside the porous semiconductor layer 4 or between the porous semiconductor layer 4 and the electrolyte 8, it is necessary to avoid the current collecting member and ensure charge transfer by ions. Therefore, it is not possible to simply apply a metal sheet. Therefore, a technique using a stainless steel mesh as a current collecting member for a photoelectrode is known. However, in this case, there is a problem that it is difficult to improve the photoelectric conversion efficiency. This is because the difference in thermal expansion coefficient between TiO 2 and stainless steel is large in the firing step (heating temperature: about 450 to 500 ° C.) for forming the TiO 2 semiconductor layer on the surface of the stainless steel mesh. The main reason is that TiO 2 cracks occur on the surface of the steel mesh. Unlike the plate-like material, the wire constituting the mesh is poor in restraining force in a plane, and thus it can be said that it has an essential problem that it tends to cause a length change due to thermal expansion. In order to solve this problem, Non-Patent Document 1 proposes a method of forming a TiO x layer having a gradient composition on the surface of a stainless steel mesh. However, this method requires complicated processing such as plasma deposition while changing the composition, and industrial practical application is not easy in terms of productivity and cost.

特開2003−123858号公報JP 2003-123858 A 特開2003−203682号公報JP 2003-203682 A 特開2005−158726号公報JP 2005-158726 A 特開2009−26532号公報JP 2009-26532 A

Yoshikazu Yoshida et al.,APPLIED PHYSICS LETTERS 94,093301 (2009)Yoshikazu Yoshida et al. , APPLIED PHYSICS LETTERS 94,093301 (2009)

本発明は、集電部材として金属材料を適用した色素増感型太陽電池の光電極において、透光性導電膜を併用する必要がなく、低コストであり、且つ高い光電変換効率が得られるものを提供すること、およびそれを用いた色素増感型太陽電池を提供することを目的とする。   The present invention provides a photoelectrode for a dye-sensitized solar cell to which a metal material is applied as a current collecting member, which does not require the use of a light-transmitting conductive film, is low in cost, and has high photoelectric conversion efficiency. And a dye-sensitized solar cell using the same.

発明者らは詳細な研究の結果、上記目的は、光電極の集電部材として多数の貫通穴を有するステンレス鋼シートを使用することによって達成できることを見出した。また、そのようなステンレス鋼シートは、塩化第二鉄水溶液中でのエッチングによって効率良く生産できることがわかった。   As a result of detailed studies, the inventors have found that the above object can be achieved by using a stainless steel sheet having a large number of through holes as a current collecting member of a photoelectrode. It was also found that such a stainless steel sheet can be efficiently produced by etching in a ferric chloride aqueous solution.

すなわち本発明では、
貫通穴を有するステンレス鋼シートと、増感色素を担持した多孔質半導体層が一体化した色素増感型太陽電池の光電極であって、
ステンレス鋼シートは、Cr:16質量%以上、Mo:0.3質量%以上を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものであり、
多孔質半導体層は、前記ステンレス鋼シートの少なくとも片面側に付着している、
色素増感型太陽電池の光電極が提供される。
ステンレス鋼シートの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものが好ましい。
That is, in the present invention,
A photoelectrode of a dye-sensitized solar cell in which a stainless steel sheet having a through hole and a porous semiconductor layer carrying a sensitizing dye are integrated,
The stainless steel sheet contains Cr: 16% by mass or more, Mo: 0.3% by mass or more, and has a chemical composition corresponding to a ferritic steel type defined in JIS G4305: 2005. The area ratio of the penetrating portion occupying the projected area seen in the vertical direction is 5 to 80%, and the through hole has an average diameter of 5 to 500 μm,
The porous semiconductor layer is attached to at least one side of the stainless steel sheet,
A photoelectrode for a dye-sensitized solar cell is provided.
The through holes of the stainless steel sheet are preferably formed by immersing the rolled sheet in an aqueous electrolyte solution to grow pitting corrosion pits.

ステンレス鋼シートの鋼種として、規格鋼種を挙げると以下のものが好適な対象となる。
(1)Cr:16〜32質量%、Mo:0.3〜3質量%を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当するもの。
(2)Cr:16〜32質量%、Mo:0.3〜7質量%を含有し、且つJIS G4305:2005に規定されるオーステナイト鋼種に相当するもの。
As the steel types of the stainless steel sheet, the following are suitable targets when standard steel types are listed.
(1) Cr: 16 to 32% by mass, Mo: 0.3 to 3% by mass, and corresponding to a ferritic steel type specified in JIS G4305: 2005.
(2) Cr: 16 to 32% by mass, Mo: 0.3 to 7% by mass, and corresponding to the austenitic steel grade specified in JIS G4305: 2005.

具体的に各元素の含有量範囲を示すと、以下のものが好適な対象となる。
(3)質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼。
(4)質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼。
ここで、含有量の下限を0%とした元素は、任意選択元素である。
When the content range of each element is specifically shown, the following are suitable targets.
(3) By mass% C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.0 6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, Ferritic stainless steel consisting of N: 0.025% or less, B: 0-0.01%, balance Fe and inevitable impurities.
(4) By mass% C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6-28% Cr: 16 to 32%, Mo: 0.3 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N : Austenitic stainless steel consisting of 0.3% or less, B: 0 to 0.01%, balance Fe and inevitable impurities.
Here, the element whose lower limit of content is 0% is an optional element.

また、上記の光電極の製造方法として、
板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる工程(貫通穴形成工程)、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に酸化物半導体(例えばTiO2)で構成される多孔質半導体層を形成させる工程(多孔質半導体層形成工程)、
前記多孔質半導体層に増感色素を担持させる工程(色素担持工程)、
を有する色素増感型太陽電池の光電極の製造方法が提供される。
Moreover, as a manufacturing method of said photoelectrode,
A stainless steel rolled sheet having a thickness of 0.005 to 0.2 mm is immersed in an aqueous ferric chloride solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L, Through the growth of pitting corrosion-like pits, through holes with an area ratio of the penetrating portion occupying the projected area of the sheet in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm are formed. Forming (through hole forming step),
A step of forming a porous semiconductor layer composed of an oxide semiconductor (for example, TiO 2 ) on at least one surface of the stainless steel sheet in which the through hole is formed (porous semiconductor layer forming step);
A step of supporting a sensitizing dye on the porous semiconductor layer (dye supporting step),
There is provided a method for producing a photoelectrode of a dye-sensitized solar cell comprising:

特に前記「多孔質半導体層形成工程」として、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に酸化物半導体(例えばTiO2)の粒子を含有するペーストを塗布して、塗膜を形成させる工程(塗膜形成工程)、
前記塗膜を焼成し、酸化物半導体粒子が焼結してなる多孔質半導体層を形成させる工程(焼成工程)、
を有する製造方法が好適な対象となる。
In particular, as the “porous semiconductor layer forming step”,
Applying a paste containing oxide semiconductor (for example, TiO 2 ) particles on at least one surface of the stainless steel sheet having the through holes to form a coating film (coating film forming process);
A step of firing the coating film to form a porous semiconductor layer formed by sintering oxide semiconductor particles (firing step);
The manufacturing method having a suitable target.

また本発明では、上記の光電極を備える色素増感型太陽電池が提供される。   Moreover, in this invention, a dye-sensitized solar cell provided with said photoelectrode is provided.

本発明によれば、以下のようなメリットが得られる。
(1)光電極の集電部材が金属材料であるため、従来の透光性導電膜を使用した光電極と比べ導電性が良好であり、光電変換効率の向上に有利となる。
(2)また、光電極に透光性導電膜を併用する必要がないので低コスト化に有利となる。
(3)集電部材にステンレス鋼メッシュを使用した光電極と比べ、酸化物半導体塗膜の焼成過程で熱膨張差に起因した酸化物半導体のクラックが生じにくいので、導電性の向上ひいては光電変換効率の向上に有利となる。コスト面でも極めて有利である。
(4)また、本発明で使用する穴あきステンレス鋼シートは、レジスト法を適用することなく、ステンレス鋼圧延シートを水溶液中でエッチングすることにより得られるので、生産性が高く、大量生産に適する。この点でも低コスト化に有利である。
According to the present invention, the following advantages can be obtained.
(1) Since the current collecting member of the photoelectrode is a metal material, the electroconductivity is better than that of a conventional photoelectrode using a translucent conductive film, which is advantageous in improving the photoelectric conversion efficiency.
(2) Since it is not necessary to use a light-transmitting conductive film in combination with the photoelectrode, it is advantageous for cost reduction.
(3) Compared with a photoelectrode using a stainless steel mesh as a current collector, oxide semiconductor cracks due to thermal expansion differences are less likely to occur during the firing process of oxide semiconductor coatings, improving conductivity and thus photoelectric conversion. This is advantageous for improving efficiency. It is extremely advantageous in terms of cost.
(4) Moreover, since the perforated stainless steel sheet used in the present invention is obtained by etching a stainless steel rolled sheet in an aqueous solution without applying a resist method, the productivity is high and suitable for mass production. . This is also advantageous for cost reduction.

一般的な色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the general dye-sensitized solar cell. 本発明の光電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the structure of the photoelectrode of this invention, and a dye-sensitized solar cell using the same. 本発明の光電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the structure of the photoelectrode of this invention, and a dye-sensitized solar cell using the same. 本発明の光電極の別の態様およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically another aspect of the photoelectrode of this invention, and the structure of the dye-sensitized solar cell using the same.

図2に、本発明の光電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示する。光電極10は、貫通穴50を有するステンレス鋼シート9と、その片面に付着した多孔質半導体層4によって構成されている。この光電極10を用いた色素増感型太陽電池1では、ステンレス鋼シート9に対して、入射光30が入射する側に多孔質半導体層4を配置させることができる。すなわち、従来、金属製の集電材料を透光性板状体2の表面上、あるいは図1示した透光性導電膜3と接触させた状態で配置していたタイプの色素増感型太陽電池(例えば特許文献1〜3)と比較して、本発明の光電極を用いると、金属製の集電材料による遮光や、透光性導電膜による若干の減光を経ずに、直接多孔質半導体層4に入射光30が届くので、光電変換効率の向上に有利となる。また、ステンレス鋼メッシュを用いたタイプの色素増感型太陽電池(非特許文献1参照)と比べ、ステンレス鋼と半導体層との密着性を確保することが容易である。   In FIG. 2, the structure of the photoelectrode of this invention and a dye-sensitized solar cell using the same is illustrated typically. The photoelectrode 10 is constituted by a stainless steel sheet 9 having a through hole 50 and a porous semiconductor layer 4 attached to one surface thereof. In the dye-sensitized solar cell 1 using the photoelectrode 10, the porous semiconductor layer 4 can be disposed on the stainless steel sheet 9 on the side on which the incident light 30 is incident. That is, conventionally, a dye-sensitized solar of the type in which a metal current collecting material is disposed on the surface of the translucent plate 2 or in contact with the translucent conductive film 3 shown in FIG. Compared with a battery (for example, Patent Documents 1 to 3), when the photoelectrode of the present invention is used, it is directly porous without being shielded by a metal current collecting material or slightly dimmed by a translucent conductive film. Since the incident light 30 reaches the quality semiconductor layer 4, it is advantageous for improving the photoelectric conversion efficiency. In addition, it is easy to ensure the adhesion between the stainless steel and the semiconductor layer as compared with a dye-sensitized solar cell using a stainless steel mesh (see Non-Patent Document 1).

本発明の光電極において、ステンレス鋼シート9に形成された貫通穴50は、イオンによる電荷の移動に利用される。図2に示した電池の例では、電子は「多孔質半導体層4→ステンレス鋼シート9→負荷40→導電材料6→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。   In the photoelectrode of the present invention, the through hole 50 formed in the stainless steel sheet 9 is used for charge transfer by ions. In the example of the battery shown in FIG. 2, electrons move along the path “porous semiconductor layer 4 → stainless steel sheet 9 → load 40 → conductive material 6 → catalyst layer 7 → electrolyte solution 8 → porous semiconductor layer 4”. . As a result, a current for operating the load 40 is generated.

本発明の光電極10を用いた電池において、対向電極20には、図2に示される導電材料6としてFTO等の透光性導電膜を使用することもできるが、対向電極側では必ずしも透光性は要求されないので、導電材料6を導電性に優れた金属材料で構成することができる。例えば特許文献4に開示されるように、ステンレス鋼板を導電材料6として使用した対向電極を採用することができる。この場合、そのステンレス鋼板に基板の機能を持たせることができるので、図2の基板5に相当する材料は省略可能である。   In the battery using the photoelectrode 10 of the present invention, a light-transmitting conductive film such as FTO can be used for the counter electrode 20 as the conductive material 6 shown in FIG. Therefore, the conductive material 6 can be made of a metal material having excellent conductivity. For example, as disclosed in Patent Document 4, a counter electrode using a stainless steel plate as the conductive material 6 can be employed. In this case, since the stainless steel plate can have a substrate function, a material corresponding to the substrate 5 in FIG. 2 can be omitted.

図3に、そのような色素増感型太陽電池の構成を例示する。対向電極20として、ステンレス鋼板60の表面に触媒層7を形成したものが採用されている。この場合、ステンレス鋼板60の鋼種は、ステンレス鋼シート9と同様、後述するものを適用することができる。また、ステンレス鋼板60の表面は、後述するエッチングによって貫通穴が生じない程度に粗面化したものを適用することができる。それにより表面積が増大し、電池の内部抵抗を低減する上で有利となる。   FIG. 3 illustrates the configuration of such a dye-sensitized solar cell. As the counter electrode 20, one having a catalyst layer 7 formed on the surface of a stainless steel plate 60 is employed. In this case, the stainless steel sheet 60 can be the same as the stainless steel sheet 9 as described later. Further, the surface of the stainless steel plate 60 can be applied with a surface roughened to such an extent that a through hole is not generated by etching described later. This increases the surface area, which is advantageous in reducing the internal resistance of the battery.

図4に、本発明の光電極の別の態様およびそれを用いた色素増感型太陽電池の構成を模式的に例示する。この場合、ステンレス鋼シート9の両側に多孔質半導体層4および4’が付着している。貫通穴50を介して両側の多孔質半導体層4、4’が繋がっていても構わないし、分離していても構わない。図3に示される入射光30のように光電極10側のみから受光する場合は、ステンレス鋼シート9の対向電極20側の表面に付着している多孔質半導体層4’では、貫通穴50を通して差し込む入射光30を利用して光電変換が行われる。この場合、貫通穴50はイオンによる電荷移動だけでなく、入射光の透過を担う。一方、対向電極20および基板5がともに透光性材料である場合には、光電極10側のみならず、対向電極20側からも受光することが可能である。そのような場合には、ステンレス鋼シート9の対向電極20側の表面に付着している多孔質半導体層4’が、対向電極20側からの入射光に対して、特に有効に作用する。   FIG. 4 schematically illustrates another embodiment of the photoelectrode of the present invention and the configuration of a dye-sensitized solar cell using the same. In this case, porous semiconductor layers 4 and 4 ′ are attached to both sides of the stainless steel sheet 9. The porous semiconductor layers 4, 4 ′ on both sides may be connected via the through hole 50 or may be separated. When the light is received only from the photoelectrode 10 side as in the incident light 30 shown in FIG. 3, the porous semiconductor layer 4 ′ attached to the surface of the stainless steel sheet 9 on the counter electrode 20 side passes through the through hole 50. Photoelectric conversion is performed using the incident light 30 to be inserted. In this case, the through hole 50 is responsible not only for charge transfer by ions but also for transmission of incident light. On the other hand, when both the counter electrode 20 and the substrate 5 are translucent materials, it is possible to receive light not only from the photoelectrode 10 side but also from the counter electrode 20 side. In such a case, the porous semiconductor layer 4 ′ adhering to the surface on the counter electrode 20 side of the stainless steel sheet 9 acts particularly effectively on incident light from the counter electrode 20 side.

〔ステンレス鋼シートの鋼種〕
色素増感型太陽電池の電解液には通常、ヨウ素(I2)およびヨウ化物イオン等を含む有機溶媒が使用される。本発明に適用するステンレス鋼シートはこのような電解液中で長期間安定して優れた耐食性を呈する素材で構成する必要がある。発明者らの検討の結果、80℃に加熱した当該電解液中に500時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼を適用することが極めて有効であることがわかった。いわゆる裸の状態(被覆層を形成していない状態)で上記の厳しい試験環境における腐食減量が1g/m2以下となるステンレス鋼は、パーソナルユースの機器に搭載する普及型の色素増感型太陽電池を構築する上で、通常は十分な耐久性を有する。また、上記液中に1000時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼は特に信頼性の高い色素増感型太陽電池を構築する上で一層有利である。
[Steel grade of stainless steel sheet]
An organic solvent containing iodine (I 2 ) and iodide ions is usually used for the electrolyte solution of the dye-sensitized solar cell. The stainless steel sheet applied to the present invention needs to be made of a material that exhibits stable and excellent corrosion resistance for a long time in such an electrolytic solution. As a result of investigations by the inventors, it has been found that it is extremely effective to apply stainless steel having a property that the corrosion weight loss when immersed in the electrolyte heated to 80 ° C. for 500 hours is 1 g / m 2 or less. It was. Stainless steel with a corrosion weight loss of 1 g / m 2 or less in the above-mentioned severe test environment in the so-called bare state (in which no coating layer is formed) is a popular dye-sensitized solar mounted on personal use equipment. In constructing a battery, it usually has sufficient durability. In addition, stainless steel having a property that the corrosion weight loss when immersed in the above solution for 1000 hours is 1 g / m 2 or less is further advantageous in constructing a highly reliable dye-sensitized solar cell.

発明者らは詳細な検討の結果、ステンレス鋼において、一定量以上のCrとMoを含有させることによって、有機溶媒を用いたヨウ素(I2)およびヨウ化物イオン含有電解質溶液中での溶解がほとんど進行しない優れた耐食性が付与できることを確認している。具体的には、ステンレス鋼材料においてCr含有量を16質量%以上とし、且つMo含有量を0.3質量%以上としたとき、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物イオン含有電解液中での溶解がほとんど生じない優れた耐食性を呈することを見出した。また、Cr含有量を17質量%以上とし、且つMo含有量を0.8質量%以上としたときには、より信頼性の高い色素増感型太陽電池を構築できる。この傾向はオーステナイト系やフェライト系といった鋼種の影響をあまり受けず、その他の添加元素の影響も少ない。 As a result of detailed studies, the inventors have found that in stainless steel, by containing a certain amount or more of Cr and Mo, dissolution in an electrolyte solution containing iodine (I 2 ) and iodide ions using an organic solvent is almost impossible. It has been confirmed that excellent corrosion resistance that does not progress can be imparted. Specifically, in the stainless steel material, when the Cr content is 16% by mass or more and the Mo content is 0.3% by mass or more, iodine (I 2 ) applied to the dye-sensitized solar cell and It has been found that it exhibits excellent corrosion resistance with little dissolution in an iodide ion-containing electrolyte. When the Cr content is 17% by mass or more and the Mo content is 0.8% by mass or more, a more reliable dye-sensitized solar cell can be constructed. This tendency is not significantly affected by the steel types such as austenite and ferritic, and is less affected by other additive elements.

本発明では、フェライト系鋼種と、オーステナイト系鋼種において、それぞれ以下の組成範囲のステンレス鋼を適用することができる。合金元素の含有量に関する「%」は特に断らない限り「質量%」を意味する。   In the present invention, stainless steels having the following composition ranges can be applied to ferritic steel types and austenitic steel types. Unless otherwise specified, “%” with respect to the alloy element content means “mass%”.

フェライト系鋼種;
「C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜3%好ましくは0.8〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物の組成を有するフェライト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるフェライト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜3質量%好ましくは0.8〜3質量%を含有するステンレス鋼を適用すればよい。
Ferritic steel grades;
“C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Cr : 16-32%, preferably 17-32%, Mo: 0.3-3%, preferably 0.8-3%, Cu: 0-1%, Nb: 0-1%, Ti: 0-1%, Ferritic stainless steel having a composition of Al: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, balance Fe and inevitable impurities "
When using a standard steel grade, for example, it is a ferritic steel grade specified in JIS G4305: 2005, Cr: 16-32 mass%, preferably 17-32 mass%, Mo: 0.3-3 mass%, preferably 0.3. What is necessary is just to apply the stainless steel containing 8-3 mass%.

オーステナイト系鋼種;
「C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜7%好ましくは0.8〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物の組成を有するオーステナイト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるオーステナイト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜7質量%好ましくは0.8〜7質量%を含有するステンレス鋼を適用すればよい。
Austenitic grades;
“C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6 to 28%, Cr: 16 to 32%, preferably 17-32%, Mo: 0.3-7%, preferably 0.8-7%, Cu: 0-3.5%, Nb: 0-1%, Ti: 0-1%, Al : 0 to 0.1%, N: 0.3% or less, B: 0 to 0.01%, the balance being Fe and an inevitable impurity composition austenitic stainless steel "
When using a standard steel grade, for example, it is an austenitic steel grade defined in JIS G4305: 2005, Cr: 16-32 mass%, preferably 17-32 mass%, Mo: 0.3-7 mass%, preferably 0.3. What is necessary is just to apply the stainless steel containing 8-7 mass%.

Cr含有量が16%未満またはMo含有量が0.3%未満だと、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、フェライト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを1%以上含有させることが一層好ましい。オーステナイト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを2%以上含有させることが一層好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は、フェライト系の場合3%以下とすることが望ましく、オーステナイト系の場合7%以下とすることが望ましい。なお、元素含有量の下限「0%」は、当該元素の含有量が通常の製鋼現場での分析手法において測定限界以下であることを意味する。 When the Cr content is less than 16% or the Mo content is less than 0.3%, the material is hardly dissolved in the electrolyte solution containing iodine (I 2 ) and iodide applied to the dye-sensitized solar cell. It becomes difficult to stably obtain excellent corrosion resistance that does not occur. In order to further improve the reliability, in the case of ferrite, it is preferable to contain 17% or more of Cr and 0.8% or more of Mo, and it is more preferable to contain 18% or more of Cr and 1% or more of Mo. In the case of an austenitic system, it is preferable to contain 17% or more of Cr and 0.8% or more of Mo, and more preferably to contain 18% or more of Cr and 2% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. In addition, the Mo content is preferably 3% or less in the case of ferrite, and is preferably 7% or less in the case of austenite. In addition, the lower limit “0%” of the element content means that the content of the element is equal to or lower than the measurement limit in an analysis method at a normal steelmaking site.

上記以外の元素として、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下といった元素の混入が許容される。これらはスクラップ等の原料から不可避的に混入する場合があるが上記範囲の混入であれば本発明の効果を阻害するものではない。   As elements other than the above, mixing of elements such as V: 0.3% or less, Zr: 0.3% or less, Ca, Mg, Co, and REM (rare earth elements): 0.1% or less in total is allowed. These may be inevitably mixed from raw materials such as scrap, but if mixed within the above range, the effect of the present invention is not hindered.

種々の組成のステンレス鋼について、色素増感型太陽電池の電解液を模擬したヨウ素(I2)およびヨウ化物イオンを含む試験液に対する耐食性を調べた結果を例示する。
表1に示す組成の各種ステンレス鋼を溶製し、一般的なステンレス鋼板製造工程により板厚0.28〜0.81mmの冷延焼鈍鋼板(2D仕上げ材)を製造し、これを供試材とした。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。表中におけるハイフン「−」は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。
The stainless steel of various compositions, which illustrate the results of examining the corrosion resistance to a test liquid containing a simulated iodine (I 2) and iodide ion electrolyte of the dye-sensitized solar cell.
Various stainless steels having the compositions shown in Table 1 were melted, and cold rolled annealed steel sheets (2D finishing materials) having a thickness of 0.28 to 0.81 mm were manufactured by a general stainless steel sheet manufacturing process. It was. In Table 1, in the structure column, “α” means ferrite and “γ” means austenite. The hyphen “-” in the table means that it is below the measurement limit by a normal analysis method in the steelmaking field.

Figure 2011108463
Figure 2011108463

各供試材から35×35mmの試験片を切り出し、表面(端面を含む)を#600乾式エメリー研磨で仕上げることにより、耐食性試験片とした。
色素増感型太陽電池の電解質溶液を模擬した試験液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
A 35 × 35 mm test piece was cut out from each test material, and the surface (including the end face) was finished by # 600 dry emery polishing to obtain a corrosion resistance test piece.
As a test solution simulating an electrolyte solution of a dye-sensitized solar cell, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

テフロン(登録商標)製の容器に前記試験液10mLを入れ、この液中に前記耐食性試験片を浸漬した。容器には蓋をして溶媒の揮発を抑えた。この容器を80℃の恒温槽中に保持し、浸漬開始から500時間経過後に試験片を取り出した。各鋼種ともサンプル数n=3で実施した。   10 mL of the test solution was placed in a Teflon (registered trademark) container, and the corrosion resistance test piece was immersed in the solution. The container was covered to suppress the volatilization of the solvent. This container was held in a constant temperature bath at 80 ° C., and a test piece was taken out after 500 hours from the start of immersion. For each steel type, the number of samples was n = 3.

500時間浸漬後の各試験片について、腐食減量(初期の試験片質量−浸漬後の試験片質量)を測定した。n=3の腐食減量値のうち最も大きい値(すなわち金属の溶出量が最も大きかったもの)をその鋼種の腐食減量の成績として採用した。この500時間浸漬試験における腐食減量が1g/m2以下のものを合格と判定した。また、500時間浸漬試験後の試験片表面を目視観察し、外観を調べた。この場合も、n=3のうち最も腐食の程度が激しかった試験片の外観をその鋼種の成績として採用した。
参考のため、500時間浸漬後の外観において全面腐食または端面の腐食が認められた鋼種を除き、観察後の試験片を再び上記の浸漬試験に供し、トータル1000時間の浸漬試験における腐食減量および外観を調べた。
結果を表2に示す。
About each test piece after 500-hour immersion, corrosion weight loss (initial test piece mass-test piece mass after immersion) was measured. The largest value among the corrosion weight loss values of n = 3 (that is, the one with the largest metal elution amount) was adopted as the result of the corrosion weight loss of the steel type. Those having a weight loss of 1 g / m 2 or less in this 500 hour immersion test were determined to be acceptable. Further, the surface of the test piece after the 500 hour immersion test was visually observed to examine the appearance. Also in this case, the appearance of the test piece having the most severe degree of corrosion among n = 3 was adopted as the grade of the steel type.
For reference, except for steel types that were found to have full-surface corrosion or end-face corrosion in the appearance after 500 hours of immersion, the specimens after observation were again subjected to the above immersion test, and the corrosion weight loss and appearance in the immersion test for a total of 1000 hours I investigated.
The results are shown in Table 2.

Figure 2011108463
Figure 2011108463

表1、表2からわかるように、Cr:16%以上、且つMo:0.3%以上を含有する本発明対象鋼は、裸のままでヨウ化物イオン含有電解液中に80℃×500hという厳しい条件で浸漬した場合の腐食減量が1g/m2以下となり、点錆の発生も少なく、優れた耐食性を示すことが確認された。Cr:17%以上、且つMo:0.8%以上を含有するものは、トータル1000時間の浸漬試験でも腐食減量が1g/m2以下であり、一層耐久性に優れる。 As can be seen from Tables 1 and 2, the steel according to the present invention containing Cr: 16% or more and Mo: 0.3% or more is 80 ° C. × 500 h in the iodide ion-containing electrolyte while being bare. It was confirmed that the corrosion weight loss when immersed under severe conditions was 1 g / m 2 or less, there was little occurrence of spot rust, and excellent corrosion resistance was exhibited. Those containing Cr: 17% or more and Mo: 0.8% or more have a corrosion weight loss of 1 g / m 2 or less even in a total 1000 hour immersion test, and are further excellent in durability.

〔ステンレス鋼シートの形態〕
本発明の光電極10を構成するステンレス鋼シート9は、多孔質半導体層4を保持する機能(半導体層保持機能)、および増感色素から酸化物半導体に移動した電子を受け取る機能(集電機能)を有する他、多孔質半導体層4がステンレス鋼シート9に対して受光面側に配置されるタイプの太陽電池を構築するためには、電池稼働時に貫通穴50をイオンが通過することにより電荷の移動が円滑に行われる機能(イオン通過機能)を果たさなければならない。貫通部の面積率が過小であると光電変換効率の低下を招き好ましくない。ここで、貫通部の面積率は、ステンレス鋼シート9を厚さ方向に見た場合の投影像に占める、貫通部の面積率(以下「貫通率」と呼ぶことがある)によって表すことができる。個々の貫通穴50についての貫通部の面積は、当該貫通穴50をステンレス鋼シート9の厚さ方向見た場合に、穴を通して向こう側が貫通して見えている部分の投影面積である。貫通率は、少なくとも30個の貫通穴50における貫通部が完全に含まれる矩形領域について、個々の貫通部の面積(当該矩形領域から一部がはみ出す貫通部は当該矩形領域内の部分の面積とする)を求め、それらのトータル面積を、当該矩形領域の面積(投影面積)で除することにより算出される。
[Stainless steel sheet form]
The stainless steel sheet 9 constituting the photoelectrode 10 of the present invention has a function of holding the porous semiconductor layer 4 (semiconductor layer holding function) and a function of receiving electrons transferred from the sensitizing dye to the oxide semiconductor (current collecting function). In order to construct a solar cell in which the porous semiconductor layer 4 is disposed on the light-receiving surface side with respect to the stainless steel sheet 9, the ions pass through the through holes 50 during battery operation. It must fulfill the function (ion passage function) that facilitates the movement of. If the area ratio of the penetrating portion is too small, the photoelectric conversion efficiency is lowered, which is not preferable. Here, the area ratio of the penetrating portion can be represented by the area ratio of the penetrating portion (hereinafter sometimes referred to as “penetration ratio”) in the projected image when the stainless steel sheet 9 is viewed in the thickness direction. . The area of the through portion for each through hole 50 is a projected area of a portion where the other side is seen through the hole when the through hole 50 is viewed in the thickness direction of the stainless steel sheet 9. The penetration rate is defined as the area of each penetrating part (the penetrating part partially protruding from the rectangular area is the area of the part in the rectangular area) for a rectangular area in which the penetrating part in at least thirty through holes 50 is completely included. And the total area is divided by the area (projected area) of the rectangular region.

貫通穴50は後述のように電解質水溶液中でのエッチングによって形成させることができる。その場合、ステンレス鋼シートの両面からそれぞれ孔食状ピットが成長するので、一方の表面から成長したピットが他方の表面に至って貫通穴が形成されることもあれば、双方から成長したピット同士が厚みの途中でぶつかって貫通穴となることもある。発明者らの検討によれば、これらいずれの貫通穴であっても、貫通率が5%を下回ると、光電変換効率が急激に低下するようになることがわかった。このため、本発明に用いる穴あきステンレス鋼シートは、貫通率が5%以上であることが必要である。10%以上であるものが好ましく、20%以上であるものがより好ましい。貫通穴50に入射光の透過を要求する場合には、貫通率は50%以上とすることが好ましく、60%以上が一層好ましい。一方、貫通率が過度に高くなると、半導体層保持機能を果たすための強度が不足するようになる。種々検討の結果、貫通率は80%以下とするのが良いことがわかった。70%以下に管理してもよい。   The through hole 50 can be formed by etching in an aqueous electrolyte solution as will be described later. In that case, pitting corrosion-like pits grow from both surfaces of the stainless steel sheet, so that pits grown from one surface may reach the other surface and a through hole may be formed, or pits grown from both sides It may collide in the middle of the thickness and become a through hole. According to the study by the inventors, it has been found that in any of these through holes, when the penetration rate is less than 5%, the photoelectric conversion efficiency is rapidly lowered. For this reason, the perforated stainless steel sheet used in the present invention needs to have a penetration rate of 5% or more. What is 10% or more is preferable, and what is 20% or more is more preferable. When the through hole 50 is required to transmit incident light, the penetration rate is preferably 50% or more, and more preferably 60% or more. On the other hand, when the penetration rate is excessively high, the strength for achieving the semiconductor layer holding function is insufficient. As a result of various studies, it was found that the penetration rate should be 80% or less. You may manage to 70% or less.

また、個々の貫通穴50のサイズが過大であると、多孔質半導体層4を形成する際に半導体粒子含有塗料の塗布が困難になることや、多孔質半導体層4からの集電が不均一になり光電極10の内部抵抗が増大する要因となることが考えられる。貫通部の平均径は500μm以下とすることが必要であり、200μm以下、あるいは100μm以下とすることがより好ましい。一方、貫通穴50をあまり細かくしても集電性の向上等、特性改善には繋がらず、また、そのような細かい貫通穴50を多数形成させることは難しいので、通常、貫通部の平均径は5μm以上とすればよい。ここで、貫通部の平均径は、前述の貫通率を求める場合の条件を満たした矩形領域の中に完全に含まれる貫通部(すなわち、貫通部の一部分が当該矩形領域からはみ出しているものを除く)の平均径によって表される。個々の貫通部の径は、円相当径が採用される。円相当径とは、貫通部の面積をS(μm2)、円周率をπとするとき、S=πD2/4によって定まるD(μm)を意味する。 In addition, if the size of each through hole 50 is excessive, it becomes difficult to apply the semiconductor particle-containing paint when forming the porous semiconductor layer 4, and current collection from the porous semiconductor layer 4 is not uniform. It can be considered that the internal resistance of the photoelectrode 10 increases. The average diameter of the penetrating portion needs to be 500 μm or less, and more preferably 200 μm or less, or 100 μm or less. On the other hand, even if the through hole 50 is made too fine, it does not lead to improvement in characteristics such as improvement in current collecting property, and it is difficult to form a large number of such fine through holes 50. May be 5 μm or more. Here, the average diameter of the penetrating part is a penetrating part that is completely included in the rectangular area that satisfies the conditions for obtaining the penetrating ratio (that is, a part of the penetrating part that protrudes from the rectangular area). Excluding) average diameter. An equivalent circle diameter is adopted as the diameter of each penetrating portion. Circle-equivalent diameter refers to the area of the through portion S (μm 2), when the circular constant [pi, means D ([mu] m) determined by S = πD 2/4.

ステンレス鋼シート9の厚さは、0.005〜1mm程度の広い範囲で選択可能であるが、このステンレス鋼シート9に色素増感型太陽電池1全体としての強度の大部分を負担させる必要がない限り、一般的には薄い方が好ましい。ただし、半導体保持機能が十分に果たせるように、0.005mm以上の厚さを確保することが望ましい。具体的には、例えば、厚さ0.005〜0.2mmのステンレス鋼圧延シートを素材として用いて、後述の手法で貫通穴50の形成を行うことが好ましい。厚さ0.005〜0.1mmのステンレス鋼圧延シートを使用することが一層好ましい。   Although the thickness of the stainless steel sheet 9 can be selected in a wide range of about 0.005 to 1 mm, it is necessary to make the stainless steel sheet 9 bear most of the strength of the dye-sensitized solar cell 1 as a whole. As long as there is not, generally the thinner one is preferable. However, it is desirable to secure a thickness of 0.005 mm or more so that the semiconductor holding function can be sufficiently performed. Specifically, for example, it is preferable to form the through hole 50 by a method described later using a 0.005 to 0.2 mm thick stainless steel rolled sheet as a material. It is more preferable to use a rolled stainless steel sheet having a thickness of 0.005 to 0.1 mm.

〔貫通穴の形成〕
ステンレス鋼シート9に貫通穴50を形成させる手法として、塩化第二鉄水溶液中でのエッチングが極めて効果的である。ステンレス鋼シートの素材を塩化第二鉄水溶液中に単に浸漬する手法や、必要に応じてアノード電解あるいは交番電解を加える手法が利用できる。電解質水溶液に塩化第二鉄水溶液を用いると、ステンレス鋼表面に多数の微細な孔食状ピットを形成させることができる。その孔食状ピットは開口径の割りに深さの深い形態を呈するものとなるので、これを成長させることによりシートの厚さを貫通する穴を開けることが可能となる。具体的には、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液を使用することができる。温度は例えば20〜80℃範囲とすることが好適である。ステンレス鋼種によって耐食性レベルに差があるので、それぞれの鋼種に応じた電解質水溶液濃度、温度を上記の範囲で設定するとともに、処理時間や、電解を行う場合の電解条件などを最適に設定すればよい。貫通率や貫通部の平均径は、板厚に応じて上記各条件を変化させることによりコントロールすることができる。素材の鋼種および板厚、並びに目標とする貫通率および貫通部の平均径に応じて予備実験により最適条件を定めればよい。
(Formation of through holes)
As a method for forming the through hole 50 in the stainless steel sheet 9, etching in a ferric chloride aqueous solution is extremely effective. A method of simply immersing the material of the stainless steel sheet in a ferric chloride aqueous solution or a method of adding anode electrolysis or alternating electrolysis as required can be used. When a ferric chloride aqueous solution is used for the electrolyte aqueous solution, a large number of fine pitting corrosion pits can be formed on the stainless steel surface. Since the pitting corrosion pit has a deep shape with respect to the opening diameter, it is possible to open a hole penetrating the thickness of the sheet by growing the pitting corrosion pit. Specifically, a ferric chloride aqueous solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L can be used. The temperature is preferably in the range of 20 to 80 ° C., for example. Since there is a difference in the corrosion resistance level depending on the stainless steel type, the concentration and temperature of the aqueous electrolyte solution corresponding to each steel type should be set within the above ranges, and the treatment time and electrolysis conditions for electrolysis should be set optimally. . The penetration rate and the average diameter of the penetration part can be controlled by changing each of the above conditions according to the plate thickness. What is necessary is just to determine optimal conditions by preliminary experiment according to the steel grade and board thickness of a raw material, the target penetration rate, and the average diameter of a penetration part.

上記の塩化第二鉄水溶液中でのエッチングによって貫通穴50を形成すると、貫通穴50が生じていない部分の表面にも、孔食状ピットが多数形成される。すなわち、当該エッチングによって貫通穴50を形成したステンレス鋼シート9は、貫通穴50が生じていない部分の表面が孔食状ピットによって粗面化されているものとなる。この粗面化によって表面積が増大するので電池の内部抵抗低減に有効となる。しかも、ステンレス鋼シート9の表面に形成されているピットは、貫通穴50を含め、エッジが鋭く切り立った形態を有するので、多孔質半導体層4に対するアンカー効果が働き、ステンレス鋼シート9と多孔質半導体層4との密着性向上にも有効となる。   When the through hole 50 is formed by etching in the above ferric chloride aqueous solution, many pitting corrosion pits are also formed on the surface of the portion where the through hole 50 is not formed. That is, in the stainless steel sheet 9 in which the through holes 50 are formed by the etching, the surface of the portion where the through holes 50 are not generated is roughened by pitting corrosion pits. This roughening increases the surface area and is effective in reducing the internal resistance of the battery. In addition, since the pits formed on the surface of the stainless steel sheet 9 have a shape with sharp edges including the through holes 50, the anchor effect on the porous semiconductor layer 4 works, and the stainless steel sheet 9 and the porous This is also effective for improving the adhesion with the semiconductor layer 4.

以下に、表1の鋼Hを用いた板厚0.01mmのステンレス鋼圧延シート(焼鈍材)について種々の条件で貫通穴を形成した実験例を開示する。
電解質水溶液として、3価の鉄イオン濃度、および塩酸濃度を種々変えた塩化第二鉄水溶液を用意し、前記ステンレス鋼圧延シートを前記電解質水溶液中に浸漬することにより、貫通穴の形成を試みた。液温、処理時間も種々変化させた。浸漬処理後のステンレス鋼シートを光学顕微鏡(KEYENCE社製;HV−5500)により板厚方向に観察し、前述した貫通部の平均径および貫通部の面積率(貫通率)を求めた。
処理条件および結果を表3に示す。
Below, the experiment example which formed the through-hole on various conditions about the stainless steel rolled sheet (annealed material) with a plate | board thickness of 0.01 mm using the steel H of Table 1 is disclosed.
As an aqueous electrolyte solution, an aqueous ferric chloride solution with various concentrations of trivalent iron ions and hydrochloric acid was prepared, and attempts were made to form through holes by immersing the stainless steel rolled sheet in the aqueous electrolyte solution. . The liquid temperature and treatment time were also varied. The stainless steel sheet after the immersion treatment was observed in the plate thickness direction with an optical microscope (manufactured by KEYENCE Corp .; HV-5500), and the average diameter of the penetration portion and the area ratio (penetration rate) of the penetration portion were obtained.
The processing conditions and results are shown in Table 3.

Figure 2011108463
Figure 2011108463

表3からわかるように、電解質水溶液の濃度、液温、処理時間を変えることによって、貫通部の平均径および貫通部の面積率(貫通率)をコントロールすることができる。No.1、2は3価の鉄イオン濃度が低すぎたのでエッチング力が弱く、貫通穴の生成が不十分であった。No.3は塩酸濃度が高すぎたので全面溶解の傾向が大きくなり、金属の溶出量は多いものの、孔食状の深いピットが成長しにくく、結果的に60secでは十分に貫通穴が得られなかった。なお、本発明対象材はいずれも、貫通穴が生じていない部分の表面が孔食状ピットによって粗面化されていることが確認された。   As can be seen from Table 3, the average diameter of the penetrating part and the area ratio (penetrating ratio) of the penetrating part can be controlled by changing the concentration of the electrolyte aqueous solution, the liquid temperature, and the treatment time. In Nos. 1 and 2, since the trivalent iron ion concentration was too low, the etching force was weak, and the formation of through holes was insufficient. In No. 3, since the hydrochloric acid concentration was too high, the tendency of dissolution of the entire surface increased and the amount of metal elution was large, but pitting corrosion-like deep pits were difficult to grow. As a result, through holes were sufficiently obtained in 60 seconds. There wasn't. In addition, it was confirmed that all the target materials of the present invention were roughened by pitting pits on the surface of the portion where no through hole was generated.

〔酸化物半導体層の形成〕
光電極10を構成する多孔質半導体層4は、一般的な色素増感型太陽電池の光極を構成する酸化物半導体粒子層であればよく、例えば二酸化チタン(TiO2)、酸化スズ(SnO2)、酸化タングステン(WO3)、酸化亜鉛(ZnO2)、酸化ニオブ(Nb25)の1種または2種以上の酸化物半導体粒子を成分とするものが採用できる。多孔質半導体層4に担持させる増感色素は、例えばルテニウム錯体、ポルフィリン、フタロシアニン、クマリン、インドリン、エオシン、ローダミン、メロシアニンなどが適用できる。
(Formation of oxide semiconductor layer)
The porous semiconductor layer 4 constituting the photoelectrode 10 may be an oxide semiconductor particle layer constituting the photoelectrode of a general dye-sensitized solar cell. For example, titanium dioxide (TiO 2 ), tin oxide (SnO) 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO 2 ), niobium oxide (Nb 2 O 5 ), or one containing two or more types of oxide semiconductor particles can be employed. As the sensitizing dye to be supported on the porous semiconductor layer 4, for example, ruthenium complex, porphyrin, phthalocyanine, coumarin, indoline, eosin, rhodamine, merocyanine and the like can be applied.

本発明の光電極10を形成させる手法としては、貫通穴50を有する前述のステンレス鋼シート9の少なくとも片側表面に、酸化物半導体の粒子を含有するペーストをドクターブレード法などにより塗布して塗膜を形成し、これを乾燥させた後、焼成する手法が好適に採用できる。酸化物半導体粒子がTiO2粒子の場合、焼成条件は例えば450〜550℃、0.5〜3h程度とすればよい。これにより酸化物半導体粒子同士が焼結し、多孔質の半導体層となる。なお、ペーストを塗布および乾燥させることにより多孔質半導体層が形成されるタイプのペーストを使用する場合は、塗布後の焼成を省略してもよい。このようにしてステンレス鋼シート9と多孔質半導体層4とが一体化した板状体が得られる。この板状体を、増感色素が懸濁している液に浸漬することにより、多孔質半導体層4に増感色素を担持させることができる。 As a method for forming the photoelectrode 10 of the present invention, a paste containing oxide semiconductor particles is applied to at least one surface of the stainless steel sheet 9 having the through hole 50 by a doctor blade method or the like. It is possible to suitably employ a technique in which the substrate is formed, dried and then fired. When the oxide semiconductor particles are TiO 2 particles, the firing condition may be, for example, about 450 to 550 ° C. and about 0.5 to 3 hours. As a result, the oxide semiconductor particles are sintered to form a porous semiconductor layer. In addition, when using the paste of the type in which a porous semiconductor layer is formed by apply | coating and drying a paste, you may abbreviate | omit baking after application | coating. In this way, a plate-like body in which the stainless steel sheet 9 and the porous semiconductor layer 4 are integrated is obtained. By immersing this plate-like body in a liquid in which the sensitizing dye is suspended, the sensitizing dye can be supported on the porous semiconductor layer 4.

〔対向電極における触媒層の形成〕
本発明の色素増感型太陽電池に適用する対向電極20の表面には触媒層7が形成されている。触媒物質としては、白金、ニッケル、ポリアニリン、ポリエチレンジオキシチオフェン、カーボンなどが適用できる。白金、ニッケルなどの金属膜の場合は、例えばスパッタリング法により形成することができる。ポリアニリン、ポリエチレンジオキシチオフェンなどの導電性高分子膜は例えばスピンコート法により形成することができる。カーボンの場合は、例えば活性炭分散溶媒を用いてスピンコート法により形成することができる。発明者らの検討によれば、平均膜厚が約1nmと極めて薄い白金膜を形成させた場合でも電池として機能することが確認された。触媒層7の平均膜厚は例えば1〜300nm程度とすればよい。変換効率の安定性と経済性を両立させる上では、10〜200nm、あるいは20〜100nmの範囲にコントロールすることより効果的である。
[Formation of catalyst layer on counter electrode]
A catalyst layer 7 is formed on the surface of the counter electrode 20 applied to the dye-sensitized solar cell of the present invention. As the catalyst material, platinum, nickel, polyaniline, polyethylenedioxythiophene, carbon and the like can be applied. In the case of a metal film such as platinum or nickel, it can be formed by sputtering, for example. Conductive polymer films such as polyaniline and polyethylenedioxythiophene can be formed by, for example, spin coating. In the case of carbon, for example, it can be formed by spin coating using an activated carbon dispersion solvent. According to the study by the inventors, it was confirmed that even when an extremely thin platinum film having an average film thickness of about 1 nm was formed, it functions as a battery. The average film thickness of the catalyst layer 7 may be about 1 to 300 nm, for example. In order to achieve both conversion efficiency stability and economic efficiency, it is more effective to control the range of 10 to 200 nm or 20 to 100 nm.

表3に示したNo.1、2、3、4、6、11、13のステンレス鋼シートを用いて光電極を作製し、それを用いた色素増感型太陽電池を試作した。   Photoelectrodes were produced using the stainless steel sheets of Nos. 1, 2, 3, 4, 6, 11, and 13 shown in Table 3, and dye-sensitized solar cells using the same were fabricated.

〔光電極〕
多孔質半導体層を得るための材料として、TiO2粒子含有ペースト(ペクセルテクノロジーズ社製;PECC−01−06)を用意した。このペーストを上記各ステンレス鋼シートの片側表面にドクターブレード法にて塗布し、常温で放置し乾燥させて乾燥塗膜とした。その後、炉に挿入して450℃で1h焼成することにより、多孔質半導体層を形成させ、ステンレス鋼シートと多孔質半導体層が一体化した板状体を得た。この多孔質半導体層の平均厚さは10μmであった。
増感色素としてルテニウム錯体色素(Solaronix社製)を用意し、これをアセトニトリルとtert−ブタノールの混合溶媒に分散させ、色素溶液とした。
前記板状体を前記色素溶液中に浸漬させることにより、多孔質半導体層に増感色素を担持させ、ステンレス鋼シートと当該多孔質半導体層で構成される光電極を得た。
[Photoelectrode]
As a material for obtaining a porous semiconductor layer, a TiO 2 particle-containing paste (Peccell Technologies, Inc .; PECC-01-06) was prepared. This paste was applied to one surface of each of the above stainless steel sheets by a doctor blade method and allowed to stand at room temperature and dried to form a dry coating film. Then, it inserted in the furnace and baked at 450 degreeC for 1 h, the porous semiconductor layer was formed, and the plate-shaped object which the stainless steel sheet and the porous semiconductor layer integrated was obtained. The average thickness of this porous semiconductor layer was 10 μm.
A ruthenium complex dye (manufactured by Solaronix) was prepared as a sensitizing dye, and this was dispersed in a mixed solvent of acetonitrile and tert-butanol to obtain a dye solution.
By immersing the plate-like body in the dye solution, a sensitizing dye was supported on the porous semiconductor layer to obtain a photoelectrode composed of a stainless steel sheet and the porous semiconductor layer.

〔電解液〕
電解液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
[Electrolyte]
As an electrolytic solution, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

〔対向電極〕
対向電極に用いる材料として、PEN(ポリエチレンナフタレート)フィルム基板上にITO膜を形成したもの(ペクセルテクノロジーズ社製;PECF−IP)を用意した。このITOフィルム上に白金スパッタを行って対向電極を得た。この白金膜の厚さは約40nmである。
[Counter electrode]
As a material used for the counter electrode, a PEN (polyethylene naphthalate) film substrate on which an ITO film was formed (Peccell Technologies, Inc .; PECF-IP) was prepared. Platinum sputtering was performed on the ITO film to obtain a counter electrode. The platinum film has a thickness of about 40 nm.

〔電池の作製〕
光電極のステンレス鋼シート側の面と、対向電極の白金膜とが向き合うように、これら両電極を配置した。その際、セルとなる部分の周囲にスペーサーを挿入して両電極の間に電解液の入る隙間を確保した。光電極側の厚さ方向端部にはPENフィルムを配置した。そして、マイクロシリンダを用いて前記隙間に電解液を注入し、両電極の間および多孔質半導体層の空隙を電解液で満たしたのち封止した。このようにして図2に示した構成の色素増感型太陽電池を構築した。
[Production of battery]
These electrodes were arranged so that the surface of the photoelectrode on the stainless steel sheet side and the platinum film of the counter electrode face each other. At that time, a spacer was inserted around the cell portion to ensure a gap for the electrolyte to enter between the electrodes. A PEN film was disposed at the end in the thickness direction on the photoelectrode side. Then, an electrolytic solution was injected into the gap using a micro cylinder, and the space between both electrodes and the gap of the porous semiconductor layer was filled with the electrolytic solution and then sealed. In this way, a dye-sensitized solar cell having the configuration shown in FIG. 2 was constructed.

〔電池特性〕
各色素増感型太陽電池に、ソーラーシミュレータ(山下電装社製;YSS−100)を用いてAM1.5、100mW/cm2の擬似太陽光を光電極側から照射しながら、KEITHLEY社製「2400型ソースメータ」によりI−V特性を測定して、短絡電流JSC、開放電圧VOC、形状因子FFの値を得た。これらの値から下記(1)式により光電変換効率ηの値を求めた。
光電変換効率η(%)=短絡電流JSC(mA/cm2)×開放電圧VOC(V)×{形状因子FF/入射光100(mW/cm2)}×100 …(1)
結果を表4に示す。
[Battery characteristics]
Each dye-sensitized solar cell is irradiated with pseudo solar light of AM 1.5, 100 mW / cm 2 from the photoelectrode side using a solar simulator (Yamashita Denso Co., Ltd .; YSS-100) “2400” manufactured by KEITHLEY The IV characteristics were measured with a “type source meter” to obtain values of the short circuit current J SC , the open circuit voltage V OC , and the form factor FF. From these values, the value of photoelectric conversion efficiency η was determined by the following formula (1).
Photoelectric conversion efficiency η (%) = short circuit current J SC (mA / cm 2 ) × open circuit voltage V OC (V) × {form factor FF / incident light 100 (mW / cm 2 )} × 100 (1)
The results are shown in Table 4.

Figure 2011108463
Figure 2011108463

表4からわかるように、ステンレス鋼シートに形成された貫通穴の面積率(貫通率)が5%以上である本発明例のものでは、良好な光電変換効率ηが得られた。これに対し、比較例1のものは、ステンレス鋼シートに貫通穴がないためステンレス鋼シートによりヨウ化物イオンの輸送が遮られ、実質的に電池として機能しなかった。比較例2、3はステンレス鋼シートにおける貫通穴の面積率が過小であるためにヨウ化物イオンによる電荷の移動が十分に行われず、光電変換効率ηは低かった。   As can be seen from Table 4, in the example of the present invention in which the area ratio (penetration ratio) of the through holes formed in the stainless steel sheet was 5% or more, a good photoelectric conversion efficiency η was obtained. On the other hand, in Comparative Example 1, since there was no through hole in the stainless steel sheet, the transport of iodide ions was blocked by the stainless steel sheet, and the battery did not substantially function as a battery. In Comparative Examples 2 and 3, since the area ratio of the through holes in the stainless steel sheet was too small, the charge transfer due to iodide ions was not sufficiently performed, and the photoelectric conversion efficiency η was low.

対向電極として、表1の鋼Hからなる板厚0.2mmのステンレス鋼板(No.2D仕上げ材)を使用することにより、試作した色素増感型太陽電池の構成を図3に示したタイプに変更したことを除き、実施例1と同様の条件で実験を行った。この対向電極のステンレス鋼板表面には白金スパッタを行って厚さ約20nmの白金触媒層を形成してある。
実験結果を表5に示す。
By using a stainless steel plate (No. 2D finishing material) made of steel H in Table 1 and having a thickness of 0.2 mm as the counter electrode, the prototype dye-sensitized solar cell has the configuration shown in FIG. The experiment was performed under the same conditions as in Example 1 except that the change was made. A platinum catalyst layer having a thickness of about 20 nm is formed on the stainless steel plate surface of the counter electrode by platinum sputtering.
The experimental results are shown in Table 5.

Figure 2011108463
Figure 2011108463

表5に示されるとおり、実施例1と同様に、ステンレス鋼シートに形成された貫通穴の面積率(貫通率)が5%以上である本発明例のものでは、良好な光電変換効率ηが得られた。また、実施例1より白金触媒層の厚さが薄いにもかかわらず、光電変換効率ηは向上した。   As shown in Table 5, as in Example 1, in the example of the present invention in which the area ratio (penetration ratio) of the through holes formed in the stainless steel sheet is 5% or more, a good photoelectric conversion efficiency η is obtained. Obtained. Moreover, although the platinum catalyst layer was thinner than Example 1, the photoelectric conversion efficiency η was improved.

1 色素増感型太陽電池
2 透光性板状体
3 透光性導電膜
4、4’ 多孔質半導体層
5 基板
6 導電材料
7 触媒層
8 電解液
9 ステンレス鋼シート
10 光電極
20 対向電極
30 入射光
40 負荷
50 貫通穴
60 ステンレス鋼板
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell 2 Translucent plate-shaped body 3 Translucent conductive film 4, 4 'Porous semiconductor layer 5 Substrate 6 Conductive material 7 Catalyst layer 8 Electrolytic solution 9 Stainless steel sheet 10 Photoelectrode 20 Counter electrode 30 Incident light 40 Load 50 Through hole 60 Stainless steel plate

Claims (9)

貫通穴を有するステンレス鋼シートと、増感色素を担持した多孔質半導体層が一体化した色素増感型太陽電池の光電極であって、
ステンレス鋼シートは、Cr:16〜32質量%、Mo:0.3〜3質量%を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものであり、
多孔質半導体層は、前記ステンレス鋼シートの少なくとも片面側に付着している、
色素増感型太陽電池の光電極。
A photoelectrode of a dye-sensitized solar cell in which a stainless steel sheet having a through hole and a porous semiconductor layer carrying a sensitizing dye are integrated,
The stainless steel sheet contains Cr: 16 to 32% by mass, Mo: 0.3 to 3% by mass, and has a chemical composition corresponding to a ferritic steel type defined in JIS G4305: 2005. Having a through hole with an area ratio of the penetrating portion occupying the projected area as viewed in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm,
The porous semiconductor layer is attached to at least one side of the stainless steel sheet,
Photoelectrode for dye-sensitized solar cell.
ステンレス鋼シートの化学組成が、Cr:16〜32質量%、Mo:0.3〜7質量%を含有し、且つJIS G4305:2005に規定されるオーステナイト鋼種に相当するものである請求項1に記載の色素増感型太陽電池の光電極。   The chemical composition of the stainless steel sheet contains Cr: 16 to 32 mass%, Mo: 0.3 to 7 mass%, and corresponds to the austenitic steel grade specified in JIS G4305: 2005. The photoelectrode of the dye-sensitized solar cell described. ステンレス鋼シートの化学組成が、質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼である請求項1に記載の色素増感型太陽電池の光電極。   The chemical composition of the stainless steel sheet is, by mass, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less Ni: 0.6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0% The light of the dye-sensitized solar cell according to claim 1, which is a ferritic stainless steel comprising 0.2%, N: 0.025% or less, B: 0 to 0.01%, the balance Fe and unavoidable impurities. electrode. ステンレス鋼シートの化学組成が、質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼である請求項1に記載の色素増感型太陽電池の光電極。   The chemical composition of the stainless steel sheet is, by mass, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni : 6-28%, Cr: 16-32%, Mo: 0.3-7%, Cu: 0-3.5%, Nb: 0-1%, Ti: 0-1%, Al: 0-0 The photoelectrode of a dye-sensitized solar cell according to claim 1, which is an austenitic stainless steel comprising 0.1%, N: 0.3% or less, B: 0 to 0.01%, the balance Fe and inevitable impurities . ステンレス鋼シートの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものである請求項1〜4のいずれかに記載の色素増感型太陽電池の光電極。   The through hole of the stainless steel sheet is formed by immersing a rolled sheet in an aqueous electrolyte solution and growing pitting corrosion-like pits. The dye-sensitized solar cell according to any one of claims 1 to 4 Photoelectrode. 板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる工程(貫通穴形成工程)、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に酸化物半導体で構成される多孔質半導体層を形成させる工程(多孔質半導体層形成工程)、
前記多孔質半導体層に増感色素を担持させる工程(色素担持工程)、
を有する請求項1〜4のいずれかに記載の色素増感型太陽電池の光電極の製造方法。
A stainless steel rolled sheet having a thickness of 0.005 to 0.2 mm is immersed in an aqueous ferric chloride solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L, Through the growth of pitting corrosion-like pits, through holes with an area ratio of the penetrating portion occupying the projected area of the sheet in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm are formed. Forming (through hole forming step),
Forming a porous semiconductor layer composed of an oxide semiconductor on at least one surface of the stainless steel sheet in which the through hole is formed (porous semiconductor layer forming step);
A step of supporting a sensitizing dye on the porous semiconductor layer (dye supporting step),
The manufacturing method of the photoelectrode of the dye-sensitized solar cell in any one of Claims 1-4 which has these.
前記「多孔質半導体層形成工程」として、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に酸化物半導体粒子を含有するペーストを塗布して、塗膜を形成させる工程(塗膜形成工程)、
前記塗膜を焼成し、酸化物半導体粒子が焼結してなる多孔質半導体層を形成させる工程(焼成工程)、
を有する請求項1〜4のいずれかに記載の色素増感型太陽電池の光電極の製造方法。
As the “porous semiconductor layer forming step”,
Applying a paste containing oxide semiconductor particles to at least one surface of the stainless steel sheet in which the through hole is formed, and forming a coating film (coating film forming process);
A step of firing the coating film to form a porous semiconductor layer formed by sintering oxide semiconductor particles (firing step);
The manufacturing method of the photoelectrode of the dye-sensitized solar cell in any one of Claims 1-4 which has these.
前記酸化物半導体はTiO2である請求項6または7に記載の色素増感型太陽電池の光電極の製造方法。 The oxide semiconductor manufacturing method of the photoelectrode for a dye sensitizing solar cell as claimed in claim 6 or 7 which is TiO 2. 請求項1〜5のいずれかに記載の光電極を備える色素増感型太陽電池。   A dye-sensitized solar cell comprising the photoelectrode according to any one of claims 1 to 5.
JP2009261380A 2009-11-16 2009-11-16 Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery Pending JP2011108463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261380A JP2011108463A (en) 2009-11-16 2009-11-16 Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261380A JP2011108463A (en) 2009-11-16 2009-11-16 Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery

Publications (1)

Publication Number Publication Date
JP2011108463A true JP2011108463A (en) 2011-06-02

Family

ID=44231727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261380A Pending JP2011108463A (en) 2009-11-16 2009-11-16 Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery

Country Status (1)

Country Link
JP (1) JP2011108463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094449A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123858A (en) * 2001-10-19 2003-04-25 Bridgestone Corp Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2008034110A (en) * 2006-07-26 2008-02-14 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009026532A (en) * 2007-07-18 2009-02-05 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123858A (en) * 2001-10-19 2003-04-25 Bridgestone Corp Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2006523369A (en) * 2003-03-24 2006-10-12 コナルカ テクノロジーズ インコーポレイテッド Photoelectric cell using mesh electrode
JP2006324111A (en) * 2005-05-18 2006-11-30 Nippon Oil Corp Flexible dye-sensitized solar cell
JP2007073505A (en) * 2005-08-09 2007-03-22 Sumitomo Chemical Co Ltd Photoelectric conversion element
JP2008034110A (en) * 2006-07-26 2008-02-14 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009026532A (en) * 2007-07-18 2009-02-05 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094449A1 (en) * 2011-12-22 2013-06-27 シャープ株式会社 Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP2013131457A (en) * 2011-12-22 2013-07-04 Sharp Corp Photoelectric conversion element, and method for manufacturing photoelectric conversion element

Similar Documents

Publication Publication Date Title
Lin et al. Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells
Spray et al. Photoactivity of transparent nanocrystalline Fe2O3 electrodes prepared via anodic electrodeposition
Hu et al. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition
WO2010041732A1 (en) Dye-sensitized solar cells
AU2009351446B2 (en) Dye-sensitized solar cell and method for manufacturing the same
Kim et al. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells
Li et al. Fabrication and characterization of a PbO2-TiN composite electrode by co-deposition method
Miettunen et al. Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells?
JP2009200008A (en) Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
Wu et al. Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells
Li et al. Influence of fluoride-doped tin oxide interlayer on Ni–Sb–SnO 2/Ti electrodes
Kakroo et al. Electrodeposited MnO 2-NiO composites as a Pt free counter electrode for dye-sensitized solar cells
Wang et al. Electrodeposited Co-Mo-TiO2 electrocatalysts for the hydrogen evolution reaction
JP2011192407A (en) Dye-sensitized solar cell
Dong et al. Facile fabrication of nanoporous Bi2WO6 photoanodes for efficient solar water splitting
Zych et al. Synthesis and characterization of anodic WO3 layers in situ doped with C, N during anodization
JPWO2008093675A1 (en) Laminated electrode
JP5699828B2 (en) Method for producing anode for dye-sensitized solar cell
Chang et al. Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet
JP5566082B2 (en) Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
JP2011108463A (en) Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
Rahman et al. Dye-sensitized Solar Cell utilizing Gold Doped Reduced Graphene Oxide Films Counter Electrode
JP2011108465A (en) Dye-sensitized solar cell having visible light transmittance, and its manufacturing method
JP5430658B2 (en) Electrode of dye-sensitized solar cell
Hu et al. TiO2 nanotube arrays modified with Bi nanoparticles for enhancing photoelectrochemical oxidation of organics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701