JP2011108465A - Dye-sensitized solar cell having visible light transmittance, and its manufacturing method - Google Patents

Dye-sensitized solar cell having visible light transmittance, and its manufacturing method Download PDF

Info

Publication number
JP2011108465A
JP2011108465A JP2009261384A JP2009261384A JP2011108465A JP 2011108465 A JP2011108465 A JP 2011108465A JP 2009261384 A JP2009261384 A JP 2009261384A JP 2009261384 A JP2009261384 A JP 2009261384A JP 2011108465 A JP2011108465 A JP 2011108465A
Authority
JP
Japan
Prior art keywords
stainless steel
dye
solar cell
less
photoelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009261384A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Nishida
義勝 西田
Yoshikazu Morita
芳和 守田
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009261384A priority Critical patent/JP2011108465A/en
Publication of JP2011108465A publication Critical patent/JP2011108465A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell which has a see-through appearance while applying a metal material to both of a photoelectrode and the counter electrode and has good manufacturability with a low cost. <P>SOLUTION: The dye-sensitized solar cell has a photoelectrode having a stainless steel sheet A with through holes as a current collector material and a counter electrode having a stainless steel sheet B with through holes as a conductive material opposed to each other through an electrolyte in a cell interposed between a pair of translucent plates. The stainless steel sheets A, B are made of a stainless steel containing Cr: 16 mass% and Mo: 0.3 mass%, and have the through holes of which the surface area ratio of the through hole part occupied in a projected area when the stainless steel sheet is viewed in thickness direction is 5-80% and the average diameter of the through hole part is 5-500 μm. The dye-sensitized solar cell has visible light transmittance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光電極と対向電極の双方にステンレス鋼からなる導電部材を使用した、可視光透過性を有する色素増感型太陽電池、およびその製造方法に関する。   The present invention relates to a dye-sensitized solar cell having visible light permeability using a conductive member made of stainless steel for both a photoelectrode and a counter electrode, and a method for producing the same.

太陽電池は従来、主としてシリコンを光電変換素子に用いたものが使われているが、より経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。   Conventionally, solar cells using mainly silicon as a photoelectric conversion element have been used, but the practical application of “dye-sensitized solar cells” has been studied as a more economical next-generation solar cell.

図1に、一般的な色素増感型太陽電池の構成を模式的に示す。透光性板状体2の表面に透光性導電膜3が設けられ、透光性導電膜3の表面には増感色素を担持した多孔質半導体層4が形成されている。透光性導電膜3と多孔質半導体層4により光電極10が構成されている。透光性導電膜3は、例えばITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)、ZnO(酸化亜鉛)等の酸化物導電膜で構成され、透光性板状体2にはガラスやプラスチックフィルムなどが使用される。光電極10と向かい合うように対向電極20が配置されており、光電極10、対向電極20、および両電極間に介在する電解液8によって色素増感型太陽電池1が構成されている。対向電極20は導電材料6とその表面に設けられた触媒層7によって構成される。必要に応じて対向電極20を支持するための基板5が設けられる。   FIG. 1 schematically shows the configuration of a general dye-sensitized solar cell. A translucent conductive film 3 is provided on the surface of the translucent plate-like body 2, and a porous semiconductor layer 4 carrying a sensitizing dye is formed on the surface of the translucent conductive film 3. A photoelectrode 10 is constituted by the translucent conductive film 3 and the porous semiconductor layer 4. The translucent conductive film 3 is composed of an oxide conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), TO (tin oxide), ZnO (zinc oxide), and the like. The plate-like body 2 is made of glass or plastic film. A counter electrode 20 is disposed so as to face the photoelectrode 10, and the dye-sensitized solar cell 1 is configured by the photoelectrode 10, the counter electrode 20, and the electrolytic solution 8 interposed between the two electrodes. The counter electrode 20 is composed of a conductive material 6 and a catalyst layer 7 provided on the surface thereof. A substrate 5 for supporting the counter electrode 20 is provided as necessary.

光電極10を構成する多孔質半導体層4は比表面積の大きいTiO2等の半導体粒子を用いた多孔質層であり、半導体粒子の表面にはルテニウム錯体等の増感色素が担持されている。電解液としてはヨウ素(I2)およびヨウ化物イオンを含むものを使用することが一般的である。入射光30が多孔質半導体層4に担持されている増感色素に到達すると、増感色素(例えばルテニウム錯体)は光を吸収して励起され、その電子が半導体粒子(例えばTiO2)へと注入される。励起電子を注入して酸化状態になった増感色素は電解液8のイオン(例えばヨウ化物イオンI-)から電子を受け取り、基底状態に戻る。このとき液中のイオン(例えばI-)は酸化されて価数の異なるイオン(例えばI3 -)となり、対向電極20へ拡散し、対向電極20から電子を受け取って元のイオン(例えばI-)に戻る。これにより、電子は「多孔質半導体層4→透光性導電膜3→負荷40→導電材料6→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。 The porous semiconductor layer 4 constituting the photoelectrode 10 is a porous layer using semiconductor particles such as TiO 2 having a large specific surface area, and a sensitizing dye such as a ruthenium complex is supported on the surface of the semiconductor particles. In general, an electrolytic solution containing iodine (I 2 ) and iodide ions is used. When the incident light 30 reaches the sensitizing dye supported on the porous semiconductor layer 4, the sensitizing dye (for example, ruthenium complex) is excited by absorbing light, and the electrons are converted into semiconductor particles (for example, TiO 2 ). Injected. The sensitizing dye that is in an oxidized state by injecting excited electrons receives electrons from ions (for example, iodide ions I ) in the electrolyte 8 and returns to the ground state. At this time, ions (for example, I ) in the liquid are oxidized to ions having different valences (for example, I 3 ), diffuse to the counter electrode 20, receive electrons from the counter electrode 20, and receive original ions (for example, I −). Return to). As a result, electrons move along the path “porous semiconductor layer 4 → translucent conductive film 3 → load 40 → conductive material 6 → catalyst layer 7 → electrolytic solution 8 → porous semiconductor layer 4”. As a result, a current for operating the load 40 is generated.

対向電極20を構成する導電材料6としては、前記透光性導電膜3と同様にITO、FTO等の透光性を有する酸化物導電膜が使用されることがある。この場合、触媒層7がピンホールの多い薄膜層である場合には、対向電極20を可視光が透過することにより、色素増感型太陽電池1そのものに可視光透過性を持たせることができる。すなわち色素増感型太陽電池1を通して反対側がある程度透けて見えるという、いわゆる「シースルー」の外観が得られる。シリコンを光電変換素子に用いた太陽電池では基本的にシースルーの外観を呈するソーラーパネルを実現することは困難であるが、色素増感型太陽電池ではそれが可能である。このため色素増感型太陽電池は、例えば建築物の窓、駐輪・駐車場の屋根といった部位にシースルー性(可視光透過性)を活かしたソーラーパネルの設置を可能にするなど、意匠性の面での活用も期待されている。また、シースルー性を有する色素増感型太陽電池では、対向電極20側から差し込む入射光も発電に利用できるというメリットがある。   As the conductive material 6 constituting the counter electrode 20, a light-transmitting oxide conductive film such as ITO or FTO may be used in the same manner as the light-transmitting conductive film 3. In this case, when the catalyst layer 7 is a thin film layer having many pinholes, visible light can be transmitted through the counter electrode 20, so that the dye-sensitized solar cell 1 itself can have visible light transmittance. . That is, a so-called “see-through” appearance is obtained in which the opposite side can be seen through to some extent through the dye-sensitized solar cell 1. In a solar cell using silicon as a photoelectric conversion element, it is basically difficult to realize a solar panel exhibiting a see-through appearance, but in a dye-sensitized solar cell, this is possible. For this reason, dye-sensitized solar cells, for example, enable the installation of solar panels that take advantage of see-through properties (visible light transmission), such as the windows of buildings and the roofs of bicycle parking lots and parking lots. It is also expected to be used in the field. In addition, the dye-sensitized solar cell having see-through property has an advantage that incident light inserted from the counter electrode 20 side can also be used for power generation.

このようなシースルー性を有する色素増感型太陽電池のセルを構築するためには、光電極と対向電極をともに透光性部材で構成する必要がある。図1における透光性導電膜3および導電材料6にFTO等の酸化物導電膜を使用した従来の色素増感型太陽電池では、両電極がそれぞれ透光性を有するため、シースルーの外観を得ることは可能であった。   In order to construct a cell of a dye-sensitized solar cell having such see-through property, it is necessary to configure both the photoelectrode and the counter electrode with a translucent member. In the conventional dye-sensitized solar cell using an oxide conductive film such as FTO as the light-transmitting conductive film 3 and the conductive material 6 in FIG. 1, both electrodes have a light-transmitting property, so that a see-through appearance is obtained. It was possible.

しかしながら、透光性の酸化物導電膜は金属材料と比較して導電性が低いので、そのような透光性導電膜を両電極に使用することは色素増感型太陽電池の光電変換効率を向上させる上で不利となる。また、触媒層7が導電材料6の表面を覆っていることにより、対向電極20の可視光透過性が弱められ、所望のシースルー外観が得られにくい場合もある。   However, since the light-transmitting oxide conductive film has low conductivity compared to the metal material, using such a light-transmitting conductive film for both electrodes increases the photoelectric conversion efficiency of the dye-sensitized solar cell. It is disadvantageous in improving. Further, since the catalyst layer 7 covers the surface of the conductive material 6, the visible light transmittance of the counter electrode 20 is weakened, and a desired see-through appearance may be difficult to obtain.

一方、光電極あるいは対向電極のいずれかにステンレス鋼板を用いたタイプの色素増感型太陽電池が知られている(特許文献4)。このタイプの色素増感型太陽電池では、両電極に酸化物導電膜を用いたものより導電性が向上する。ただし、シースルーの外観を得ることはできない。   On the other hand, a dye-sensitized solar cell using a stainless steel plate for either the photoelectrode or the counter electrode is known (Patent Document 4). In this type of dye-sensitized solar cell, the conductivity is improved as compared with the case where an oxide conductive film is used for both electrodes. However, see-through appearance cannot be obtained.

光電極の透光性を確保しながら、その集電部材として金属材料を利用する技術も種々提案されている。この場合、光の入射をできるだけ妨害しないように、多数の孔を設けた金属膜(特許文献1)、グリッド(特許文献2)、金属線(特許文献3)、ステンレス鋼メッシュ(非特許文献1)などが適用される。これらの手法は光電極だけでなく対向電極にも適用可能であると考えられる。しかし、特許文献1〜3のような構成の電極を形成するには複雑な工程を必要とし、コスト増を余儀なくされる。また、ステンレス鋼メッシュはステンレス鋼の細線からなる織物であることから高価であり、色素増感型太陽電池の普及を図る上では容易に採用することができない。   Various techniques for utilizing a metal material as a current collecting member while ensuring the translucency of the photoelectrode have been proposed. In this case, a metal film (Patent Document 1), a grid (Patent Document 2), a metal wire (Patent Document 3), a stainless steel mesh (Non-Patent Document 1) provided with a large number of holes so as not to disturb the incidence of light as much as possible. ) Etc. apply. These methods are considered to be applicable not only to the photoelectrode but also to the counter electrode. However, a complicated process is required to form an electrode having a configuration as described in Patent Documents 1 to 3, which necessitates an increase in cost. Further, the stainless steel mesh is expensive because it is a woven fabric made of stainless steel fine wires, and cannot be easily adopted in order to promote the spread of dye-sensitized solar cells.

特開2003−123858号公報JP 2003-123858 A 特開2003−203682号公報JP 2003-203682 A 特開2005−158726号公報JP 2005-158726 A 特開2009−26532号公報JP 2009-26532 A

Yoshikazu Yoshida et al.,APPLIED PHYSICS LETTERS 94,093301 (2009)Yoshikazu Yoshida et al. , APPLIED PHYSICS LETTERS 94,093301 (2009)

本発明は、光電極および対向電極の両方に金属材料を適用しながらシースルーの外観を有し、且つ製造性が良く低コストである色素増感型太陽電池を提供しようというものである。   The present invention is to provide a dye-sensitized solar cell that has a see-through appearance while applying a metal material to both a photoelectrode and a counter electrode, and that has good manufacturability and low cost.

発明者らは詳細な研究の結果、上記目的は、光電極の集電材料として多数の貫通穴を有するステンレス鋼シートを使用し、且つ対向電極の導電材料としても多数の貫通穴を有するステンレス鋼シートを使用することによって達成できることを見出した。また、そのようなステンレス鋼シートは、塩化第二鉄水溶液中でのエッチングによって効率良く生産できることがわかった。   As a result of detailed studies, the inventors have used a stainless steel sheet having a large number of through holes as a current collecting material for a photoelectrode, and a stainless steel having a large number of through holes as a conductive material for a counter electrode. We have found that this can be achieved by using a sheet. It was also found that such a stainless steel sheet can be efficiently produced by etching in a ferric chloride aqueous solution.

すなわち本発明では、
一対の透光性板状体に挟まれたセル内に、光電極と対向電極が電解液を介して向き合っている色素増感型太陽電池であって、
光電極は、貫通穴を有するステンレス鋼シートAと、増感色素を担持した多孔質半導体層が一体化したものであり、対向電極は、貫通穴を有するステンレス鋼シートBの少なくとも片面に触媒層を形成したものであり、
前記ステンレス鋼シートA、Bは、Cr:16質量%以上、Mo:0.3質量%以上を含有するステンレス鋼からなり、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものである、可視光透過性を有する色素増感型太陽電池が提供される。
ステンレス鋼シートの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものが好ましい。
That is, in the present invention,
In a cell sandwiched between a pair of translucent plates, a photosensitized solar cell in which a photoelectrode and a counter electrode face each other through an electrolyte,
The photoelectrode is obtained by integrating a stainless steel sheet A having a through hole and a porous semiconductor layer carrying a sensitizing dye, and the counter electrode is a catalyst layer on at least one surface of the stainless steel sheet B having a through hole. Is formed,
The stainless steel sheets A and B are made of stainless steel containing Cr: 16% by mass or more and Mo: 0.3% by mass or more, and the area of the penetrating portion in the projected area when the stainless steel sheet is viewed in the thickness direction. Provided is a dye-sensitized solar cell having visible light permeability, which has a through hole having a rate of 5 to 80% and an average diameter of the through part of 5 to 500 μm.
The through holes of the stainless steel sheet are preferably formed by immersing the rolled sheet in an aqueous electrolyte solution to grow pitting corrosion pits.

ステンレス鋼シートの鋼種として、規格鋼種を挙げると以下の鋼が好適な対象となる。
[1]JIS G4305:2005に規定されるフェライト系鋼種に属し、且つCr含有量が16〜32質量%、Mo含有量が0.3〜3質量%の範囲にある鋼。
[2]JIS G4305:2005に規定されるオーステナイト系鋼種に属し、且つCr含有量が16〜32質量%、Mo含有量が0.3〜7質量%の範囲にある鋼。
ステンレス鋼シートAとBは、同一組成の鋼であっても構わないし、異なる組成の鋼であっても構わない。また、ステンレス鋼シートA、Bのどちらか一方が上記[1]に該当する鋼、他方が上記[2]に該当する鋼であってもよい。
As standard steel types, the following steels are suitable for the stainless steel sheet.
[1] Steel that belongs to a ferritic steel type specified in JIS G4305: 2005, has a Cr content of 16 to 32 mass%, and a Mo content of 0.3 to 3 mass%.
[2] Steel that belongs to the austenitic steel grade specified in JIS G4305: 2005, has a Cr content in the range of 16 to 32 mass%, and a Mo content in the range of 0.3 to 7 mass%.
The stainless steel sheets A and B may be steel having the same composition or may be steel having different compositions. Further, either one of the stainless steel sheets A and B may be steel corresponding to the above [1], and the other may be steel corresponding to the above [2].

具体的に各元素の含有量範囲を示すと、以下の鋼が好適な対象となる。
[3]質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼。
[4]質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼。
この場合も、ステンレス鋼シートAとBがともに[3]に該当する鋼であっても構わないし、ともに[4]に該当する鋼であっても構わない。また、ステンレス鋼シートA、Bのどちらか一方が上記[3]に該当する鋼、他方が上記[4]に該当する鋼であってもよい。
Specifically, when the content range of each element is shown, the following steels are suitable targets.
[3] By mass%: C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.0 6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, Ferritic stainless steel consisting of N: 0.025% or less, B: 0-0.01%, balance Fe and inevitable impurities.
[4] By mass% C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6 to 28% Cr: 16 to 32%, Mo: 0.3 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N : Austenitic stainless steel consisting of 0.3% or less, B: 0 to 0.01%, balance Fe and inevitable impurities.
In this case, both the stainless steel sheets A and B may be steel corresponding to [3], or both may be steel corresponding to [4]. Further, either one of the stainless steel sheets A and B may be steel corresponding to the above [3], and the other may be steel corresponding to the above [4].

本発明の色素増感型太陽電池の光電極は、その多孔質半導体層が透光性板状体に面するように配置されていることが望ましい。   The photoelectrode of the dye-sensitized solar cell of the present invention is preferably disposed so that the porous semiconductor layer faces the translucent plate.

また、上記のような本発明の色素増感型太陽電池の製造方法として、
下記の貫通穴形成方法Xにより貫通穴を有するステンレス鋼シートAを得たのち、そのステンレス鋼シートAの少なくとも片面に酸化物半導体で構成される多孔質半導体層を形成させ、次いで前記多孔質半導体層に増感色素を担持させることにより光電極を作製する工程(光電極作製工程)、
下記の貫通穴形成方法Xにより貫通穴を有するステンレス鋼シートBを得たのち、そのステンレス鋼シートBの少なくとも片面に触媒層を形成させることにより対向電極を作製する工程(対向電極作製工程)、
一対の透光性板状体に挟まれた空間内に、前記光電極と前記対向電極を、それらが互いに接触しないように向かい合わせて配置し、前記空間内の少なくとも両電極間および多孔質半導体層中の空隙に電解液を満たす工程(電池形成工程)、
を有する色素増感型太陽電池の製造方法が提供される。
〔貫通穴形成方法X〕
板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる。
Moreover, as a method for producing the dye-sensitized solar cell of the present invention as described above,
After obtaining a stainless steel sheet A having through holes by the following through hole forming method X, a porous semiconductor layer composed of an oxide semiconductor is formed on at least one side of the stainless steel sheet A, and then the porous semiconductor A step of preparing a photoelectrode by carrying a sensitizing dye in the layer (photoelectrode preparation step),
After obtaining a stainless steel sheet B having a through hole by the following through hole forming method X, a step of producing a counter electrode by forming a catalyst layer on at least one side of the stainless steel sheet B (opposite electrode production step),
In the space sandwiched between a pair of translucent plates, the photoelectrode and the counter electrode are arranged facing each other so that they do not contact each other, and at least between both electrodes in the space and the porous semiconductor Filling the electrolyte in the voids in the layer (battery forming step),
A method for producing a dye-sensitized solar cell having the following is provided.
[Through hole forming method X]
A stainless steel rolled sheet having a thickness of 0.005 to 0.2 mm is immersed in an aqueous ferric chloride solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L, Through the growth of pitting corrosion-like pits, through holes with an area ratio of the penetrating portion occupying the projected area of the sheet in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm Let it form.

特に、前記「光電極作製工程」として、
前記の貫通穴形成方法Xにより貫通穴を有するステンレス鋼シートAを得たのち、そのステンレス鋼シートAの少なくとも片面に酸化物半導体粒子を含有するペーストを塗布して塗膜を形成させ、その塗膜を焼成することにより酸化物半導体粒子が焼結してなる多孔質半導体層をステンレス鋼シートAの表面上に形成させ、次いで前記多孔質半導体層に増感色素を担持させることにより光電極を作製する工程(光電極作製工程)、
を採用することができる。
In particular, as the “photoelectrode manufacturing process”,
After obtaining the stainless steel sheet A having through holes by the through hole forming method X, a paste containing oxide semiconductor particles is applied to at least one surface of the stainless steel sheet A to form a coating film. A porous semiconductor layer formed by sintering oxide semiconductor particles by firing the film is formed on the surface of the stainless steel sheet A, and then a photosensitizing dye is supported on the porous semiconductor layer. Manufacturing process (photoelectrode manufacturing process),
Can be adopted.

また前記「電池形成工程」として、
一対の透光性板状体に挟まれた空間内に、前記光電極と前記対向電極を、当該光電極の多孔質半導体層が透光性板状体に面し且つ両電極が互いに接触しないように向かい合わせて配置し、前記空間内の少なくとも両電極間および多孔質半導体層中の空隙に電解液を満たす工程(電池形成工程)、
を採用することができる。
In addition, as the “battery forming step”
In the space between the pair of translucent plates, the photoelectrode and the counter electrode are arranged such that the porous semiconductor layer of the photoelectrode faces the translucent plate and the electrodes do not contact each other. So as to face each other and fill the electrolyte in the space between at least both electrodes in the space and in the porous semiconductor layer (battery forming step),
Can be adopted.

本発明によれば、以下のようなメリットが得られる。
(1)光電極の集電材料および対向電極の導電材料がともに金属材料であるため、従来の透光性導電膜を使用した色素増感型太陽電池と比べ電池内部の導電性に優れ、光電変換効率の向上に有利となる。
(2)対向電極では、ステンレス鋼シートの貫通穴の部分を通して可視光が透過するので、触媒層によってシースルー性が阻害されない。
(3)両電極に透光性導電膜を併用する必要がないので低コスト化に有利となる。
(4)本発明で使用する穴あきステンレス鋼シートは、レジスト法を適用することなく、ステンレス鋼圧延シートを水溶液中でエッチングすることにより得られるので、生産性が高く、大量生産に適する。この点でも低コスト化に有利である。
According to the present invention, the following advantages can be obtained.
(1) Since both the current collecting material of the photoelectrode and the conductive material of the counter electrode are metal materials, the conductivity inside the cell is superior to that of a dye-sensitized solar cell using a conventional translucent conductive film, and the photoelectric This is advantageous for improving the conversion efficiency.
(2) In the counter electrode, visible light is transmitted through the portion of the through hole of the stainless steel sheet, so that the see-through property is not inhibited by the catalyst layer.
(3) Since it is not necessary to use a translucent conductive film for both electrodes, it is advantageous for cost reduction.
(4) Since the perforated stainless steel sheet used in the present invention is obtained by etching a rolled stainless steel sheet in an aqueous solution without applying the resist method, the productivity is high and suitable for mass production. This is also advantageous for cost reduction.

一般的な色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the general dye-sensitized solar cell. 本発明の色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the composition of the dye sensitizing type solar cell of the present invention. 本発明の色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the composition of the dye sensitizing type solar cell of the present invention. 本発明の色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the composition of the dye sensitizing type solar cell of the present invention.

図2に、本発明の色素増感型太陽電池の構成を模式的に例示する。
光電極10は、貫通穴50を有するステンレス鋼シートAと、その片面に付着した多孔質半導体層4によって構成されている。この光電極10を用いた色素増感型太陽電池1では、図示されるように、多孔質半導体層4が透光性板状体2に面するように光電極10を配置させることができる。すなわち、従来、金属製の集電材料を透光性板状体2の表面上、あるいは図1示した透光性導電膜3と接触させた状態で配置していたタイプの色素増感型太陽電池(例えば特許文献1〜3)と比較して、本発明の色素増感型太陽電池では、金属製の集電材料による遮光や、透光性導電膜による若干の減光を経ずに、直接多孔質半導体層4に入射光30が届くので、光電変換効率の向上に有利となる。また、ステンレス鋼メッシュを用いたタイプの色素増感型太陽電池(非特許文献1参照)と比べ、ステンレス鋼と半導体層との密着性を確保することが容易である。
FIG. 2 schematically illustrates the configuration of the dye-sensitized solar cell of the present invention.
The photoelectrode 10 includes a stainless steel sheet A having a through hole 50 and a porous semiconductor layer 4 attached to one surface thereof. In the dye-sensitized solar cell 1 using the photoelectrode 10, the photoelectrode 10 can be arranged so that the porous semiconductor layer 4 faces the translucent plate-like body 2 as illustrated. That is, conventionally, a dye-sensitized solar of the type in which a metal current collecting material is disposed on the surface of the translucent plate 2 or in contact with the translucent conductive film 3 shown in FIG. Compared with a battery (for example, Patent Documents 1 to 3), in the dye-sensitized solar cell of the present invention, without light shielding by a metal current collecting material or slight dimming by a translucent conductive film, Since the incident light 30 reaches the porous semiconductor layer 4 directly, it is advantageous for improving the photoelectric conversion efficiency. In addition, it is easy to ensure the adhesion between the stainless steel and the semiconductor layer as compared with a dye-sensitized solar cell using a stainless steel mesh (see Non-Patent Document 1).

また、対向電極20は、貫通穴50’を有するステンレス鋼シートBと、その片面に形成された触媒層7によって構成されている。貫通穴50’は触媒層7によって塞がれていない。この対向電極20を用いた色素増感型太陽電池1では、必要に応じて貫通穴50’を通して入射してくる入射光30’を発電に利用することができる。すなわち、光電極10側からの入射光30、および対向電極20側からの入射光30’のいずれか一方または双方を発電に利用することができる。対向電極20の外側には、電解液8を封止する目的で透光性板状体2’が設けられる。この透光性板状体2’は、光電極10側の透光性板状体2と同様、ガラスやプラスチックなどの透光性材料の板あるいはフィルムを適用することができる。   The counter electrode 20 is constituted by a stainless steel sheet B having a through hole 50 ′ and a catalyst layer 7 formed on one surface thereof. The through hole 50 ′ is not blocked by the catalyst layer 7. In the dye-sensitized solar cell 1 using the counter electrode 20, incident light 30 'incident through the through hole 50' can be used for power generation as necessary. That is, one or both of the incident light 30 from the photoelectrode 10 side and the incident light 30 ′ from the counter electrode 20 side can be used for power generation. A translucent plate-like body 2 ′ is provided outside the counter electrode 20 for the purpose of sealing the electrolytic solution 8. As the translucent plate-like body 2 ′, a plate or a film made of a translucent material such as glass or plastic can be applied in the same manner as the translucent plate-like body 2 on the photoelectrode 10 side.

本発明の色素増感型太陽電池1では、光電極10はステンレス鋼シートAの貫通穴50を通して、また対向電極20はステンレス鋼シートBの貫通穴50’を通して、それぞれ可視光を通過させることができるので、一対の透光性板状体2、2’に挟まれたセルは、シースルー性を有するものとなる。ステンレス鋼シートAの貫通孔50は、可視光の通過に加え、イオンの通過を担う。   In the dye-sensitized solar cell 1 of the present invention, the photoelectrode 10 can pass visible light through the through hole 50 of the stainless steel sheet A and the counter electrode 20 can pass through the through hole 50 ′ of the stainless steel sheet B. Therefore, the cell sandwiched between the pair of translucent plate-like bodies 2, 2 ′ has a see-through property. The through hole 50 of the stainless steel sheet A is responsible for the passage of ions in addition to the passage of visible light.

図2に示した電池の例では、電子は「多孔質半導体層4→ステンレス鋼シートA→負荷40→ステンレス鋼シートB→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。   In the example of the battery shown in FIG. 2, electrons move along the path of “porous semiconductor layer 4 → stainless steel sheet A → load 40 → stainless steel sheet B → catalyst layer 7 → electrolytic solution 8 → porous semiconductor layer 4”. To do. As a result, a current for operating the load 40 is generated.

図3に、本発明の別の態様の色素増感型太陽電池の構成を模式的に例示する。この場合、ステンレス鋼シートAの両側に多孔質半導体層4および4’が付着している。貫通穴50を介して両側の多孔質半導体層4、4’が繋がっていても構わないし、分離していても構わない。この場合、対向電極20側からの入射光30’が多孔質半導体層4’の部分において特に効率良く受光できる。   In FIG. 3, the structure of the dye-sensitized solar cell of another aspect of this invention is illustrated typically. In this case, porous semiconductor layers 4 and 4 ′ are attached to both sides of the stainless steel sheet A. The porous semiconductor layers 4, 4 ′ on both sides may be connected via the through hole 50 or may be separated. In this case, incident light 30 ′ from the counter electrode 20 side can be received particularly efficiently at the portion of the porous semiconductor layer 4 ′.

対向電極20は、光電極10との間に間隙が確保されている限り、必ずしも透光性板状体2’の表面上に密着させる必要はない。意匠性や生産性を加味して、最適な位置に保持すればよい。
図4に、透光性板状体2’に接触していない状態で対向電極20を配置したタイプの色素増感型太陽電池の構成を例示する。この場合、触媒層7は図示されるようにステンレス鋼シートBの片面に形成されていても構わないし、両面に形成されていても構わない。
As long as a gap is secured between the counter electrode 20 and the photoelectrode 10, the counter electrode 20 does not necessarily have to be in close contact with the surface of the translucent plate 2 '. What is necessary is just to hold | maintain in the optimal position in consideration of design property and productivity.
FIG. 4 illustrates a configuration of a dye-sensitized solar cell in which the counter electrode 20 is disposed in a state where it is not in contact with the translucent plate-like body 2 ′. In this case, the catalyst layer 7 may be formed on one surface of the stainless steel sheet B as illustrated, or may be formed on both surfaces.

〔ステンレス鋼シートA、Bの鋼種〕
色素増感型太陽電池の電解液には通常、ヨウ素(I2)およびヨウ化物イオン等を含む有機溶媒が使用される。本発明に適用するステンレス鋼シートA、Bは、このような電解液中で長期間安定して優れた耐食性を呈する素材で構成する必要がある。発明者らの検討の結果、80℃に加熱した当該電解液中に500時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼を適用することが極めて有効であることがわかった。いわゆる裸の状態(被覆層を形成していない状態)で上記の厳しい試験環境における腐食減量が1g/m2以下となるステンレス鋼は、パーソナルユースの機器に搭載する普及型の色素増感型太陽電池を構築する上で、通常は十分な耐久性を有する。また、上記液中に1000時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼は特に信頼性の高い色素増感型太陽電池を構築する上で一層有利である。
[Steel grades of stainless steel sheets A and B]
An organic solvent containing iodine (I 2 ) and iodide ions is usually used for the electrolyte solution of the dye-sensitized solar cell. The stainless steel sheets A and B applied to the present invention need to be made of a material that exhibits stable and excellent corrosion resistance for a long time in such an electrolytic solution. As a result of investigations by the inventors, it has been found that it is extremely effective to apply stainless steel having a property that the corrosion weight loss when immersed in the electrolyte heated to 80 ° C. for 500 hours is 1 g / m 2 or less. It was. Stainless steel with a corrosion weight loss of 1 g / m 2 or less in the above-mentioned severe test environment in the so-called bare state (in which no coating layer is formed) is a popular dye-sensitized solar mounted on personal use equipment. In constructing a battery, it usually has sufficient durability. In addition, stainless steel having a property that the corrosion weight loss when immersed in the above solution for 1000 hours is 1 g / m 2 or less is further advantageous in constructing a highly reliable dye-sensitized solar cell.

発明者らは詳細な検討の結果、ステンレス鋼において、一定量以上のCrとMoを含有させることによって、有機溶媒を用いたヨウ素(I2)およびヨウ化物イオン含有電解質溶液中での溶解がほとんど進行しない優れた耐食性が付与できることを確認している。具体的には、ステンレス鋼材料においてCr含有量を16質量%以上とし、且つMo含有量を0.3質量%以上としたとき、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物イオン含有電解液中での溶解がほとんど生じない優れた耐食性を呈することを見出した。また、Cr含有量を17質量%以上とし、且つMo含有量を0.8質量%以上としたときには、より信頼性の高い色素増感型太陽電池を構築できる。この傾向はオーステナイト系やフェライト系といった鋼種の影響をあまり受けず、その他の添加元素の影響も少ない。 As a result of detailed studies, the inventors have found that in stainless steel, by containing a certain amount or more of Cr and Mo, dissolution in an electrolyte solution containing iodine (I 2 ) and iodide ions using an organic solvent is almost impossible. It has been confirmed that excellent corrosion resistance that does not progress can be imparted. Specifically, in the stainless steel material, when the Cr content is 16% by mass or more and the Mo content is 0.3% by mass or more, iodine (I 2 ) applied to the dye-sensitized solar cell and It has been found that it exhibits excellent corrosion resistance with little dissolution in an iodide ion-containing electrolyte. When the Cr content is 17% by mass or more and the Mo content is 0.8% by mass or more, a more reliable dye-sensitized solar cell can be constructed. This tendency is not significantly affected by the steel types such as austenite and ferritic, and is less affected by other additive elements.

本発明では、フェライト系鋼種と、オーステナイト系鋼種において、それぞれ以下の組成範囲のステンレス鋼を適用することができる。合金元素の含有量に関する「%」は特に断らない限り「質量%」を意味する。   In the present invention, stainless steels having the following composition ranges can be applied to ferritic steel types and austenitic steel types. Unless otherwise specified, “%” with respect to the alloy element content means “mass%”.

フェライト系鋼種;
「C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜3%好ましくは0.8〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物の組成を有するフェライト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるフェライト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜3質量%好ましくは0.8〜3質量%を含有するステンレス鋼を適用すればよい。
Ferritic steel grades;
“C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Cr : 16-32%, preferably 17-32%, Mo: 0.3-3%, preferably 0.8-3%, Cu: 0-1%, Nb: 0-1%, Ti: 0-1%, Ferritic stainless steel having a composition of Al: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, balance Fe and inevitable impurities "
When using a standard steel grade, for example, it is a ferritic steel grade specified in JIS G4305: 2005, Cr: 16-32 mass%, preferably 17-32 mass%, Mo: 0.3-3 mass%, preferably 0.3. What is necessary is just to apply the stainless steel containing 8-3 mass%.

オーステナイト系鋼種;
「C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜7%好ましくは0.8〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物の組成を有するオーステナイト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるオーステナイト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜7質量%好ましくは0.8〜7質量%を含有するステンレス鋼を適用すればよい。
Austenitic grades;
“C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6 to 28%, Cr: 16 to 32%, preferably 17-32%, Mo: 0.3-7%, preferably 0.8-7%, Cu: 0-3.5%, Nb: 0-1%, Ti: 0-1%, Al : 0 to 0.1%, N: 0.3% or less, B: 0 to 0.01%, the balance being Fe and an inevitable impurity composition austenitic stainless steel "
When using a standard steel grade, for example, it is an austenitic steel grade defined in JIS G4305: 2005, Cr: 16-32 mass%, preferably 17-32 mass%, Mo: 0.3-7 mass%, preferably 0.3. What is necessary is just to apply the stainless steel containing 8-7 mass%.

Cr含有量が16%未満またはMo含有量が0.3%未満だと、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、フェライト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを1%以上含有させることが一層好ましい。オーステナイト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを2%以上含有させることが一層好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は、フェライト系の場合3%以下とすることが望ましく、オーステナイト系の場合7%以下とすることが望ましい。なお、元素含有量の下限「0%」は、当該元素の含有量が通常の製鋼現場での分析手法において測定限界以下であることを意味する。 When the Cr content is less than 16% or the Mo content is less than 0.3%, the material is hardly dissolved in the electrolyte solution containing iodine (I 2 ) and iodide applied to the dye-sensitized solar cell. It becomes difficult to stably obtain excellent corrosion resistance that does not occur. In order to further improve the reliability, in the case of ferrite, it is preferable to contain 17% or more of Cr and 0.8% or more of Mo, and it is more preferable to contain 18% or more of Cr and 1% or more of Mo. In the case of an austenitic system, it is preferable to contain 17% or more of Cr and 0.8% or more of Mo, and more preferably to contain 18% or more of Cr and 2% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. In addition, the Mo content is preferably 3% or less in the case of ferrite, and is preferably 7% or less in the case of austenite. In addition, the lower limit “0%” of the element content means that the content of the element is equal to or lower than the measurement limit in an analysis method at a normal steelmaking site.

上記以外の元素として、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下といった元素の混入が許容される。これらはスクラップ等の原料から不可避的に混入する場合があるが上記範囲の混入であれば本発明の効果を阻害するものではない。   As elements other than the above, mixing of elements such as V: 0.3% or less, Zr: 0.3% or less, Ca, Mg, Co, and REM (rare earth elements): 0.1% or less in total is allowed. These may be inevitably mixed from raw materials such as scrap, but if mixed within the above range, the effect of the present invention is not hindered.

種々の組成のステンレス鋼について、色素増感型太陽電池の電解液を模擬したヨウ素(I2)およびヨウ化物イオンを含む試験液に対する耐食性を調べた結果を例示する。
表1に示す組成の各種ステンレス鋼を溶製し、一般的なステンレス鋼板製造工程により板厚0.28〜0.81mmの冷延焼鈍鋼板(2D仕上げ材)を製造し、これを供試材とした。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。表中におけるハイフン「−」は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。
The stainless steel of various compositions, which illustrate the results of examining the corrosion resistance to a test liquid containing a simulated iodine (I 2) and iodide ion electrolyte of the dye-sensitized solar cell.
Various stainless steels having the compositions shown in Table 1 were melted, and cold rolled annealed steel sheets (2D finishing materials) having a thickness of 0.28 to 0.81 mm were manufactured by a general stainless steel sheet manufacturing process. It was. In Table 1, in the structure column, “α” means ferrite and “γ” means austenite. The hyphen “-” in the table means that it is below the measurement limit by a normal analysis method in the steelmaking field.

Figure 2011108465
Figure 2011108465

各供試材から35×35mmの試験片を切り出し、表面(端面を含む)を#600乾式エメリー研磨で仕上げることにより、耐食性試験片とした。
色素増感型太陽電池の電解質溶液を模擬した試験液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
A 35 × 35 mm test piece was cut out from each test material, and the surface (including the end face) was finished by # 600 dry emery polishing to obtain a corrosion resistance test piece.
As a test solution simulating an electrolyte solution of a dye-sensitized solar cell, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

テフロン(登録商標)製の容器に前記試験液10mLを入れ、この液中に前記耐食性試験片を浸漬した。容器には蓋をして溶媒の揮発を抑えた。この容器を80℃の恒温槽中に保持し、浸漬開始から500時間経過後に試験片を取り出した。各鋼種ともサンプル数n=3で実施した。   10 mL of the test solution was placed in a Teflon (registered trademark) container, and the corrosion resistance test piece was immersed in the solution. The container was covered to suppress the volatilization of the solvent. This container was held in a constant temperature bath at 80 ° C., and a test piece was taken out after 500 hours from the start of immersion. For each steel type, the number of samples was n = 3.

500時間浸漬後の各試験片について、腐食減量(初期の試験片質量−浸漬後の試験片質量)を測定した。n=3の腐食減量値のうち最も大きい値(すなわち金属の溶出量が最も大きかったもの)をその鋼種の腐食減量の成績として採用した。この500時間浸漬試験における腐食減量が1g/m2以下のものを合格と判定した。また、500時間浸漬試験後の試験片表面を目視観察し、外観を調べた。この場合も、n=3のうち最も腐食の程度が激しかった試験片の外観をその鋼種の成績として採用した。
参考のため、500時間浸漬後の外観において全面腐食または端面の腐食が認められた鋼種を除き、観察後の試験片を再び上記の浸漬試験に供し、トータル1000時間の浸漬試験における腐食減量および外観を調べた。
結果を表2に示す。
About each test piece after 500-hour immersion, corrosion weight loss (initial test piece mass-test piece mass after immersion) was measured. The largest value among the corrosion weight loss values of n = 3 (that is, the one with the largest metal elution amount) was adopted as the result of the corrosion weight loss of the steel type. Those having a weight loss of 1 g / m 2 or less in this 500 hour immersion test were determined to be acceptable. Further, the surface of the test piece after the 500 hour immersion test was visually observed to examine the appearance. Also in this case, the appearance of the test piece having the most severe degree of corrosion among n = 3 was adopted as the grade of the steel type.
For reference, except for steel types that were found to have full-surface corrosion or end-face corrosion in the appearance after 500 hours of immersion, the specimens after observation were again subjected to the above immersion test, and the corrosion weight loss and appearance in the immersion test for a total of 1000 hours I investigated.
The results are shown in Table 2.

Figure 2011108465
Figure 2011108465

表1、表2からわかるように、Cr:16%以上、且つMo:0.3%以上を含有する本発明対象鋼は、裸のままでヨウ化物イオン含有電解液中に80℃×500hという厳しい条件で浸漬した場合の腐食減量が1g/m2以下となり、点錆の発生も少なく、優れた耐食性を示すことが確認された。Cr:17%以上、且つMo:0.8%以上を含有するものは、トータル1000時間の浸漬試験でも腐食減量が1g/m2以下であり、一層耐久性に優れる。 As can be seen from Tables 1 and 2, the steel according to the present invention containing Cr: 16% or more and Mo: 0.3% or more is 80 ° C. × 500 h in the iodide ion-containing electrolyte while being bare. It was confirmed that the corrosion weight loss when immersed under severe conditions was 1 g / m 2 or less, there was little occurrence of spot rust, and excellent corrosion resistance was exhibited. Those containing Cr: 17% or more and Mo: 0.8% or more have a corrosion weight loss of 1 g / m 2 or less even in a total 1000 hour immersion test, and are further excellent in durability.

〔ステンレス鋼シートA、Bの形態〕
光電極10を構成するステンレス鋼シートA、および対向電極20を構成するステンレス鋼シートBは、ともに可視光を十分に通過させるに足る貫通穴50、50’を有している必要がある。またステンレス鋼シートAの貫通穴50ではイオンの通過も円滑に行われなければならない。そのためには、貫通部の面積率を十分に確保することが重要である。ここで、貫通部の面積率は、ステンレス鋼シートを厚さ方向に見た場合の投影像に占める、貫通部の面積率(以下「貫通率」と呼ぶことがある)によって表すことができる。個々の貫通穴についての貫通部の面積は、当該貫通穴をステンレス鋼シートの厚さ方向見た場合に、穴を通して向こう側が貫通して見えている部分の投影面積である。貫通率は、少なくとも30個の貫通穴における貫通部が完全に含まれる矩形領域について、個々の貫通部の面積(当該矩形領域から一部がはみ出す貫通部は当該矩形領域内の部分の面積とする)を求め、それらのトータル面積を、当該矩形領域の面積(投影面積)で除することにより算出される。
[Forms of stainless steel sheets A and B]
Both the stainless steel sheet A constituting the photoelectrode 10 and the stainless steel sheet B constituting the counter electrode 20 need to have through holes 50 and 50 ′ sufficient to allow visible light to pass through sufficiently. Also, the passage of ions must be performed smoothly in the through hole 50 of the stainless steel sheet A. For that purpose, it is important to ensure a sufficient area ratio of the penetrating portion. Here, the area ratio of the penetrating part can be represented by the area ratio of the penetrating part (hereinafter sometimes referred to as “penetration ratio”) in the projected image when the stainless steel sheet is viewed in the thickness direction. The area of the through portion for each through hole is a projected area of a portion where the other side is seen through the hole when the through hole is viewed in the thickness direction of the stainless steel sheet. The penetrability is the area of each penetrating part (the penetrating part partially protruding from the rectangular area is the area of the part in the rectangular area) for a rectangular area that completely includes the penetrating part in at least 30 through holes. ) And dividing the total area by the area (projected area) of the rectangular region.

貫通穴50、50’は後述のように電解質水溶液中でのエッチングによって形成させることができる。その場合、ステンレス鋼シートの両面からそれぞれ孔食状ピットが成長するので、一方の表面から成長したピットが他方の表面に至って貫通穴が形成されることもあれば、双方から成長したピット同士が厚みの途中でぶつかって貫通穴となることもある。   The through holes 50 and 50 'can be formed by etching in an aqueous electrolyte solution as will be described later. In that case, pitting corrosion-like pits grow from both surfaces of the stainless steel sheet, so that pits grown from one surface may reach the other surface and a through hole may be formed, or pits grown from both sides It may collide in the middle of the thickness and become a through hole.

発明者らの検討によれば、ステンレス鋼シートA、Bいずれかの貫通率が5%を下回っていると、その色素増感型太陽電池1ではシースルー性を安定して呈することが難しくなることがわかった。また、ステンレス鋼シートAにおけるイオン通過性の観点からも、貫通率が5%を下回ると光電変換効率の急激な低下を招くようになることがわかった。このため、本発明に用いる穴あきステンレス鋼シートA、Bはいずれも、貫通率が5%以上であることが必要である。10%以上であるものが好ましく、20%以上であるものがより好ましい。特に良好なシースルー性を重視する場合には、貫通率は50%以上とすることが好ましく、60%以上が一層好ましい。一方、貫通率が過度に高くなると、ステンレス鋼シートA、Bとも強度低下に起因して製造過程でシートが破断しやすくなり、製造性に劣る。またステンレス鋼シートAでは十分な量の多孔質半導体層4(4’)を安定して保持することが難しくなる。種々検討の結果、ステンレス鋼シートA、Bの貫通率はいずれも80%以下とするのが良いことがわかった。70%以下に管理してもよい。   According to the study by the inventors, when the penetration rate of either of the stainless steel sheets A and B is less than 5%, it is difficult for the dye-sensitized solar cell 1 to stably exhibit the see-through property. I understood. Moreover, also from the viewpoint of ion permeability in the stainless steel sheet A, it was found that when the penetration rate is less than 5%, the photoelectric conversion efficiency is drastically reduced. For this reason, both the perforated stainless steel sheets A and B used in the present invention are required to have a penetration rate of 5% or more. What is 10% or more is preferable, and what is 20% or more is more preferable. In particular, when emphasizing good see-through properties, the penetration rate is preferably 50% or more, and more preferably 60% or more. On the other hand, when the penetration rate is excessively high, both the stainless steel sheets A and B are liable to be broken during the manufacturing process due to the strength reduction, resulting in poor productivity. Further, in the stainless steel sheet A, it is difficult to stably hold a sufficient amount of the porous semiconductor layer 4 (4 '). As a result of various studies, it was found that the penetration rates of the stainless steel sheets A and B should be 80% or less. You may manage to 70% or less.

個々の貫通穴50、50’のサイズに関しては、光電極10のステンレス鋼シートAでは貫通穴50のサイズが過大であると、多孔質半導体層4を形成する際に半導体粒子含有塗料の塗布が困難になることや、多孔質半導体層4からの集電が不均一になり光電極10の内部抵抗が増大する要因となることが考えられる。また、対向電極20のステンレス鋼シートBでは貫通穴50’のサイズが過大であると、電解液8中のイオンが対向電極20の表面に到達するまでの平均移動距離が大きくなることなどに起因して、光電変換効率の低下を招きやすくなることが考えられる。種々検討の結果、ステンレス鋼シートA、Bいずれの場合も、貫通部の平均径は500μm以下とすることが望まれ、200μm以下、あるいは100μm以下とすることがより好ましい。一方、貫通穴50、50’をあまり微細にしても光電変換効率の向上等の特性改善には繋がらず、また、そのような細かい貫通穴50、50’を多数形成させることは難しいので、通常、貫通部の平均径は5μm以上とすればよい。ここで、貫通部の平均径は、前述の貫通率を求める場合の条件を満たした矩形領域の中に完全に含まれる貫通部(すなわち、貫通部の一部分が当該矩形領域からはみ出しているものを除く)の平均径によって表される。個々の貫通部の径は、円相当径が採用される。円相当径とは、貫通部の面積をS(μm2)、円周率をπとするとき、S=πD2/4によって定まるD(μm)を意味する。 Regarding the size of the individual through holes 50 and 50 ′, if the size of the through hole 50 is excessive in the stainless steel sheet A of the photoelectrode 10, the coating of the semiconductor particle-containing paint is applied when the porous semiconductor layer 4 is formed. It may be difficult, or current collection from the porous semiconductor layer 4 may become non-uniform, which may increase the internal resistance of the photoelectrode 10. Further, in the stainless steel sheet B of the counter electrode 20, when the size of the through hole 50 ′ is excessive, the average moving distance until the ions in the electrolytic solution 8 reach the surface of the counter electrode 20 is increased. Thus, it is conceivable that the photoelectric conversion efficiency is likely to be lowered. As a result of various studies, in both cases of the stainless steel sheets A and B, the average diameter of the penetrating portion is desired to be 500 μm or less, and more preferably 200 μm or less, or 100 μm or less. On the other hand, even if the through holes 50 and 50 ′ are too fine, it does not lead to improvement in characteristics such as improvement in photoelectric conversion efficiency, and it is difficult to form a large number of such fine through holes 50 and 50 ′. The average diameter of the penetrating portion may be 5 μm or more. Here, the average diameter of the penetrating part is a penetrating part that is completely included in the rectangular area that satisfies the conditions for obtaining the penetrating ratio (that is, a part of the penetrating part that protrudes from the rectangular area). Excluding) average diameter. An equivalent circle diameter is adopted as the diameter of each penetrating portion. Circle-equivalent diameter refers to the area of the through portion S (μm 2), when the circular constant [pi, means D ([mu] m) determined by S = πD 2/4.

ステンレス鋼シートA、Bの厚さは、いずれも0.005〜1mm程度の広い範囲で選択可能であるが、これらのステンレス鋼シートに色素増感型太陽電池1全体としての強度の大部分を負担させる必要がない限り、一般的には薄い方が好ましい。ただし、薄すぎると強度不足により製造時の取り扱いが難しくなるので、0.005mm以上の厚さを確保することが望ましい。具体的には、例えば、厚さ0.005〜0.2mm程度のステンレス鋼圧延シートを素材として用いて、後述の手法で貫通穴50の形成を行うことが好ましい。厚さ0.005〜0.1mmのステンレス鋼圧延シートを使用することが一層好ましい。   The thickness of each of the stainless steel sheets A and B can be selected within a wide range of about 0.001 to 1 mm. However, most of the strength of the dye-sensitized solar cell 1 as a whole is added to these stainless steel sheets. As long as it is not necessary to bear, generally thinner is preferable. However, if it is too thin, it becomes difficult to handle at the time of manufacture due to insufficient strength, so it is desirable to secure a thickness of 0.005 mm or more. Specifically, for example, it is preferable to form the through hole 50 by a method described later using a rolled stainless steel sheet having a thickness of about 0.005 to 0.2 mm as a material. It is more preferable to use a rolled stainless steel sheet having a thickness of 0.005 to 0.1 mm.

〔貫通穴の形成〕
ステンレス鋼シートA、Bの貫通穴50、50’を形成させる手法として、塩化第二鉄水溶液中でのエッチングが極めて効果的である。ステンレス鋼シートの素材を塩化第二鉄水溶液中に単に浸漬する手法や、必要に応じてアノード電解あるいは交番電解を加える手法が利用できる。電解質水溶液に塩化第二鉄水溶液を用いると、ステンレス鋼表面に多数の微細な孔食状ピットを形成させることができる。その孔食状ピットは開口径の割りに深さの深い形態を呈するものとなるので、これを成長させることによりシートの厚さを貫通する穴を開けることが可能となる。具体的には、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液を使用することができる。温度は例えば20〜80℃範囲とすることが好適である。ステンレス鋼種によって耐食性レベルに差があるので、それぞれの鋼種に応じた電解質水溶液濃度、温度を上記の範囲で設定するとともに、処理時間や、電解を行う場合の電解条件などを最適に設定すればよい。貫通率や貫通部の平均径は、板厚に応じて上記各条件を変化させることによりコントロールすることができる。素材の鋼種および板厚、並びに目標とする貫通率および貫通部の平均径に応じて予備実験により最適条件を定めればよい。
(Formation of through holes)
As a method for forming the through holes 50 and 50 ′ of the stainless steel sheets A and B, etching in a ferric chloride aqueous solution is extremely effective. A method of simply immersing the material of the stainless steel sheet in a ferric chloride aqueous solution or a method of adding anode electrolysis or alternating electrolysis as required can be used. When a ferric chloride aqueous solution is used for the electrolyte aqueous solution, a large number of fine pitting corrosion pits can be formed on the stainless steel surface. Since the pitting corrosion pit has a deep shape with respect to the opening diameter, it is possible to open a hole penetrating the thickness of the sheet by growing the pitting corrosion pit. Specifically, a ferric chloride aqueous solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L can be used. The temperature is preferably in the range of 20 to 80 ° C., for example. Since there is a difference in the corrosion resistance level depending on the stainless steel type, the concentration and temperature of the aqueous electrolyte solution corresponding to each steel type should be set within the above ranges, and the treatment time and electrolysis conditions for electrolysis should be set optimally. . The penetration rate and the average diameter of the penetration part can be controlled by changing each of the above conditions according to the plate thickness. What is necessary is just to determine optimal conditions by preliminary experiment according to the steel grade and board thickness of a raw material, the target penetration rate, and the average diameter of a penetration part.

上記の塩化第二鉄水溶液中でのエッチングによって貫通穴50を形成すると、貫通穴が生じていない部分の表面にも、孔食状ピットが多数形成される。すなわち、当該エッチングによって貫通穴50、50’を形成したステンレス鋼シートA、Bは、貫通穴50、50’が生じていない部分の表面が孔食状ピットによって粗面化されているものとなる。この粗面化によって表面積が増大するので電池の内部抵抗低減に有効となる。しかも、この種の粗面化表面に形成されている孔食状ピット(貫通穴も含む)は、エッジが鋭く切り立った形態を有するので、光電極10のステンレス鋼シートAでは多孔質半導体層4(4’)に対するアンカー効果が働き、ステンレス鋼シートAと多孔質半導体層4との密着性向上にも有効となる。   When the through hole 50 is formed by etching in the above ferric chloride aqueous solution, many pitting corrosion pits are also formed on the surface of the portion where the through hole is not formed. That is, in the stainless steel sheets A and B in which the through holes 50 and 50 ′ are formed by the etching, the surface of the portion where the through holes 50 and 50 ′ are not generated is roughened by pitting corrosion pits. . This roughening increases the surface area and is effective in reducing the internal resistance of the battery. Moreover, the pitting corrosion pits (including through-holes) formed on this type of roughened surface have a shape with sharp edges, so that in the stainless steel sheet A of the photoelectrode 10, the porous semiconductor layer 4 The anchor effect for (4 ′) works and is effective for improving the adhesion between the stainless steel sheet A and the porous semiconductor layer 4.

以下に、表1の鋼Hを用いた板厚0.01mmのステンレス鋼圧延シート(焼鈍材)について種々の条件で貫通穴を形成した実験例を開示する。
電解質水溶液として、3価の鉄イオン濃度、および塩酸濃度を種々変えた塩化第二鉄水溶液を用意し、前記ステンレス鋼圧延シートを前記電解質水溶液中に浸漬することにより、貫通穴の形成を試みた。液温、処理時間も種々変化させた。浸漬処理後のステンレス鋼シートを光学顕微鏡(KEYENCE社製;HV−5500)により板厚方向に観察し、前述した貫通部の平均径および貫通部の面積率(貫通率)を求めた。
処理条件および結果を表3に示す。
Below, the experiment example which formed the through-hole on various conditions about the stainless steel rolled sheet (annealed material) with a plate | board thickness of 0.01 mm using the steel H of Table 1 is disclosed.
As an aqueous electrolyte solution, an aqueous ferric chloride solution with various concentrations of trivalent iron ions and hydrochloric acid was prepared, and attempts were made to form through holes by immersing the stainless steel rolled sheet in the aqueous electrolyte solution. . The liquid temperature and treatment time were also varied. The stainless steel sheet after the immersion treatment was observed in the plate thickness direction with an optical microscope (manufactured by KEYENCE Corp .; HV-5500), and the average diameter of the penetration portion and the area ratio (penetration rate) of the penetration portion were obtained.
The processing conditions and results are shown in Table 3.

Figure 2011108465
Figure 2011108465

表3からわかるように、電解質水溶液の濃度、液温、処理時間を変えることによって、貫通部の平均径および貫通部の面積率(貫通率)をコントロールすることができる。No.1、2は3価の鉄イオン濃度が低すぎたのでエッチング力が弱く、貫通穴の生成が不十分であった。No.3は塩酸濃度が高すぎたので全面溶解の傾向が大きくなり、金属の溶出量は多いものの、孔食状の深いピットが成長しにくく、結果的に60secでは十分に貫通穴が得られなかった。なお、本発明対象材はいずれも、貫通穴が生じていない部分の表面が孔食状ピットによって粗面化されていることが確認された。   As can be seen from Table 3, the average diameter of the penetrating part and the area ratio (penetrating ratio) of the penetrating part can be controlled by changing the concentration of the electrolyte aqueous solution, the liquid temperature, and the treatment time. In Nos. 1 and 2, since the trivalent iron ion concentration was too low, the etching force was weak, and the formation of through holes was insufficient. In No. 3, since the hydrochloric acid concentration was too high, the tendency of dissolution of the entire surface increased and the amount of metal elution was large, but pitting corrosion-like deep pits were difficult to grow. As a result, through holes were sufficiently obtained in 60 seconds. There wasn't. In addition, it was confirmed that all the target materials of the present invention were roughened by pitting pits on the surface of the portion where no through hole was generated.

〔光電極の作製〕
光電極10を構成する多孔質半導体層4(4’)は、一般的な色素増感型太陽電池の光極を構成する酸化物半導体粒子層であればよく、例えば二酸化チタン(TiO2)、酸化スズ(SnO2)、酸化タングステン(WO3)、酸化亜鉛(ZnO2)、酸化ニオブ(Nb25)の1種または2種以上の酸化物半導体粒子を成分とするものが採用できる。多孔質半導体層4に担持させる増感色素は、例えばルテニウム錯体、ポルフィリン、フタロシアニン、クマリン、インドリン、エオシン、ローダミン、メロシアニンなどが適用できる。
[Production of photoelectrode]
The porous semiconductor layer 4 (4 ′) constituting the photoelectrode 10 may be an oxide semiconductor particle layer constituting the photoelectrode of a general dye-sensitized solar cell. For example, titanium dioxide (TiO 2 ), One having one or more oxide semiconductor particles of tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO 2 ) and niobium oxide (Nb 2 O 5 ) as a component can be employed. As the sensitizing dye to be supported on the porous semiconductor layer 4, for example, ruthenium complex, porphyrin, phthalocyanine, coumarin, indoline, eosin, rhodamine, merocyanine and the like can be applied.

光電極10を形成させる手法としては、貫通穴50を有する前述のステンレス鋼シートAの少なくとも片側表面に、酸化物半導体の粒子を含有するペーストをドクターブレード法などにより塗布して塗膜を形成し、これを乾燥させた後、焼成する手法が好適に採用できる。酸化物半導体粒子がTiO2粒子の場合、焼成条件は例えば450〜550℃、0.5〜3h程度とすればよい。なお、ペーストを塗布および乾燥させることにより多孔質半導体層が形成されるタイプのペーストを使用する場合は、塗布後の焼成を省略してもよい。これにより酸化物半導体粒子同士が焼結し、多孔質の半導体層となる。このようにしてステンレス鋼シートAと多孔質半導体層4(4’)とが一体化した板状体が得られる。この板状体を、増感色素が懸濁している液に浸漬することにより、多孔質半導体層4(4’)に増感色素を担持させることができる。 As a method for forming the photoelectrode 10, a paste containing oxide semiconductor particles is applied to at least one surface of the stainless steel sheet A having the through holes 50 by a doctor blade method or the like to form a coating film. A method of firing after drying can be suitably employed. When the oxide semiconductor particles are TiO 2 particles, the firing condition may be, for example, about 450 to 550 ° C. and about 0.5 to 3 hours. In addition, when using the paste of the type in which a porous semiconductor layer is formed by apply | coating and drying a paste, you may abbreviate | omit baking after application | coating. As a result, the oxide semiconductor particles are sintered to form a porous semiconductor layer. In this manner, a plate-like body in which the stainless steel sheet A and the porous semiconductor layer 4 (4 ′) are integrated is obtained. By immersing this plate-like body in a liquid in which the sensitizing dye is suspended, the sensitizing dye can be supported on the porous semiconductor layer 4 (4 ′).

〔対向電極の作製〕
本発明で適用する対向電極20は、上記の穴あきステンレス鋼シートBの表面に触媒層7を形成させることにより作製される。触媒物質としては、白金、ニッケル、ポリアニリン、ポリエチレンジオキシチオフェン、カーボンなどが適用できる。白金、ニッケルなどの金属膜の場合は、例えばスパッタリング法により形成することができる。ポリアニリン、ポリエチレンジオキシチオフェンなどの導電性高分子膜は例えばスピンコート法により形成することができる。カーボンの場合は、例えば活性炭分散溶媒を用いてスピンコート法により形成することができる。発明者らの検討によれば、平均膜厚が約1nmと極めて薄い白金膜を形成させた場合でも電池として機能することが確認された。触媒層7の平均膜厚は例えば1〜300nm程度とすればよい。変換効率の安定性と経済性を両立させる上では、10〜200nm、あるいは20〜100nmの範囲にコントロールすることより効果的である。
[Preparation of counter electrode]
The counter electrode 20 applied in the present invention is manufactured by forming the catalyst layer 7 on the surface of the perforated stainless steel sheet B. As the catalyst material, platinum, nickel, polyaniline, polyethylenedioxythiophene, carbon and the like can be applied. In the case of a metal film such as platinum or nickel, it can be formed by sputtering, for example. Conductive polymer films such as polyaniline and polyethylenedioxythiophene can be formed by, for example, spin coating. In the case of carbon, for example, it can be formed by spin coating using an activated carbon dispersion solvent. According to the study by the inventors, it was confirmed that even when an extremely thin platinum film having an average film thickness of about 1 nm was formed, it functions as a battery. The average film thickness of the catalyst layer 7 may be about 1 to 300 nm, for example. In order to achieve both conversion efficiency stability and economic efficiency, it is more effective to control the range of 10 to 200 nm or 20 to 100 nm.

表3に示したNo.1、2、3、4、6、11、13のステンレス鋼シートを、光電極のステンレス鋼シートAおよび対向電極のステンレス鋼シートBとして用いることにより、図2に示した構成の色素増感型太陽電池を試作した。   By using the stainless steel sheets of No. 1, 2, 3, 4, 6, 11, and 13 shown in Table 3 as the stainless steel sheet A of the photoelectrode and the stainless steel sheet B of the counter electrode, shown in FIG. A dye-sensitized solar cell having the structure described above was made as a prototype.

〔光電極〕
多孔質半導体層を得るための材料として、TiO2粒子含有ペースト(ペクセルテクノロジーズ社製;PECC−01−06)を用意した。このペーストを各ステンレス鋼シートAの片側表面にドクターブレード法にて塗布し、常温で放置し乾燥させて乾燥塗膜とした。その後、炉に挿入して450℃で1h焼成することにより、多孔質半導体層を形成させ、ステンレス鋼シートAと多孔質半導体層が一体化した板状体を得た。この多孔質半導体層の平均厚さは10μmであった。
増感色素としてルテニウム錯体色素(Solaronix社製)を用意し、これをアセトニトリルとtert−ブタノールの混合溶媒に分散させ、色素溶液とした。
前記板状体を前記色素溶液中に浸漬させることにより、多孔質半導体層に増感色素を担持させ、ステンレス鋼シートAと当該多孔質半導体層で構成される光電極を得た。
[Photoelectrode]
As a material for obtaining a porous semiconductor layer, a TiO 2 particle-containing paste (Peccell Technologies, Inc .; PECC-01-06) was prepared. This paste was applied to one surface of each stainless steel sheet A by a doctor blade method and allowed to stand at room temperature to dry to form a dry coating film. Then, it inserted in the furnace and baked at 450 degreeC for 1 h, the porous semiconductor layer was formed, and the plate-shaped object which the stainless steel sheet A and the porous semiconductor layer were integrated was obtained. The average thickness of this porous semiconductor layer was 10 μm.
A ruthenium complex dye (manufactured by Solaronix) was prepared as a sensitizing dye, and this was dispersed in a mixed solvent of acetonitrile and tert-butanol to obtain a dye solution.
By immersing the plate-like body in the dye solution, a sensitizing dye was supported on the porous semiconductor layer to obtain a photoelectrode composed of the stainless steel sheet A and the porous semiconductor layer.

〔対向電極〕
各ステンレス鋼シートBの片側表面に、触媒物質として白金、ニッケル、ポリアニリン、カーボンのいずれかを用いた触媒層を形成することによって対向電極を得た。
白金、またはニッケルの場合は、ステンレス鋼シートBをスパッタリング装置にセットし、触媒物質である金属をターゲットに用いてスパッタコーティングすることにより触媒層を形成した。この膜厚は約20nmとした。
ポリアニリンの場合は、ポリアニリンが溶解したトルエン溶液をステンレス鋼シートBの表面に滴下するスピンコート法にて触媒層を形成した。この膜厚は約30nmである。
カーボンの場合は、活性炭を分散させたtert−ブタノール溶液をステンレス鋼シートBの表面に滴下するスピンコート法にて触媒層を形成した。この膜厚は約50nmである。
[Counter electrode]
A counter electrode was obtained by forming a catalyst layer using one of platinum, nickel, polyaniline, and carbon as a catalyst substance on one surface of each stainless steel sheet B.
In the case of platinum or nickel, the stainless steel sheet B was set in a sputtering apparatus, and a catalyst layer was formed by sputter coating using a metal as a catalyst material as a target. This film thickness was about 20 nm.
In the case of polyaniline, a catalyst layer was formed by a spin coating method in which a toluene solution in which polyaniline was dissolved was dropped onto the surface of stainless steel sheet B. This film thickness is about 30 nm.
In the case of carbon, a catalyst layer was formed by a spin coating method in which a tert-butanol solution in which activated carbon was dispersed was dropped onto the surface of the stainless steel sheet B. This film thickness is about 50 nm.

〔電解液〕
電解液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
[Electrolyte]
As an electrolytic solution, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

〔電池の形成〕
光電極のステンレス鋼シートA側の面と、対向電極の白金膜とが向き合うように、これら両電極を配置した。その際、両電極それぞれの外側には透光性板状体としてPEN(ポリエチレンナフタレート)フィルム基板を配置した。セルとなる部分の周囲にスペーサーを挿入して、双方の透光性板状体のセル内面同士の間隔が50μmとなるようにセルを構築した。そして、マイクロシリンダを用いてセル内部に電解液を注入し、両電極の間および多孔質半導体層の空隙を電解液で満たしたのち封止した。このようにして図2に示した構成の色素増感型太陽電池を得た。
[Battery formation]
These electrodes were arranged so that the surface of the photoelectrode on the stainless steel sheet A side and the platinum film of the counter electrode face each other. At that time, a PEN (polyethylene naphthalate) film substrate was disposed as a translucent plate on the outside of each of the electrodes. Spacers were inserted around the part to be the cell, and the cell was constructed so that the distance between the cell inner surfaces of both translucent plates was 50 μm. Then, an electrolytic solution was injected into the cell using a microcylinder, and the space between both electrodes and the gap of the porous semiconductor layer was filled with the electrolytic solution and then sealed. In this way, a dye-sensitized solar cell having the configuration shown in FIG. 2 was obtained.

〔電池特性〕
各色素増感型太陽電池に、ソーラーシミュレータ(山下電装社製;YSS−100)を用いてAM1.5、100mW/cm2の擬似太陽光を光電極側から照射しながら、KEITHLEY社製「2400型ソースメータ」によりI−V特性を測定して、短絡電流JSC、開放電圧VOC、形状因子FFの値を得た。これらの値から下記(1)式により光電変換効率ηの値を求めた。
光電変換効率η(%)=短絡電流JSC(mA/cm2)×開放電圧VOC(V)×{形状因子FF/入射光100(mW/cm2)}×100 …(1)
[Battery characteristics]
Each dye-sensitized solar cell is irradiated with pseudo solar light of AM 1.5, 100 mW / cm 2 from the photoelectrode side using a solar simulator (Yamashita Denso Co., Ltd .; YSS-100) “2400” manufactured by KEITHLEY The IV characteristics were measured with a “type source meter” to obtain values of the short circuit current J SC , the open circuit voltage V OC , and the form factor FF. From these values, the value of photoelectric conversion efficiency η was determined by the following formula (1).
Photoelectric conversion efficiency η (%) = short circuit current J SC (mA / cm 2 ) × open circuit voltage V OC (V) × {form factor FF / incident light 100 (mW / cm 2 )} × 100 (1)

〔シースルー性〕
作製した色素増感型太陽電池を新聞紙上に置き、当該電池のセルを通して新聞紙の文字が見えるかどうかで電池のシースルー性を評価した。セルを通して新聞紙の文字が見えるものを○(良好)、それ以外を×(不良)と判定した。
これらの結果を表4に示す。
[See-through]
The produced dye-sensitized solar cell was placed on newspaper, and the see-through property of the battery was evaluated based on whether or not letters on the newspaper could be seen through the battery cell. The case where a newspaper letter could be seen through the cell was judged as ◯ (good), and the other case was judged as x (bad).
These results are shown in Table 4.

Figure 2011108465
Figure 2011108465

表4からわかるように、ステンレス鋼シートA、Bいずれについても貫通穴の面積率(貫通率)を5%以上とした本発明例の色素増感型太陽電池では、シースルーの外観を呈する電池が構築できた。また、電池特性も良好であった。   As can be seen from Table 4, in the dye-sensitized solar cell of the example of the present invention in which the area ratio (penetration ratio) of the through holes is 5% or more for both the stainless steel sheets A and B, a battery exhibiting a see-through appearance is shown. I was able to build. The battery characteristics were also good.

1 色素増感型太陽電池
2、2’ 透光性板状体
3 透光性導電膜
4、4’ 多孔質半導体層
5 基板
6 導電材料
7 触媒層
8 電解液
10 光電極
20 対向電極
30、30’ 入射光
40 負荷
50、50’ 貫通穴
A、B ステンレス鋼シート
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell 2, 2 'translucent plate-like body 3 Translucent conductive film 4, 4' Porous semiconductor layer 5 Substrate 6 Conductive material 7 Catalyst layer 8 Electrolytic solution 10 Photoelectrode 20 Counter electrode 30, 30 'incident light 40 load 50, 50' through hole A, B stainless steel sheet

Claims (7)

一対の透光性板状体に挟まれたセル内に、光電極と対向電極が電解液を介して向き合っている色素増感型太陽電池であって、
光電極は、貫通穴を有するステンレス鋼シートAと、増感色素を担持した多孔質半導体層が一体化したものであり、対向電極は、貫通穴を有するステンレス鋼シートBの少なくとも片面に触媒層を形成したものであり、
前記ステンレス鋼シートA、Bは、下記[1]または[2]の鋼からなり、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものである、可視光透過性を有する色素増感型太陽電池。
[1]JIS G4305:2005に規定されるフェライト系鋼種に属し、且つCr含有量が16〜32質量%、Mo含有量が0.3〜3質量%の範囲にある鋼。
[2]JIS G4305:2005に規定されるオーステナイト系鋼種に属し、且つCr含有量が16〜32質量%、Mo含有量が0.3〜7質量%の範囲にある鋼。
In a cell sandwiched between a pair of translucent plates, a photosensitized solar cell in which a photoelectrode and a counter electrode face each other through an electrolyte,
The photoelectrode is obtained by integrating a stainless steel sheet A having a through hole and a porous semiconductor layer carrying a sensitizing dye, and the counter electrode is a catalyst layer on at least one surface of the stainless steel sheet B having a through hole. Is formed,
The stainless steel sheets A and B are made of the following [1] or [2] steel, the area ratio of the penetrating portion occupying the projected area when the stainless steel sheet is viewed in the thickness direction, and the penetrating portion. A dye-sensitized solar cell having visible light permeability, having through-holes having an average diameter of 5 to 500 μm.
[1] Steel that belongs to a ferritic steel type specified in JIS G4305: 2005, has a Cr content of 16 to 32 mass%, and a Mo content of 0.3 to 3 mass%.
[2] Steel that belongs to the austenitic steel grade specified in JIS G4305: 2005, has a Cr content in the range of 16 to 32 mass%, and a Mo content in the range of 0.3 to 7 mass%.
前記ステンレス鋼シートA、Bは、下記[3]または[4]の鋼からなるものである、請求項1に記載の可視光透過性を有する色素増感型太陽電池。
[3]質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼。
[4]質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼。
2. The dye-sensitized solar cell having visible light transmittance according to claim 1, wherein the stainless steel sheets A and B are made of steel of the following [3] or [4].
[3] By mass%: C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.0 6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, Ferritic stainless steel consisting of N: 0.025% or less, B: 0-0.01%, balance Fe and inevitable impurities.
[4] By mass% C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6 to 28% Cr: 16 to 32%, Mo: 0.3 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N : Austenitic stainless steel consisting of 0.3% or less, B: 0 to 0.01%, balance Fe and inevitable impurities.
ステンレス鋼シートA、Bの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものである請求項1または2に記載の可視光透過性を有する色素増感型太陽電池。   The through-holes of the stainless steel sheets A and B are formed by immersing a rolled sheet in an electrolyte aqueous solution to grow pitting corrosion-like pits. Sensitized solar cell. 光電極は、その多孔質半導体層が透光性板状体に面するように配置されている請求項1〜3のいずれかに記載の可視光透過性を有する色素増感型太陽電池。   The dye-sensitized solar cell having visible light permeability according to any one of claims 1 to 3, wherein the photoelectrode is disposed such that the porous semiconductor layer faces the translucent plate-like body. 下記の貫通穴形成方法Xにより貫通穴を有するステンレス鋼シートAを得たのち、そのステンレス鋼シートAの少なくとも片面に酸化物半導体で構成される多孔質半導体層を形成させ、次いで前記多孔質半導体層に増感色素を担持させることにより光電極を作製する工程(光電極作製工程)、
下記の貫通穴形成方法Xにより貫通穴を有するステンレス鋼シートBを得たのち、そのステンレス鋼シートBの少なくとも片面に触媒層を形成させることにより対向電極を作製する工程(対向電極作製工程)、
一対の透光性板状体に挟まれた空間内に、前記光電極と前記対向電極を、それらが互いに接触しないように向かい合わせて配置し、前記空間内の少なくとも両電極間および多孔質半導体層中の空隙に電解液を満たす工程(電池形成工程)、
を有する請求項1〜3のいずれかに記載の色素増感型太陽電池の製造方法。
〔貫通穴形成方法X〕
板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる。
After obtaining a stainless steel sheet A having through holes by the following through hole forming method X, a porous semiconductor layer composed of an oxide semiconductor is formed on at least one side of the stainless steel sheet A, and then the porous semiconductor A step of preparing a photoelectrode by carrying a sensitizing dye in the layer (photoelectrode preparation step),
After obtaining a stainless steel sheet B having a through hole by the following through hole forming method X, a step of producing a counter electrode by forming a catalyst layer on at least one side of the stainless steel sheet B (opposite electrode production step),
In the space sandwiched between a pair of translucent plates, the photoelectrode and the counter electrode are arranged facing each other so that they do not contact each other, and at least between both electrodes in the space and the porous semiconductor Filling the electrolyte in the voids in the layer (battery forming step),
The manufacturing method of the dye-sensitized solar cell in any one of Claims 1-3 which have these.
[Through hole forming method X]
A stainless steel rolled sheet having a thickness of 0.005 to 0.2 mm is immersed in an aqueous ferric chloride solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L, Through the growth of pitting corrosion-like pits, through holes with an area ratio of the penetrating portion occupying the projected area of the sheet in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm Let it form.
前記「光電極作製工程」として、
前記の貫通穴形成方法Xにより貫通穴を有するステンレス鋼シートAを得たのち、そのステンレス鋼シートAの少なくとも片面に酸化物半導体粒子を含有するペーストを塗布して塗膜を形成させ、その塗膜を焼成することにより酸化物半導体粒子が焼結してなる多孔質半導体層をステンレス鋼シートAの表面上に形成させ、次いで前記多孔質半導体層に増感色素を担持させることにより光電極を作製する工程(光電極作製工程)、
を採用する請求項5に記載の色素増感型太陽電池の製造方法。
As the “photoelectrode manufacturing process”,
After obtaining the stainless steel sheet A having through holes by the through hole forming method X, a paste containing oxide semiconductor particles is applied to at least one surface of the stainless steel sheet A to form a coating film. A porous semiconductor layer formed by sintering oxide semiconductor particles by firing the film is formed on the surface of the stainless steel sheet A, and then a photosensitizing dye is supported on the porous semiconductor layer. Manufacturing process (photoelectrode manufacturing process),
The manufacturing method of the dye-sensitized solar cell of Claim 5 which employ | adopts.
前記「電池形成工程」として、
一対の透光性板状体に挟まれた空間内に、前記光電極と前記対向電極を、当該光電極の多孔質半導体層が透光性板状体に面し且つ両電極が互いに接触しないように向かい合わせて配置し、前記空間内の少なくとも両電極間および多孔質半導体層中の空隙に電解液を満たす工程(電池形成工程)、
を採用する請求項5または6に記載の色素増感型太陽電池の製造方法。
As the “battery forming step”,
In the space between the pair of translucent plates, the photoelectrode and the counter electrode are arranged such that the porous semiconductor layer of the photoelectrode faces the translucent plate and the electrodes do not contact each other. So as to face each other and fill the electrolyte in the space between at least both electrodes in the space and in the porous semiconductor layer (battery forming step),
The manufacturing method of the dye-sensitized solar cell of Claim 5 or 6 which employ | adopts.
JP2009261384A 2009-11-16 2009-11-16 Dye-sensitized solar cell having visible light transmittance, and its manufacturing method Withdrawn JP2011108465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261384A JP2011108465A (en) 2009-11-16 2009-11-16 Dye-sensitized solar cell having visible light transmittance, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261384A JP2011108465A (en) 2009-11-16 2009-11-16 Dye-sensitized solar cell having visible light transmittance, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2011108465A true JP2011108465A (en) 2011-06-02

Family

ID=44231729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261384A Withdrawn JP2011108465A (en) 2009-11-16 2009-11-16 Dye-sensitized solar cell having visible light transmittance, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2011108465A (en)

Similar Documents

Publication Publication Date Title
Lin et al. Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells
Soo Kang et al. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells
Bai et al. Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode
Bai et al. Scalable low‐cost SnS2 nanosheets as counter electrode building blocks for dye‐sensitized solar cells
Lin et al. Mesoporous electrodeposited-CoS film as a counter electrode catalyst in dye-sensitized solar cells
WO2010041732A1 (en) Dye-sensitized solar cells
AU2009351446B2 (en) Dye-sensitized solar cell and method for manufacturing the same
TW200805726A (en) Method of manufacturing electrode substrate, electrode substrate, photoelectric conversion element, and dye sensitization solar battery
Miettunen et al. Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells?
Kim et al. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells
Li et al. Fabrication and characterization of a PbO2-TiN composite electrode by co-deposition method
Wang et al. Electrodeposition of Cu2S nanoparticles on fluorine-doped tin oxide for efficient counter electrode of quantum-dot-sensitized solar cells
Xi et al. Hydrothermal synthesis vs electrodeposition for high specific capacitance nanostructured NiO films
Kang et al. Role of surface state on the electron flow in modified TiO2 film incorporating carbon powder for a dye-sensitized solar cell
JP2009200008A (en) Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
Wang et al. Electrodeposited Co-Mo-TiO2 electrocatalysts for the hydrogen evolution reaction
Wang et al. Facile synthesis MnCo2O4 modifying PbO2 composite electrode with enhanced OER electrocatalytic activity for zinc electrowinning
Kakroo et al. Electrodeposited MnO 2-NiO composites as a Pt free counter electrode for dye-sensitized solar cells
CN109775813A (en) It is a kind of for the composite interlayer of titanium supported oxide electrode and a kind of titanium supported oxide electrode and preparation method thereof
Zhou et al. Energy storage ability and anti‐corrosion protection properties of TiO2–SnO2 system
Chu et al. Fabrication and structural characteristics of ordered TiO2− Ru (− RuO2) nanorods in porous anodic alumina films on ITO/glass substrate
Choi et al. Facile synthesis of highly conductive platinum nanofiber mats as conducting core for high rate redox supercapacitor
JP5566082B2 (en) Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
JP2011108465A (en) Dye-sensitized solar cell having visible light transmittance, and its manufacturing method
Zheng et al. Carbon Nanotube Reinforced CdSe Inverse Opal with Crack‐Free Structure and High Conductivity for Photovoltaic Applications

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205