JP5566082B2 - Counter electrode of dye-sensitized solar cell, method for producing the same, and battery - Google Patents

Counter electrode of dye-sensitized solar cell, method for producing the same, and battery Download PDF

Info

Publication number
JP5566082B2
JP5566082B2 JP2009261382A JP2009261382A JP5566082B2 JP 5566082 B2 JP5566082 B2 JP 5566082B2 JP 2009261382 A JP2009261382 A JP 2009261382A JP 2009261382 A JP2009261382 A JP 2009261382A JP 5566082 B2 JP5566082 B2 JP 5566082B2
Authority
JP
Japan
Prior art keywords
stainless steel
less
dye
solar cell
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009261382A
Other languages
Japanese (ja)
Other versions
JP2011108464A (en
Inventor
義勝 西田
芳和 守田
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009261382A priority Critical patent/JP5566082B2/en
Publication of JP2011108464A publication Critical patent/JP2011108464A/en
Application granted granted Critical
Publication of JP5566082B2 publication Critical patent/JP5566082B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型太陽電池の対向電極であって、集電部材としてステンレス鋼を用いたもの、およびその製造方法、並びにその対向電極を用いた色素増感型太陽電池に関する。   The present invention relates to a counter electrode of a dye-sensitized solar cell, which uses stainless steel as a current collecting member, a manufacturing method thereof, and a dye-sensitized solar cell using the counter electrode.

太陽電池は従来、主としてシリコンを光電変換素子に用いたものが使われているが、より経済的な次世代太陽電池として「色素増感型太陽電池」の実用化が研究されている。   Conventionally, solar cells using mainly silicon as a photoelectric conversion element have been used, but the practical application of “dye-sensitized solar cells” has been studied as a more economical next-generation solar cell.

図1に、一般的な色素増感型太陽電池の構成を模式的に示す。透光性板状体2の表面に透光性導電膜3が設けられ、透光性導電膜3の表面には増感色素を担持した多孔質半導体層4が形成されている。透光性導電膜3と多孔質半導体層4により光電極10が構成されている。透光性導電膜3は、例えばITO(インジウム−錫酸化物)、FTO(フッ素ドープ酸化錫)、TO(酸化錫)、ZnO(酸化亜鉛)等の酸化物導電膜で構成され、透光性板状体2にはガラスやプラスチックフィルムなどが使用される。光電極10と向かい合うように対向電極20が配置されており、光電極10、対向電極20、および両電極間に介在する電解液8によって色素増感型太陽電池1が構成されている。対向電極20は導電材料6とその表面に設けられた触媒層7によって構成される。必要に応じて対向電極20を支持するための基板5が設けられる。   FIG. 1 schematically shows the configuration of a general dye-sensitized solar cell. A translucent conductive film 3 is provided on the surface of the translucent plate-like body 2, and a porous semiconductor layer 4 carrying a sensitizing dye is formed on the surface of the translucent conductive film 3. A photoelectrode 10 is constituted by the translucent conductive film 3 and the porous semiconductor layer 4. The translucent conductive film 3 is composed of an oxide conductive film such as ITO (indium-tin oxide), FTO (fluorine-doped tin oxide), TO (tin oxide), ZnO (zinc oxide), and the like. The plate-like body 2 is made of glass or plastic film. A counter electrode 20 is disposed so as to face the photoelectrode 10, and the dye-sensitized solar cell 1 is configured by the photoelectrode 10, the counter electrode 20, and the electrolytic solution 8 interposed between the two electrodes. The counter electrode 20 is composed of a conductive material 6 and a catalyst layer 7 provided on the surface thereof. A substrate 5 for supporting the counter electrode 20 is provided as necessary.

光電極10を構成する多孔質半導体層4は比表面積の大きいTiO2等の半導体粒子を用いた多孔質層であり、半導体粒子の表面にはルテニウム錯体等の増感色素が担持されている。電解液としてはヨウ素(I2)およびヨウ化物イオンを含むものを使用することが一般的である。入射光30が多孔質半導体層4に担持されている増感色素に到達すると、増感色素(例えばルテニウム錯体)は光を吸収して励起され、その電子が半導体粒子(例えばTiO2)へと注入される。励起電子を注入して酸化状態になった増感色素は電解液8のイオン(例えばヨウ化物イオンI-)から電子を受け取り、基底状態に戻る。このとき液中のイオン(例えばI-)は酸化されて価数の異なるイオン(例えばI3 -)となり、対向電極20へ拡散し、対向電極20から電子を受け取って元のイオン(例えばI-)に戻る。これにより、電子は「多孔質半導体層4→透光性導電膜3→負荷40→導電材料6→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。 The porous semiconductor layer 4 constituting the photoelectrode 10 is a porous layer using semiconductor particles such as TiO 2 having a large specific surface area, and a sensitizing dye such as a ruthenium complex is supported on the surface of the semiconductor particles. In general, an electrolytic solution containing iodine (I 2 ) and iodide ions is used. When the incident light 30 reaches the sensitizing dye supported on the porous semiconductor layer 4, the sensitizing dye (for example, ruthenium complex) is excited by absorbing light, and the electrons are converted into semiconductor particles (for example, TiO 2 ). Injected. The sensitizing dye that is in an oxidized state by injecting excited electrons receives electrons from ions (for example, iodide ions I ) in the electrolyte 8 and returns to the ground state. At this time, ions (for example, I ) in the liquid are oxidized to ions having different valences (for example, I 3 ), diffuse to the counter electrode 20, receive electrons from the counter electrode 20, and receive original ions (for example, I −). Return to). As a result, electrons move along the path “porous semiconductor layer 4 → translucent conductive film 3 → load 40 → conductive material 6 → catalyst layer 7 → electrolytic solution 8 → porous semiconductor layer 4”. As a result, a current for operating the load 40 is generated.

対向電極20を構成する導電材料6としては、前記透光性導電膜3と同様にITO、FTO等の透光性を有する酸化物導電膜が使用されることがある。この場合、触媒層7がピンホールの多い薄膜層である場合には、対向電極20を可視光が透過することにより、色素増感型太陽電池1そのものに可視光透過性を持たせることができる。すなわち色素増感型太陽電池1を通して反対側がある程度透けて見えるという、いわゆる「シースルー」の外観が得られ、この性質は意匠性の面で活用されることがある。また、対向電極側から差し込む入射光も発電に利用できるというメリットがある。   As the conductive material 6 constituting the counter electrode 20, a light-transmitting oxide conductive film such as ITO or FTO may be used in the same manner as the light-transmitting conductive film 3. In this case, when the catalyst layer 7 is a thin film layer having many pinholes, visible light can be transmitted through the counter electrode 20, so that the dye-sensitized solar cell 1 itself can have visible light transmittance. . That is, a so-called “see-through” appearance is obtained in which the opposite side can be seen through the dye-sensitized solar cell 1 to some extent, and this property may be utilized in terms of design. Further, there is an advantage that incident light inserted from the counter electrode side can also be used for power generation.

しかしながら、透光性の酸化物導電膜は金属材料と比較して導電性が低いので、そのような透光性導電膜を対向電極に使用すると色素増感型太陽電池の光電変換効率を向上させる上で不利となっていた。また、触媒層7が導電材料6の表面を覆っていることにより、対向電極20の可視光透過性が弱められ、所望のシースルー外観が得られにくい場合も多い。   However, since a light-transmitting oxide conductive film has lower conductivity than a metal material, use of such a light-transmitting conductive film as a counter electrode improves the photoelectric conversion efficiency of a dye-sensitized solar cell. It was disadvantageous above. In addition, since the catalyst layer 7 covers the surface of the conductive material 6, the visible light transmittance of the counter electrode 20 is weakened, and it is often difficult to obtain a desired see-through appearance.

一方、対向電極にステンレス鋼板を用いたタイプの色素増感型太陽電池がある(特許文献1)。このタイプの色素増感型太陽電池では、酸化物導電膜を用いたものより対向電極での導電性が向上し、白金触媒層の厚さを薄くしても良好な光電変換効率が得られることが知られている。ただし、シースルーの外観を得ることはできない。   On the other hand, there is a dye-sensitized solar cell using a stainless steel plate as a counter electrode (Patent Document 1). In this type of dye-sensitized solar cell, conductivity at the counter electrode is improved compared to the one using an oxide conductive film, and good photoelectric conversion efficiency can be obtained even if the thickness of the platinum catalyst layer is reduced. It has been known. However, see-through appearance cannot be obtained.

透光性を有するステンレス鋼材料として、ステンレス鋼メッシュが知られている。しかし、これはステンレス鋼の細線からなる織物であることから高価であり、色素増感型太陽電池の普及を図る上では容易に採用することはできない。   As a stainless steel material having translucency, a stainless steel mesh is known. However, this is expensive because it is a woven fabric made of fine stainless steel wires, and cannot be easily employed for the spread of dye-sensitized solar cells.

特開2009−26532号公報JP 2009-26532 A

本発明は、色素増感型太陽電池の対向電極において、可視光透過性を有し、導電性に優れ、且つ低コストのものを提供すること、およびそれを用いたシースルーの外観を呈する色素増感型太陽電池を提供することを目的とする。   The present invention provides a dye-sensitized solar cell counter electrode having visible light permeability, excellent conductivity, and low cost, and a dye sensitizing exhibiting a see-through appearance using the same. An object is to provide a sensitive solar cell.

発明者らは詳細な研究の結果、上記目的は、対向電極の導電材料として多数の貫通穴を有するステンレス鋼シートを使用することによって達成できることを見出した。また、そのようなステンレス鋼シートは、塩化第二鉄水溶液中でのエッチングによって効率良く生産できることがわかった。   As a result of detailed studies, the inventors have found that the above object can be achieved by using a stainless steel sheet having a large number of through holes as the conductive material of the counter electrode. It was also found that such a stainless steel sheet can be efficiently produced by etching in a ferric chloride aqueous solution.

すなわち本発明では、
貫通穴を有するステンレス鋼シートと、その少なくとも片面に形成された触媒層で構成される色素増感型太陽電池の対向電極であって、
前記ステンレス鋼シートは、Cr:16質量%以上、Mo:0.3質量%以上を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有するものである色素増感型太陽電池の対向電極が提供される。
ステンレス鋼シートの貫通穴は、圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものが好ましい。
That is, in the present invention,
A counter electrode of a dye-sensitized solar cell composed of a stainless steel sheet having a through hole and a catalyst layer formed on at least one surface thereof,
The stainless steel sheet contains Cr: 16% by mass or more, Mo: 0.3% by mass or more, and has a chemical composition corresponding to a ferritic steel type defined in JIS G4305: 2005. A counter electrode of a dye-sensitized solar cell having a through hole in which the area ratio of the through portion occupying the projected area viewed in the thickness direction is 5 to 80% and the average diameter of the through portion is 5 to 500 μm. Provided.
The through holes of the stainless steel sheet are preferably formed by immersing the rolled sheet in an aqueous electrolyte solution to grow pitting corrosion pits.

ステンレス鋼シートの鋼種として、規格鋼種を挙げると以下のものが好適な対象となる。
(1)Cr:16〜32質量%、Mo:0.3〜3質量%を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当するもの。
(2)Cr:16〜32質量%、Mo:0.3〜7質量%を含有し、且つJIS G4305:2005に規定されるオーステナイト鋼種に相当するもの。
As the steel types of the stainless steel sheet, the following are suitable targets when standard steel types are listed.
(1) Cr: 16 to 32% by mass, Mo: 0.3 to 3% by mass, and corresponding to a ferritic steel type specified in JIS G4305: 2005.
(2) Cr: 16 to 32% by mass, Mo: 0.3 to 7% by mass, and corresponding to the austenitic steel grade specified in JIS G4305: 2005.

具体的に各元素の含有量範囲を示すと、以下のものが好適な対象となる。
(3)質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼。
(4)質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼。
ここで、含有量の下限を0%とした元素は、任意選択元素である。
When the content range of each element is specifically shown, the following are suitable targets.
(3) By mass% C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.0 6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.2%, Ferritic stainless steel consisting of N: 0.025% or less, B: 0-0.01%, balance Fe and inevitable impurities.
(4) By mass% C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6-28% Cr: 16 to 32%, Mo: 0.3 to 7%, Cu: 0 to 3.5%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0.1%, N : Austenitic stainless steel consisting of 0.3% or less, B: 0 to 0.01%, balance Fe and inevitable impurities.
Here, the element whose lower limit of content is 0% is an optional element.

触媒層としては、白金、ニッケル、ポリアニリン、カーボンのいずれかを使用したものが好適な対象となる。   As the catalyst layer, those using any one of platinum, nickel, polyaniline, and carbon are suitable targets.

また、上記の対向電極の製造方法として、
板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる工程(貫通穴形成工程)、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に触媒層を形成する工程(触媒層形成工程)、
を有する色素増感型太陽電池の対向電極の製造方法が提供される。
Moreover, as a manufacturing method of said counter electrode,
A stainless steel rolled sheet having a thickness of 0.005 to 0.2 mm is immersed in an aqueous ferric chloride solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L, Through the growth of pitting corrosion-like pits, through holes with an area ratio of the penetrating portion occupying the projected area of the sheet in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm are formed. Forming (through hole forming step),
A step of forming a catalyst layer on at least one side of the stainless steel sheet in which the through hole is formed (catalyst layer forming step),
The manufacturing method of the counter electrode of the dye-sensitized solar cell which has is provided.

また本発明では、上記の対向電極を備える色素増感型太陽電池が提供される。   Moreover, in this invention, a dye-sensitized solar cell provided with said counter electrode is provided.

本発明によれば、以下のようなメリットが得られる。
(1)対向電極の導電材料が金属材料であるため、従来の透光性導電膜を使用した対向電極と比べ導電性が良好であり、光電変換効率の向上に有利となる。
(2)対向電極に多数設けられた貫通穴の部分を通して、触媒層に邪魔されることなく可視光が透過するので、シースルー性(可視光透過性)に優れた色素増感型太陽電池を構築することができる。
(3)本発明で使用する穴あきステンレス鋼シートは、レジスト法を適用することなく、ステンレス鋼圧延シートを水溶液中でエッチングすることにより得られるので、生産性が高く、大量生産に適する。このため、シースルーの外観を呈する色素増感型太陽電池の低コスト化に有利である。
According to the present invention, the following advantages can be obtained.
(1) Since the conductive material of the counter electrode is a metal material, the conductivity is better than that of a conventional counter electrode using a translucent conductive film, which is advantageous in improving the photoelectric conversion efficiency.
(2) Since visible light is transmitted through the through-holes provided in the counter electrode without being interrupted by the catalyst layer, a dye-sensitized solar cell with excellent see-through property (visible light transmission property) is constructed. can do.
(3) Since the perforated stainless steel sheet used in the present invention is obtained by etching a stainless steel rolled sheet in an aqueous solution without applying a resist method, the productivity is high and suitable for mass production. For this reason, it is advantageous for the cost reduction of the dye-sensitized solar cell exhibiting a see-through appearance.

一般的な色素増感型太陽電池の構成を模式的に示した図。The figure which showed typically the structure of the general dye-sensitized solar cell. 本発明の対向電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the structure of the counter electrode of this invention, and a dye-sensitized solar cell using the same. 本発明の対向電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示した図。The figure which illustrated typically the structure of the counter electrode of this invention, and a dye-sensitized solar cell using the same.

図2に、本発明の対向電極およびそれを用いた色素増感型太陽電池の構成を模式的に例示する。対向電極20は、貫通穴50を有するステンレス鋼シート9と、その片面に形成された触媒層7によって構成されている。貫通穴50は触媒層7によって塞がれていない。この対向電極20を用いた色素増感型太陽電池1では、必要に応じて貫通穴50を通して入射してくる入射光30’を発電に利用することができる。すなわち、光電極10側からの入射光30、および対向電極20側からの入射光30’のいずれか一方または双方を発電に利用することができる。対向電極20の外側には、電解液8を封止する目的で透光性板状体2’が設けられる。この透光性板状体2’は、光電極10側の透光性板状体2と同様、ガラスやプラスチックなどの透光性材料の板あるいはフィルムを適用することができる。   In FIG. 2, the structure of the counter electrode of this invention and a dye-sensitized solar cell using the same is illustrated typically. The counter electrode 20 includes a stainless steel sheet 9 having a through hole 50 and a catalyst layer 7 formed on one surface thereof. The through hole 50 is not blocked by the catalyst layer 7. In the dye-sensitized solar cell 1 using the counter electrode 20, incident light 30 ′ incident through the through hole 50 can be used for power generation as necessary. That is, one or both of the incident light 30 from the photoelectrode 10 side and the incident light 30 ′ from the counter electrode 20 side can be used for power generation. A translucent plate-like body 2 ′ is provided outside the counter electrode 20 for the purpose of sealing the electrolytic solution 8. As the translucent plate-like body 2 ′, a plate or a film made of a translucent material such as glass or plastic can be applied as in the translucent plate-like body 2 on the photoelectrode 10 side.

図2に示した電池の例では、電子は「多孔質半導体層4→透光性導電膜3→負荷40→ステンレス鋼シート9→触媒層7→電解液8→多孔質半導体層4」の経路で移動する。その結果、負荷40を作動させる電流が発生する。   In the example of the battery shown in FIG. 2, electrons pass through “porous semiconductor layer 4 → translucent conductive film 3 → load 40 → stainless steel sheet 9 → catalyst layer 7 → electrolyte solution 8 → porous semiconductor layer 4”. Move with. As a result, a current for operating the load 40 is generated.

本発明の対向電極20は、光電極10との間に間隙が確保されている限り、必ずしも透光性板状体2’の表面上に密着させる必要はない。意匠性や生産性を加味して、最適な位置に保持すればよい。
図3に、透光性板状体2’に接触していない状態で本発明の対向電極20を配置したタイプの色素増感型太陽電池の構成を例示する。この場合、触媒層7は図示されるようにステンレス鋼シート9の片面に形成されていても構わないし、両面に形成されていても構わない。
The counter electrode 20 of the present invention does not necessarily need to be closely attached to the surface of the translucent plate-like body 2 ′ as long as a gap is secured between the counter electrode 20 and the photoelectrode 10. What is necessary is just to hold | maintain in the optimal position in consideration of design property and productivity.
FIG. 3 illustrates the configuration of a dye-sensitized solar cell of the type in which the counter electrode 20 of the present invention is disposed in a state where it is not in contact with the translucent plate-like body 2 ′. In this case, the catalyst layer 7 may be formed on one side of the stainless steel sheet 9 as illustrated, or may be formed on both sides.

〔ステンレス鋼シートの鋼種〕
色素増感型太陽電池の電解液には通常、ヨウ素(I2)およびヨウ化物イオン等を含む有機溶媒が使用される。本発明に適用するステンレス鋼シートはこのような電解液中で長期間安定して優れた耐食性を呈する素材で構成する必要がある。発明者らの検討の結果、80℃に加熱した当該電解液中に500時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼を適用することが極めて有効であることがわかった。いわゆる裸の状態(被覆層を形成していない状態)で上記の厳しい試験環境における腐食減量が1g/m2以下となるステンレス鋼は、パーソナルユースの機器に搭載する普及型の色素増感型太陽電池を構築する上で、通常は十分な耐久性を有する。また、上記液中に1000時間浸漬したときの腐食減量が1g/m2以下となる性質のステンレス鋼は特に信頼性の高い色素増感型太陽電池を構築する上で一層有利である。
[Steel grade of stainless steel sheet]
An organic solvent containing iodine (I 2 ) and iodide ions is usually used for the electrolyte solution of the dye-sensitized solar cell. The stainless steel sheet applied to the present invention needs to be made of a material that exhibits stable and excellent corrosion resistance for a long time in such an electrolytic solution. As a result of investigations by the inventors, it has been found that it is extremely effective to apply stainless steel having a property that the corrosion weight loss when immersed in the electrolyte heated to 80 ° C. for 500 hours is 1 g / m 2 or less. It was. Stainless steel with a corrosion weight loss of 1 g / m 2 or less in the above-mentioned severe test environment in the so-called bare state (in which no coating layer is formed) is a popular dye-sensitized solar mounted on personal use equipment. In constructing a battery, it usually has sufficient durability. In addition, stainless steel having a property that the corrosion weight loss when immersed in the above solution for 1000 hours is 1 g / m 2 or less is further advantageous in constructing a highly reliable dye-sensitized solar cell.

発明者らは詳細な検討の結果、ステンレス鋼において、一定量以上のCrとMoを含有させることによって、有機溶媒を用いたヨウ素(I2)およびヨウ化物イオン含有電解質溶液中での溶解がほとんど進行しない優れた耐食性が付与できることを確認している。具体的には、ステンレス鋼材料においてCr含有量を16質量%以上とし、且つMo含有量を0.3質量%以上としたとき、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物イオン含有電解液中での溶解がほとんど生じない優れた耐食性を呈することを見出した。また、Cr含有量を17質量%以上とし、且つMo含有量を0.8質量%以上としたときには、より信頼性の高い色素増感型太陽電池を構築できる。この傾向はオーステナイト系やフェライト系といった鋼種の影響をあまり受けず、その他の添加元素の影響も少ない。 As a result of detailed studies, the inventors have found that in stainless steel, by containing a certain amount or more of Cr and Mo, dissolution in an electrolyte solution containing iodine (I 2 ) and iodide ions using an organic solvent is almost impossible. It has been confirmed that excellent corrosion resistance that does not progress can be imparted. Specifically, in the stainless steel material, when the Cr content is 16% by mass or more and the Mo content is 0.3% by mass or more, iodine (I 2 ) applied to the dye-sensitized solar cell and It has been found that it exhibits excellent corrosion resistance with little dissolution in an iodide ion-containing electrolyte. When the Cr content is 17% by mass or more and the Mo content is 0.8% by mass or more, a more reliable dye-sensitized solar cell can be constructed. This tendency is not significantly affected by the steel types such as austenite and ferritic, and is less affected by other additive elements.

本発明では、フェライト系鋼種と、オーステナイト系鋼種において、それぞれ以下の組成範囲のステンレス鋼を適用することができる。合金元素の含有量に関する「%」は特に断らない限り「質量%」を意味する。   In the present invention, stainless steels having the following composition ranges can be applied to ferritic steel types and austenitic steel types. Unless otherwise specified, “%” with respect to the alloy element content means “mass%”.

フェライト系鋼種;
「C:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜3%好ましくは0.8〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物の組成を有するフェライト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるフェライト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜3質量%好ましくは0.8〜3質量%を含有するステンレス鋼を適用すればよい。
Ferritic steel grades;
“C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less, Ni: 0.6% or less, Cr : 16-32%, preferably 17-32%, Mo: 0.3-3%, preferably 0.8-3%, Cu: 0-1%, Nb: 0-1%, Ti: 0-1%, Ferritic stainless steel having a composition of Al: 0 to 0.2%, N: 0.025% or less, B: 0 to 0.01%, balance Fe and inevitable impurities "
When using a standard steel grade, for example, it is a ferritic steel grade specified in JIS G4305: 2005, Cr: 16-32 mass%, preferably 17-32 mass%, Mo: 0.3-3 mass%, preferably 0.3. What is necessary is just to apply the stainless steel containing 8-3 mass%.

オーステナイト系鋼種;
「C:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%好ましくは17〜32%、Mo:0.3〜7%好ましくは0.8〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部がFeおよび不可避的不純物の組成を有するオーステナイト系ステンレス鋼」
規格鋼種を利用する場合は例えばJIS G4305:2005に規定されるオーステナイト系鋼種であってCr:16〜32質量%好ましくは17〜32質量%、Mo:0.3〜7質量%好ましくは0.8〜7質量%を含有するステンレス鋼を適用すればよい。
Austenitic grades;
“C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni: 6 to 28%, Cr: 16 to 32%, preferably 17-32%, Mo: 0.3-7%, preferably 0.8-7%, Cu: 0-3.5%, Nb: 0-1%, Ti: 0-1%, Al : 0 to 0.1%, N: 0.3% or less, B: 0 to 0.01%, the balance being Fe and an inevitable impurity composition austenitic stainless steel "
When using a standard steel grade, for example, it is an austenitic steel grade defined in JIS G4305: 2005, Cr: 16-32 mass%, preferably 17-32 mass%, Mo: 0.3-7 mass%, preferably 0.3. What is necessary is just to apply the stainless steel containing 8-7 mass%.

Cr含有量が16%未満またはMo含有量が0.3%未満だと、色素増感型太陽電池に適用されるヨウ素(I2)およびヨウ化物含有電解質溶液中において、当該材料の溶解がほとんど生じないような優れた耐食性を安定して得ることが難しくなる。より信頼性を向上させるには、フェライト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを1%以上含有させることが一層好ましい。オーステナイト系の場合Crを17%以上且つMoを0.8%以上含有させることが好ましく、Crを18%以上且つMoを2%以上含有させることが一層好ましい。ただし、CrやMoの含有量が過剰に多くなると製造性を害する等の弊害が顕著になる。このため、Cr含有量は32%以下とすることが望ましく、30%以下が一層好ましい。またMo含有量は、フェライト系の場合3%以下とすることが望ましく、オーステナイト系の場合7%以下とすることが望ましい。なお、元素含有量の下限「0%」は、当該元素の含有量が通常の製鋼現場での分析手法において測定限界以下であることを意味する。 When the Cr content is less than 16% or the Mo content is less than 0.3%, the material is hardly dissolved in the electrolyte solution containing iodine (I 2 ) and iodide applied to the dye-sensitized solar cell. It becomes difficult to stably obtain excellent corrosion resistance that does not occur. In order to further improve the reliability, in the case of ferrite, it is preferable to contain 17% or more of Cr and 0.8% or more of Mo, and it is more preferable to contain 18% or more of Cr and 1% or more of Mo. In the case of an austenitic system, it is preferable to contain 17% or more of Cr and 0.8% or more of Mo, and more preferably to contain 18% or more of Cr and 2% or more of Mo. However, when the content of Cr or Mo is excessively increased, the adverse effects such as the manufacturability are remarkable. For this reason, the Cr content is desirably 32% or less, and more preferably 30% or less. In addition, the Mo content is preferably 3% or less in the case of ferrite, and is preferably 7% or less in the case of austenite. In addition, the lower limit “0%” of the element content means that the content of the element is equal to or lower than the measurement limit in an analysis method at a normal steelmaking site.

上記以外の元素として、V:0.3%以下、Zr:0.3%以下、Ca、Mg、CoおよびREM(希土類元素):合計0.1%以下といった元素の混入が許容される。これらはスクラップ等の原料から不可避的に混入する場合があるが上記範囲の混入であれば本発明の効果を阻害するものではない。   As elements other than the above, mixing of elements such as V: 0.3% or less, Zr: 0.3% or less, Ca, Mg, Co, and REM (rare earth elements): 0.1% or less in total is allowed. These may be inevitably mixed from raw materials such as scrap, but if mixed within the above range, the effect of the present invention is not hindered.

種々の組成のステンレス鋼について、色素増感型太陽電池の電解液を模擬したヨウ素(I2)およびヨウ化物イオンを含む試験液に対する耐食性を調べた結果を例示する。
表1に示す組成の各種ステンレス鋼を溶製し、一般的なステンレス鋼板製造工程により板厚0.28〜0.81mmの冷延焼鈍鋼板(2D仕上げ材)を製造し、これを供試材とした。表1中、組織の欄は、「α」がフェライト系、「γ」がオーステナイト系を意味する。表中におけるハイフン「−」は、製鋼現場における通常の分析手法にて測定限界以下であることを意味する。
The stainless steel of various compositions, which illustrate the results of examining the corrosion resistance to a test liquid containing a simulated iodine (I 2) and iodide ion electrolyte of the dye-sensitized solar cell.
Various stainless steels having the compositions shown in Table 1 were melted, and cold rolled annealed steel sheets (2D finishing materials) having a thickness of 0.28 to 0.81 mm were manufactured by a general stainless steel sheet manufacturing process. It was. In Table 1, in the structure column, “α” means ferrite and “γ” means austenite. The hyphen “-” in the table means that it is below the measurement limit by a normal analysis method in the steelmaking field.

Figure 0005566082
Figure 0005566082

各供試材から35×35mmの試験片を切り出し、表面(端面を含む)を#600乾式エメリー研磨で仕上げることにより、耐食性試験片とした。
色素増感型太陽電池の電解質溶液を模擬した試験液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
A 35 × 35 mm test piece was cut out from each test material, and the surface (including the end face) was finished by # 600 dry emery polishing to obtain a corrosion resistance test piece.
As a test solution simulating an electrolyte solution of a dye-sensitized solar cell, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

テフロン(登録商標)製の容器に前記試験液10mLを入れ、この液中に前記耐食性試験片を浸漬した。容器には蓋をして溶媒の揮発を抑えた。この容器を80℃の恒温槽中に保持し、浸漬開始から500時間経過後に試験片を取り出した。各鋼種ともサンプル数n=3で実施した。   10 mL of the test solution was placed in a Teflon (registered trademark) container, and the corrosion resistance test piece was immersed in the solution. The container was covered to suppress the volatilization of the solvent. This container was held in a constant temperature bath at 80 ° C., and a test piece was taken out after 500 hours from the start of immersion. For each steel type, the number of samples was n = 3.

500時間浸漬後の各試験片について、腐食減量(初期の試験片質量−浸漬後の試験片質量)を測定した。n=3の腐食減量値のうち最も大きい値(すなわち金属の溶出量が最も大きかったもの)をその鋼種の腐食減量の成績として採用した。この500時間浸漬試験における腐食減量が1g/m2以下のものを合格と判定した。また、500時間浸漬試験後の試験片表面を目視観察し、外観を調べた。この場合も、n=3のうち最も腐食の程度が激しかった試験片の外観をその鋼種の成績として採用した。
参考のため、500時間浸漬後の外観において全面腐食または端面の腐食が認められた鋼種を除き、観察後の試験片を再び上記の浸漬試験に供し、トータル1000時間の浸漬試験における腐食減量および外観を調べた。
結果を表2に示す。
About each test piece after 500-hour immersion, corrosion weight loss (initial test piece mass-test piece mass after immersion) was measured. The largest value among the corrosion weight loss values of n = 3 (that is, the one with the largest metal elution amount) was adopted as the result of the corrosion weight loss of the steel type. Those having a weight loss of 1 g / m 2 or less in this 500 hour immersion test were determined to be acceptable. Further, the surface of the test piece after the 500 hour immersion test was visually observed to examine the appearance. Also in this case, the appearance of the test piece having the most severe degree of corrosion among n = 3 was adopted as the grade of the steel type.
For reference, except for steel types that were found to have full-surface corrosion or end-face corrosion in the appearance after 500 hours of immersion, the specimens after observation were again subjected to the above immersion test, and the corrosion weight loss and appearance in the immersion test for a total of 1000 hours I investigated.
The results are shown in Table 2.

Figure 0005566082
Figure 0005566082

表1、表2からわかるように、Cr:16%以上、且つMo:0.3%以上を含有する本発明対象鋼は、裸のままでヨウ化物イオン含有電解液中に80℃×500hという厳しい条件で浸漬した場合の腐食減量が1g/m2以下となり、点錆の発生も少なく、優れた耐食性を示すことが確認された。Cr:17%以上、且つMo:0.8%以上を含有するものは、トータル1000時間の浸漬試験でも腐食減量が1g/m2以下であり、一層耐久性に優れる。 As can be seen from Tables 1 and 2, the steel according to the present invention containing Cr: 16% or more and Mo: 0.3% or more is 80 ° C. × 500 h in the iodide ion-containing electrolyte while being bare. It was confirmed that the corrosion weight loss when immersed under severe conditions was 1 g / m 2 or less, there was little occurrence of spot rust, and excellent corrosion resistance was exhibited. Those containing Cr: 17% or more and Mo: 0.8% or more have a corrosion weight loss of 1 g / m 2 or less even in a total 1000 hour immersion test, and are further excellent in durability.

〔ステンレス鋼シートの形態〕
本発明の対向電極20を構成するステンレス鋼シート9は、貫通穴50を通じて可視光が十分に透過するものでなければならない。貫通部の面積率が過小であると、色素増感型太陽電池1に良好なシースルー性を付与することが難しくなる。また、対向電極20側からの入射光30’を発電に利用する場合には光電変換効率の低下を招き好ましくない。ここで、貫通部の面積率は、ステンレス鋼シート9を厚さ方向に見た場合の投影像に占める、貫通部の面積率(以下「貫通率」と呼ぶことがある)によって表すことができる。個々の貫通穴50についての貫通部の面積は、当該貫通穴50をステンレス鋼シート9の厚さ方向見た場合に、穴を通して向こう側が貫通して見えている部分の投影面積である。貫通率は、少なくとも30個の貫通穴50における貫通部が完全に含まれる矩形領域について、個々の貫通部の面積(当該矩形領域から一部がはみ出す貫通部は当該矩形領域内の部分の面積とする)を求め、それらのトータル面積を、当該矩形領域の面積(投影面積)で除することにより算出される。
[Stainless steel sheet form]
The stainless steel sheet 9 constituting the counter electrode 20 of the present invention must be sufficiently transparent to visible light through the through hole 50. When the area ratio of the penetrating portion is too small, it becomes difficult to impart good see-through property to the dye-sensitized solar cell 1. Further, when the incident light 30 ′ from the counter electrode 20 side is used for power generation, the photoelectric conversion efficiency is lowered, which is not preferable. Here, the area ratio of the penetrating portion can be represented by the area ratio of the penetrating portion (hereinafter sometimes referred to as “penetration ratio”) in the projected image when the stainless steel sheet 9 is viewed in the thickness direction. . The area of the through portion for each through hole 50 is a projected area of a portion where the other side is seen through the hole when the through hole 50 is viewed in the thickness direction of the stainless steel sheet 9. The penetration rate is defined as the area of each penetrating part (the penetrating part partially protruding from the rectangular area is the area of the part in the rectangular area) for a rectangular area in which the penetrating part in at least thirty through holes 50 is completely included. And the total area is divided by the area (projected area) of the rectangular region.

貫通穴50は後述のように電解質水溶液中でのエッチングによって形成させることができる。その場合、ステンレス鋼シートの両面からそれぞれ孔食状ピットが成長するので、一方の表面から成長したピットが他方の表面に至って貫通穴が形成されることもあれば、双方から成長したピット同士が厚みの途中でぶつかって貫通穴となることもある。発明者らの検討によれば、これらいずれの貫通穴であっても、貫通率が5%を下回ると、シースルー性の良好な色素増感型太陽電池の構築が難しくなることがわかった。このため、本発明に用いる穴あきステンレス鋼シートは、貫通率が5%以上であることが必要である。10%以上であるものが好ましく、20%以上であるものがより好ましい。貫通穴50に入射光30’の透過を要求する場合には、貫通率は50%以上とすることが好ましく、60%以上が一層好ましい。一方、貫通率が過度に高くなるとステンレス鋼シート9の強度低下に起因して製造過程でシートが破断しやすくなり、製造性に劣る。種々検討の結果、貫通率は80%以下とするのが良いことがわかった。70%以下に管理してもよい。   The through hole 50 can be formed by etching in an aqueous electrolyte solution as will be described later. In that case, pitting corrosion-like pits grow from both surfaces of the stainless steel sheet, so that pits grown from one surface may reach the other surface and a through hole may be formed, or pits grown from both sides It may collide in the middle of the thickness and become a through hole. According to the study by the inventors, it has been found that it is difficult to construct a dye-sensitized solar cell with good see-through property when the penetration rate is less than 5% in any of these through holes. For this reason, the perforated stainless steel sheet used in the present invention needs to have a penetration rate of 5% or more. What is 10% or more is preferable, and what is 20% or more is more preferable. When the through hole 50 is required to transmit the incident light 30 ', the penetration rate is preferably 50% or more, and more preferably 60% or more. On the other hand, if the penetration rate is excessively high, the sheet is easily broken during the manufacturing process due to a decrease in the strength of the stainless steel sheet 9, and the productivity is poor. As a result of various studies, it was found that the penetration rate should be 80% or less. You may manage to 70% or less.

また、個々の貫通穴50のサイズが過大であると、電解液8中のイオンが対向電極20の表面に到達するまでの平均移動距離が大きくなることなどに起因して、光電変換効率の低下が生じやすくなる。種々検討の結果、貫通部の平均径は500μm以下とすることが必要であり、200μm以下、あるいは100μm以下とすることがより好ましい。一方、貫通穴50をあまり細かくしても光電変換効率の向上等、特性改善には繋がらず、また、そのような細かい貫通穴50を多数形成させることは難しいので、通常、貫通部の平均径は5μm以上とすればよい。ここで、貫通部の平均径は、前述の貫通率を求める場合の条件を満たした矩形領域の中に完全に含まれる貫通部(すなわち、貫通部の一部分が当該矩形領域からはみ出しているものを除く)の平均径によって表される。個々の貫通部の径は、円相当径が採用される。円相当径とは、貫通部の面積をS(μm2)、円周率をπとするとき、S=πD2/4によって定まるD(μm)を意味する。 In addition, if the size of each through hole 50 is excessive, the photoelectric conversion efficiency decreases due to an increase in the average moving distance until ions in the electrolyte solution 8 reach the surface of the counter electrode 20. Is likely to occur. As a result of various studies, the average diameter of the penetrating portion needs to be 500 μm or less, and more preferably 200 μm or less, or 100 μm or less. On the other hand, even if the through hole 50 is too fine, it does not lead to improvement in characteristics such as improvement in photoelectric conversion efficiency, and it is difficult to form a large number of such fine through holes 50. May be 5 μm or more. Here, the average diameter of the penetrating part is a penetrating part that is completely included in the rectangular area that satisfies the conditions for obtaining the penetrating ratio (that is, a part of the penetrating part that protrudes from the rectangular area). Excluding) average diameter. An equivalent circle diameter is adopted as the diameter of each penetrating portion. Circle-equivalent diameter refers to the area of the through portion S (μm 2), when the circular constant [pi, means D ([mu] m) determined by S = πD 2/4.

ステンレス鋼シート9の厚さは、0.005〜1mm程度の広い範囲で選択可能であるが、このステンレス鋼シート9に色素増感型太陽電池1全体としての強度の大部分を負担させる必要がない限り、一般的には薄い方が好ましい。ただし、薄すぎると強度不足により製造時の取り扱いが難しくなるので、0.005mm以上の厚さを確保することが望ましい。具体的には、例えば、厚さ0.005〜0.2mm程度のステンレス鋼圧延シートを素材として用いて、後述の手法で貫通穴50の形成を行うことが好ましい。厚さ0.005〜0.1mmのステンレス鋼圧延シートを使用することが一層好ましい。   Although the thickness of the stainless steel sheet 9 can be selected in a wide range of about 0.005 to 1 mm, it is necessary to make the stainless steel sheet 9 bear most of the strength of the dye-sensitized solar cell 1 as a whole. As long as there is not, generally the thinner one is preferable. However, if it is too thin, it becomes difficult to handle at the time of manufacture due to insufficient strength, so it is desirable to secure a thickness of 0.005 mm or more. Specifically, for example, it is preferable to form the through hole 50 by a method described later using a rolled stainless steel sheet having a thickness of about 0.005 to 0.2 mm as a material. It is more preferable to use a rolled stainless steel sheet having a thickness of 0.005 to 0.1 mm.

〔貫通穴の形成〕
ステンレス鋼シート9に貫通穴50を形成させる手法として、塩化第二鉄水溶液中でのエッチングが極めて効果的である。ステンレス鋼シートの素材を塩化第二鉄水溶液中に単に浸漬する手法や、必要に応じてアノード電解あるいは交番電解を加える手法が利用できる。電解質水溶液に塩化第二鉄水溶液を用いると、ステンレス鋼表面に多数の微細な孔食状ピットを形成させることができる。その孔食状ピットは開口径の割りに深さの深い形態を呈するものとなるので、これを成長させることによりシートの厚さを貫通する穴を開けることが可能となる。具体的には、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液を使用することができる。温度は例えば20〜80℃範囲とすることが好適である。ステンレス鋼種によって耐食性レベルに差があるので、それぞれの鋼種に応じた電解質水溶液濃度、温度を上記の範囲で設定するとともに、処理時間や、電解を行う場合の電解条件などを最適に設定すればよい。貫通率や貫通部の平均径は、板厚に応じて上記各条件を変化させることによりコントロールすることができる。素材の鋼種および板厚、並びに目標とする貫通率および貫通部の平均径に応じて予備実験により最適条件を定めればよい。
(Formation of through holes)
As a method for forming the through hole 50 in the stainless steel sheet 9, etching in a ferric chloride aqueous solution is extremely effective. A method of simply immersing the material of the stainless steel sheet in a ferric chloride aqueous solution or a method of adding anode electrolysis or alternating electrolysis as required can be used. When a ferric chloride aqueous solution is used for the electrolyte aqueous solution, a large number of fine pitting corrosion pits can be formed on the stainless steel surface. Since the pitting corrosion pit has a deep shape with respect to the opening diameter, it is possible to open a hole penetrating the thickness of the sheet by growing the pitting corrosion pit. Specifically, a ferric chloride aqueous solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L can be used. The temperature is preferably in the range of 20 to 80 ° C., for example. Since there is a difference in the corrosion resistance level depending on the stainless steel type, the concentration and temperature of the aqueous electrolyte solution corresponding to each steel type should be set within the above ranges, and the treatment time and electrolysis conditions for electrolysis should be set optimally. . The penetration rate and the average diameter of the penetration part can be controlled by changing each of the above conditions according to the plate thickness. What is necessary is just to determine optimal conditions by preliminary experiment according to the steel grade and plate | board thickness of a raw material, the target penetration rate, and the average diameter of a penetration part.

上記の塩化第二鉄水溶液中でのエッチングによって貫通穴50を形成すると、貫通穴50が生じていない部分の表面にも、孔食状ピットが多数形成される。すなわち、当該エッチングによって貫通穴50を形成したステンレス鋼シート9は、貫通穴50が生じていない部分の表面が孔食状ピットによって粗面化されているものとなる。この粗面化によって表面積が増大するので電池の内部抵抗低減に有効となる。   When the through hole 50 is formed by etching in the above ferric chloride aqueous solution, many pitting corrosion pits are also formed on the surface of the portion where the through hole 50 is not formed. That is, in the stainless steel sheet 9 in which the through holes 50 are formed by the etching, the surface of the portion where the through holes 50 are not generated is roughened by pitting corrosion pits. This roughening increases the surface area and is effective in reducing the internal resistance of the battery.

以下に、表1の鋼Hを用いた板厚0.01mmのステンレス鋼圧延シート(焼鈍材)について種々の条件で貫通穴を形成した実験例を開示する。
電解質水溶液として、3価の鉄イオン濃度、および塩酸濃度を種々変えた塩化第二鉄水溶液を用意し、前記ステンレス鋼圧延シートを前記電解質水溶液中に浸漬することにより、貫通穴の形成を試みた。液温、処理時間も種々変化させた。浸漬処理後のステンレス鋼シートを光学顕微鏡(KEYENCE社製;HV−5500)により板厚方向に観察し、前述した貫通部の平均径および貫通部の面積率(貫通率)を求めた。
処理条件および結果を表3に示す。
Below, the experiment example which formed the through-hole on various conditions about the stainless steel rolled sheet (annealed material) with a plate | board thickness of 0.01 mm using the steel H of Table 1 is disclosed.
As an aqueous electrolyte solution, an aqueous ferric chloride solution with various concentrations of trivalent iron ions and hydrochloric acid was prepared, and attempts were made to form through holes by immersing the stainless steel rolled sheet in the aqueous electrolyte solution. . The liquid temperature and treatment time were also varied. The stainless steel sheet after the immersion treatment was observed in the plate thickness direction with an optical microscope (manufactured by KEYENCE Corp .; HV-5500), and the average diameter of the penetration portion and the area ratio (penetration rate) of the penetration portion were obtained.
The processing conditions and results are shown in Table 3.

Figure 0005566082
Figure 0005566082

表3からわかるように、電解質水溶液の濃度、液温、処理時間を変えることによって、貫通部の平均径および貫通部の面積率(貫通率)をコントロールすることができる。No.1、2は3価の鉄イオン濃度が低すぎたのでエッチング力が弱く、貫通穴の生成が不十分であった。No.3は塩酸濃度が高すぎたので全面溶解の傾向が大きくなり、金属の溶出量は多いものの、孔食状の深いピットが成長しにくく、結果的に60secでは十分に貫通穴が得られなかった。なお、本発明対象材はいずれも、貫通穴が生じていない部分の表面が孔食状ピットによって粗面化されていることが確認された。   As can be seen from Table 3, the average diameter of the penetrating part and the area ratio (penetrating ratio) of the penetrating part can be controlled by changing the concentration of the electrolyte aqueous solution, the liquid temperature, and the treatment time. In Nos. 1 and 2, since the trivalent iron ion concentration was too low, the etching force was weak, and the formation of through holes was insufficient. In No. 3, since the hydrochloric acid concentration was too high, the tendency of dissolution of the entire surface increased and the amount of metal elution was large, but pitting corrosion-like deep pits were difficult to grow. As a result, through holes were sufficiently obtained in 60 seconds. There wasn't. In addition, it was confirmed that all the target materials of the present invention were roughened by pitting pits on the surface of the portion where no through hole was generated.

〔触媒層の形成〕
本発明で適用する対向電極20の表面には触媒層7が形成されている。触媒物質としては、白金、ニッケル、ポリアニリン、ポリエチレンジオキシチオフェン、カーボンなどが適用できる。白金、ニッケルなどの金属膜の場合は、例えばスパッタリング法により形成することができる。ポリアニリン、ポリエチレンジオキシチオフェンなどの導電性高分子膜は例えばスピンコート法により形成することができる。カーボンの場合は、例えば活性炭分散溶媒を用いてスピンコート法により形成することができる。発明者らの検討によれば、平均膜厚が約1nmと極めて薄い白金膜を形成させた場合でも電池として機能することが確認された。触媒層7の平均膜厚は例えば1〜300nm程度とすればよい。変換効率の安定性と経済性を両立させる上では、10〜200nm、あるいは20〜100nmの範囲にコントロールすることより効果的である。
[Formation of catalyst layer]
A catalyst layer 7 is formed on the surface of the counter electrode 20 applied in the present invention. As the catalyst material, platinum, nickel, polyaniline, polyethylenedioxythiophene, carbon and the like can be applied. In the case of a metal film such as platinum or nickel, it can be formed by sputtering, for example. Conductive polymer films such as polyaniline and polyethylenedioxythiophene can be formed by, for example, spin coating. In the case of carbon, for example, it can be formed by spin coating using an activated carbon dispersion solvent. According to the study by the inventors, it was confirmed that even when an extremely thin platinum film having an average film thickness of about 1 nm was formed, it functions as a battery. The average film thickness of the catalyst layer 7 may be about 1 to 300 nm, for example. In order to achieve both conversion efficiency stability and economic efficiency, it is more effective to control the range of 10 to 200 nm or 20 to 100 nm.

表3に示したNo.1、2、3、4、6、11、13のステンレス鋼シートを用いて対向電極を作製し、それを用いて図2に示した構成の色素増感型太陽電池を試作した。   A counter electrode was prepared using the stainless steel sheets No. 1, 2, 3, 4, 6, 11, and 13 shown in Table 3, and the dye-sensitized solar cell having the configuration shown in FIG. Prototyped.

〔対向電極〕
ステンレス鋼シートの片側表面に、触媒物質として白金、ニッケル、ポリアニリン、カーボンのいずれかを用いた触媒層を形成することによって対向電極を得た。
白金、またはニッケルの場合は、ステンレス鋼シートをスパッタリング装置にセットし、触媒物質である金属をターゲットに用いてスパッタコーティングすることにより触媒層を形成した。この膜厚は約20nmとした。
ポリアニリンの場合は、ポリアニリンが溶解したトルエン溶液をステンレス鋼シートの表面に滴下するスピンコート法にて触媒層を形成した。この膜厚は約30nmである。
カーボンの場合は、活性炭を分散させたtert−ブタノール溶液をステンレス鋼シートの表面に滴下するスピンコート法にて触媒層を形成した。この膜厚は約50nmである。
[Counter electrode]
A counter electrode was obtained by forming a catalyst layer using one of platinum, nickel, polyaniline, and carbon as a catalyst material on one surface of a stainless steel sheet.
In the case of platinum or nickel, a stainless steel sheet was set in a sputtering apparatus, and a catalyst layer was formed by sputter coating using a metal as a catalyst material as a target. This film thickness was about 20 nm.
In the case of polyaniline, a catalyst layer was formed by a spin coating method in which a toluene solution in which polyaniline was dissolved was dropped onto the surface of a stainless steel sheet. This film thickness is about 30 nm.
In the case of carbon, a catalyst layer was formed by a spin coating method in which a tert-butanol solution in which activated carbon was dispersed was dropped onto the surface of a stainless steel sheet. This film thickness is about 50 nm.

〔光電極〕
光電極用の透光性導電膜として、PEN(ポリエチレンナフタレート)フィルム基板上にITO膜を形成したもの(ペクセルテクノロジーズ社製;PECF−IP)を用意した。多孔質半導体層を得るための材料としてTiO2ペースト(ペクセルテクノロジーズ社製;PECC−01−06)を用意した。増感色素としてルテニウム錯体色素(Solaronix社製)を用意し、これをアセトニトリルとtert−ブタノールの混合溶媒に分散させ、色素溶液とした。
[Photoelectrode]
As a translucent conductive film for a photoelectrode, an ITO film formed on a PEN (polyethylene naphthalate) film substrate (Peccell Technologies, Inc .; PECF-IP) was prepared. As a material for obtaining a porous semiconductor layer, a TiO 2 paste (Peccell Technologies, Inc .; PECC-01-06) was prepared. A ruthenium complex dye (manufactured by Solaronix) was prepared as a sensitizing dye, and this was dispersed in a mixed solvent of acetonitrile and tert-butanol to obtain a dye solution.

PENフィルム基板のITO面上にTiO2ペーストをドクターブレード法にて塗布し、常温で放置し乾燥させ、多孔質半導体層を形成させた。得られた多孔質半導体層の厚さは10μmであった。このようにして得られた板状体を前記色素溶液中に浸漬させることにより、多孔質半導体層に増感色素を担持させ、ITO膜と当該多孔質半導体層で構成される光電極を得た。ここで、PENフィルム基板は図2における透光性板状体2に相当するものである。 A TiO 2 paste was applied on the ITO surface of the PEN film substrate by a doctor blade method, and allowed to stand at room temperature and dried to form a porous semiconductor layer. The thickness of the obtained porous semiconductor layer was 10 μm. The plate-like body thus obtained was immersed in the dye solution, whereby a sensitizing dye was supported on the porous semiconductor layer, and a photoelectrode composed of an ITO film and the porous semiconductor layer was obtained. . Here, the PEN film substrate corresponds to the translucent plate 2 in FIG.

〔電解液〕
電解液として、アセトニトリル溶媒中にヨウ素I2:0.05mol/L、およびヨウ化リチウムLiI:0.5mol/Lを溶解させたものを用意した。
[Electrolyte]
As an electrolytic solution, a solution prepared by dissolving iodine I 2 : 0.05 mol / L and lithium iodide LiI: 0.5 mol / L in an acetonitrile solvent was prepared.

〔電池の作製〕
光電極のステンレス鋼シート側の面と、対向電極の白金膜とが向き合うように、これら両電極を配置した。その際、対向電極側の厚さ方向端部にはPENフィルム基板を配置した。セルとなる部分の周囲にスペーサーを挿入してITO表面と対向電極の距離が50μmとなるようにセルを構築した。そして、マイクロシリンダを用いてセル内部に電解液を注入し、両電極の間および多孔質半導体層の空隙を電解液で満たしたのち封止した。このようにして図2に示した構成の色素増感型太陽電池を得た。
[Production of battery]
These electrodes were arranged so that the surface of the photoelectrode on the stainless steel sheet side and the platinum film of the counter electrode face each other. At that time, a PEN film substrate was disposed at the end in the thickness direction on the counter electrode side. A cell was constructed so that the distance between the ITO surface and the counter electrode was 50 μm by inserting a spacer around the cell portion. Then, an electrolytic solution was injected into the cell using a microcylinder, and the space between both electrodes and the gap of the porous semiconductor layer was filled with the electrolytic solution and then sealed. In this way, a dye-sensitized solar cell having the configuration shown in FIG. 2 was obtained.

〔電池特性〕
各色素増感型太陽電池に、ソーラーシミュレータ(山下電装社製;YSS−100)を用いてAM1.5、100mW/cm2の擬似太陽光を光電極側から照射しながら、KEITHLEY社製「2400型ソースメータ」によりI−V特性を測定して、短絡電流JSC、開放電圧VOC、形状因子FFの値を得た。これらの値から下記(1)式により光電変換効率ηの値を求めた。
光電変換効率η(%)=短絡電流JSC(mA/cm2)×開放電圧VOC(V)×{形状因子FF/入射光100(mW/cm2)}×100 …(1)
[Battery characteristics]
Each dye-sensitized solar cell is irradiated with pseudo solar light of AM 1.5, 100 mW / cm 2 from the photoelectrode side using a solar simulator (Yamashita Denso Co., Ltd .; YSS-100) “2400” manufactured by KEITHLEY The IV characteristics were measured with a “type source meter” to obtain values of the short circuit current J SC , the open circuit voltage V OC , and the form factor FF. From these values, the value of photoelectric conversion efficiency η was determined by the following formula (1).
Photoelectric conversion efficiency η (%) = short circuit current J SC (mA / cm 2 ) × open circuit voltage V OC (V) × {form factor FF / incident light 100 (mW / cm 2 )} × 100 (1)

〔シースルー性〕
作製した色素増感型太陽電池を新聞紙上に置き、当該電池のセルを通して新聞紙の文字が見えるかどうかで電池のシースルー性を評価した。セルを通して新聞紙の文字が見えるものを○(良好)、それ以外を×(不良)と判定した。
これらの結果を表4に示す。
[See-through]
The produced dye-sensitized solar cell was placed on newspaper, and the see-through property of the battery was evaluated based on whether or not letters on the newspaper could be seen through the battery cell. The case where a newspaper letter could be seen through the cell was judged as ◯ (good), and the other case was judged as x (bad).
These results are shown in Table 4.

Figure 0005566082
Figure 0005566082

表4からわかるように、ステンレス鋼シートに形成された貫通穴の面積率(貫通率)が5%以上である本発明例のものでは、シースルーの外観を呈する電池が構築できた。また、電池特性も良好であった。   As can be seen from Table 4, in the example of the present invention in which the area ratio (penetration ratio) of the through holes formed in the stainless steel sheet was 5% or more, a battery having a see-through appearance could be constructed. The battery characteristics were also good.

1 色素増感型太陽電池
2、2’ 透光性板状体
3 透光性導電膜
4、4’ 多孔質半導体層
5 基板
6 導電材料
7 触媒層
8 電解液
9 ステンレス鋼シート
10 光電極
20 対向電極
30、30’ 入射光
40 負荷
50 貫通穴
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell 2, 2 'Translucent plate-shaped body 3 Translucent conductive film 4, 4' Porous semiconductor layer 5 Substrate 6 Conductive material 7 Catalyst layer 8 Electrolytic solution 9 Stainless steel sheet 10 Photoelectrode 20 Counter electrode 30, 30 'Incident light 40 Load 50 Through hole

Claims (7)

貫通穴を有するステンレス鋼シートと、その少なくとも片面に形成された触媒層で構成される色素増感型太陽電池の対向電極であって、
前記ステンレス鋼シートは、Cr:16〜32質量%、Mo:0.3〜3質量%を含有し、且つJIS G4305:2005に規定されるフェライト系鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有し、前記貫通穴は圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものである色素増感型太陽電池の対向電極。
A counter electrode of a dye-sensitized solar cell composed of a stainless steel sheet having a through hole and a catalyst layer formed on at least one surface thereof,
The stainless steel sheet contains Cr: 16 to 32% by mass, Mo: 0.3 to 3% by mass, and has a chemical composition corresponding to a ferritic steel type defined in JIS G4305: 2005. area ratio 5% to 80% of the penetrating part occupying the projected area viewed sheet in the thickness direction, and the average diameter of the through portion have a through hole is 5 to 500 [mu] m, the through hole electrolytic solution rolled sheet A counter electrode of a dye-sensitized solar cell, which is formed by growing pitting corrosion-like pits by dipping inside .
貫通穴を有するステンレス鋼シートと、その少なくとも片面に形成された触媒層で構成される色素増感型太陽電池の対向電極であって、
前記ステンレス鋼シートは、Cr:16〜32質量%、Mo:0.3〜7質量%を含有し、且つJIS G4305:2005に規定されるオーステナイト鋼種に相当する化学組成を有し、ステンレス鋼シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を有し、前記貫通穴は圧延シートを電解質水溶液中に浸漬して孔食状ピットを成長させることにより形成したものである色素増感型太陽電池の対向電極。
A counter electrode of a dye-sensitized solar cell composed of a stainless steel sheet having a through hole and a catalyst layer formed on at least one surface thereof,
The stainless steel sheet contains Cr: 16 to 32% by mass, Mo: 0.3 to 7% by mass, and has a chemical composition corresponding to an austenitic steel type defined in JIS G4305: 2005, and is a stainless steel sheet. the through portion area ratio of occupied to the projected area when viewed in the thickness direction 5% to 80%, and an average diameter of the through portion have a through hole is 5 to 500 [mu] m, the through hole aqueous electrolyte solution in a rolled sheet A counter electrode of a dye-sensitized solar cell, which is formed by growing pitting corrosion-like pits by dipping in a plutonium .
ステンレス鋼シートの化学組成が、質量%でC:0.15%以下、Si:1.2%以下、Mn:1.2%以下、P:0.04%以下、S:0.03%以下、Ni:0.6%以下、Cr:16〜32%、Mo:0.3〜3%、Cu:0〜1%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.2%、N:0.025%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるフェライト系ステンレス鋼である請求項1に記載の色素増感型太陽電池の対向電極。   The chemical composition of the stainless steel sheet is, by mass, C: 0.15% or less, Si: 1.2% or less, Mn: 1.2% or less, P: 0.04% or less, S: 0.03% or less Ni: 0.6% or less, Cr: 16 to 32%, Mo: 0.3 to 3%, Cu: 0 to 1%, Nb: 0 to 1%, Ti: 0 to 1%, Al: 0 to 0% The opposite of the dye-sensitized solar cell according to claim 1, which is a ferritic stainless steel comprising 0.2%, N: 0.025% or less, B: 0 to 0.01%, the balance Fe and unavoidable impurities. electrode. ステンレス鋼シートの化学組成が、質量%でC:0.15%以下、Si:4%以下、Mn:2.5%以下、P:0.045%以下、S:0.03%以下、Ni:6〜28%、Cr:16〜32%、Mo:0.3〜7%、Cu:0〜3.5%、Nb:0〜1%、Ti:0〜1%、Al:0〜0.1%、N:0.3%以下、B:0〜0.01%、残部Feおよび不可避的不純物からなるオーステナイト系ステンレス鋼である請求項に記載の色素増感型太陽電池の対向電極。 The chemical composition of the stainless steel sheet is, by mass, C: 0.15% or less, Si: 4% or less, Mn: 2.5% or less, P: 0.045% or less, S: 0.03% or less, Ni : 6-28%, Cr: 16-32%, Mo: 0.3-7%, Cu: 0-3.5%, Nb: 0-1%, Ti: 0-1%, Al: 0-0 The counter electrode of a dye-sensitized solar cell according to claim 2 , which is an austenitic stainless steel comprising 0.1%, N: 0.3% or less, B: 0 to 0.01%, the balance Fe and inevitable impurities . 触媒層が、白金、ニッケル、ポリアニリン、カーボンのいずれかを使用したものである請求項1〜のいずれか1項に記載の色素増感型太陽電池の対向電極。 Catalyst layer, platinum, nickel, polyaniline, the counter electrode of the dye-sensitized solar cell according to any one of claims 1-4 is obtained by using any of the carbon. 板厚0.005〜0.2mmのステンレス鋼圧延シートを、3価の鉄イオン濃度30〜100g/L、塩酸濃度0〜50g/Lの塩化第二鉄水溶液中に浸漬して、当該液中で孔食状ピットを成長させることにより、当該シートを厚さ方向に見た投影面積に占める貫通部の面積率が5〜80%、且つ貫通部の平均径が5〜500μmである貫通穴を形成させる工程(貫通穴形成工程)、
前記貫通穴を形成したステンレス鋼シートの少なくとも片面に触媒層を形成する工程(触媒層形成工程)、
を有する請求項1〜4のいずれか1項に記載の色素増感型太陽電池の対向電極の製造方法。
A stainless steel rolled sheet having a thickness of 0.005 to 0.2 mm is immersed in an aqueous ferric chloride solution having a trivalent iron ion concentration of 30 to 100 g / L and a hydrochloric acid concentration of 0 to 50 g / L, Through the growth of pitting corrosion-like pits, through holes with an area ratio of the penetrating portion occupying the projected area of the sheet in the thickness direction of 5 to 80% and an average diameter of the penetrating portion of 5 to 500 μm are formed. Forming (through hole forming step),
A step of forming a catalyst layer on at least one side of the stainless steel sheet in which the through hole is formed (catalyst layer forming step),
Method for manufacturing a counter electrode of a dye-sensitized solar cell according to claim 1 having a.
請求項1〜のいずれか1項に記載の対向電極を備える色素増感型太陽電池。 Dye-sensitized solar cell including a counter electrode according to any one of claims 1-5.
JP2009261382A 2009-11-16 2009-11-16 Counter electrode of dye-sensitized solar cell, method for producing the same, and battery Expired - Fee Related JP5566082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009261382A JP5566082B2 (en) 2009-11-16 2009-11-16 Counter electrode of dye-sensitized solar cell, method for producing the same, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261382A JP5566082B2 (en) 2009-11-16 2009-11-16 Counter electrode of dye-sensitized solar cell, method for producing the same, and battery

Publications (2)

Publication Number Publication Date
JP2011108464A JP2011108464A (en) 2011-06-02
JP5566082B2 true JP5566082B2 (en) 2014-08-06

Family

ID=44231728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261382A Expired - Fee Related JP5566082B2 (en) 2009-11-16 2009-11-16 Counter electrode of dye-sensitized solar cell, method for producing the same, and battery

Country Status (1)

Country Link
JP (1) JP5566082B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043166B2 (en) * 2012-11-20 2016-12-14 積水化学工業株式会社 Electric module manufacturing method and electric module
JP7014754B2 (en) * 2019-07-09 2022-02-01 Jfeスチール株式会社 Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
JP2007273240A (en) * 2006-03-31 2007-10-18 Shinshu Univ Dye-sensitized solar battery
JP2008034110A (en) * 2006-07-26 2008-02-14 Nisshin Steel Co Ltd Electrode material of dye-sensitized solar cell
JP5171139B2 (en) * 2007-07-18 2013-03-27 日新製鋼株式会社 Electrode materials for dye-sensitized solar cells
JP2009200008A (en) * 2008-02-25 2009-09-03 Nisshin Steel Co Ltd Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2011108464A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
WO2010041732A1 (en) Dye-sensitized solar cells
Soo Kang et al. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells
US20120132275A1 (en) Dye-sensitized solar cell and method for manufacturing the same
Devaraj et al. The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties
Msindo et al. Electrochemical and physical characterisation of lead-based anodes in comparison to Ti–(70%) IrO 2/(30%) Ta 2 O 5 dimensionally stable anodes for use in copper electrowinning
JP2009200008A (en) Electrode material, its manufacturing method, and electrode of dye-sensitized solar cell
Li et al. Fabrication and characterization of a PbO2-TiN composite electrode by co-deposition method
Miettunen et al. Do counter electrodes on metal substrates work with cobalt complex based electrolyte in dye sensitized solar cells?
JP5171139B2 (en) Electrode materials for dye-sensitized solar cells
Kakroo et al. Electrodeposited MnO 2-NiO composites as a Pt free counter electrode for dye-sensitized solar cells
JP2008034110A (en) Electrode material of dye-sensitized solar cell
CN109775813A (en) It is a kind of for the composite interlayer of titanium supported oxide electrode and a kind of titanium supported oxide electrode and preparation method thereof
Xia et al. Electrochemical degradation of methyldopa on a Fe doped PbO2 electrode: electrode characterization, reaction kinetics and energy demands
Zhang et al. Electrochemical reductive doping and interfacial impedance of TiO2 nanotube arrays in aqueous and aprotic solvents
JP5566082B2 (en) Counter electrode of dye-sensitized solar cell, method for producing the same, and battery
JPWO2008093675A1 (en) Laminated electrode
Chang et al. Study of the effects of pretreatment processing on the properties of metal oxide coatings on Ti-based sheet
Akita et al. One-Compartment hydrogen peroxide-photofuel cell using TiO2 photoanode and prussian blue cathode
JP2011108463A (en) Photoelectrode of dye-sensitized solar cell, its manufacturing method, and battery
Yao et al. Influences of cerium on the electrodeposition process and physicochemical properties of lead dioxide electrodes
JP2011108465A (en) Dye-sensitized solar cell having visible light transmittance, and its manufacturing method
JP5430658B2 (en) Electrode of dye-sensitized solar cell
Laouini et al. Electrochemical impedance spectroscopy investigation of spinel type cobalt oxide thin film electrodes in alkaline medium
Duan et al. Component-controlled synthesis of gradient electrode for efficient electrocatalytic dye decolorization
JP2011044318A (en) Dye-sensitized solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140617

R150 Certificate of patent or registration of utility model

Ref document number: 5566082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees