JP2007273240A - Dye-sensitized solar battery - Google Patents

Dye-sensitized solar battery Download PDF

Info

Publication number
JP2007273240A
JP2007273240A JP2006097064A JP2006097064A JP2007273240A JP 2007273240 A JP2007273240 A JP 2007273240A JP 2006097064 A JP2006097064 A JP 2006097064A JP 2006097064 A JP2006097064 A JP 2006097064A JP 2007273240 A JP2007273240 A JP 2007273240A
Authority
JP
Japan
Prior art keywords
dye
counter electrode
solar cell
type semiconductor
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097064A
Other languages
Japanese (ja)
Inventor
Eiji Suzuki
栄二 鈴木
Hisanao Usami
久尚 宇佐美
Shiyougo Mori
正悟 森
Nobuhiro Kanamaru
展大 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Shinshu University NUC
Original Assignee
Koa Corp
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp, Shinshu University NUC filed Critical Koa Corp
Priority to JP2006097064A priority Critical patent/JP2007273240A/en
Publication of JP2007273240A publication Critical patent/JP2007273240A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar battery of a tandem type which has high light transparency and can make a highly efficient photoelectric conversion by using a counter electrode considering a rate determining of an electron supply. <P>SOLUTION: The coloring matter sensitizing solar battery is provided with a counter electrode 13 which is arranged between an n-type semiconductor electrode 11 in which a first coloring element is absorbed and an n-type semiconductor electrode 12 in which a second coloring element having a different absorbing wavelength from the first coloring element and an electrolyte solution 15 filled between the n-type semiconductor electrode and the counter electrode. The counter electrode 13 is formed as a repeating pattern of lines and spaces and when a line width and a space between lines are xμm and yμm respectively, conditions of 0.5≤y/(x+y)≤0.85 and 0≪y≪320 shall be satisfied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属酸化物半導体材料に色素を吸着させ、増感した色素増感太陽電池に係り、特に半導体電極を平行に配置し、その間に対極電極を配置した、いわゆるタンデム型の色素増感太陽電池に関する。   The present invention relates to a dye-sensitized solar cell in which a dye is adsorbed and sensitized by adsorbing a dye to a metal oxide semiconductor material. It relates to solar cells.

化石燃料の枯渇、その燃焼に伴って生ずる地球温暖化などのグローバルな環境問題が全人類的な課題になり、このような状況下において、非枯渇性の太陽エネルギーを利用した太陽電池は燃料が不要で、無尽蔵なクリーンエネルギーとして本格的な実用化が進展している。太陽電池は、使用される半導体材料によって、シリコン系、化合物半導体系、有機半導体系、金属酸化物半導体系などに分類される。金属酸化物半導体系の太陽電池については、シリコン系と比較して材料精製のためのエネルギーが少なく、化合物半導体系と比較して環境問題への影響が少なく、色素吸着により光電気変換効率も良好であるので、低コスト、環境適合型の太陽電池として、実用化に向けて研究開発が進められている(例えば、特許文献1−4参照)。
特開2000−260492号公報 特開2005−129580号公報 特開2000−100483号公報 特開2001−167808号公報
Global environmental problems such as the depletion of fossil fuels and the global warming that accompanies the combustion have become issues for all mankind. Under such circumstances, solar cells that use non-depleting solar energy are fuels. Full-scale practical use is progressing as unnecessary and inexhaustible clean energy. Solar cells are classified into silicon-based, compound semiconductor-based, organic semiconductor-based, metal oxide semiconductor-based, etc., depending on the semiconductor material used. Metal oxide semiconductor solar cells use less energy for material purification than silicon, have less impact on environmental issues than compound semiconductors, and have good photoelectric conversion efficiency due to dye adsorption Therefore, as a low-cost, environmentally compatible solar cell, research and development are being promoted for practical use (see, for example, Patent Documents 1-4).
JP 2000-260492 A JP 2005-129580 A JP 2000-1000048 A JP 2001-167808 A

第1色素を吸着させたn型半導体からなる第1電極と第2色素を吸着させたn型半導体からなる第2電極の間に透光性を有する対極電極を配置したn/n並列タンデム型色素増感太陽電池が知られている(上記特許文献1−2)。係るタンデム型の色素増感太陽電池では、第1電極を透過した太陽光が第1電極で発電を行い、対極電極を透過して、さらに第2電極で発電を行うので、第2電極への光量が多いほど第2電極での発電量が多くなり変換効率も向上する。このため、対極電極としてのメッシュやワイヤについては、光の透過率が高いことが求められる。しかし、メッシュやワイヤの開口率が上がるほど、メッシュやワイヤの目が粗くなるため、対極電極から第1電極または第2電極側へ電子供給を行うために必要なレドックス対の拡散距離が長くなる。このため、対極電極の開口率が上がることにより電子供給が律速になり、発電効率が低下する可能性がある。また、開口率が上がるほど表面積不足による反応律速により変換効率が低下する可能性がある。   N / n parallel tandem type in which a translucent counter electrode is arranged between a first electrode made of an n-type semiconductor adsorbing a first dye and a second electrode made of an n-type semiconductor adsorbing a second dye A dye-sensitized solar cell is known (Patent Document 1-2). In such a tandem dye-sensitized solar cell, sunlight transmitted through the first electrode generates power at the first electrode, transmits through the counter electrode, and further generates power at the second electrode. As the amount of light increases, the amount of power generated by the second electrode increases and the conversion efficiency also improves. For this reason, about the mesh and wire as a counter electrode, it is calculated | required that the transmittance | permeability of light is high. However, as the aperture ratio of the mesh or wire increases, the mesh or wire becomes coarser, so that the diffusion distance of the redox pair necessary for supplying electrons from the counter electrode to the first electrode or the second electrode side becomes longer. . For this reason, when the aperture ratio of the counter electrode increases, the supply of electrons becomes rate-determined, and the power generation efficiency may decrease. Moreover, conversion efficiency may fall by reaction rate control by insufficient surface area, so that an aperture ratio rises.

本発明は上述した事情に鑑みてなされたもので、透光性が高く、電子供給の律速を考慮した対極電極を用いることにより、高効率な光電変換を行えるタンデム型の色素増感太陽電池を提供することを目的とする。また、電子供給の律速を緩和するため、電解質溶液の濃度を調整することにより、さらに高効率化した色素増感太陽電池を提供することを目的とする。   The present invention has been made in view of the above-described circumstances. A tandem dye-sensitized solar cell capable of highly efficient photoelectric conversion by using a counter electrode with high translucency and considering the rate-limiting of electron supply. The purpose is to provide. It is another object of the present invention to provide a dye-sensitized solar cell with higher efficiency by adjusting the concentration of the electrolyte solution in order to reduce the rate of electron supply.

本発明の色素増感太陽電池は、第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、前記対極電極はラインとスペースの繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦y/(x+y)≦0.85、0<y<320の条件を満たすことを特徴とするものである。
また、前記対極電極は多角形状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦y2/(x+y)2≦0.85、0<y<320の条件を満たすことを特徴とするものである。
また、前記対極電極は円状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦0.906×y2/(x+y)2≦0.85、0<y<320の条件を満たすことを特徴とするものである。
The dye-sensitized solar cell of the present invention includes an n-type semiconductor electrode on which a first dye is adsorbed and a counter electrode between an n-type semiconductor electrode on which a second dye having an absorption wavelength different from that of the first dye is adsorbed. In the dye-sensitized solar cell in which the electrolyte solution is filled between the n-type semiconductor electrode and the counter electrode, the counter electrode is formed as a repetitive pattern of lines and spaces, and the line width and the line interval are set to x μm, respectively. And y μm, 0.5 ≦ y / (x + y) ≦ 0.85 and 0 <y <320 are satisfied.
The counter electrode is formed as a repeating pattern of polygonal openings, and when the line width and the line interval are x μm and y μm, respectively, 0.5 ≦ y 2 / (x + y) 2 ≦ 0.85, 0 <y < It is characterized by satisfying 320 conditions.
The counter electrode is formed as a repeating pattern of circular openings, and 0.5 ≦ 0.906 × y 2 / (x + y) 2 ≦ 0.85, 0 <0, where the line width and the line interval are x μm and y μm, respectively. The feature is that the condition of y <320 is satisfied.

また、上記色素増感太陽電池において、対極電極はラインとスペースの繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦y/(x+y)<1、0<y<80かつ0<x<20の条件を満たすことを特徴とするものである。
また、前記対極電極は多角形状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦y2/(x+y)2<1、0<y<80かつ0<x<20の条件を満たすことを特徴とするものである。
また、前記対極電極は円状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦0.906×y2/(x+y)2<1、0<y<80かつ0<x<20の条件を満たすことを特徴とするものである。
In the dye-sensitized solar cell, the counter electrode is formed as a repetitive pattern of lines and spaces, and when the line width and line interval are x μm and y μm, respectively, 0.8 ≦ y / (x + y) <1, 0 <y <80 and 0 <x <20 are satisfied.
The counter electrode is formed as a repeating pattern of polygonal openings, and when the line width and line interval are x μm and y μm, respectively, 0.8 ≦ y 2 / (x + y) 2 <1, 0 <y < It is characterized by satisfying the conditions of 80 and 0 <x <20.
Further, the counter electrode is formed as a repetitive pattern of circular openings, when the line width and line interval between each xμm and yμm, 0.8 ≦ 0.906 × y 2 / (x + y) 2 <1,0 < The condition is that y <80 and 0 <x <20.

上記本発明によれば、開口部の繰り返しパターンとして、その線幅と線間隔とを上記の範囲とすることで、光の透過率を高く維持しつつ、対極電極から第1電極または第2電極側へ電子供給を行うために必要なレドックス対の拡散距離を抑え、電子供給が律速になることを防止できる。このため、対極電極の開口率のバランスを取ることで、発電効率を高めることができる。   According to the present invention, as the repetitive pattern of the openings, the line width and the line interval are within the above ranges, so that the light transmittance is kept high and the first electrode or the second electrode is maintained from the counter electrode. The diffusion distance of the redox pair necessary for supplying electrons to the side can be suppressed, and the rate of electron supply can be prevented from becoming rate limiting. For this reason, power generation efficiency can be improved by balancing the aperture ratio of the counter electrode.

以下、本発明の実施形態について、添付図面を参照して説明する。なお、各図中、同一の作用または機能を有する部材または要素には、同一の符号を付して重複した説明を省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function, and the overlapping description is abbreviate | omitted.

図1は本発明の一実施形態のタンデム型色素増感太陽電池を示す。第1の色素を吸着させたn型半導体電極11と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極12の間に対極電極13を配置し、前記n型半導体電極と対極電極との間に電解質溶液15を充填したn/n並列タンデム型色素増感太陽電池である。   FIG. 1 shows a tandem dye-sensitized solar cell according to an embodiment of the present invention. A counter electrode 13 is disposed between an n-type semiconductor electrode 11 that has adsorbed a first dye and an n-type semiconductor electrode 12 that has adsorbed a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode 11 is disposed. This is an n / n parallel tandem dye-sensitized solar cell in which an electrolyte solution 15 is filled between a semiconductor electrode and a counter electrode.

この構造をより詳細に説明する。半導体電極11は、TiO2(n型半導体)にルテニウム系遷移金属錯体色素等の短波長吸収色素を吸着させたものである。半導体電極12は、TiO2(n型半導体)にフタロシアニン系色素等の長波長吸収色素を吸着させたものである。n型半導体に吸着させる色素として、少なくとも1個のビピリジル基を含む有機遷移金属錯体系色素、フタロシアニン系色素、ナフタロシアニン系色素、メロシアニン系色素、シアニン系色素、ポルフィリン系色素、ロダニン系色素、インドール系色素、キノリン系色素、ベンゾチアゾール系色素を用いることができる。また、n型半導体として、ZnO、SnO2、NbO2、WO3などを用いることもできる。 This structure will be described in more detail. The semiconductor electrode 11 is obtained by adsorbing a short wavelength absorbing dye such as a ruthenium-based transition metal complex dye on TiO 2 (n-type semiconductor). The semiconductor electrode 12 is obtained by adsorbing a long wavelength absorption dye such as a phthalocyanine dye on TiO 2 (n-type semiconductor). As a dye to be adsorbed on an n-type semiconductor, an organic transition metal complex dye containing at least one bipyridyl group, a phthalocyanine dye, a naphthalocyanine dye, a merocyanine dye, a cyanine dye, a porphyrin dye, a rhodanine dye, an indole System dyes, quinoline dyes, and benzothiazole dyes can be used. Also, ZnO, SnO 2 , NbO 2 , WO 3 or the like can be used as the n-type semiconductor.

対極電極13は、安価な金属板体にPtをスパッタ、蒸着、メッキでコートしたものであり、パンチングメタルまたはメッシュである。そして、図2、図3、図4に示す開口部の繰り返しパターンを備えている。また、対極電極は、触媒機能を有するPtワイヤ、またはカーボン繊維を用いて形成したメッシュとしてもよく、金属もしくは繊維等で形成されたメッシュへ、Ptまたはカーボン、または導電性ポリマーでコートしたものでもよい。また、対極電極は、金属板に穴を形成したパンチングメタルに、Pt、またはカーボン、または導電性ポリマーでコートしたものでもよい。   The counter electrode 13 is obtained by coating an inexpensive metal plate with Pt by sputtering, vapor deposition, or plating, and is a punching metal or a mesh. And the repeating pattern of the opening part shown in FIG.2, FIG.3, FIG.4 is provided. The counter electrode may be a Pt wire having a catalytic function, or a mesh formed using carbon fiber, or a mesh formed of metal or fiber or the like coated with Pt or carbon, or a conductive polymer. Good. In addition, the counter electrode may be a punching metal in which a hole is formed in a metal plate and coated with Pt, carbon, or a conductive polymer.

電解質溶液15は、ヨウ素(I2)、ヨウ化リチウム(LiI)、ターシャルブチルピリジン(t-BP)、ジメチルプロピルイミダゾリウムヨウ化物(DMPII)を、アセトニトリル(AN)もしくはメトキシアセトニトリル(MAN)に溶解させた電解液である。電解質溶液のI2濃度が0.05〜0.3mol/l、ヨウ化物塩濃度が0.6〜2.4mol/lの範囲で作成されることが好ましい。また、電解質溶液として、イミダゾリウム塩を主体とした揮発性成分を含まない溶融塩電解質溶液を用いてもよい。 The electrolyte solution 15 is composed of iodine (I 2 ), lithium iodide (LiI), tertiary butylpyridine (t-BP), dimethylpropylimidazolium iodide (DMPII) in acetonitrile (AN) or methoxyacetonitrile (MAN). It is a dissolved electrolyte. It is preferable that the electrolyte solution is prepared so that the I 2 concentration is 0.05 to 0.3 mol / l and the iodide salt concentration is 0.6 to 2.4 mol / l. Moreover, you may use the molten salt electrolyte solution which does not contain the volatile component which has imidazolium salt as a main body as electrolyte solution.

半導体電極11,12は、透明導電性膜(ITO膜、FTO膜)17を表面に形成した透明なガラス基板18上に設けられる。2枚のガラス基板18,18間の側面は、熱硬化性樹脂シート19により封止され、その内部空間に電解質溶液15が充填されている。この色素増感太陽電池の発電出力は、半導体電極11,12がアノードとなるので、透明導電性膜17に接続した端子から正極が取り出され、対極電極13がカソードとなるので、対極電極13に接続した端子から負極が取り出される。   The semiconductor electrodes 11 and 12 are provided on a transparent glass substrate 18 on which a transparent conductive film (ITO film, FTO film) 17 is formed. The side surface between the two glass substrates 18 and 18 is sealed with a thermosetting resin sheet 19, and the electrolyte solution 15 is filled in the internal space. The power generation output of this dye-sensitized solar cell is that the semiconductor electrodes 11 and 12 serve as anodes, so that the positive electrode is taken out from the terminal connected to the transparent conductive film 17 and the counter electrode 13 serves as the cathode. The negative electrode is taken out from the connected terminal.

次に、この色素増感太陽電池の動作について説明する。太陽光が入射すると、短波長側の光線が半導体電極11に吸収され、発電動作を行い、透明な半導体電極11を透過した光の一部は対極電極の非開口部により遮られるが、開口部を透過した光は半導体電極12に入射し、長波長側の光線が半導体電極12に吸収され、発電動作を行う。このため、n/nタンデム型の色素増感太陽電池により、太陽光光線の広い波長範囲を発電動作に利用できる。   Next, the operation of this dye-sensitized solar cell will be described. When sunlight is incident, the light on the short wavelength side is absorbed by the semiconductor electrode 11 to perform a power generation operation, and part of the light transmitted through the transparent semiconductor electrode 11 is blocked by the non-opening portion of the counter electrode. The light that has passed through is incident on the semiconductor electrode 12, and the light on the long wavelength side is absorbed by the semiconductor electrode 12 to perform a power generation operation. Therefore, a wide wavelength range of sunlight can be used for power generation operation by the n / n tandem dye-sensitized solar cell.

色素増感型太陽電池の電解質では、下式に示すようなヨウ素の酸化還元体(レドックス対)が用いられている。
I3 -+2e-=3I-+I2
色素は光を吸収し、励起状態に上がった色素分子からチタニア(TiO2)の伝導帯に電子注入を行わせている。チタニアに注入された電子は、アノードおよび外部回路を通じてカソードに達する。一方、チタニアに電子を供与して酸化状態にある色素は、電解液中のレドックス系のIから電子を受取って中性分子に戻る。Iは電子を失ってI3 となるが、カソードから回路を流れてきた電子を受けとってIに戻る。色素増感型太陽電池の内部でこのようなサイクルが繰り返されることにより光を電流に変換する。
In the electrolyte of the dye-sensitized solar cell, an oxidation-reduction body (redox couple) of iodine as shown in the following formula is used.
I 3 - + 2e - = 3I - + I 2
The dye absorbs light, and causes electrons to be injected into the conduction band of titania (TiO 2 ) from the excited dye molecule. Electrons injected into titania reach the cathode through the anode and external circuit. On the other hand, the dye that is in an oxidized state by donating electrons to titania receives electrons from the redox system I in the electrolytic solution and returns to neutral molecules. I loses electrons and becomes I 3 , but returns to I upon receiving electrons flowing through the circuit from the cathode. Such a cycle is repeated inside the dye-sensitized solar cell to convert light into electric current.

次に、本発明の対極電極の開口パターン形成例について説明する。図2は、対極電極をラインとスペースの繰り返しパターンとして形成したものである。線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦y/(x+y)≦0.85、0<y<320の条件を満たすことで、すなわち、開口率を50-85%とすることで、後述するように、最大の変換効率が得られる。   Next, an example of forming the opening pattern of the counter electrode according to the present invention will be described. FIG. 2 shows a counter electrode formed as a repeating pattern of lines and spaces. When the line width and line spacing are xμm and yμm, respectively, by satisfying the condition of 0.5 ≦ y / (x + y) ≦ 0.85 and 0 <y <320, that is, the aperture ratio should be 50-85% As will be described later, the maximum conversion efficiency can be obtained.

図3は、対極電極を多角形状の開口部の繰り返しパターンとして形成したものである。図示の例は、開口部を四角形状、および六角形状としたものであるが、三角形、五角形、または八角形状などとしてもよい。線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦y2/(x+y)2≦0.85、0<y<320の条件を満たすことで、すなわち、開口率を50-85%とすることで、最大の変換効率が得られる。 FIG. 3 shows a counter electrode formed as a repeating pattern of polygonal openings. In the example shown in the figure, the opening has a quadrangular shape and a hexagonal shape, but may be a triangular shape, a pentagonal shape, an octagonal shape, or the like. By satisfying the conditions of 0.5 ≦ y 2 / (x + y) 2 ≦ 0.85 and 0 <y <320 when the line width and the line spacing are x μm and y μm, respectively, that is, the aperture ratio is 50-85%. By doing so, the maximum conversion efficiency can be obtained.

図4は、対極電極を円状の開口部の繰り返しパターンとして形成したものである。線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦0.906×y2/(x+y)2≦0.85、0<y<320の条件を満たすことで、すなわち、開口率を50-85%とすることで、最大の変換効率が得られる。 In FIG. 4, the counter electrode is formed as a repeating pattern of circular openings. When the line width and line spacing are xμm and yμm, respectively, 0.5 ≦ 0.906 × y 2 / (x + y) 2 ≦ 0.85 and 0 <y <320, that is, the aperture ratio is 50-85 By setting%, the maximum conversion efficiency can be obtained.

FTO(透明導電性)基板上にフォトリソ法により開口率の条件を変えた、図2に示す開口パターンのPtラインパターンを形成し、開口率について実験的に検討した。すなわち、この対極電極を用いて色素増感太陽電池を形成し、TiO2側、Pt側から照射した太陽電池特性を測定し、それぞれ第1電極、第2電極としての変換効率の傾向を実験により確認した。 A Pt line pattern of the opening pattern shown in FIG. 2 was formed on an FTO (transparent conductive) substrate by changing the aperture ratio conditions by photolithography, and the aperture ratio was experimentally examined. That is, a dye-sensitized solar cell is formed using this counter electrode, the characteristics of the solar cell irradiated from the TiO 2 side and the Pt side are measured, and the tendency of the conversion efficiency as the first electrode and the second electrode is experimentally determined. confirmed.

実験条件は、下記のとおりである。
半導体電極:Solaronix社製酸化チタンペーストを用い、450℃、30分焼成。
色素:N749(有機金属錯体色素)を使用。
電解質溶液 溶媒:アセトニトリル、成分:下表のとおり。

Figure 2007273240
但し、
LiI:ヨウ化リチウム
t-BP:ターシャル-ブチルピリジン
DMPII:ヨウ化ジメチルプロピルイミダゾリウム The experimental conditions are as follows.
Semiconductor electrode: Titanium oxide paste manufactured by Solaronix was used and baked at 450 ° C for 30 minutes.
Dye: N749 (organometallic complex dye) is used.
Electrolyte solution Solvent: Acetonitrile, Component: As shown in the table below.
Figure 2007273240
However,
LiI: Lithium iodide
t-BP: Tertiary-Butylpyridine
DMPII: Dimethylpropylimidazolium iodide

対極電極パターンは、図2に示すもので、透明導電性膜(FTO)を配置したガラス基板上にフォトリソによりPtスパッタで形成。
Ptライン 線幅:20、40、60、80、100μm
線間隔:80、160、240、320、400μm
照射方向 Pt側から照射(ガラス基板、対極電極を透過した光により発電)
TiO2側から照射(ガラス基板を透過した光により発電)
The counter electrode pattern shown in FIG. 2 is formed by Pt sputtering with photolithography on a glass substrate on which a transparent conductive film (FTO) is placed.
Pt line Line width: 20, 40, 60, 80, 100μm
Line spacing: 80, 160, 240, 320, 400μm
Irradiation direction Irradiation from Pt side (Power generation by light transmitted through glass substrate and counter electrode)
Irradiated from TiO 2 side (power generation by light transmitted through glass substrate)

対極電極にPtラインを用いて、線幅、線間隔を変えて、開口率が異なる条件で変換効率を確認した。上記線幅と線間隔による開口率は表2に示すとおりである。

Figure 2007273240
Using a Pt line for the counter electrode, the line width and line spacing were changed, and the conversion efficiency was confirmed under conditions with different aperture ratios. Table 2 shows the aperture ratio depending on the line width and the line interval.
Figure 2007273240

TiO2側から照射した場合の変換効率(%)の測定結果を表3に示す。

Figure 2007273240
Table 3 shows the measurement results of conversion efficiency (%) when irradiated from the TiO 2 side.
Figure 2007273240

Pt側から照射した場合の変換効率(%)の測定結果を表4に示す。

Figure 2007273240
Table 4 shows the measurement results of conversion efficiency (%) when irradiated from the Pt side.
Figure 2007273240

TiO2側から照射した場合の開口率と変換効率(%)の相関を図5に示し、Pt側から照射した場合の開口率と変換効率(%)の相関を図6に示す。TiO2側から照射した際は、開口率の低下に従い対極電極面積が大きくなるため、フィルファクターFF、短絡電流値が上昇した。Pt側から照射した際は、開口率が低下するにつれて、フィルファクターFFは上昇したが、電流値に関しては、開口率が低下するにつれて(発電に寄与する面積が低下することにより)低下した。開口率に対する変換効率の実験結果から、第1電極(ガラス基板のみを光が透過し、直接発電する電極)としては開口率80%以下、第2電極(ガラス基板と対極電極の開口部を透過した光により発電する電極)としては開口率60〜85%で高い効率になることが分かる。 FIG. 5 shows the correlation between the aperture ratio and the conversion efficiency (%) when irradiated from the TiO 2 side, and FIG. 6 shows the correlation between the aperture ratio and the conversion efficiency (%) when irradiated from the Pt side. When irradiated from the TiO 2 side, the area of the counter electrode increased as the aperture ratio decreased, and the fill factor FF and short-circuit current value increased. When irradiated from the Pt side, the fill factor FF increased as the aperture ratio decreased, but the current value decreased as the aperture ratio decreased (by reducing the area contributing to power generation). From the experimental results of the conversion efficiency with respect to the aperture ratio, the first electrode (the electrode that transmits light only through the glass substrate and directly generates electricity) has an aperture ratio of 80% or less, and the second electrode (the glass substrate and the counter electrode opening) It can be seen that the electrode having a high aperture ratio of 60 to 85% provides high efficiency.

並列タンデム型色素増感太陽電池においては、第1電極と第2電極の電流値の和になるため、開口率は50〜85%が好ましく、60〜70%になる条件が特に好ましい。また、同じ開口率80%において、TiO2側から照射した結果では、線間隔が320μm以上では変換効率が低下しているため、線間隔は0より大きく320μmより小さい範囲で高い変換効率が得られている。 In a parallel tandem dye-sensitized solar cell, the aperture ratio is preferably 50 to 85% and particularly preferably 60 to 70% because it is the sum of the current values of the first electrode and the second electrode. Further, in the same opening ratio of 80%, with a result of irradiating the TiO 2 side, since the line spacing is reduced conversion efficiency at higher 320 .mu.m, the line spacing is high conversion efficiency increased 320 .mu.m smaller range than 0 obtained ing.

対極電極の開口部をハニカム構造(六角形状)の繰り返しパターンで形成した場合にも、ラインとスペースの繰り返しパターンを用いた場合の変換効率の傾向と同様の傾向が見られた。表5に線幅と線間隔と開口率との関係を示す。

Figure 2007273240
Even when the openings of the counter electrode were formed in a repetitive pattern of a honeycomb structure (hexagonal shape), a tendency similar to the tendency of conversion efficiency when a repetitive pattern of lines and spaces was used was observed. Table 5 shows the relationship among line width, line spacing, and aperture ratio.
Figure 2007273240

表6は、TiO2側から照射した場合の変換効率の測定結果と、Pt側から照射した場合の変換効率の測定結果を示す。開口率50〜80%の範囲で良好な変換効率が得られていることが分かる。

Figure 2007273240
Table 6 shows the measurement results of the conversion efficiency when irradiated from the TiO 2 side and the measurement results of the conversion efficiency when irradiated from the Pt side. It can be seen that good conversion efficiency is obtained when the aperture ratio is in the range of 50 to 80%.
Figure 2007273240

電解質溶液の中で電子供給を促進させるため、I-、I3 -濃度を増加させて特性を確認した結果、I2、DPMII濃度を2倍にすると変換効率の向上が見られた。表7は材料と濃度の関係を示し、表8はI2、DPMII濃度を変更した場合の変換効率の測定結果を示す。I2、DPMII濃度が3倍でも変換効率は向上したが、2倍よりも向上率は低い。これはヨウ素濃度が多くなるにつれて、電解質溶液による可視光吸収が増えるためと思われる。 In order to promote electron supply in the electrolyte solution, I and I 3 concentrations were increased and characteristics were confirmed. As a result, when I 2 and DPMII concentrations were doubled, conversion efficiency was improved. Table 7 shows the relationship between the material and the concentration, and Table 8 shows the measurement result of the conversion efficiency when the I 2 and DPMII concentrations are changed. The conversion efficiency improved even when the I 2 and DPMII concentrations were 3 times, but the improvement rate was lower than 2 times. This is probably because visible light absorption by the electrolyte solution increases as the iodine concentration increases.

従って、対極電極の開口率が高い条件では電解質溶液濃度の改善により変換効率を向上することが可能である。電子供給を改善可能な電解質溶液濃度として、I2、DPMIIがそれぞれ0.05mol/l〜0.3mol/l、0.6mol/l〜2.4mol/lが好ましく、0.05mol/l〜0.15mol/l、0.6mol/l〜1.8mol/lが特に好ましい。 Therefore, conversion efficiency can be improved by improving the concentration of the electrolyte solution under conditions where the aperture ratio of the counter electrode is high. As an electrolyte solution concentration capable of improving electron supply, I 2 and DPMII are preferably 0.05 mol / l to 0.3 mol / l and 0.6 mol / l to 2.4 mol / l, respectively, 0.05 mol / l to 0.15 mol / l, 0.6 Particularly preferred is mol / l to 1.8 mol / l.

Figure 2007273240
Figure 2007273240

Figure 2007273240
Figure 2007273240

上述のように、線幅20μm、線間隔80μm、開口率80%では十分高い変換効率が得られることが分かる。線間隔80μm以下では電解質溶液の拡散律速になっておらず、開口率80%より大きな条件では対極電極の表面積不足による反応律速に従い変換効率が低下すると思われる。しかし、線間隔80μmより短い範囲で線径を20μmより細くして開口率80%以上にした対極条件であっても、Ptの膜厚を厚くする、多孔質にする等により単位面積あたりの表面積を大きくすることにより高い開口率を維持しつつ、高い変換効率を実現可能である。   As described above, it can be seen that sufficiently high conversion efficiency can be obtained with a line width of 20 μm, a line interval of 80 μm, and an aperture ratio of 80%. When the line spacing is 80 μm or less, the diffusion rate of the electrolyte solution is not controlled, and the conversion efficiency seems to decrease according to the reaction rate control due to the insufficient surface area of the counter electrode under the condition where the aperture ratio is greater than 80%. However, the surface area per unit area can be increased by increasing the Pt film thickness or making it porous even under counter electrode conditions where the wire diameter is narrower than 20 μm and the aperture ratio is 80% or more in a range shorter than 80 μm. It is possible to achieve high conversion efficiency while maintaining a high aperture ratio by increasing.

すなわち、対極電極を多孔質にする、表面を粗くする、または楕円形のワイヤを使用することにより、開口率を下げることなく、対極電極の表面積を実質的に大きくすることで、反応を促進し、高い変換効率を実現可能である。このような視点から、対極電極をラインとスペースの繰り返しパターンとして形成する場合、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦y/(x+y)<1、0<y<80かつ0<x<20の条件を満たすことで良好な変換効率が得られる場合がある。また、対極電極を多角形状の開口部の繰り返しパターンとして形成する場合、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦y2/(x+y)2<1、0<y<80かつ0<x<20の条件を満たすことで良好な変換効率が得られる場合がある。また、対極電極を円状の開口部の繰り返しパターンとして形成する場合、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦0.906×y2/(x+y)2<1、0<y<80かつ0<x<20の条件を満たすことで良好な変換効率が得られる場合がある。 That is, by making the counter electrode porous, roughening the surface, or using an elliptical wire, the surface area of the counter electrode is substantially increased without reducing the aperture ratio, thereby promoting the reaction. High conversion efficiency can be realized. From this point of view, when the counter electrode is formed as a repetitive pattern of lines and spaces, 0.8 ≦ y / (x + y) <1, 0 <y <, where the line width and line interval are x μm and y μm, respectively. A good conversion efficiency may be obtained by satisfying the condition of 80 and 0 <x <20. Further, when the counter electrode is formed as a repeating pattern of polygonal openings, 0.8 ≦ y 2 / (x + y) 2 <1, 0 <y <, where the line width and the line interval are x μm and y μm, respectively. A good conversion efficiency may be obtained by satisfying the condition of 80 and 0 <x <20. Further, when the counter electrode is formed as a repeated pattern of circular openings, when the line width and the line interval are x μm and y μm, respectively, 0.8 ≦ 0.906 × y 2 / (x + y) 2 <1, 0 < There are cases where good conversion efficiency can be obtained by satisfying the conditions of y <80 and 0 <x <20.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明の一実施形態の色素増感太陽電池を示す断面図である。It is sectional drawing which shows the dye-sensitized solar cell of one Embodiment of this invention. 対極電極をラインとスペースの繰り返しパターンとして形成する場合のパターン図である。It is a pattern diagram in the case of forming a counter electrode as a repeated pattern of lines and spaces. 対極電極を多角形状の開口部の繰り返しパターンとして形成する場合のパターン図である。It is a pattern diagram in the case of forming a counter electrode as a repeating pattern of polygonal openings. 対極電極を円状の開口部の繰り返しパターンとして形成する場合のパターン図である。It is a pattern diagram in the case of forming a counter electrode as a repeating pattern of circular openings. 対極にラインとスペースの繰り返しパターンを用いた条件でTiO2側から光照射した場合の開口率と変換効率の相関を示すグラフである。It is a graph showing the correlation between the aperture ratio and conversion efficiency when irradiated with light from the TiO 2 side conditions using a repeating pattern of lines and spaces in the counter electrode. 対極にラインとスペースの繰り返しパターンを用いた条件でPt側から光照射した場合の開口率と変換効率の相関を示すグラフである。It is a graph which shows the correlation of an aperture ratio and conversion efficiency at the time of light irradiation from the Pt side on the conditions which used the repeating pattern of a line and a space for a counter electrode.

符号の説明Explanation of symbols

11,12 n型半導体電極
13 対極電極
15 電解質溶液
17 導電性膜
18 ガラス基板
19 熱硬化性樹脂シート
11, 12 n-type semiconductor electrode 13 Counter electrode 15 Electrolyte solution 17 Conductive film 18 Glass substrate 19 Thermosetting resin sheet

Claims (16)

第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、
前記対極電極はラインとスペースの繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦y/(x+y)≦0.85、0<y<320の条件を満たすことを特徴とする色素増感太陽電池。
A counter electrode is disposed between an n-type semiconductor electrode adsorbing the first dye and an n-type semiconductor electrode adsorbing a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode In a dye-sensitized solar cell in which an electrolyte solution is filled between a counter electrode and
The counter electrode is formed as a repetitive pattern of lines and spaces, and satisfies the condition of 0.5 ≦ y / (x + y) ≦ 0.85 and 0 <y <320, where the line width and the line interval are x μm and y μm, respectively. A dye-sensitized solar cell characterized by
第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、
前記対極電極は多角形状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦y2/(x+y)2≦0.85、0<y<320の条件を満たすことを特徴とする色素増感太陽電池。
A counter electrode is disposed between an n-type semiconductor electrode adsorbing the first dye and an n-type semiconductor electrode adsorbing a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode In a dye-sensitized solar cell in which an electrolyte solution is filled between a counter electrode and
The counter electrode is formed as a repetitive pattern of polygonal openings, where 0.5 ≦ y 2 / (x + y) 2 ≦ 0.85, 0 <y <320, where the line width and the line spacing are x μm and y μm, respectively. A dye-sensitized solar cell characterized by satisfying a condition.
第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、
前記対極電極は円状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.5≦0.906×y2/(x+y)2≦0.85、0<y<320の条件を満たすことを特徴とする色素増感太陽電池。
A counter electrode is disposed between an n-type semiconductor electrode adsorbing the first dye and an n-type semiconductor electrode adsorbing a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode In a dye-sensitized solar cell in which an electrolyte solution is filled between a counter electrode and
The counter electrode is formed as a repeating pattern of circular openings, where 0.5 ≦ 0.906 × y 2 / (x + y) 2 ≦ 0.85, 0 <y <, where the line width and the line interval are x μm and y μm, respectively. A dye-sensitized solar cell characterized by satisfying 320 conditions.
第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、
前記対極電極はラインとスペースの繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦y/(x+y)<1、0<y<80かつ0<x<20の条件を満たすことを特徴とする色素増感太陽電池。
A counter electrode is disposed between an n-type semiconductor electrode adsorbing the first dye and an n-type semiconductor electrode adsorbing a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode In a dye-sensitized solar cell in which an electrolyte solution is filled between a counter electrode and
The counter electrode is formed as a repetitive pattern of lines and spaces, and 0.8 ≦ y / (x + y) <1, 0 <y <80 and 0 <x <, where the line width and the line spacing are x μm and y μm, respectively. A dye-sensitized solar cell characterized by satisfying 20 conditions.
第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、
前記対極電極は多角形状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦y2/(x+y)2<1、0<y<80かつ0<x<20の条件を満たすことを特徴とする色素増感太陽電池。
A counter electrode is disposed between an n-type semiconductor electrode adsorbing the first dye and an n-type semiconductor electrode adsorbing a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode In a dye-sensitized solar cell in which an electrolyte solution is filled between a counter electrode and
The counter electrode is formed as a repetitive pattern of polygonal openings, and 0.8 ≦ y 2 / (x + y) 2 <1, 0 <y <80 when the line width and the line interval are x μm and y μm, respectively. A dye-sensitized solar cell characterized by satisfying a condition of 0 <x <20.
第1の色素を吸着させたn型半導体電極と、第1の色素と吸収波長が異なる第2の色素を吸着させたn型半導体電極の間に対極電極を配置し、前記n型半導体電極と対極電極との間に電解質溶液を充填した色素増感太陽電池において、
前記対極電極は円状の開口部の繰り返しパターンとして形成され、線幅と線間隔をそれぞれxμmとyμmとしたとき、0.8≦0.906×y2/(x+y)2<1、0<y<80かつ0<x<20の条件を満たすことを特徴とする色素増感太陽電池。
A counter electrode is disposed between an n-type semiconductor electrode adsorbing the first dye and an n-type semiconductor electrode adsorbing a second dye having an absorption wavelength different from that of the first dye, and the n-type semiconductor electrode In a dye-sensitized solar cell in which an electrolyte solution is filled between a counter electrode and
The counter electrode is formed as a repeating pattern of circular openings, where 0.8 ≦ 0.906 × y 2 / (x + y) 2 <1, 0 <y <, where the line width and the line interval are x μm and y μm, respectively. A dye-sensitized solar cell characterized by satisfying the conditions of 80 and 0 <x <20.
前記多角形は、三角形、四角形、五角形、六角形、または八角形であることを特徴とする請求項2または5記載の色素増感太陽電池。   The dye-sensitized solar cell according to claim 2 or 5, wherein the polygon is a triangle, a quadrangle, a pentagon, a hexagon, or an octagon. 前記対極電極は、パンチングメタルまたはメッシュであることを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 6, wherein the counter electrode is a punching metal or a mesh. 前記対極電極は、触媒機能を有するPtワイヤ、またはカーボン繊維を用いて形成したメッシュであることを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 6, wherein the counter electrode is a Pt wire having a catalytic function or a mesh formed using carbon fibers. 前記対極電極は、金属もしくは繊維等で形成されたメッシュへ、Ptまたはカーボン、または導電性ポリマーでコートしたものであることを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。   The dye-sensitized sun according to any one of claims 1 to 6, wherein the counter electrode is a mesh formed of metal, fiber, or the like, coated with Pt, carbon, or a conductive polymer. battery. 前記対極電極は、金属板に穴を形成したパンチングメタルに、Pt、またはカーボン、または導電性ポリマーでコートしたものであることを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。   The dye sensitizing method according to any one of claims 1 to 6, wherein the counter electrode is obtained by coating a punching metal having a hole in a metal plate with Pt, carbon, or a conductive polymer. Solar cell. 前記対極電極を多孔質にする、表面を粗くする、または楕円形のワイヤを使用することにより、開口率を下げることなく、対極電極の表面積を大きくしたことを特徴とする請求項4乃至6のいずれかに記載の色素増感太陽電池。   7. The surface area of the counter electrode is increased without reducing the aperture ratio by making the counter electrode porous, roughening the surface, or using an elliptical wire. The dye-sensitized solar cell according to any one of the above. 前記n型半導体が、TiO2、ZnO、SnO2、NbO2、WO3から選ばれる少なくとも1種類であることを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。 The dye-sensitized solar cell according to any one of claims 1 to 6, wherein the n-type semiconductor is at least one selected from TiO 2 , ZnO, SnO 2 , NbO 2 , and WO 3 . 前記n型半導体に吸着させる色素として、少なくとも1個のビピリジル基を含む有機遷移金属錯体系色素、フタロシアニン系色素、ナフタロシアニン系色素、メロシアニン系色素、シアニン系色素、ポルフィリン系色素、ロダニン系色素、インドール系色素、キノリン系色素、ベンゾチアゾール系色素から選ばれる少なくとも1種類であることを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。   As a dye to be adsorbed on the n-type semiconductor, an organic transition metal complex dye containing at least one bipyridyl group, a phthalocyanine dye, a naphthalocyanine dye, a merocyanine dye, a cyanine dye, a porphyrin dye, a rhodanine dye, The dye-sensitized solar cell according to any one of claims 1 to 6, wherein the dye-sensitized solar cell is at least one selected from indole dyes, quinoline dyes, and benzothiazole dyes. 前記電解質溶液として、イミダゾリウム塩を主体とした揮発性成分を含まない溶融塩電解質溶液であることを特徴とする請求1乃至6のいずれかに記載の色素増感太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 6, wherein the electrolyte solution is a molten salt electrolyte solution containing no volatile component mainly composed of an imidazolium salt. 前記電解質溶液のI2濃度が0.05〜0.3mol/l、ヨウ化物塩濃度が0.6〜2.4mol/lの範囲で作成されたことを特徴とする請求項1乃至6のいずれかに記載の色素増感太陽電池。 The electrolyte solution of I 2 concentration 0.05~0.3mol / l, dye according to any one of claims 1 to 6, characterized in that the iodide salt concentration created in the range of 0.6~2.4mol / l Sensitive solar cell.
JP2006097064A 2006-03-31 2006-03-31 Dye-sensitized solar battery Pending JP2007273240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097064A JP2007273240A (en) 2006-03-31 2006-03-31 Dye-sensitized solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097064A JP2007273240A (en) 2006-03-31 2006-03-31 Dye-sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2007273240A true JP2007273240A (en) 2007-10-18

Family

ID=38675836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097064A Pending JP2007273240A (en) 2006-03-31 2006-03-31 Dye-sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2007273240A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
JP2009277400A (en) * 2008-05-13 2009-11-26 Nok Corp Tandem dye-sensitized solar cell
JP2010027281A (en) * 2008-07-16 2010-02-04 Kyoto Univ Solar cell of allowing photoelectric conversion in wide band wavelength region
JP2011108464A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Counter electrode of dye-sensitized solar cell, its manufacturing method, and battery
KR101303450B1 (en) * 2009-06-25 2013-09-05 엘지디스플레이 주식회사 Dye-Sensitized Solar Cells And Manufacturing Method For Thereof
WO2014091809A1 (en) * 2012-12-14 2014-06-19 積水化学工業株式会社 Electrode substrate and dye-sensitized solar cell
JP2017220509A (en) * 2016-06-06 2017-12-14 日本精工株式会社 Photoelectric conversion element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058891A (en) * 1998-08-11 2000-02-25 Fuji Photo Film Co Ltd Electrolyte, electrolyte for photoelectric chemical cell, photoelectric chemical battery and pyridinium compound
JP2004071716A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Tandem photovoltaic device and its manufacturing method
WO2005041217A1 (en) * 2003-10-28 2005-05-06 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, method for manufacturing same and device using transparent conductive multilayer body
JP2005129580A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric conversion element and solar cell
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell
JP2005228594A (en) * 2004-02-13 2005-08-25 Sumitomo Osaka Cement Co Ltd Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell
JP2005235644A (en) * 2004-02-20 2005-09-02 Sharp Corp Photoelectric conversion element and solar battery provided with it
JP2006024574A (en) * 2004-01-20 2006-01-26 Sharp Corp Dye-sensitized solar cell module
JP2006049311A (en) * 2004-07-20 2006-02-16 Konarka Technologies Inc Photoreactive layer containing macro-particles

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058891A (en) * 1998-08-11 2000-02-25 Fuji Photo Film Co Ltd Electrolyte, electrolyte for photoelectric chemical cell, photoelectric chemical battery and pyridinium compound
JP2004071716A (en) * 2002-08-02 2004-03-04 Mitsubishi Heavy Ind Ltd Tandem photovoltaic device and its manufacturing method
JP2005129580A (en) * 2003-10-21 2005-05-19 Sumitomo Osaka Cement Co Ltd Photoelectric conversion element and solar cell
WO2005041217A1 (en) * 2003-10-28 2005-05-06 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, method for manufacturing same and device using transparent conductive multilayer body
JP2005197176A (en) * 2004-01-09 2005-07-21 Bridgestone Corp Electrode for dye sensitization solar cell and dye sensitization solar cell
JP2006024574A (en) * 2004-01-20 2006-01-26 Sharp Corp Dye-sensitized solar cell module
JP2005228594A (en) * 2004-02-13 2005-08-25 Sumitomo Osaka Cement Co Ltd Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell
JP2005235644A (en) * 2004-02-20 2005-09-02 Sharp Corp Photoelectric conversion element and solar battery provided with it
JP2006049311A (en) * 2004-07-20 2006-02-16 Konarka Technologies Inc Photoreactive layer containing macro-particles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Pigment sensitized solar cell
JP2009277400A (en) * 2008-05-13 2009-11-26 Nok Corp Tandem dye-sensitized solar cell
JP2010027281A (en) * 2008-07-16 2010-02-04 Kyoto Univ Solar cell of allowing photoelectric conversion in wide band wavelength region
KR101303450B1 (en) * 2009-06-25 2013-09-05 엘지디스플레이 주식회사 Dye-Sensitized Solar Cells And Manufacturing Method For Thereof
US9105409B2 (en) 2009-06-25 2015-08-11 Lg Display Co., Ltd. Dye-sensitized solar cell and manufacturing method for thereof
JP2011108464A (en) * 2009-11-16 2011-06-02 Nisshin Steel Co Ltd Counter electrode of dye-sensitized solar cell, its manufacturing method, and battery
WO2014091809A1 (en) * 2012-12-14 2014-06-19 積水化学工業株式会社 Electrode substrate and dye-sensitized solar cell
JP5740063B2 (en) * 2012-12-14 2015-06-24 積水化学工業株式会社 Electrode substrate and dye-sensitized solar cell
JP2017220509A (en) * 2016-06-06 2017-12-14 日本精工株式会社 Photoelectric conversion element

Similar Documents

Publication Publication Date Title
US6683361B2 (en) Solar cell and solar cell unit
KR20070016271A (en) Electrode for photoelectric conversion device including metal elements and dye sensitized solar cell using the same
JPWO2003098731A1 (en) Photoelectric conversion element
US9452929B2 (en) Photoelectrode including zinc oxide hemisphere, method of fabricating the same and dye-sensitized solar cell using the same
JPWO2010119775A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2005235725A (en) Dye-sensitized solar cell module
JP2007273240A (en) Dye-sensitized solar battery
JP4448478B2 (en) Dye-sensitized solar cell module
JPWO2008114825A1 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2000285975A (en) Semiconductor for photoelectric conversion and photoelectric conversion element
Vlachopoulos et al. Photoelectrochemical cells based on dye sensitization for electricity and fuel production
JP2008053042A (en) Pigment sensitized solar cell
JP2004127849A (en) Carbon electrode and dye-sensitized solar cell with the same
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
KR101088676B1 (en) Electrolyte for dye-sensitized solarcell comprising pyrrolidinium iodide based ionic liquid, dye-sensitized solarcell comprising the electrolyte and preparation method of the dye-sensitized solarcell
JP2002141115A (en) Photoelectric conversion device, its manufacturing method, and solar battery system
JP2004152747A (en) Carbon electrode, electrode and dye-sensitized solar cell provided therewith
JP2002289269A (en) Manufacturing method of photoelectrode for dye sensitized solar cell and manufacturing method of dye sensitized solar cell
JP2002093471A (en) Photoelectric transfer device, its manufacturing method, and solar battery system
JP5311094B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2009043482A (en) Dye-sensitized solar cell, and dye-sensitized solar cell module
KR101409067B1 (en) Dye sensitized solar cell and its manufacturing method
JP2002280084A (en) Photoelectric conversion device and manufacturing method therefor
KR20040093515A (en) Improved Solar Perfomance of Dye Sensitized Solar Cell Using Secondary Oxide Thin Layer
TWI449190B (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925