JP2002289269A - Manufacturing method of photoelectrode for dye sensitized solar cell and manufacturing method of dye sensitized solar cell - Google Patents

Manufacturing method of photoelectrode for dye sensitized solar cell and manufacturing method of dye sensitized solar cell

Info

Publication number
JP2002289269A
JP2002289269A JP2001085338A JP2001085338A JP2002289269A JP 2002289269 A JP2002289269 A JP 2002289269A JP 2001085338 A JP2001085338 A JP 2001085338A JP 2001085338 A JP2001085338 A JP 2001085338A JP 2002289269 A JP2002289269 A JP 2002289269A
Authority
JP
Japan
Prior art keywords
dye
electrode
solar cell
sensitized solar
photoelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001085338A
Other languages
Japanese (ja)
Other versions
JP4812953B2 (en
Inventor
Naohiko Kato
直彦 加藤
Kazuo Higuchi
和夫 樋口
Hirozumi Azuma
博純 東
Tomomi Motohiro
友美 元廣
Shungo Fukumoto
俊吾 福本
Tomoyuki Toyama
智之 遠山
Tatsuo Toyoda
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Central R&D Labs Inc filed Critical Aisin Seiki Co Ltd
Priority to JP2001085338A priority Critical patent/JP4812953B2/en
Publication of JP2002289269A publication Critical patent/JP2002289269A/en
Application granted granted Critical
Publication of JP4812953B2 publication Critical patent/JP4812953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a photoelectrode for a dye sensitized solar cell, showing an excellent photoelectric transducing efficiency, and a manufacturing method of a dye sensitized solar cell. SOLUTION: The manufacturing method of the photoelectrode 10 for a dye sensitized solar cell, comprising a semiconductor electrode 2 with a light receiving surface F2 and a transparent electrode 1 arranged to adjoin the light receiving surface of the semiconductor electrode, is characterized in that it comprises a surface treatment process wherein electromagnetic waves within a wavelength range of 180-450 nm are emitted to the back surface F22 on the opposite side of the light receiving surface of the semiconductor electrode, and a pigment adsorption process wherein sensitizing pigment P2 is adsorbed to the back surface obtained through the surface treatment process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、色素増感型太陽電
池用光電極の製造方法及び色素増感型太陽電池の製造方
法に関する。
The present invention relates to a method for producing a photoelectrode for a dye-sensitized solar cell and a method for producing a dye-sensitized solar cell.

【0002】[0002]

【従来の技術】近年、地球温暖化やエネルギー問題に対
する関心の高まりとともに太陽電池の様々な開発が進め
られている。その太陽電池の中でも、色素増感型太陽電
池は使用する材料が安価であること、比較的シンプルな
プロセスで製造できること等からその実用化が期待され
ている。色素増感型太陽電池の実用化に向けて、そのエ
ネルギー変換効率(発電効率)η(%)を向上させるた
めの様々な検討がなされている。なお、色素増感型太陽
電池のエネルギー変換効率ηは、下記式(1)で表され
る。 η=100×(Voc×Isc×F.F.)/I0…(1) ここで、下記式(1)中、I0は入射光強度I0[mWc
-2]、Vocは開放電圧[V]、Iscは短絡電流密度[mA
cm-2]、F.F.は曲線因子(Fill Facter)を示す。
2. Description of the Related Art In recent years, various developments of solar cells have been promoted with increasing interest in global warming and energy problems. Among such solar cells, dye-sensitized solar cells are expected to be put to practical use because the materials used are inexpensive and can be manufactured by a relatively simple process. Various studies have been made to improve the energy conversion efficiency (power generation efficiency) η (%) of the dye-sensitized solar cell for practical use. The energy conversion efficiency η of the dye-sensitized solar cell is represented by the following equation (1). η = 100 × (V oc × I sc × F.F.) / I 0 (1) where I 0 is the incident light intensity I 0 [mWc
m -2 ], V oc is the open circuit voltage [V], Isc is the short circuit current density [mA]
cm −2 ] and FF indicate a fill factor.

【0003】上記の検討としては、例えば、特開200
0−285980号公報には、半導体電極の電解質に接
する側の面に対して酸化処理を施し、その後、当該面に
増感色素を吸着させることにより製造した光電極を備え
ることにより、エネルギー変換効率ηの向上を意図した
色素増感型太陽電池が提案されている。上記の酸化処理
の方法としては、酸化剤となる過酸化水素若しくは次亜
塩素酸塩を含む水溶液又は酸化剤となるオゾンを含む混
合ガスを利用する方法と、酸化剤又は酸化剤となる活性
酸素種の源となる酸素を含む雰囲気中(空気中等)にお
いて紫外線を照射する方法が提案されている。
[0003] The above-mentioned studies include, for example, Japanese Patent Application Laid-Open
Japanese Patent Application No. 0-285980 discloses that a surface of a semiconductor electrode in contact with an electrolyte is subjected to an oxidation treatment, and thereafter, a photoelectrode manufactured by adsorbing a sensitizing dye on the surface is provided. Dye-sensitized solar cells intended to improve η have been proposed. As the method of the oxidation treatment, there are a method using an aqueous solution containing hydrogen peroxide or hypochlorite as an oxidizing agent or a mixed gas containing ozone as an oxidizing agent, and a method using an active oxygen as an oxidizing agent or an oxidizing agent. There has been proposed a method of irradiating ultraviolet rays in an atmosphere containing oxygen serving as a seed source (in air or the like).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本発明
者らは、上記の特開2000−285980号公報に記
載の処理を施した光電極を備えた色素増感型太陽電池で
あっても以下に示す問題があり、十分なエネルギー変換
効率を得ることができず未だ不十分であるということを
見出した。
SUMMARY OF THE INVENTION However, the present inventors have made the following even a dye-sensitized solar cell provided with a photoelectrode treated as described in JP-A-2000-285980. It has been found that there is a problem as described above, and sufficient energy conversion efficiency cannot be obtained, and it is still insufficient.

【0005】すなわち、過酸化水素若しくは次亜塩素酸
塩の水溶液に半導体電極を浸漬して酸化処理を行った後
に増感色素を吸着させる場合には、半導体電極の表面自
体を酸化して当該表面の微細構造を変化させることはで
きるが、当該表面に存在している光電変換反応を阻害す
る有機化合物等の不純物を除去することが十分にできな
いという問題点があった。。半導体電極の表面に残存す
る不純物を十分に除去できないと、エネルギー変換効率
が著しく低下してしまう。また、次亜塩素酸塩を用いる
場合には、処理後において、次亜塩素酸塩を構成する金
属カチオン成分(例えば、ナトリウム等のアルカリ金属
成分)が残存し、これを十分に除去することが困難なた
め、エネルギー変換効率が低下してしまっていた。
That is, when the sensitizing dye is adsorbed after the semiconductor electrode is immersed in an aqueous solution of hydrogen peroxide or hypochlorite to perform an oxidation treatment, the surface itself of the semiconductor electrode is oxidized and the surface is oxidized. However, there is a problem that it is not possible to sufficiently remove impurities such as an organic compound that inhibits a photoelectric conversion reaction existing on the surface. . If the impurities remaining on the surface of the semiconductor electrode cannot be sufficiently removed, the energy conversion efficiency will be significantly reduced. In the case where hypochlorite is used, the metal cation component (for example, an alkali metal component such as sodium) constituting the hypochlorite remains after the treatment, and it may be sufficiently removed. Due to the difficulty, the energy conversion efficiency has been reduced.

【0006】更に、酸素を含む雰囲気中において紫外線
を照射する場合にも、半導体電極の表面自体を酸化して
当該表面の微細構造を変化させることはできるが、当該
表面に存在している光電変換反応を阻害する有機化合物
或いは無機化合物等(硝酸化合物等)の不純物を除去す
ることが十分にできないという問題点があった。また、
この場合、紫外線が過剰に照射されると、酸素の還元生
成物(酸素アニオン)が生成しこれが半導体電極の表面
に残存してしまう場合があった。このように酸素の還元
生成物が半導体電極の表面に残存していると、酸化処理
を行った後に増感色素を吸着させた際に、酸素の還元生
成物と増感色素とが反応してしまうという問題点があっ
た。その結果、得られる光電極及びそれを備えた太陽電
池の初期特性や耐久性(寿命)が著しく低下してしま
う。
Further, when ultraviolet rays are irradiated in an atmosphere containing oxygen, the surface itself of the semiconductor electrode can be oxidized to change the fine structure of the surface. There has been a problem that impurities such as an organic compound or an inorganic compound (a nitric acid compound or the like) that inhibit the reaction cannot be sufficiently removed. Also,
In this case, when the ultraviolet rays are excessively irradiated, a reduction product (oxygen anion) of oxygen may be generated and may remain on the surface of the semiconductor electrode. If the oxygen reduction product remains on the surface of the semiconductor electrode as described above, when the sensitizing dye is adsorbed after the oxidation treatment, the oxygen reduction product reacts with the sensitizing dye. There was a problem that it would. As a result, the initial characteristics and durability (life) of the obtained photoelectrode and the solar cell provided with the photoelectrode are significantly reduced.

【0007】本発明は、上記従来技術の有する課題に鑑
みてなされたものであり、優れた光電変換効率を得るこ
とができる色素増感型太陽電池用光電極の製造方法及び
色素増感型太陽電池の製造方法を提供することを目的と
する。
The present invention has been made in view of the above-mentioned problems of the prior art, and is directed to a method of manufacturing a photoelectrode for a dye-sensitized solar cell capable of obtaining excellent photoelectric conversion efficiency, and a dye-sensitized solar cell. An object of the present invention is to provide a method for manufacturing a battery.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、半導体電極の表面
の酸化反応を、当該表面に特定の波長領域の電磁波を照
射しつつ水中又は電解質溶液中において行うことが、得
られる光電極の光電変換効率の向上を図る上で有効であ
るということを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the oxidation reaction of the surface of the semiconductor electrode was performed while irradiating the surface with electromagnetic waves of a specific wavelength region. The present inventors have found that conducting the treatment in water or in an electrolyte solution is effective in improving the photoelectric conversion efficiency of the obtained photoelectrode, and have reached the present invention.

【0009】すなわち、本発明は、受光面を有する半導
体電極と、当該半導体電極の受光面上に隣接して配置さ
れた透明電極とを有する色素増感型太陽電池用光電極の
製造方法であって、水中又は電解質溶液中において、半
導体電極の受光面とは反対側の裏面に、180〜450
nmの波長領域の電磁波を照射する表面処理工程と、表
面処理工程により得られる半導体電極の裏面に増感色素
を吸着させる色素吸着工程と、を有することを特徴とす
る色素増感型太陽電池用光電極の製造方法を提供する。
That is, the present invention is a method of manufacturing a photoelectrode for a dye-sensitized solar cell having a semiconductor electrode having a light receiving surface and a transparent electrode disposed adjacent to the light receiving surface of the semiconductor electrode. In water or in an electrolyte solution, 180 to 450
for a dye-sensitized solar cell, comprising: a surface treatment step of irradiating electromagnetic waves in a wavelength region of nm, and a dye adsorption step of adsorbing a sensitizing dye on the back surface of the semiconductor electrode obtained by the surface treatment step. Provided is a method for manufacturing a photoelectrode.

【0010】色素増感型太陽電池を構成した際に電解質
に接触することになる上記の半導体電極の裏面に対し
て、上記液中において当該半導体電極を構成する半導体
材料のバンドギャップに相当するエネルギーよりも高い
エネルギー(光子エネルギー)を有する上記波長範囲の
電磁波を照射すると、当該裏面には光により誘起された
電子及び正孔(ホール)が生成する。この光生成ホール
は酸化力が高いので、半導体電極の裏面において、半導
体材料に含まれる有機化合物、無機化合物等の不純物及
び水を酸化することが可能である。一方、光生成電子は
還元力が高いので、液中の水分子を直接還元するか又は
水分子の電離により生成する水素イオンを還元して水素
ガスを発生させたり、酸素を還元して酸素アニオンを生
成させたりする。また、本発明では、液相において表面
処理の反応を進行させるので酸素アニオンの生成量が少
なく、先に述べたような酸素アニオンと増感色素との反
応を低減することができる。そして、上記の光触媒作用
により、半導体電極を構成する半導体材料に含まれる光
電変換反応を阻害する不純物を十分に酸化除去すること
ができるので、優れた光電変換効率を有する色素増感型
太陽電池用光電極を得ることができる。
The energy corresponding to the band gap of the semiconductor material forming the semiconductor electrode in the liquid is applied to the back surface of the semiconductor electrode which comes into contact with the electrolyte when the dye-sensitized solar cell is formed. When an electromagnetic wave having a higher energy (photon energy) in the above wavelength range is irradiated, electrons and holes (holes) induced by light are generated on the back surface. Since the photogenerating holes have high oxidizing power, it is possible to oxidize impurities such as organic compounds and inorganic compounds and water contained in the semiconductor material on the back surface of the semiconductor electrode. On the other hand, photogenerated electrons have a high reducing power, so they directly reduce water molecules in the liquid or reduce hydrogen ions generated by ionization of water molecules to generate hydrogen gas, or reduce oxygen to reduce oxygen ions. Or generate Further, in the present invention, since the surface treatment reaction proceeds in the liquid phase, the amount of generated oxygen anion is small, and the reaction between the oxygen anion and the sensitizing dye as described above can be reduced. And, by the above photocatalytic action, impurities that inhibit the photoelectric conversion reaction contained in the semiconductor material forming the semiconductor electrode can be sufficiently oxidized and removed, so that the dye-sensitized solar cell having excellent photoelectric conversion efficiency can be obtained. Photoelectrodes can be obtained.

【0011】なお、本明細書において、「半導体電極の
裏面」とは、上記のように半導体電極を有する光電極を
用いて色素増感型太陽電池を構成した際の半導体電極の
電解質に接触することになる側の面を示す。
[0011] In the present specification, the "back surface of the semiconductor electrode" is in contact with the electrolyte of the semiconductor electrode when a dye-sensitized solar cell is constructed using the photoelectrode having the semiconductor electrode as described above. Shows the side of the side that will be.

【0012】また、本発明は、受光面を有する半導体電
極と、当該半導体電極の受光面上に隣接して配置された
透明電極とを有する色素増感型太陽電池用光電極の製造
方法であって、半導体電極を作用極とする電気化学セル
を構成し、水中又は電解質溶液中において、半導体電極
にバイアス電圧を印加しつつ、半導体電極の受光面とは
反対側の裏面に、180〜450nmの波長領域の電磁
波を照射する表面処理工程と、表面処理工程により得ら
れる半導体電極の裏面に増感色素を吸着させる色素吸着
工程と、を有することを特徴とする色素増感型太陽電池
用光電極の製造方法を提供する。
Further, the present invention is a method for manufacturing a photoelectrode for a dye-sensitized solar cell, comprising a semiconductor electrode having a light receiving surface, and a transparent electrode disposed adjacent to the light receiving surface of the semiconductor electrode. Thus, to constitute an electrochemical cell having a semiconductor electrode as a working electrode, in water or in an electrolyte solution, while applying a bias voltage to the semiconductor electrode, on the back surface opposite to the light-receiving surface of the semiconductor electrode, 180 to 450 nm A photoelectrode for a dye-sensitized solar cell, comprising: a surface treatment step of irradiating electromagnetic waves in a wavelength region; and a dye adsorption step of adsorbing a sensitizing dye on the back surface of the semiconductor electrode obtained by the surface treatment step. And a method for producing the same.

【0013】この製造方法の場合にも、先に述べた製造
方法と同様に、液中において上記波長範囲の電磁波を照
射することにより、半導体電極を構成する半導体材料に
含まれる光電変換反応を阻害する不純物を十分に酸化除
去することができるので、優れた光電変換効率を有する
色素増感型太陽電池用光電極を得ることができる。更
に、この製造方法の場合には、上記波長範囲の電磁波を
照射する際に、半導体電極を作用極とする電気化学セル
を構成し、当該半導体電極にバイアス電圧を印加するの
で、半導体電極を構成する半導体材料に含まれる光電変
換反応を阻害する不純物を効率よくかつより確実に酸化
除去することができる。
In this manufacturing method, similarly to the above-described manufacturing method, by irradiating electromagnetic waves in the above-mentioned wavelength range in a liquid, the photoelectric conversion reaction contained in the semiconductor material constituting the semiconductor electrode is inhibited. Therefore, a photoelectrode for a dye-sensitized solar cell having excellent photoelectric conversion efficiency can be obtained. Furthermore, in the case of this manufacturing method, when irradiating electromagnetic waves in the above wavelength range, an electrochemical cell having a semiconductor electrode as a working electrode is configured and a bias voltage is applied to the semiconductor electrode. Impurities that inhibit the photoelectric conversion reaction contained in the semiconductor material can be efficiently and more reliably oxidized and removed.

【0014】なお、この場合の「電気化学セル」とは、
光電極を構成する半導体電極を作用極とするものであれ
ば特に限定されるものではなく、例えば、作用極(半導
体電極)と参照電極を兼ねる対極とから構成されるいわ
ゆる2極系の電気化学セルでもよく、作用極と、参照電
極と、対極とから構成されるいわゆる3極系の電気化学
セルでもよい。何れの電気化学セルにおいても、半導体
電極に印加するバイアス電圧を調節することにより、半
導体電極の裏面を酸化反応が選択的に進行する反応場と
し、対極を還元反応が選択的に進行する反応場とするこ
とができる。そのため、半導体電極の裏面において酸化
反応と還元反応が同時に進行してしまう電磁波を照射す
るのみの場合に比較し、上記不純物を効率よくかつより
確実に酸化除去することができる。しかし、参照電極に
対する作用極の電位をより精密に制御し所望の酸化反応
をより選択的かつ確実に進行させる観点から、3極系の
電気化学セルを用いることが好ましい。
The "electrochemical cell" in this case is
There is no particular limitation as long as the semiconductor electrode constituting the photoelectrode is used as a working electrode. For example, a so-called two-electrode electrochemical system including a working electrode (semiconductor electrode) and a counter electrode also serving as a reference electrode is used. The cell may be a so-called three-electrode electrochemical cell including a working electrode, a reference electrode, and a counter electrode. In any electrochemical cell, by adjusting the bias voltage applied to the semiconductor electrode, the back surface of the semiconductor electrode is used as a reaction field where the oxidation reaction proceeds selectively, and the counter electrode is used as a reaction field where the reduction reaction proceeds selectively. It can be. Therefore, the impurities can be efficiently and more reliably oxidized and removed as compared with the case where only the electromagnetic wave in which the oxidation reaction and the reduction reaction proceed simultaneously on the back surface of the semiconductor electrode is applied. However, from the viewpoint of more precisely controlling the potential of the working electrode with respect to the reference electrode and allowing the desired oxidation reaction to proceed more selectively and reliably, it is preferable to use a three-electrode electrochemical cell.

【0015】また、「半導体電極にバイアス電圧を印加
する」こととは、電気化学セルにおいて、参照電極の電
位に対して作用極の電位を上記不純物の酸化反応を進行
させることが可能な電位に調節することを示す。ここ
で、バイアス電圧とは、作用極の電位から参照電極の電
位を差し引いた値を示す。このときの参照電極も特に限
定されるものではなく、電気化学セルに使用する電解質
溶液等に応じて適宜使用可能なものを選択することがで
きる。例えば、標準水素電極(以下、SHEという)、
銀−塩化銀電極(以下、「Ag−AgCl」と記載す
る)、カロメル電極等の公知の電極を使用することがで
きる。
"Applying a bias voltage to the semiconductor electrode" means that in the electrochemical cell, the potential of the working electrode is set to a potential at which the oxidation reaction of the impurity can proceed with respect to the potential of the reference electrode. Indicates adjustment. Here, the bias voltage indicates a value obtained by subtracting the potential of the reference electrode from the potential of the working electrode. The reference electrode at this time is not particularly limited, either, and an electrode that can be appropriately used can be selected according to an electrolyte solution or the like used in the electrochemical cell. For example, a standard hydrogen electrode (hereinafter, referred to as SHE),
Known electrodes such as a silver-silver chloride electrode (hereinafter, referred to as “Ag-AgCl”) and a calomel electrode can be used.

【0016】更に、上記不純物の酸化反応を進行させる
ことが可能な作用極(半導体電極)の電位の範囲は使用
する半導体電極を構成する半導体材料、当該半導体材料
に含まれる不純物、使用する参照電極により適宜決定さ
れる。例えば、電磁波を照射しながら参照電極に対する
半導体電極の電位を変化させることにより、上記不純物
の酸化可能な電位範囲を実験的に求めてもよく(後述の
図6を参照)、可能な場合には使用する半導体電極上で
の上記不純物の酸化反応の過電圧と、上記不純物の酸化
還元電位等の熱力学的データから理論的に求めてもよ
い。例えば、半導体電極を構成する半導体材料が酸化チ
タンであり、参照電極がAg−AgCl電極([C
-]:飽和,例えば飽和KCl水溶液)の場合には、
作用極の電位は−0.5〜1.5V vs.Ag−Ag
Clが好ましく、−0.3〜+1.5Vvs.Ag−A
gClがより好ましい。
Further, the range of the potential of the working electrode (semiconductor electrode) capable of promoting the oxidation reaction of the impurities is determined by the semiconductor material constituting the semiconductor electrode to be used, the impurities contained in the semiconductor material, and the reference electrode to be used. Is determined as appropriate. For example, by changing the potential of the semiconductor electrode with respect to the reference electrode while irradiating an electromagnetic wave, the potential range in which the impurity can be oxidized may be determined experimentally (see FIG. 6 described later). It may be theoretically obtained from the overvoltage of the oxidation reaction of the impurity on the semiconductor electrode to be used and thermodynamic data such as the oxidation-reduction potential of the impurity. For example, the semiconductor material forming the semiconductor electrode is titanium oxide, and the reference electrode is an Ag-AgCl electrode ([C
l -]: saturated, for example in the case of a saturated KCl solution) is
The potential of the working electrode is -0.5 to 1.5 V vs. Ag-Ag
Cl is preferable, and -0.3 to +1.5 Vvs. Ag-A
gCl is more preferred.

【0017】ここで、本発明においては、上述の2つの
製造方法の何れにおいても、表面処理工程において半導
体電極の裏面に照射する電磁波の波長が180nm以上
が好ましく、半導体電極の裏面に照射する電磁波の波長
が450nmを超えると、光触媒機能が発現せず、その
効果が現れない。そして、上記と同様の観点から、半導
体電極を構成する半導体材料が酸化チタンの場合には、
半導体電極の裏面に照射する電磁波の波長は、180〜
450nmであることがより好ましく、250〜400
nmであることが更に好ましい。
In the present invention, in any of the above two manufacturing methods, the wavelength of the electromagnetic wave applied to the back surface of the semiconductor electrode in the surface treatment step is preferably 180 nm or more. When the wavelength exceeds 450 nm, the photocatalytic function does not appear and the effect does not appear. And, from the same viewpoint as above, when the semiconductor material forming the semiconductor electrode is titanium oxide,
The wavelength of the electromagnetic wave applied to the back surface of the semiconductor electrode is 180 to
It is more preferably 450 nm,
More preferably, it is nm.

【0018】また、本発明においては、上述の2つの製
造方法の何れにおいても、表面処理工程において、超音
波を更に照射することが好ましい。これにより、半導体
電極の裏面において、半導体材料に含まれる光電変換反
応を阻害する不純物から生成する酸化生成物の液(水又
は電解質溶液)のバルク中への拡散等をよりスムーズに
行うことができるようになるので、上記不純物を更に効
率よくかつより確実に酸化除去することができる。
In the present invention, in any of the above two manufacturing methods, it is preferable to further irradiate an ultrasonic wave in the surface treatment step. Thereby, diffusion of a liquid (water or an electrolyte solution) of an oxidation product generated from an impurity that inhibits a photoelectric conversion reaction contained in the semiconductor material on the back surface of the semiconductor electrode can be performed more smoothly. As a result, the impurities can be oxidized and removed more efficiently and more reliably.

【0019】更に、本発明は、受光面を有する半導体電
極と当該半導体電極の受光面上に隣接して配置された透
明電極とを有する光電極と、対極とを有しており、半導
体電極と対極とが電解質を介して対向配置された色素増
感型太陽電池の製造方法であって、光電極を、前述した
本発明の色素増感型太陽電池用光電極の製造方法により
製造することを特徴とする色素増感型太陽電池の製造方
法を提供する。
Further, the present invention has a photoelectrode having a semiconductor electrode having a light receiving surface, a transparent electrode arranged adjacent to the light receiving surface of the semiconductor electrode, and a counter electrode. A method for producing a dye-sensitized solar cell in which a counter electrode and a counter electrode are disposed opposite each other via an electrolyte, wherein the photoelectrode is produced by the method for producing a dye-sensitized solar cell photoelectrode of the present invention described above. A method for producing a dye-sensitized solar cell is provided.

【0020】このように、前述した色素増感型太陽電池
用光電極の製造方法により製造した光電極を用いること
により、優れたエネルギー変換効率を有する色素増感型
太陽電池を製造することができる。
As described above, by using the photoelectrode manufactured by the above-described method for manufacturing a photoelectrode for a dye-sensitized solar cell, a dye-sensitized solar cell having excellent energy conversion efficiency can be manufactured. .

【0021】[0021]

【発明の実施の形態】以下、図面を参照しながら本発明
の色素増感型太陽電池用光電極の製造方法及び色素増感
型太陽電池の製造方法ついて詳細に説明する。なお、以
下の説明では、同一または相当部分には同一符号を付
し、重複する説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a photoelectrode for a dye-sensitized solar cell and a method for manufacturing a dye-sensitized solar cell according to the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts will be denoted by the same reference characters, without redundant description.

【0022】先ず、本発明により製造される色素増感型
太陽電池用光電極及び色素増感型太陽電池の基本構成に
ついて説明する。図1は、本発明の色素増感型太陽電池
用光電極の製造方法により製造される光電極の一例を示
す模式断面図である。また、図2は、図1に示す領域1
00の部分の模式拡大断面図である。更に、図3は、本
発明の色素増感型太陽電池の製造方法により製造される
色素増感型太陽電池の一例を示す模式断面図である。
First, the basic structure of the photoelectrode for a dye-sensitized solar cell and the dye-sensitized solar cell manufactured according to the present invention will be described. FIG. 1 is a schematic cross-sectional view showing an example of a photoelectrode manufactured by the method for manufacturing a photoelectrode for a dye-sensitized solar cell according to the present invention. FIG. 2 shows a region 1 shown in FIG.
It is a typical expanded sectional view of the part of 00. FIG. 3 is a schematic cross-sectional view showing an example of a dye-sensitized solar cell manufactured by the method for manufacturing a dye-sensitized solar cell of the present invention.

【0023】図1に示す色素増感型太陽電池用光電極1
0は、主として、受光面F2を有する半導体電極2と、
当該半導体電極2の受光面F2上に隣接して配置された
透明電極1ととから構成されている。また、図3に示す
色素増感型太陽電池20は、主として、図1に示した光
電極10と、対極CEと、スペーサーSにより光電極1
0と対極CEとの間に形成される間隙に充填された電解
質Eとから構成されている。そして、光電極1の半導体
電極2は、その裏面F22の側において電解質Eと接触
している。
Photoelectrode 1 for dye-sensitized solar cell shown in FIG.
0 is mainly a semiconductor electrode 2 having a light receiving surface F2;
And the transparent electrode 1 disposed adjacent to the light receiving surface F2 of the semiconductor electrode 2. The dye-sensitized solar cell 20 illustrated in FIG. 3 mainly includes the photoelectrode 10 illustrated in FIG. 1, the counter electrode CE, and the spacer S.
0 and the electrolyte E filled in the gap formed between the counter electrode CE. The semiconductor electrode 2 of the photoelectrode 1 is in contact with the electrolyte E on the back surface F22 side.

【0024】この色素増感型太陽電池20は、透明電極
1を透過して半導体電極2に照射される光によって半導
体電極2内において電子を発生させる。そして、半導体
電極2内において発生した電子は、透明電極1に集めら
れて外部に取り出される。
In this dye-sensitized solar cell 20, electrons are generated in the semiconductor electrode 2 by the light that passes through the transparent electrode 1 and irradiates the semiconductor electrode 2. Then, the electrons generated in the semiconductor electrode 2 are collected by the transparent electrode 1 and taken out.

【0025】透明電極1の構成は特に限定されるもので
はなく、通常の色素増感型太陽電池に搭載される透明電
極を使用できる。例えば、図1及び図3の透明電極1
は、ガラス基板等の透明基板4の半導体電極2の側に光
を透過させるいわゆるための透明導電膜3をコートした
構成を有する。この透明導電膜3としては、液晶パネル
等に用いられる透明電極を用いればよい。例えば、フッ
素ドープSnO2コートガラス、ITOコートガラス、
ZnO:Alコートガラス等が挙げられる。また、メッ
シュ状、ストライプ状など光が透過できる構造にした金
属電極をガラス基板等の基板4上に設けたものでもよ
い。
The structure of the transparent electrode 1 is not particularly limited, and a transparent electrode mounted on a usual dye-sensitized solar cell can be used. For example, the transparent electrode 1 shown in FIGS.
Has a configuration in which a transparent conductive film 3 for transmitting light is coated on the side of the semiconductor electrode 2 of a transparent substrate 4 such as a glass substrate. As the transparent conductive film 3, a transparent electrode used for a liquid crystal panel or the like may be used. For example, fluorine-doped SnO 2 coated glass, ITO coated glass,
ZnO: Al coated glass and the like can be mentioned. Further, a metal electrode having a structure in which light can be transmitted, such as a mesh or a stripe, may be provided on the substrate 4 such as a glass substrate.

【0026】透明基板4としては、液晶パネル等に用い
られる透明基板を用いてよい。具体的には透明なガラス
基板、ガラス基板表面を適当に荒らすなどして光の反射
を防止したもの、すりガラス状の半透明のガラス基板な
ど光を透過するものが透明基板材料として挙げられる。
なお、光を透過するものであれば材質はガラスでなくて
もよく、透明プラスチック板、透明プラスチック膜、無
機物透明結晶体などでもよい。
As the transparent substrate 4, a transparent substrate used for a liquid crystal panel or the like may be used. Specific examples of the transparent substrate material include a transparent glass substrate, a substrate in which light reflection is prevented by appropriately roughening the surface of the glass substrate, and a substrate that transmits light such as a frosted glass-like translucent glass substrate.
The material may not be glass as long as it transmits light, and may be a transparent plastic plate, a transparent plastic film, an inorganic transparent crystal, or the like.

【0027】図2に示すように、半導体電極2は、主と
して多孔質半導体粒子P1とこの多孔質半導体粒子P1
の表面に吸着された増感色素P2とから構成されてい
る。この半導体電極2の構成材料となる半導体は特に限
定されるものではなく、酸化物半導体、硫化物半導体等
を使用することができる。酸化物半導体としては、例え
ば、TiO2,ZnO,SnO2,Nb25,In23
WO3,ZrO2,La23,Ta25,SrTiO3
BaTiO3等を用いることができる。硫化物半導体と
しては、例えば、CdS等を用いることができる。ま
た、上記の半導体の他に、Si,GaAs等も用いるこ
とができる。
As shown in FIG. 2, the semiconductor electrode 2 mainly includes the porous semiconductor particles P1 and the porous semiconductor particles P1.
And the sensitizing dye P2 adsorbed on the surface of the polymer. The semiconductor that is a constituent material of the semiconductor electrode 2 is not particularly limited, and an oxide semiconductor, a sulfide semiconductor, or the like can be used. Examples of the oxide semiconductor include TiO 2 , ZnO, SnO 2 , Nb 2 O 5 , In 2 O 3 ,
WO 3 , ZrO 2 , La 2 O 3 , Ta 2 O 5 , SrTiO 3 ,
BaTiO 3 or the like can be used. As the sulfide semiconductor, for example, CdS or the like can be used. In addition to the above semiconductors, Si, GaAs, and the like can be used.

【0028】また、半導体電極2内に含有させる増感色
素P2は特に限定されるものではなく、可視光領域およ
び/または赤外光領域に吸収を持つ色素であればよい。
この増感色素P2としては、金属錯体や有機色素等を用
いることができる。金属錯体としては銅フタロシアニ
ン、チタニルフタロシアニン等の金属フタロシアニン、
クロロフィルまたはその誘導体、ヘミン、ルテニウム、
オスミウム、鉄及び亜鉛の錯体(例えばシス−ジシアネ
ート−ビス(2、2’−ビピリジル−4、4’−ジカル
ボキシレート)ルテニウム(II))等が挙げられる。
有機色素としては,メタルフリーフタロシアニン,シア
ニン系色素,メタロシアニン系色素,キサンテン系色
素,トリフェニルメタン系色素等を用いることができ
る。
The sensitizing dye P2 contained in the semiconductor electrode 2 is not particularly limited, and may be any dye having absorption in a visible light region and / or an infrared light region.
As the sensitizing dye P2, a metal complex, an organic dye, or the like can be used. As the metal complex, copper phthalocyanine, metal phthalocyanine such as titanyl phthalocyanine,
Chlorophyll or its derivatives, hemin, ruthenium,
Osmium, iron and zinc complexes (eg, cis-dicyanate-bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium (II)) and the like.
As the organic dye, metal-free phthalocyanine, cyanine dye, metalocyanine dye, xanthene dye, triphenylmethane dye and the like can be used.

【0029】更に、半導体電極2の厚みは、5〜30μ
mであることが好ましく、5〜15μmであることがよ
り好ましく、8〜13μmであることが更に好ましい。
半導体電極の厚みが5μm未満となると、色素吸着量が
少なくなり光を有効に吸収できなくなる傾向が大きくな
る。一方、半導体電極の厚みが30μmを超えると、電
気抵抗が大きくなり半導体に注入されたキャリアの損失
量が多くなるとともに、イオン拡散抵抗が増大して、光
励起されて半導体への電子注入を果した後の色素に対す
るI-からの電子注入によってI3 -の対極への搬出が阻
害され、電池の出力特性が低下する傾向が大きくなる。
Further, the thickness of the semiconductor electrode 2 is 5 to 30 μm.
m, more preferably 5 to 15 μm, even more preferably 8 to 13 μm.
When the thickness of the semiconductor electrode is less than 5 μm, the amount of dye adsorbed decreases, and the tendency for light to be unable to be absorbed effectively increases. On the other hand, when the thickness of the semiconductor electrode exceeds 30 μm, the electric resistance increases, the loss amount of carriers injected into the semiconductor increases, and the ion diffusion resistance increases. I 3 by electron injection from - - after I for dye out of the counter electrode is inhibited, the output characteristics of the battery becomes large tends to decrease.

【0030】また、対極CEは、特に限定されるもので
はなく、例えば、シリコン太陽電池、液晶パネル等に通
常用いられている対極と同じものを用いてよい。例え
ば、前述の透明電極1と同じ構成を有するものであって
もよく、透明電極1と同様の透明導電膜3上にPt等の
金属薄膜電極を形成し、金属薄膜電極を電解質Eの側に
向けて配置させるものであってもよい。また、透明電極
1の透明導電膜3に白金を少量付着させたものであって
もよく、白金などの金属薄膜、炭素などの導電性膜など
であってもよい。
The counter electrode CE is not particularly limited, and may be the same as the counter electrode usually used for a silicon solar cell, a liquid crystal panel, or the like. For example, it may have the same configuration as the above-mentioned transparent electrode 1. A metal thin film electrode such as Pt is formed on the same transparent conductive film 3 as the transparent electrode 1, and the metal thin film electrode is placed on the electrolyte E side. It may be arranged to face. Also, a small amount of platinum may be adhered to the transparent conductive film 3 of the transparent electrode 1, or a metal thin film such as platinum or a conductive film such as carbon may be used.

【0031】更に、電解質Eの組成も光励起され半導体
への電子注入を果した後の色素を還元するための酸化還
元種を含んでいれば特に限定されないが、I-/I3 -
の酸化還元種を含むヨウ素系レドックス溶液が好ましく
用いられる。具体的には、I -/I3 -系の電解質はヨウ
素のアンモニウム塩あるいはヨウ化リチウムとヨウ素を
混合したものなどを用いることができる。その他、Br
-/Br3 -系、キノン/ハイドロキノン系などのレドッ
クス電解質をアセトニトリル、炭酸プロピレン、エチレ
ンカーボネートなどの電気化学的に不活性な溶媒(およ
びこれらの混合溶媒)に溶かしたものも使用できる。
Further, the composition of the electrolyte E is also photo-excited and
Redox to reduce dye after electron injection into chromium
There is no particular limitation as long as it contains the original species.-/ IThree -etc
Iodine-based redox solution containing a redox species of
Used. Specifically, I -/ IThree -The system electrolyte is iodine
Ammonium iodide and lithium iodide and iodine
Mixtures and the like can be used. Other, Br
-/ BrThree -System, quinone / hydroquinone system, etc.
Electrolytes such as acetonitrile, propylene carbonate, and ethylene
Electrochemically inert solvents such as carbonates (and
And a mixed solvent thereof can also be used.

【0032】また、スペーサーSの構成材料は特に限定
されるものではなく、例えば、シリカビーズ等を用いる
ことができる。
The constituent material of the spacer S is not particularly limited, and for example, silica beads or the like can be used.

【0033】次に、図1の色素増感型太陽電池用光電極
10及び色素増感型太陽電池20を例として本発明の色
素増感型太陽電池用光電極の製造方法及び色素増感型太
陽電池の製造方法について説明する。
Next, the method for manufacturing the dye-sensitized solar cell photoelectrode of the present invention and the dye-sensitized solar cell photoelectrode 10 of the present invention will be described with reference to the dye-sensitized solar cell photoelectrode 10 and the dye-sensitized solar cell 20 shown in FIG. A method for manufacturing a solar cell will be described.

【0034】先に述べたように、本発明の色素増感型太
陽電池用光電極の製造方法は、1)水中又は電解質溶液
中において、半導体電極の受光面とは反対側の裏面に、
180〜450nmの波長領域の電磁波を照射する表面
処理工程(以下、「表面処理工程1」という)、又は、
2)半導体電極を作用極とする電気化学セルを構成し、
水中又は電解質溶液中において、半導体電極にバイアス
電圧を印加しつつ、半導体電極の受光面とは反対側の裏
面に、180〜450nmの波長領域の電磁波を照射す
る表面処理工程(以下、「表面処理工程2」という)
と、これらのいずれか一方の表面処理工程を経て得られ
る半導体電極の裏面F22に増感色素を吸着させる色素
吸着工程とを有している。
As described above, the method for producing a photoelectrode for a dye-sensitized solar cell according to the present invention comprises the following steps: 1) in water or in an electrolyte solution, on the back surface opposite to the light-receiving surface of the semiconductor electrode;
A surface treatment step of irradiating electromagnetic waves in a wavelength region of 180 to 450 nm (hereinafter, referred to as “surface treatment step 1”), or
2) constituting an electrochemical cell having a semiconductor electrode as a working electrode,
A surface treatment step of applying an electromagnetic wave in a wavelength region of 180 to 450 nm to the back surface opposite to the light receiving surface of the semiconductor electrode while applying a bias voltage to the semiconductor electrode in water or in an electrolyte solution (hereinafter referred to as “surface treatment”). Process 2 ”)
And a dye adsorbing step of adsorbing the sensitizing dye on the back surface F22 of the semiconductor electrode obtained through any one of these surface treatment steps.

【0035】本発明の色素増感型太陽電池用光電極の製
造方法は、上記の表面処理工程1又は表面処理工程2と
色素吸着工程を有していればよく、他の製造工程は特に
限定されない。また、本発明の色素増感型太陽電池の製
造方法は、上記の色素増感型太陽電池用光電極の製造方
法により製造した光電極を用いて色素増感型太陽電池を
製造する方法であれば他の製造工程は特に限定されな
い。
The method for producing a photoelectrode for a dye-sensitized solar cell of the present invention may include the above-mentioned surface treatment step 1 or surface treatment step 2 and a dye adsorption step, and the other production steps are not particularly limited. Not done. Further, the method for producing a dye-sensitized solar cell of the present invention is a method for producing a dye-sensitized solar cell using the photoelectrode produced by the method for producing a photoelectrode for a dye-sensitized solar cell described above. Other manufacturing steps are not particularly limited.

【0036】以下、表面処理工程1又は表面処理工程2
に使用するための増感色素を吸着させていない光電極1
0の製造方法の例について説明する。
Hereinafter, the surface treatment step 1 or the surface treatment step 2
Electrode 1 not adsorbing sensitizing dye for use in
An example of a manufacturing method of No. 0 will be described.

【0037】先ず、透明電極1を製造する場合は、ガラ
ス基板等の基板4上に先に述べたフッ素ドープSnO2
等の透明導電膜3をスプレーコートする等の公知の方法
を用いて形成することができる。
First, when the transparent electrode 1 is manufactured, the above-mentioned fluorine-doped SnO 2 is formed on a substrate 4 such as a glass substrate.
And the like can be formed by a known method such as spray coating the transparent conductive film 3.

【0038】次に、透明電極1の透明導電膜3上にTi
2等の半導体を膜状に蒸着させることにより半導体電
極2を形成することができる。透明導電膜3上に半導体
を膜状に蒸着させる方法としては公知の方法を用いるこ
とができる。例えば、電子ビーム蒸着、抵抗加熱蒸着、
スパッタ蒸着、クラスタイオンビーム蒸着等の物理蒸着
法を用いてもよく、酸素等の反応性ガス中で金属等を蒸
発させ、反応生成物を透明導電膜3上に堆積させる反応
蒸着法を用いてもよい。更に、反応ガスの流れを制御す
る等してCVD等の化学蒸着法を用いることもできる。
Next, on the transparent conductive film 3 of the transparent electrode 1, Ti
The semiconductor electrode 2 can be formed by evaporating a semiconductor such as O 2 into a film. As a method of depositing a semiconductor on the transparent conductive film 3 in a film form, a known method can be used. For example, electron beam evaporation, resistance heating evaporation,
A physical vapor deposition method such as sputter vapor deposition or cluster ion beam vapor deposition may be used, and a metal or the like is evaporated in a reactive gas such as oxygen and a reaction vapor deposition method is used to deposit a reaction product on the transparent conductive film 3. Is also good. Further, a chemical vapor deposition method such as CVD can be used by controlling the flow of a reaction gas.

【0039】次に、透明導電膜3上に半導体電極2とな
る半導体蒸着膜を形成した後、必要に応じてこの半導体
蒸着膜に所定の温度条件のもとで熱処理を加え、相転移
させてもよい。これにより、例えば、半導体蒸着膜がア
モルファス相の状態で形成された場合、これを結晶化さ
せ、アナターゼ相にすることができる。その結果、結晶
化による明瞭なバンド構造の形成、半導体の結晶粒成長
及びそれに伴った結晶粒間の結合性向上等により、色素
から半導体への電子の注入効率が向上されるか、或いは
半導体蒸着膜内における電子の移動が容易となり、エネ
ルギー変換効率を更に向上させることができる。更に、
上記の熱処理を非酸化性雰囲気において行なうと、酸素
欠陥量の多い半導体蒸着膜とすることができ、半導体蒸
着膜の電気伝導度が高くなりエネルギー変換効率を更に
向上させることができる。
Next, after a semiconductor vapor deposition film to be the semiconductor electrode 2 is formed on the transparent conductive film 3, a heat treatment is applied to the semiconductor vapor deposition film under a predetermined temperature condition as needed to cause a phase transition. Is also good. Thus, for example, when the semiconductor vapor-deposited film is formed in an amorphous phase, it can be crystallized to be an anatase phase. As a result, the efficiency of injecting electrons from the dye into the semiconductor is improved by the formation of a clear band structure by crystallization, the growth of the crystal grains of the semiconductor and the accompanying improvement in the connectivity between the crystal grains, or the semiconductor vapor deposition. The movement of electrons in the film is facilitated, and the energy conversion efficiency can be further improved. Furthermore,
When the above heat treatment is performed in a non-oxidizing atmosphere, a semiconductor vapor-deposited film having a large amount of oxygen vacancies can be obtained, and the electrical conductivity of the semiconductor vapor-deposited film can be increased, so that the energy conversion efficiency can be further improved.

【0040】また、透明電極1の透明導電膜3上に半導
体電極2を形成する他の方法としては、以下の方法があ
る。すなわち、先ず、酸化チタン等の多孔質半導体粒子
P1(粒子の平均粒径が1〜1000nm程度、好まし
くは1〜100nmのもの)を分散させた分散液を調製
する。この分散液の溶媒は水、有機溶媒、または両者の
混合溶媒など多孔質半導体粒子P1を分散できるものな
ら特に限定されない。また、分散液中には必要に応じて
界面活性剤、粘度調節剤を加えてもよい。次に、分散液
を透明電極1の透明導電膜3上に塗布し、次いで乾燥す
る。このときの塗布方法としてはバーコーター法、印刷
法などを用いることができる。そして、乾燥した後、空
気中、不活性ガス或いは窒素中で加熱、焼成して半導体
電極2(多孔質半導体膜)を形成する。このときの焼成
温度は300〜800℃が好ましい。焼成温度が300
℃未満であると多孔質半導体粒子P1間の固着、基板へ
の付着力が弱くなり十分な強度がでなくなる。焼成温度
が800℃を超えると半導体粒子P1間の固着が進み、
半導体電極2(多孔質半導体膜)の表面積が小さくな
る。
Another method for forming the semiconductor electrode 2 on the transparent conductive film 3 of the transparent electrode 1 is as follows. That is, first, a dispersion liquid in which porous semiconductor particles P1 such as titanium oxide (having an average particle diameter of about 1 to 1000 nm, preferably 1 to 100 nm) is prepared. The solvent of the dispersion is not particularly limited as long as the porous semiconductor particles P1 can be dispersed, such as water, an organic solvent, or a mixed solvent of both. Further, a surfactant and a viscosity modifier may be added to the dispersion as needed. Next, the dispersion is applied on the transparent conductive film 3 of the transparent electrode 1 and then dried. As a coating method at this time, a bar coater method, a printing method, or the like can be used. Then, after drying, the semiconductor electrode 2 (porous semiconductor film) is formed by heating and baking in air, an inert gas or nitrogen. The firing temperature at this time is preferably 300 to 800 ° C. Firing temperature 300
If the temperature is lower than 0 ° C., the adhesion between the porous semiconductor particles P1 and the adhesion to the substrate are weakened, and the strength is not sufficient. If the firing temperature exceeds 800 ° C., the adhesion between the semiconductor particles P1 proceeds,
The surface area of the semiconductor electrode 2 (porous semiconductor film) is reduced.

【0041】次に、本発明における表面処理工程1につ
いて説明する。図4は、上述の表面処理工程1の一例を
示す工程図である。図4に示すように、表面処理工程1
においては、180〜450nmの波長領域の電磁波を
透過可能な容器30に、電解質溶液E10を入れ、更に
これに増感色素P2を含有していない光電極10を浸漬
する。そして、電解質溶液E10中に超音波USを照射
しながら、光電極10を構成する半導体電極2の裏面F
22に向けて180〜450nmの波長領域の電磁波を
照射する。これにより、半導体電極2の裏面F22にお
いて、半導体電極2中に含まれる光電変換反応を阻害す
る有機物等の不純物I2(R)が酸化され、二酸化炭素
など酸化生成物I2(Ox)となり、当該半導体電極2
中から電解質溶液E10中に除去される。なお、このと
き、裏面F22上では電解質溶液E10中の水の酸化反
応も起こり、酸素が発生する場合がある。
Next, the surface treatment step 1 in the present invention will be described. FIG. 4 is a process chart showing an example of the above-described surface treatment process 1. As shown in FIG.
In the above, the electrolyte solution E10 is placed in a container 30 that can transmit electromagnetic waves in a wavelength region of 180 to 450 nm, and the photoelectrode 10 containing no sensitizing dye P2 is further immersed therein. Then, while irradiating the ultrasonic wave US into the electrolyte solution E10, the back surface F of the semiconductor electrode 2 constituting the photoelectrode 10 is formed.
An electromagnetic wave in a wavelength region of 180 to 450 nm is irradiated toward 22. Thereby, on the back surface F22 of the semiconductor electrode 2, the impurities I2 (R) such as organic substances that inhibit the photoelectric conversion reaction contained in the semiconductor electrode 2 are oxidized to become oxidation products I2 (Ox) such as carbon dioxide, and Electrode 2
It is removed from the inside into the electrolyte solution E10. At this time, on the back surface F22, an oxidation reaction of water in the electrolyte solution E10 also occurs, and oxygen may be generated.

【0042】上記電磁波の光源としては、例えば、メタ
ハライドランプ、太陽光、高圧水銀灯、キセノンランプ
等が挙げられる。また、上記裏面F22の見かけの単位
面積当たりに照射する電磁波の照射強度は1mW/cm
2〜50W/cm2であることが好ましい。照射強度が1
mW/cm2未満であると酸化反応が十分に進行しない
おそれがある。一方、また、照射強度が50W/cm2
を超えると、電解質が加熱されて蒸発するおそれがあ
る。この表面処理工程1を行なうときの処理温度は、5
〜100℃であることが好ましく、40〜80℃である
ことがより好ましい。処理温度が100℃を超えると過
度の酸化反応が起き、処理温度が5℃未満であると酸化
反応が十分に進行しないおそれがある。
The light source of the electromagnetic wave includes, for example, a metahalide lamp, sunlight, a high-pressure mercury lamp, a xenon lamp, and the like. Further, the irradiation intensity of the electromagnetic wave applied per unit area of the back surface F22 is 1 mW / cm.
It is preferably 2 to 50 W / cm 2 . Irradiation intensity is 1
If it is less than mW / cm 2 , the oxidation reaction may not proceed sufficiently. On the other hand, the irradiation intensity is also 50 W / cm 2
If it exceeds, the electrolyte may be heated and evaporated. The processing temperature when performing this surface treatment step 1 is 5
To 100 ° C, more preferably 40 to 80 ° C. If the processing temperature exceeds 100 ° C., an excessive oxidation reaction occurs. If the processing temperature is lower than 5 ° C., the oxidation reaction may not proceed sufficiently.

【0043】また、超音波USの発振源としては、例え
ば、超音波ホモジナイザ、超音波洗浄機等が挙げられ
る。また、半導体電極照射面積の観点から、超音波US
の発振出力は10〜500Wであることが好ましく、2
0〜200Wであることが好ましい。更に、キャビティ
ー発生の観点から、超音波USの周波数は20〜150
kHzであることが好ましい。なお、先に述べたように
この表面処理工程1においては、超音波US10を照射
せず、上記電磁波のみ照射してもよい。
Examples of the oscillation source of the ultrasonic wave US include an ultrasonic homogenizer and an ultrasonic cleaner. In addition, from the viewpoint of the semiconductor electrode irradiation area, ultrasonic US
Is preferably 10 to 500 W, and 2
It is preferably 0 to 200 W. Further, from the viewpoint of cavity generation, the frequency of the ultrasonic wave US is 20 to 150.
Preferably, it is kHz. As described above, in the surface treatment step 1, the ultrasonic wave US10 may not be applied, and only the electromagnetic wave may be applied.

【0044】また、電解質溶液E10は光電変換反応を
阻害する不純物を十分に除去してあるものであれば特に
限定されず、例えば、アセトニトリル、プロピレンカー
ボネートを使用することができる。また、アセトニトリ
ル、プロピレンカーボネート等にイオン交換水を混合し
た液を使用してもよい。更に、先に述べたようにこの表
面処理工程1においては、電解質溶液E10のかわりに
イオン交換水などの水を用いてもよい。
The electrolyte solution E10 is not particularly limited as long as impurities that inhibit the photoelectric conversion reaction are sufficiently removed. For example, acetonitrile and propylene carbonate can be used. Further, a liquid obtained by mixing ion-exchanged water with acetonitrile, propylene carbonate, or the like may be used. Further, as described above, in the surface treatment step 1, water such as ion-exchanged water may be used instead of the electrolyte solution E10.

【0045】次に、本発明における表面処理工程2の一
例について説明する。図5は、表面処理工程2の一例を
示す工程図である。図5に示すように、表面処理工程2
においては、180〜450nmの波長領域の電磁波を
透過可能な容器32に、電解質溶液E20を入れる。そ
して、ポテンシオスタット40にそれぞれ接続された参
照電極REと、対極CE10と、増感色素P2を含有し
ていない光電極10とを電解質溶液E20内に浸漬し、
光電極10(半導体電極2)を作用極とする電気化学セ
ル50を構成する。
Next, an example of the surface treatment step 2 in the present invention will be described. FIG. 5 is a process chart showing an example of the surface treatment process 2. As shown in FIG.
In, the electrolyte solution E20 is placed in a container 32 that can transmit electromagnetic waves in a wavelength range of 180 to 450 nm. Then, the reference electrode RE connected to the potentiostat 40, the counter electrode CE10, and the photoelectrode 10 containing no sensitizing dye P2 are immersed in the electrolyte solution E20,
An electrochemical cell 50 having the photoelectrode 10 (semiconductor electrode 2) as a working electrode is configured.

【0046】そして、ポテンシオスタット40を作動さ
せて半導体電極2にバイアス電圧を印加しつつ、電解質
溶液E10中に超音波USを照射しながら、光電極10
を構成する半導体電極2の裏面F22に向けて180〜
450nmの波長領域の電磁波を照射する。ポテンシオ
スタット40内には参照電極REと光電極10(半導体
電極2)とが接続された電位制御回路と、光電極10
(半導体電極2)と対極CE10とが接続された電流測
定回路とが備えられている。これにより、半導体電極2
の裏面において主として起こる酸化反応に対応する電流
の大半が対極CE10に流れるとともに、電位制御回路
により参照電極REに対する光電極10(半導体電極
2)の電位が所定のバイアス電圧値に応じて精密に制御
される。
Then, while activating the potentiostat 40 to apply a bias voltage to the semiconductor electrode 2 and irradiating the ultrasonic wave US into the electrolyte solution E10, the photoelectrode 10
180 to the back surface F22 of the semiconductor electrode 2 constituting
An electromagnetic wave in a wavelength region of 450 nm is irradiated. In the potentiostat 40, a potential control circuit in which the reference electrode RE and the photoelectrode 10 (semiconductor electrode 2) are connected, and a photoelectrode 10
There is provided a current measurement circuit in which the (semiconductor electrode 2) and the counter electrode CE10 are connected. Thereby, the semiconductor electrode 2
Most of the current corresponding to the oxidation reaction mainly occurring on the back surface of the substrate flows through the counter electrode CE10, and the potential control circuit precisely controls the potential of the photoelectrode 10 (semiconductor electrode 2) with respect to the reference electrode RE according to a predetermined bias voltage value. Is done.

【0047】これにより、半導体電極2の裏面F22に
おいて、半導体電極2中に含まれる光電変換反応を阻害
する有機物等の不純物I2(R)が酸化され、二酸化炭
素など酸化生成物I2(Ox)となり、当該半導体電極
2中から電解質溶液E10中に除去される。なお、この
とき、裏面F22上では電解質溶液E10中の水の酸化
反応も起こり、酸素が発生する場合がある。一方、対極
CE上では、裏面F22上の酸化反応に対応する還元反
応が進行し、例えば、電解質溶液E10中の水又は水素
イオン等が還元されて水素等が発生する。
As a result, on the back surface F22 of the semiconductor electrode 2, the impurities I2 (R) such as organic substances that inhibit the photoelectric conversion reaction contained in the semiconductor electrode 2 are oxidized to become oxidation products I2 (Ox) such as carbon dioxide. Is removed from the semiconductor electrode 2 into the electrolyte solution E10. At this time, an oxidation reaction of water in the electrolyte solution E10 also occurs on the back surface F22, and oxygen may be generated. On the other hand, on the counter electrode CE, a reduction reaction corresponding to the oxidation reaction on the back surface F22 proceeds, for example, water or hydrogen ions in the electrolyte solution E10 are reduced to generate hydrogen and the like.

【0048】この表面処理工程2において、半導体電極
2の裏面F22に照射する電磁波の照射条件(光源、照
射強度)、処理温度、超音波USの照射条件(発振源、
発振出力、周波数)等の条件は、上述の表面処理工程1
と同様である。なお、この表面処理工程2においても、
表面処理工程1と同様に超音波US10を照射せず、上
記電磁波のみ照射してもよい。
In this surface treatment step 2, irradiation conditions (light source, irradiation intensity) of the electromagnetic wave irradiating the back surface F22 of the semiconductor electrode 2, treatment temperature, irradiation conditions of the ultrasonic wave US (oscillation source,
The conditions such as the oscillation output and the frequency) are the same as those in the surface treatment step 1 described above.
Is the same as In this surface treatment step 2,
Similarly to the surface treatment step 1, the ultrasonic wave US10 may not be applied, and only the electromagnetic wave may be applied.

【0049】また、ここでは、作用極(半導体電極2)
と、参照電極REと、対極CE10とから構成されるい
わゆる3極系の電気化学セル50を用いる場合について
説明したが、表面処理工程2においては、作用極(半導
体電極)と参照電極を兼ねる対極とから構成されるいわ
ゆる2極系の電気化学セルをもちいてよい。
Here, the working electrode (semiconductor electrode 2)
And a case where a so-called three-electrode electrochemical cell 50 composed of a reference electrode RE and a counter electrode CE10 is used. In the surface treatment step 2, a counter electrode serving as both a working electrode (semiconductor electrode) and a reference electrode is used. And a so-called two-electrode electrochemical cell composed of

【0050】また、電解質溶液E10も、表面処理工程
1と同様のものを使用することができる。更に、この表
面処理工程2においても、表面処理工程1と同様に電解
質溶液E10のかわりにイオン交換水などの水を用いて
もよい。
The same electrolyte solution E10 as that used in the surface treatment step 1 can be used. Further, in this surface treatment step 2, as in the case of the surface treatment step 1, water such as ion-exchanged water may be used instead of the electrolyte solution E10.

【0051】次に、本発明における色素吸着工程につい
て説明する。色素吸着工程は、表面処理工程1又は表面
処理工程2を経ることにより得られる半導体電極2(半
導体蒸着膜)中に浸着法等の公知の方法により増感色素
P2を含有させることにより色素増感型太陽電池用光電
極10を完成させる工程である。増感色素P2は、上述
の表面処理工程1又は表面処理工程2により、酸化処理
が施された半導体電極2の裏面F22に付着(化学吸
着、物理吸着または堆積など)させればよい。この付着
方法は、例えば色素を含む溶液中に半導体電極2の裏面
F22を浸漬するなどの方法を用いることができる。こ
の際、溶液を加熱し還流させるなどして増感色素の吸
着、堆積を促進することができる。なお、このとき、色
素の他に必要に応じて、銀等の金属やアルミナ等の金属
酸化物を半導体電極2(半導体蒸着膜)中に含有させて
もよい。
Next, the dye adsorption step in the present invention will be described. In the dye adsorption step, the dye is sensitized by incorporating the sensitizing dye P2 into the semiconductor electrode 2 (semiconductor vapor deposition film) obtained through the surface treatment step 1 or the surface treatment step 2 by a known method such as an immersion method. This is a step of completing the photoelectrode 10 for a sensitive solar cell. The sensitizing dye P2 may be attached (such as chemical adsorption, physical adsorption, or deposition) to the back surface F22 of the oxidized semiconductor electrode 2 in the above-described surface treatment step 1 or surface treatment step 2. As the attachment method, for example, a method of immersing the back surface F22 of the semiconductor electrode 2 in a solution containing a dye can be used. At this time, the adsorption and deposition of the sensitizing dye can be promoted by heating and refluxing the solution. At this time, in addition to the dye, a metal such as silver or a metal oxide such as alumina may be contained in the semiconductor electrode 2 (semiconductor vapor deposition film) as necessary.

【0052】色素増感型太陽電池用光電極は、これを構
成する半導体電極2(多孔質半導体膜)に吸着させる増
感色素P2の量、その結合状態、表面の微細構造等によ
ってその光電変換効率が左右されるが、上記の表面処理
工程1又は表面処理工程2を経ることにより、半導体電
極2の裏面F22は光電変換反応に有利な表面の微細構
造、増感色素P2の量、その結合状態を有している。
The photoelectrode for a dye-sensitized solar cell has its photoelectric conversion depending on the amount of the sensitizing dye P2 adsorbed on the semiconductor electrode 2 (porous semiconductor film) constituting the photoelectrode, the bonding state thereof, the fine structure of the surface, and the like. Although the efficiency is affected, the back surface F22 of the semiconductor electrode 2 is subjected to the surface treatment step 1 or the surface treatment step 2 so that the back surface F22 of the semiconductor electrode 2 has a fine surface structure advantageous for the photoelectric conversion reaction, the amount of the sensitizing dye P2, and the bonding thereof State.

【0053】このようにして光電極10を作製した後
は、公知の方法により対極CEを作製し、これと光電極
10と、スペーサーSを図1に示すように組み上げて、
内部に電解質Eを充填し、色素増感型太陽電池20を完
成させる。
After the photoelectrode 10 is manufactured in this manner, a counter electrode CE is manufactured by a known method, and the counter electrode CE is assembled with the photoelectrode 10 and the spacer S as shown in FIG.
The inside is filled with the electrolyte E, and the dye-sensitized solar cell 20 is completed.

【0054】[0054]

【実施例】以下、実施例及び比較例を挙げて本発明の色
素増感型太陽電池用光電極の製造法及び色素増感型太陽
電池の製造方法について更に詳しく説明するが、本発明
はこれらの実施例に何ら限定されるものではない。
EXAMPLES Hereinafter, the method for producing a photoelectrode for a dye-sensitized solar cell and the method for producing a dye-sensitized solar cell according to the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiment.

【0055】(実施例1)以下に示す手順により、図1
に示した色素増感型太陽電池用光電極10と同様の構成
を有する色素増感型太陽電池用光電極を作製し、更に、
色素増感型太陽電池用光電極を用いて、図3に示した色
素増感型太陽電池20と同様の構成を有する100mm
×100mmのスケールの色素増感型太陽電池を作製し
た。
(Example 1) FIG.
To produce a dye-sensitized solar cell photoelectrode having the same configuration as the dye-sensitized solar cell photoelectrode 10 shown in
Using a dye-sensitized solar cell photoelectrode, a 100 mm-thick structure having the same configuration as the dye-sensitized solar cell 20 shown in FIG.
A dye-sensitized solar cell having a scale of 100 mm was manufactured.

【0056】先ず、TiO2粒子(平均粒径;25〜2
00nm)を硝酸溶液に入れて撹拌することによりチタ
ニアスラリーを調製した。次に、チタニアスラリーに増
粘剤としてセルロース系バインダーを加え、混練してペ
ーストを調製した。一方、ガラス基板上にフッ素ドープ
されたSnO2導電膜(膜厚;500nm)を形成した
透明電極を準備した。そして、このSnO2導電膜上
に、上述のペーストをスクリーン印刷し、次いで乾燥さ
せた。その後、空気中、450℃の条件のもとで焼成し
た。このスクリーン印刷と焼成とを繰り返すことによ
り、SnO2導電膜上にTiO2からなる半導体電極(受
光面の面積;90mm×90mm、層厚;20μm)を
形成し、増感色素を含有していない光電極を作製した。
First, TiO 2 particles (average particle size: 25 to 2)
(00 nm) in a nitric acid solution and stirred to prepare a titania slurry. Next, a cellulosic binder was added as a thickener to the titania slurry and kneaded to prepare a paste. On the other hand, a transparent electrode in which a fluorine-doped SnO 2 conductive film (thickness: 500 nm) was formed on a glass substrate was prepared. Then, the paste described above was screen-printed on the SnO 2 conductive film, and then dried. Then, it baked under the conditions of 450 degreeC in air. By repeating this screen printing and baking, a semiconductor electrode made of TiO 2 (area of the light receiving surface; 90 mm × 90 mm, layer thickness: 20 μm) is formed on the SnO 2 conductive film, and does not contain a sensitizing dye. A photoelectrode was prepared.

【0057】次に、上述の表面処理工程1に従って、上
記の半導体電極の裏面を酸化処理した。すなわち、図4
に示したように、先ずイオン交換水中に、上記光電極を
浸漬した。次いで、イオン交換水の温度を50℃に保持
し、超音波(出力;150W、周波数;100KHz)
を照射しつつ、半導体電極の裏面に向けて電磁波(光
源;500Wの高圧水銀ランプ、照射強度;100mW
/cm2)を照射させた。
Next, the back surface of the semiconductor electrode was oxidized according to the above-described surface treatment step 1. That is, FIG.
First, the photoelectrode was immersed in ion-exchanged water. Next, the temperature of the ion-exchanged water is maintained at 50 ° C., and ultrasonic waves (output: 150 W, frequency: 100 KHz)
While irradiating an electromagnetic wave (light source: 500 W high-pressure mercury lamp, irradiation intensity: 100 mW
/ Cm 2 ).

【0058】次に、酸化処理した半導体電極の裏面に色
素を以下のようにして吸着させた。先ず、マグネシウム
エトキシドで脱水した無水エタノールを溶媒としてこれ
にルテニウム錯体[cis-Di(thiocyanato)-N,N'-bis(2,
2'-bipyridyl-4,4'dicarboxylic acid)-ruthenium(I
I)]を、その濃度が3×10-4mol/Lとなるように
溶解し、ルテニウム錯体溶液を調製した。次に、この溶
液に半導体電極を浸漬し、80℃の温度条件のもとで8
0時間放置した。これにより、半導体電極に色素となる
ルテニウム錯体が約1.5×10-7mol/cm2で吸
着した。次に、開放電圧Vocを向上させるために、ル
テニウム錯体吸着後の半導体電極をアセトニトリル溶液
に15分浸漬した後、25℃に保持した窒素気流中にお
いて乾燥させ、光電極10を完成させた。
Next, a dye was adsorbed on the back surface of the oxidized semiconductor electrode as follows. First, a solution of ruthenium complex [cis-Di (thiocyanato) -N, N'-bis (2,
2'-bipyridyl-4,4'dicarboxylic acid) -ruthenium (I
I)] was dissolved at a concentration of 3 × 10 −4 mol / L to prepare a ruthenium complex solution. Next, the semiconductor electrode is immersed in this solution,
Left for 0 hours. As a result, the ruthenium complex serving as a dye was adsorbed on the semiconductor electrode at about 1.5 × 10 −7 mol / cm 2 . Next, in order to improve the open-circuit voltage Voc, the semiconductor electrode after the adsorption of the ruthenium complex was immersed in an acetonitrile solution for 15 minutes, and then dried in a nitrogen gas stream maintained at 25 ° C. to complete the photoelectrode 10.

【0059】次に、対極として上記の光電極と同様の形
状と大きさを有する白金電極(Pt薄膜の厚さ;500
nm)、電解質Eとして、ヨウ素及びヨウ化リチウムを
含むヨウ素系レドックス溶液を調製した。更に、半導体
電極の大きさに合わせた形状を有するデュポン社製のス
ペーサーS(商品名:「サーリン」)を準備し、図3に
示すように、光電極10と対極CEとスペーサーSを介
して対向させ、内部に上記の電解質を充填して色素増感
型太陽電池を完成させた。
Next, as a counter electrode, a platinum electrode (thickness of Pt thin film: 500
nm), and an iodine-based redox solution containing iodine and lithium iodide was prepared as the electrolyte E. Further, a spacer S (trade name: “Surlyn”) manufactured by Dupont and having a shape corresponding to the size of the semiconductor electrode is prepared, and as shown in FIG. The dye-sensitized solar cell was completed by filling the inside with the above-mentioned electrolyte.

【0060】(実施例2)半導体電極の裏面の酸化処理
を上述の表面処理工程2に従って以下のようにして行っ
たこと以外は、実施例1と同様の色素増感型太陽電池用
光電極及び色素増感型太陽電池を実施例1と同様の製法
により作製した。
Example 2 A photoelectrode for a dye-sensitized solar cell similar to that of Example 1 except that the oxidation treatment of the back surface of the semiconductor electrode was performed in the following manner in accordance with the above-mentioned surface treatment step 2 A dye-sensitized solar cell was manufactured in the same manner as in Example 1.

【0061】すなわち、図3に示したように、先ず、ポ
テンシオスタットにそれぞれ接続された参照電極と、対
極と、増感色素を含有していない光電極とを硫酸ナトリ
ウム水溶液中に浸漬し、光電極(半導体電極)を作用極
とする電気化学セルを構成した。なお、参照電極にはA
g−AgCl電極([Cl-]:飽和,飽和KCl水溶
液)を使用し、対極には白金線を使用した。そして、ポ
テンシオスタットを作動させて、参照電極に対する半導
体電極の電位が0.2V vs.Ag−AgClとなる
ように、半導体電極にバイアス電圧を印加しつつ、実施
例1と同様の条件で、半導体電極の裏面に向けて電磁波
を照射させた。
That is, as shown in FIG. 3, first, a reference electrode, a counter electrode, and a photoelectrode containing no sensitizing dye connected to a potentiostat were immersed in an aqueous solution of sodium sulfate. An electrochemical cell having a photoelectrode (semiconductor electrode) as a working electrode was configured. The reference electrode is A
g-AgCl electrodes ([Cl -]: saturated, saturated KCl aqueous solution) was used, a counter electrode was a platinum wire. Then, the potentiostat is operated, and the potential of the semiconductor electrode with respect to the reference electrode becomes 0.2 V vs. the potential of the semiconductor electrode. An electromagnetic wave was applied to the back surface of the semiconductor electrode under the same conditions as in Example 1 while applying a bias voltage to the semiconductor electrode so that Ag-AgCl was obtained.

【0062】ここで、上記の半導体電極の電位は、以下
に示す実験データにより予め求められた値であり、半導
体電極を構成する半導体材料(TiO2)に含まれる不
純物を十分に酸化除去することが可能な値である。以
下、不純物の酸化可能な半導体電極の電位範囲を求めた
実験データについて説明する。
Here, the potential of the above-mentioned semiconductor electrode is a value previously obtained from the following experimental data, and it is necessary to sufficiently oxidize and remove impurities contained in the semiconductor material (TiO 2 ) constituting the semiconductor electrode. Is a possible value. Hereinafter, experimental data for determining the potential range of the semiconductor electrode capable of oxidizing impurities will be described.

【0063】図6は、実施例2の製造方法と同様の方法
により製造された光電極にバイアス電圧を変化させなが
ら印加しつつ測定された、電磁波を照射した場合と電磁
波を照射しない場合とにおける光電極の電流−電位特性
曲線の一例を示すグラフである。なお、この場合も上記
と同様の構成のポテンシオスタットに接続された電気化
学セルを使用し、電磁波の照射条件も上記と同様にし
た。図6に示すように、参照電極に対する半導体電極の
電位をマイナスの側からプラスの側に増加させた場合、
半導体電極の電位が約−0.5Vvs.Ag−AgCl
を超えた電位領域から光電流が急激に増加していること
が観測される。このことから、半導体電極の電位が約−
0.5Vvs.Ag−AgClを超えた電位領域におい
て、半導体電極中の不純物が酸化除去されていることが
わかる。そして、半導体電極の電位が0.2Vvs.A
g−AgClのとき、光電流が最大となり、この電位付
近において半導体電極中の不純物の酸化反応が最も効率
よく進行することがわかった。
FIG. 6 shows the results of measurement while applying a bias voltage while changing the bias voltage to the photoelectrode manufactured by the same method as the manufacturing method of the second embodiment. 5 is a graph showing an example of a current-potential characteristic curve of a photoelectrode. In this case, an electrochemical cell connected to a potentiostat having the same configuration as described above was used, and the irradiation conditions of the electromagnetic wave were the same as above. As shown in FIG. 6, when the potential of the semiconductor electrode with respect to the reference electrode is increased from the negative side to the positive side,
When the potential of the semiconductor electrode is about -0.5 Vvs. Ag-AgCl
It can be observed that the photocurrent sharply increases from the potential region beyond. From this, the potential of the semiconductor electrode becomes about-
0.5Vvs. It can be seen that impurities in the semiconductor electrode are oxidized and removed in the potential region exceeding Ag-AgCl. When the potential of the semiconductor electrode is 0.2 Vvs. A
In the case of g-AgCl, the photocurrent was maximized, and it was found that the oxidation reaction of impurities in the semiconductor electrode proceeded most efficiently near this potential.

【0064】(実施例3)半導体電極の裏面の酸化処理
を以下のようにして行ったこと以外は、実施例1と同様
の色素増感型太陽電池用光電極及び色素増感型太陽電池
を実施例1と同様の製法により作製した。
(Example 3) A photoelectrode for a dye-sensitized solar cell and a dye-sensitized solar cell similar to those in Example 1 except that the oxidation treatment of the back surface of the semiconductor electrode was performed as follows. It was manufactured by the same manufacturing method as in Example 1.

【0065】半導体電極の裏面の酸化処理は、超音波を
照射しなかったこと以外は、実施例1と同様の条件のも
とで行った。すなわち、先ずイオン交換水中に、実施例
1と同様の光電極を浸漬した。次いで、イオン交換水の
温度を50℃に保持し、半導体電極の裏面に向けて電磁
波(光源;500Wの高圧水銀ランプ、照射強度;10
0mW/cm2)を照射させた。
The oxidation treatment of the back surface of the semiconductor electrode was performed under the same conditions as in Example 1 except that no ultrasonic wave was applied. That is, the same photoelectrode as in Example 1 was first immersed in ion-exchanged water. Next, the temperature of the ion-exchanged water was maintained at 50 ° C., and an electromagnetic wave (light source; high-pressure mercury lamp of 500 W, irradiation intensity;
0 mW / cm 2 ).

【0066】(実施例4)半導体電極の裏面の酸化処理
を以下のようにして行ったこと以外は、実施例1と同様
の色素増感型太陽電池用光電極及び色素増感型太陽電池
を実施例1と同様の製法により作製した。
(Example 4) A photoelectrode for a dye-sensitized solar cell and a dye-sensitized solar cell similar to those in Example 1, except that the back surface of the semiconductor electrode was oxidized as follows. It was manufactured by the same manufacturing method as in Example 1.

【0067】半導体電極の裏面の酸化処理は、超音波を
照射せず、イオン交換水のかわりに電解質溶液を使用し
た以外は、実施例1と同様の条件のもとで行った。すな
わち、先ず、電解質溶液として、硫酸ナトリウム水溶液
(溶質濃度;0.1mol/L)を調製し、この電解質
溶液中に、実施例1と同様の光電極を浸漬した。次い
で、電解質溶液中の温度を50℃に保持し、半導体電極
の裏面に向けて電磁波(光源;500Wの高圧水銀ラン
プ、照射強度;100mW/cm2)を照射させた。
The oxidation treatment of the back surface of the semiconductor electrode was performed under the same conditions as in Example 1 except that ultrasonic waves were not applied and an electrolyte solution was used instead of ion-exchanged water. That is, first, an aqueous sodium sulfate solution (solute concentration; 0.1 mol / L) was prepared as an electrolyte solution, and the same photoelectrode as in Example 1 was immersed in this electrolyte solution. Next, the temperature in the electrolyte solution was maintained at 50 ° C., and an electromagnetic wave (light source; high-pressure mercury lamp of 500 W, irradiation intensity; 100 mW / cm 2 ) was irradiated toward the back surface of the semiconductor electrode.

【0068】(実施例5)半導体電極の裏面の酸化処理
を以下のようにして行ったこと以外は、実施例1と同様
の色素増感型太陽電池用光電極及び色素増感型太陽電池
を実施例2と同様の製法により作製した。
(Example 5) A photoelectrode for a dye-sensitized solar cell and a dye-sensitized solar cell similar to those in Example 1, except that the back surface of the semiconductor electrode was oxidized as follows. It was manufactured by the same manufacturing method as in Example 2.

【0069】半導体電極の裏面の酸化処理は、超音波を
実施例1と同様の条件のもとで更に照射させたこと以外
は、実施例2と同様の条件のもとで行った。すなわち、
先ず、電解質溶液として、硫酸ナトリウム水溶液を調製
した。そして、ポテンシオスタットにそれぞれ接続され
た参照電極と、対極と、増感色素を含有していない光電
極とを硫酸ナトリウム水溶液中に浸漬し、光電極を作用
極とする実施例2と同様の電気化学セルを構成した。そ
して、ポテンシオスタットを作動させて、参照電極に対
する半導体電極の電位が0.2V vs.Ag−AgC
lとなるように、半導体電極にバイアス電圧を印加しつ
つ、実施例1と同様の条件で、半導体電極の裏面に向け
て電磁波及び超音波を照射させた。
The oxidation treatment of the back surface of the semiconductor electrode was performed under the same conditions as in Example 2 except that the ultrasonic wave was further irradiated under the same conditions as in Example 1. That is,
First, an aqueous sodium sulfate solution was prepared as an electrolyte solution. Then, the reference electrode connected to the potentiostat, the counter electrode, and the photoelectrode containing no sensitizing dye were immersed in an aqueous sodium sulfate solution, and the same as in Example 2 in which the photoelectrode was used as a working electrode. An electrochemical cell was constructed. Then, the potentiostat is operated, and the potential of the semiconductor electrode with respect to the reference electrode becomes 0.2 V vs. the potential of the semiconductor electrode. Ag-AgC
Under the same conditions as in Example 1, an electromagnetic wave and an ultrasonic wave were applied to the back surface of the semiconductor electrode while applying a bias voltage to the semiconductor electrode so as to obtain l.

【0070】(比較例1)半導体電極の裏面の酸化処理
を行わなかったこと以外は、実施例1と同様の色素増感
型太陽電池用光電極及び色素増感型太陽電池を実施例1
と同様の製法により作製した。
Comparative Example 1 A photoelectrode for a dye-sensitized solar cell and a dye-sensitized solar cell as in Example 1 were prepared in the same manner as in Example 1 except that the oxidation treatment of the back surface of the semiconductor electrode was not performed.
It was manufactured by the same manufacturing method as described above.

【0071】(比較例2)半導体電極の裏面の酸化処理
において波長が650nmである波長の電磁波を照射し
たこと以外は実施例1と同様の製法により実施例1と同
様の色素増感型太陽電池用光電極及び色素増感型太陽電
池を作製した。
(Comparative Example 2) A dye-sensitized solar cell similar to that of Example 1 was manufactured by the same method as that of Example 1 except that an electromagnetic wave having a wavelength of 650 nm was irradiated in the oxidation treatment of the back surface of the semiconductor electrode. A photoelectrode for use and a dye-sensitized solar cell were produced.

【0072】なお、上記の比較例2の他に、半導体電極
の裏面の酸化処理において波長が450nmを超える範
囲の波長の電磁波を照射したこと以外は実施例1と同様
の製法により実施例1と同様の色素増感型太陽電池用光
電極及び色素増感型太陽電池を作製し後述の電池特性試
験をしたところ、その特性は上記の比較例2とほぼ同等
であった。
Note that, in addition to the above-mentioned Comparative Example 2, the same manufacturing method as that of Example 1 was employed except that the back surface of the semiconductor electrode was irradiated with an electromagnetic wave having a wavelength exceeding 450 nm in the oxidation treatment. Similar photoelectrodes for dye-sensitized solar cells and dye-sensitized solar cells were prepared and subjected to a battery characteristic test described later. The characteristics were almost the same as those of Comparative Example 2 described above.

【0073】[電池特性試験]電池特性試験を行ない、
実施例1〜実施例5、比較例1〜比較例2の色素増感型
太陽電池のネルギー変換効率ηを測定した。電池特性試
験は、ソーラーシミュレータを用い、AMフィルターを
通したキセノンランプから1000W/m2の疑似太陽
光を照射することにより行った。I−Vテスターを用い
て電流−電圧特性を測定し、開放電圧(Voc/V)、
短絡電流(Isc/mA・cm-2)、曲線因子(F.F.)
及びエネルギー変換効率(η/%)を求めた。その結果
を表1に示す。
[Battery Characteristics Test] A battery characteristics test was performed.
The energy conversion efficiencies η of the dye-sensitized solar cells of Examples 1 to 5 and Comparative Examples 1 and 2 were measured. The battery characteristic test was performed by irradiating 1000 W / m 2 pseudo sunlight from a xenon lamp through an AM filter using a solar simulator. The current-voltage characteristics were measured using an IV tester, and the open-circuit voltage (Voc / V),
Short circuit current (Isc / mA · cm −2 ), Fill factor (FF)
And energy conversion efficiency (η /%). Table 1 shows the results.

【0074】[0074]

【表1】 [Table 1]

【0075】表1に示した結果から明らかなように、実
施例1〜実施例5色素増感型太陽電池のエネルギー変換
効率ηは、それぞれに対応する比較例1〜比較例2色素
増感型太陽電池のエネルギー変換効率ηよりも高い値を
示した。
As is evident from the results shown in Table 1, the energy conversion efficiencies of the dye-sensitized solar cells of Examples 1 to 5 are shown in Comparative Examples 1 and 2 corresponding to the respective dye-sensitized solar cells. The value was higher than the energy conversion efficiency η of the solar cell.

【0076】[0076]

【発明の効果】以上説明したように、本発明によれば、
半導体電極を構成する半導体材料に含まれる光電変換反
応を阻害する不純物を十分に酸化除去することができる
ので、優れた光電変換効率を有する色素増感型太陽電池
用光電極を得ることができる。また、優れた光電変換効
率を有する色素増感型太陽電池用光電極を用いることに
より、優れたエネルギー変換効率を有する色素増感型太
陽電池を製造することができる。
As described above, according to the present invention,
Since impurities that inhibit the photoelectric conversion reaction contained in the semiconductor material forming the semiconductor electrode can be sufficiently oxidized and removed, a photoelectrode for a dye-sensitized solar cell having excellent photoelectric conversion efficiency can be obtained. In addition, by using a photoelectrode for a dye-sensitized solar cell having excellent photoelectric conversion efficiency, a dye-sensitized solar cell having excellent energy conversion efficiency can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の色素増感型太陽電池用光電極の製造方
法により製造される光電極の一例を示す模式断面図であ
る。
FIG. 1 is a schematic cross-sectional view showing an example of a photoelectrode manufactured by a method for manufacturing a photoelectrode for a dye-sensitized solar cell according to the present invention.

【図2】図1に示す領域100の部分の模式拡大断面図
である。
FIG. 2 is a schematic enlarged sectional view of a portion of a region 100 shown in FIG.

【図3】本発明の色素増感型太陽電池の製造方法により
製造される色素増感型太陽電池の一例を示す模式断面図
である。
FIG. 3 is a schematic cross-sectional view showing one example of a dye-sensitized solar cell manufactured by the method for manufacturing a dye-sensitized solar cell of the present invention.

【図4】本発明の色素増感型太陽電池用光電極の製造方
法の表面処理工程の一例を示す工程図である。
FIG. 4 is a process chart showing an example of a surface treatment step of the method for producing a photoelectrode for a dye-sensitized solar cell of the present invention.

【図5】図4に示す表面処理工程の別の例を示す工程図
である。
FIG. 5 is a process chart showing another example of the surface treatment step shown in FIG. 4;

【図6】図5に示す表面処理工程において、光電極にバ
イアス電圧を変化させながら印加しつつ測定した、電磁
波を照射した場合と電磁波を照射しない場合とにおける
光電極の電流−電位特性曲線の一例を示すグラフであ
る。
6 is a graph showing current-potential characteristic curves of a photoelectrode in a case where an electromagnetic wave is irradiated and a case where an electromagnetic wave is not irradiated, which is measured while applying a bias voltage to a photoelectrode in the surface treatment step shown in FIG. It is a graph which shows an example.

【符号の説明】[Explanation of symbols]

1…透明電極、2…半導体電極、3…透明導電膜、4…
基板、10…色素増感型太陽電池用光電極,20…色素
増感型太陽電池、30,32…容器、40…ポテンシオ
スタット、50…電気化学セル、100…色素増感型太
陽電池用光電極10の部分領域、C1…紫外線照射時に
おける光電極の電流−電位特性曲線、C2…暗時におけ
る光電極の電流−電位特性曲線、CE…色素増感型太陽
電池20の対極、CE10…電気化学セル50の対極、
E…色素増感型太陽電池20の電解質、E10…電解質
溶液、E20…電気化学セル50の電解質溶液、F1,
F2,F3,…受光面、F22…半導体電極2の裏面,
I2(R)…不純物、I2(Ox)…不純物I2(R)
の酸化生成物、L10…電磁波,、P1…多孔質半導体
粒子,P2…増感色素、RE…参照電極、S…スペーサ
ー、US10…超音波。
DESCRIPTION OF SYMBOLS 1 ... Transparent electrode, 2 ... Semiconductor electrode, 3 ... Transparent conductive film, 4 ...
Substrate, 10: photoelectrode for dye-sensitized solar cell, 20: dye-sensitized solar cell, 30, 32: container, 40: potentiostat, 50: electrochemical cell, 100: dye-sensitized solar cell Partial area of the photoelectrode 10, C1... Current-potential characteristic curve of the photoelectrode when irradiating ultraviolet rays, C2... Current-potential characteristic curve of the photoelectrode in the dark, CE... Counter electrode of the dye-sensitized solar cell 20, CE10. A counter electrode of the electrochemical cell 50,
E: electrolyte of the dye-sensitized solar cell 20, E10: electrolyte solution, E20: electrolyte solution of the electrochemical cell 50, F1,
F2, F3, light receiving surface, F22, back surface of semiconductor electrode 2,
I2 (R): impurity, I2 (Ox): impurity I2 (R)
L10: electromagnetic wave, P1: porous semiconductor particles, P2: sensitizing dye, RE: reference electrode, S: spacer, US10: ultrasonic wave.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 和夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 東 博純 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 元廣 友美 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 福本 俊吾 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 遠山 智之 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 (72)発明者 豊田 竜生 愛知県刈谷市朝日町2丁目1番地 アイシ ン精機株式会社内 Fターム(参考) 5F051 AA14 CB30 FA02 FA03 FA04 GA03 5H032 AA06 AS16 BB05 BB07 BB10 CC11 CC16 CC17 EE16 EE17 HH07 HH08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuo Higuchi 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (72) Inventor Hirozumi Higashi Hirozumi, Aichi-gun, Aichi-gun 41, Chuchu-Yokomichi, Toyota Chuo Research Institute, Inc. (72) Inventor Tomomi Motohiro 41, Nagakute-machi, Aichi-gun, Aichi Prefecture, Nagatochi-Yokomichi 41 Toyota Central Research Institute, Inc. (72) Inventor Shungo Fukumoto 2-1, 1-1 Asahi-machi, Kariya-shi, Aichi Aisin Seiki Co., Ltd. (72) Inventor Tomoyuki Toyama 2-1-1 Asahi-machi, Kariya-shi, Aichi Aisin Seiki Co., Ltd. 2-1-1 Asahimachi Aisin Seiki Co., Ltd. F-term (reference) 5F051 AA14 CB30 FA02 FA03 FA04 GA03 5H032 AA06 AS16 BB05 BB07 BB1 0 CC11 CC16 CC17 EE16 EE17 HH07 HH08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受光面を有する半導体電極と、当該半導
体電極の前記受光面上に隣接して配置された透明電極と
を有する色素増感型太陽電池用光電極の製造方法であっ
て、 水中又は電解質溶液中において、前記半導体電極の前記
受光面とは反対側の裏面に、180〜450nmの波長
領域の電磁波を照射する表面処理工程と、 前記表面処理工程により得られる前記半導体電極の前記
裏面に増感色素を吸着させる色素吸着工程と、を有する
ことを特徴とする色素増感型太陽電池用光電極の製造方
法。
1. A method for manufacturing a photoelectrode for a dye-sensitized solar cell, comprising: a semiconductor electrode having a light receiving surface; and a transparent electrode disposed adjacent to the semiconductor electrode on the light receiving surface. Or, in an electrolyte solution, a surface treatment step of irradiating an electromagnetic wave in a wavelength region of 180 to 450 nm on a back surface of the semiconductor electrode opposite to the light receiving surface, and the back surface of the semiconductor electrode obtained by the surface treatment process A method for adsorbing a sensitizing dye to a photoelectrode for a dye-sensitized solar cell.
【請求項2】 受光面を有する半導体電極と、当該半導
体電極の前記受光面上に隣接して配置された透明電極と
を有する色素増感型太陽電池用光電極の製造方法であっ
て、 前記半導体電極を作用極とする電気化学セルを構成し、
水中又は電解質溶液中において、前記半導体電極にバイ
アス電圧を印加しつつ、前記半導体電極の前記受光面と
は反対側の裏面に、180〜450nmの波長領域の電
磁波を照射する表面処理工程と、 前記表面処理工程により得られる前記半導体電極の前記
裏面に増感色素を吸着させる色素吸着工程と、を有する
ことを特徴とする色素増感型太陽電池用光電極の製造方
法。
2. A method of manufacturing a photoelectrode for a dye-sensitized solar cell, comprising: a semiconductor electrode having a light receiving surface; and a transparent electrode disposed adjacent to the semiconductor electrode on the light receiving surface. An electrochemical cell having a semiconductor electrode as a working electrode,
In water or in an electrolyte solution, while applying a bias voltage to the semiconductor electrode, a back surface opposite to the light receiving surface of the semiconductor electrode, a surface treatment step of irradiating an electromagnetic wave in a wavelength region of 180 to 450 nm, A method of adsorbing a sensitizing dye to the back surface of the semiconductor electrode obtained by a surface treatment step, a method of manufacturing a photoelectrode for a dye-sensitized solar cell, the method comprising:
【請求項3】 前記表面処理工程において、超音波を更
に照射することを特徴とする請求項1又は2に記載の色
素増感型太陽電池用光電極の製造方法。
3. The method for manufacturing a photoelectrode for a dye-sensitized solar cell according to claim 1, wherein an ultrasonic wave is further applied in the surface treatment step.
【請求項4】 受光面を有する半導体電極と当該半導体
電極の前記受光面上に隣接して配置された透明電極とを
有する光電極と、対極とを有しており、前記半導体電極
と前記対極とが電解質を介して対向配置された色素増感
型太陽電池の製造方法であって、 前記光電極を請求項1〜3の何れかに記載の色素増感型
太陽電池用光電極の製造方法により製造することを特徴
とする色素増感型太陽電池の製造方法。
4. A semiconductor device comprising: a semiconductor electrode having a light-receiving surface; a photoelectrode having a transparent electrode disposed adjacent to the semiconductor electrode on the light-receiving surface; and a counter electrode, wherein the semiconductor electrode and the counter electrode are provided. And a method for producing a dye-sensitized solar cell, wherein the photoelectrode is disposed opposite to each other via an electrolyte, wherein the photoelectrode is a method for producing a photoelectrode for a dye-sensitized solar cell according to claim 1. A method for producing a dye-sensitized solar cell, characterized by comprising:
JP2001085338A 2001-03-23 2001-03-23 Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell Expired - Fee Related JP4812953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001085338A JP4812953B2 (en) 2001-03-23 2001-03-23 Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001085338A JP4812953B2 (en) 2001-03-23 2001-03-23 Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2002289269A true JP2002289269A (en) 2002-10-04
JP4812953B2 JP4812953B2 (en) 2011-11-09

Family

ID=18940864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001085338A Expired - Fee Related JP4812953B2 (en) 2001-03-23 2001-03-23 Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP4812953B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068627A1 (en) * 2003-01-30 2004-08-12 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
US7159229B2 (en) 2003-04-11 2007-01-02 Sony Corporation Disk cartridge
US7222351B2 (en) 2003-04-04 2007-05-22 Sony Corporation Shutter closing mechanism and disc driving apparatus
US7313800B2 (en) 2003-04-18 2007-12-25 Sony Corporation Disk centering system
US7312507B2 (en) 2002-04-11 2007-12-25 Sony Corporation Sensitizing dye solar cell
US7422922B2 (en) 2003-01-08 2008-09-09 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic device and process for fabricating the same
CN101840794A (en) * 2009-03-13 2010-09-22 株式会社Dms Method and apparatus for production of dssc
US8563854B2 (en) 2002-08-23 2013-10-22 Sony Corporation Dye-sensitized photoelectric conversion apparatus and manufacturing method thereof
KR20150145277A (en) * 2014-06-18 2015-12-30 한양대학교 산학협력단 Photo electro-chemical apparatus and method of fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285980A (en) * 1999-04-01 2000-10-13 Idemitsu Kosan Co Ltd Coloring matter sensitized optical semiconductor, and coloring matter sensitized solar battery using the same
JP2002280086A (en) * 2001-03-19 2002-09-27 Sumitomo Osaka Cement Co Ltd Regeneration method for dye sensitized solar battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285980A (en) * 1999-04-01 2000-10-13 Idemitsu Kosan Co Ltd Coloring matter sensitized optical semiconductor, and coloring matter sensitized solar battery using the same
JP2002280086A (en) * 2001-03-19 2002-09-27 Sumitomo Osaka Cement Co Ltd Regeneration method for dye sensitized solar battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312507B2 (en) 2002-04-11 2007-12-25 Sony Corporation Sensitizing dye solar cell
US7332782B2 (en) 2002-04-11 2008-02-19 Sony Corporation Dye-sensitized solar cell
US7332785B2 (en) 2002-04-11 2008-02-19 Sony Corporation Dye-sensitized solar cell
US8563854B2 (en) 2002-08-23 2013-10-22 Sony Corporation Dye-sensitized photoelectric conversion apparatus and manufacturing method thereof
US7422922B2 (en) 2003-01-08 2008-09-09 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic device and process for fabricating the same
JP2004234988A (en) * 2003-01-30 2004-08-19 Sony Corp Photoelectric conversion element and its manufacturing method, electronic device and its manufacturing method, and semiconductor layer and its manufacturing method
WO2004068627A1 (en) * 2003-01-30 2004-08-12 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
US7820471B2 (en) 2003-01-30 2010-10-26 Sony Corporation Photoelectric conversion element and process for fabricating the same, electronic apparatus and process for fabricating the same, and semiconductor layer and process for forming the same
US7222351B2 (en) 2003-04-04 2007-05-22 Sony Corporation Shutter closing mechanism and disc driving apparatus
US7159229B2 (en) 2003-04-11 2007-01-02 Sony Corporation Disk cartridge
US7313800B2 (en) 2003-04-18 2007-12-25 Sony Corporation Disk centering system
CN101840794A (en) * 2009-03-13 2010-09-22 株式会社Dms Method and apparatus for production of dssc
KR20150145277A (en) * 2014-06-18 2015-12-30 한양대학교 산학협력단 Photo electro-chemical apparatus and method of fabricating the same
KR101712240B1 (en) 2014-06-18 2017-03-06 한양대학교 산학협력단 Photo electro-chemical apparatus and method of fabricating the same

Also Published As

Publication number Publication date
JP4812953B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4812956B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
Nath et al. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs)
JP4046974B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP2003217688A (en) Dye-sensitized photoelectric converter
JP4824196B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP5840170B2 (en) Dye-sensitized solar cell with high durability and high conversion efficiency
JP2004152613A (en) Dye-sensitized solar cell
TWI396778B (en) Zinc ferrite thin film, method for manufacturing the same and application thereof
JP4824197B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP2002222971A (en) Photoelectric converter
JP4824198B2 (en) Photoelectrode and dye-sensitized solar cell provided with the same
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP4812953B2 (en) Method for producing dye-sensitized solar cell photoelectrode and method for producing dye-sensitized solar cell
Seo et al. The blocking effect of charge recombination by sputtered and acid-treated ZnO thin film in dye-sensitized solar cells
JP2004165015A (en) Counter electrode and dye-sensitized solar cell equipped therewith
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP2002184476A (en) Method of manufacturing porous photoelectric conversion semiconductor layer and solar battery
JP2000294304A (en) Coloring matter sensitization type photosemiconductor and coloring matter sensitization type solar battery using it
JP2000285980A (en) Coloring matter sensitized optical semiconductor, and coloring matter sensitized solar battery using the same
JP2003142170A (en) Photo-electrode and dye sensitized solar cell equipped therewith
JP5135520B2 (en) Dye-sensitized solar cell
JP5140031B2 (en) Photoelectric cell
JP2007179822A (en) Electrode and dye-sensitized solar cell using it for counter electrode
JP2002280087A (en) Optical electrode and dye sensitized solar battery provided with the same
Nguyen et al. Adjusting porosity and pore radius of electrodeposited ZnO photoanodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees