JP5311094B2 - Dye-sensitized solar cell and dye-sensitized solar cell module - Google Patents

Dye-sensitized solar cell and dye-sensitized solar cell module Download PDF

Info

Publication number
JP5311094B2
JP5311094B2 JP2008034693A JP2008034693A JP5311094B2 JP 5311094 B2 JP5311094 B2 JP 5311094B2 JP 2008034693 A JP2008034693 A JP 2008034693A JP 2008034693 A JP2008034693 A JP 2008034693A JP 5311094 B2 JP5311094 B2 JP 5311094B2
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
counter electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008034693A
Other languages
Japanese (ja)
Other versions
JP2009193863A (en
Inventor
淳二 中島
利行 佐野
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008034693A priority Critical patent/JP5311094B2/en
Publication of JP2009193863A publication Critical patent/JP2009193863A/en
Application granted granted Critical
Publication of JP5311094B2 publication Critical patent/JP5311094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell which is excellent in long durability, and a dye-sensitized solar cell module using the same dye-sensitized solar cell. <P>SOLUTION: The dye-sensitized solar cell includes two transparent conductive layers 3 separately formed on a substrate 1 having a light-transmitting property by separating at a predetermined distance, a light electrode 7 stacked on one of the transparent conductive layer 3 and having a n-type semiconductor layer 9 including a colorant 11 emitting electrons in response to light-receiving, a counter electrod 13 facing to the light electrode 7 at an equal area by separating at a predetermined distance, and an electrolyte layer 17 enclosed between the light electrode 7 and the counter electrod 13. The dye-sensitized solar cell has conductivity along the other side of the transparent conductive layer 3 and the counter electrod 13, and provides a connection section 21 having no function as a reducing catalyst. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、色素増感型太陽電池及び色素増感型太陽電池モジュールに関する。   The present invention relates to a dye-sensitized solar cell and a dye-sensitized solar cell module.

近年、地球環境保全、化石エネルギー資源の枯渇等の問題に対し、太陽から無尽蔵に降り注ぐ自然光を利用して発電する太陽電池が注目されてきている。現在普及している太陽電池システムでは、シリコン系太陽電池(結晶シリコン又はアモルファスシリコンを利用した太陽電池)が主流である。しかしながら、これらシリコン系太陽電池は、半導体シリコン原料の不足や、コストが高い等の問題を抱えている。こうした中、このような問題が少ない色素増感型太陽電池が開発されている。色素増感型太陽電池は、1991年にスイスのローザンヌ大学のグレッツェルらによって開発されたものであり、グレッツェルセルとも呼ばれている。   2. Description of the Related Art In recent years, solar cells that generate electricity using natural light that falls inexhaustibly from the sun have been attracting attention with respect to problems such as global environment conservation and fossil energy resource depletion. In the currently popularized solar cell systems, silicon-based solar cells (solar cells using crystalline silicon or amorphous silicon) are the mainstream. However, these silicon-based solar cells have problems such as shortage of semiconductor silicon raw materials and high cost. Under such circumstances, dye-sensitized solar cells with few such problems have been developed. The dye-sensitized solar cell was developed in 1991 by Gretzer et al. At the University of Lausanne in Switzerland and is also called a Gretzell cell.

この色素増感型太陽電池は、光透過性をもつ基板と、基板に積層された透明導電層と、光極と、光極に対して所定の間隔を隔てて設けられた導電性を有する対極と、光極と対極との間に封入された電解質層と、から構成される。光極は、透明導電層に積層されたn型半導体層と、n型半導体層に担持された色素とを有する。この色素増感型太陽電池に対して、光極側から光を照射すると、色素が光を吸収して電子と正孔が発生する。正孔は色素から電解質層へ移動して電解質溶液中のイオンを酸化する。一方、電子は光極から外部回路を経由して対極へ移動し、そこで電解質溶液中のイオンを還元する。このイオン種の酸化還元電位により起電力が発生し、電池の発電作用が得られる。   This dye-sensitized solar cell includes a light-transmitting substrate, a transparent conductive layer laminated on the substrate, a photoelectrode, and a conductive counter electrode provided at a predetermined interval with respect to the photoelectrode. And an electrolyte layer enclosed between the photoelectrode and the counter electrode. The photoelectrode has an n-type semiconductor layer stacked on the transparent conductive layer and a dye supported on the n-type semiconductor layer. When this dye-sensitized solar cell is irradiated with light from the photoelectrode side, the dye absorbs light and generates electrons and holes. Holes move from the dye to the electrolyte layer and oxidize ions in the electrolyte solution. On the other hand, electrons move from the photoelectrode to the counter electrode via an external circuit, where they reduce ions in the electrolyte solution. An electromotive force is generated by the oxidation-reduction potential of the ion species, and the power generation action of the battery is obtained.

このような色素増感型太陽電池をモジュール化、集積化する試みも行われている。例えば、以下の特許文献1には、導電性ガラス基板を一枚だけ用いて、当該導電性ガラス基板上にセルを集積化した色素増感型太陽電池の構造が記載されている。この色素増感型太陽電池においては、図6に示すように、一枚の透明ガラス基板101上に所定の間隔を隔てて透明導電層102を分離形成し、互いに隣り合う二つの透明導電層102のうちの一方に光極103が積層されている。そして、光極103に対して所定の間隔を隔てて対向する対極(カーボン層)104は、光極の片側を覆うように断面L字状に形成されて他方の透明導電層102に導通され、光極103と対極104との間には電解液層105が封入されている。このような構造を採用することで、高価で重量も重い導電性ガラス基板の使用量を低減することができるため、低コスト化、軽量化が可能となる。   Attempts have been made to modularize and integrate such dye-sensitized solar cells. For example, Patent Document 1 below describes the structure of a dye-sensitized solar cell in which only one conductive glass substrate is used and cells are integrated on the conductive glass substrate. In this dye-sensitized solar cell, as shown in FIG. 6, transparent conductive layers 102 are separately formed on a single transparent glass substrate 101 at a predetermined interval, and two transparent conductive layers 102 adjacent to each other are formed. A photoelectrode 103 is laminated on one of them. The counter electrode (carbon layer) 104 facing the photoelectrode 103 with a predetermined interval is formed in a cross-sectional L shape so as to cover one side of the photoelectrode, and is conducted to the other transparent conductive layer 102. An electrolyte layer 105 is sealed between the photoelectrode 103 and the counter electrode 104. By adopting such a structure, the amount of expensive and heavy conductive glass substrate can be reduced, so that the cost and weight can be reduced.

特開2005−285781号公報JP-A-2005-285781

しかし、特許文献1に記載された色素増感型太陽電池のセル構造にあっては、光極と対向する対極が、光極の片側を覆うように断面L字状に形成されているため、光極に対して対極の方が、表面積が必ず大きくなってしまう。多孔質のカーボン層からなる対極は、その内部に電解液を吸い込み、電解液中のイオンの還元反応の触媒として機能するため、この光極と対極の大きさのアンバランスに起因して、全体として電解液中のイオンの還元反応が酸化反応よりも優位に進行することになる。特に、対極のうち光極と対向していない部位においては還元反応のみが選択的に進行してレドックス対の濃度勾配が発生してしまう。そのため、短期的には良好な発電性能を発揮するにしても、使用を続けるにつれて活性なイオン種の量が減少して電解液の導電性が低下し、電池の内部抵抗が増加して出力低下につながってしまう。つまり、特許文献1に記載されたようなセル構造を有する色素増感型太陽電池には、長期耐久性の点で改善すべき点が残っていた。   However, in the cell structure of the dye-sensitized solar cell described in Patent Document 1, the counter electrode facing the photoelectrode is formed in an L-shaped cross section so as to cover one side of the photoelectrode, The counter electrode always has a larger surface area than the photoelectrode. The counter electrode composed of a porous carbon layer sucks the electrolyte into its interior and functions as a catalyst for the reduction reaction of ions in the electrolyte, resulting in an overall imbalance between the size of the photoelectrode and the counter electrode. As a result, the reduction reaction of ions in the electrolyte proceeds more preferentially than the oxidation reaction. In particular, at the portion of the counter electrode that is not opposed to the photoelectrode, only the reduction reaction proceeds selectively and a concentration gradient of the redox pair is generated. Therefore, even if good power generation performance is demonstrated in the short term, the amount of active ionic species decreases as the use continues, the conductivity of the electrolyte decreases, the internal resistance of the battery increases, and the output decreases Will lead to. That is, the dye-sensitized solar cell having a cell structure as described in Patent Document 1 still has a point to be improved in terms of long-term durability.

本発明は、上記課題に鑑みてなされたものであり、長期耐久性に優れた色素増感型太陽電池及びこれを用いた色素増感型太陽電池モジュールを提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the dye-sensitized solar cell excellent in long-term durability, and a dye-sensitized solar cell module using the same.

この目的を達成するための本発明に係る色素増感型太陽電池の特徴構成は、光透過性を有する一枚の基板上に、所定の間隔を隔てて分離形成された二つの透明導電層と、前記透明導電層の一方に積層された、受光に伴い電子を放出する色素を含んだn型半導体層を有する光極と、前記光極上に積層され、電解液が内部に蓄えられる電解液層としてのセパレータ層と、前記セパレータ層上に積層され、カーボン粒子を含む対極と、を備えた色素増感型太陽電池において、前記透明導電層の他方と前記対極とに亘って設けられ、前記セパレータ層の一方の端面に接しつつ前記基板に対して垂直に伸延し、その側面において前記対極と接触する接続部を備え、前記接続部は、導電性を有し、粒子径が1〜50nmの導電性酸化物粉末を原料とする焼結体で構成し、前記導電性酸化物末は、インジウム・スズ酸化物、アンチモン・スズ酸化物、フッ素ドープスズ酸化物及び導電性酸化亜鉛の中から選択される少なくともいずれか一つ以上からなるものである点にある。 In order to achieve this object, the characteristic configuration of the dye-sensitized solar cell according to the present invention includes two transparent conductive layers formed on a single light-transmitting substrate with a predetermined interval therebetween, and A photoelectrode having an n-type semiconductor layer containing a dye that emits electrons upon receiving light, and is laminated on one of the transparent conductive layers, and an electrolyte layer is laminated on the photoelectrode and stores an electrolyte therein In the dye-sensitized solar cell provided with the separator layer as the above and a counter electrode laminated on the separator layer and containing carbon particles, the separator is provided across the other of the transparent conductive layer and the counter electrode. A contact portion extending perpendicularly to the substrate while being in contact with one end surface of the layer and contacting the counter electrode on a side surface thereof, the connection portion having conductivity and having a particle diameter of 1 to 50 nm; Baked from conductive oxide powder Constituted by the body, the conductive oxide powder is indium tin oxide, antimony tin oxide, at least made of any one or more selected from among fluorine doped tin oxide and conductive zinc oxide There is a point.

上記の特徴構成によれば、一つの基板上にセルを形成する色素増感型太陽電池において、光極と対極とを所定の間隔を隔てて等面積で対向させる。このため、電解液中のイオンの還元反応及び酸化反応の進行度をほぼ等しくすることができる。また、透明導電層と対極とを、導電性を有しかつ還元触媒としての機能を有さない接続部で接続するため、発生した電子の適切な流れを確保しつつ、接続部において還元反応のみが選択的に進行してしまうことを抑制することができる。したがって、レドックス対の濃度勾配が発生することを抑制して、長期耐久性に優れた色素増感型太陽電池を提供することができる。   According to the above characteristic configuration, in the dye-sensitized solar cell in which cells are formed on one substrate, the photoelectrode and the counter electrode are opposed to each other with a predetermined distance and at an equal area. For this reason, the progress of the reduction reaction and the oxidation reaction of ions in the electrolytic solution can be made substantially equal. In addition, since the transparent conductive layer and the counter electrode are connected by a connection portion that has conductivity and does not function as a reduction catalyst, only a reduction reaction is performed at the connection portion while ensuring an appropriate flow of generated electrons. Can be prevented from proceeding selectively. Accordingly, it is possible to provide a dye-sensitized solar cell excellent in long-term durability by suppressing the occurrence of a redox pair concentration gradient.

また、この構成によれば、導電性酸化物粉末として一般に普及している材料を用いて、簡単に長期耐久性に優れた色素増感型太陽電池を提供することができる。Moreover, according to this structure, the dye-sensitized solar cell excellent in long-term durability can be provided easily using the material generally spread as electroconductive oxide powder.

導電性酸化物は、導電性を有し、また、その表面においては酸化還元反応が生じにくい。したがって、上記の構成を採用して接続部を導電性酸化物を用いて形成すれば、レドックス対の濃度勾配が発生することを抑制して、長期耐久性に優れた色素増感型太陽電池を提供することができる。   The conductive oxide has conductivity, and a redox reaction hardly occurs on the surface thereof. Therefore, if the connection portion is formed using a conductive oxide by adopting the above configuration, a dye-sensitized solar cell excellent in long-term durability can be obtained by suppressing the occurrence of a redox pair concentration gradient. Can be provided.

この構成によれば、粒子径が1〜50nmの微細な導電性酸化物粉末を原料として、透明導電層上に接続部を焼結させて形成するので、透明導電層と接続部とを密に結着させることができる。よって、当該結着部位における外力や膨張収縮ストレス等に対する機械的強度を向上させることができ、この点からも色素増感型太陽電池の長期耐久性を向上させることができる。
前記接続部は、前記接続部は、前記セパレータ層を形成後、前記導電性酸化物粉末を含むペーストをスクリーン印刷にて積層し、焼成することにより形成され、前記対極は、前記接続部を形成後、カーボン粒子および結着性を有する酸化物粒子を含むペーストをスクリーン印刷にて、前記接続部と前記セパレータ層の段差を埋めるように積層し、焼成することにより形成してあると好適である。
According to this structure, since the connection part is formed on the transparent conductive layer by using a fine conductive oxide powder having a particle diameter of 1 to 50 nm as a raw material, the transparent conductive layer and the connection part are densely formed. Can be bound. Therefore, the mechanical strength against external force, expansion / contraction stress, and the like at the binding site can be improved, and the long-term durability of the dye-sensitized solar cell can be improved from this point.
The connecting portion is formed by laminating and baking paste containing the conductive oxide powder by screen printing after forming the separator layer, and the counter electrode forms the connecting portion. After that, it is preferable that the paste containing carbon particles and oxide particles having binding properties is formed by screen printing and laminated so as to fill the step between the connection portion and the separator layer and then fired. .

本発明に係る色素増感型太陽電池モジュールの特徴構成は、これまで説明してきたような色素増感型太陽電池を複数用い、これらを直列に接続した点にある。   The characteristic configuration of the dye-sensitized solar cell module according to the present invention is that a plurality of dye-sensitized solar cells as described above are used and connected in series.

この特徴構成によれば、長期耐久性に優れた色素増感型太陽電池を直列に接続することにより、所定の大きさの電力を取り出すことが可能となるとともに、色素増感型太陽電池モジュール全体の長期耐久性を向上させることができる。   According to this characteristic configuration, it is possible to take out a predetermined amount of power by connecting dye-sensitized solar cells excellent in long-term durability in series, and the entire dye-sensitized solar cell module The long-term durability can be improved.

〔第一の実施形態〕
本発明の第一の実施形態について図面を参照して説明する。
図1は、本発明に係る色素増感型太陽電池モジュールMの全体構造を示す斜視図である。この図に示すように、本実施形態に係る色素増感型太陽電池モジュールMは、ガラス基板1上に複数の色素増感型太陽電池C(以下、セルと称することがある)が順次配列した構成となっている。これらのセルは直列に接続されている。
[First embodiment]
A first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing the overall structure of a dye-sensitized solar cell module M according to the present invention. As shown in this figure, in the dye-sensitized solar cell module M according to this embodiment, a plurality of dye-sensitized solar cells C (hereinafter sometimes referred to as cells) are sequentially arranged on a glass substrate 1. It has a configuration. These cells are connected in series.

図2は、本実施形態に係る色素増感型太陽電池Cのセル構造を示す断面斜視図である。この図に示すように、本実施形態に係る色素増感型太陽電池Cは、光透過性を有する基板1と、基板1上に形成された透明導電層3と、光極7と、セパレータ層15と、光極7に対してセパレータ層15を介して設けられた対極13と、を備える。光極7は、透明導電層3に積層されたn型半導体層9と、n型半導体層9に担持された受光に伴い電子を放出する色素11とを有する。光極7、対極13及びセパレータ層15には、電解質溶液やイオン性液体等の電荷輸送が可能な電解液17が浸漬されている。更に、本実施形態に係る色素増感型太陽電池Cは、対極13と透明導電層3とを接続する接続部21を備えている。この色素増感型太陽電池Cに対して、光極7の側から光を照射すると、色素11が光を吸収して電子と正孔が発生する。正孔は色素11から電解液17へ移動して電解液17の中のイオンを酸化する。一方、電子は光極7から透明導電層3及び接続部21を経由して対極13へ移動し、そこで電解液17の中のイオンを還元する。このイオン種の酸化還元電位により起電力が発生し、電池の発電作用が得られる。以下では、本実施形態に係る色素増感型太陽電池Cの各部の詳細について説明する。   FIG. 2 is a cross-sectional perspective view showing the cell structure of the dye-sensitized solar cell C according to this embodiment. As shown in this figure, the dye-sensitized solar cell C according to this embodiment includes a substrate 1 having light transmittance, a transparent conductive layer 3 formed on the substrate 1, a photoelectrode 7, and a separator layer. 15 and a counter electrode 13 provided with respect to the photoelectrode 7 via a separator layer 15. The photoelectrode 7 includes an n-type semiconductor layer 9 stacked on the transparent conductive layer 3 and a dye 11 that emits electrons when received by the n-type semiconductor layer 9. In the photoelectrode 7, the counter electrode 13, and the separator layer 15, an electrolytic solution 17 that can transport charges such as an electrolytic solution or an ionic liquid is immersed. Furthermore, the dye-sensitized solar cell C according to the present embodiment includes a connection portion 21 that connects the counter electrode 13 and the transparent conductive layer 3. When this dye-sensitized solar cell C is irradiated with light from the photoelectrode 7 side, the dye 11 absorbs light and generates electrons and holes. The holes move from the dye 11 to the electrolytic solution 17 and oxidize ions in the electrolytic solution 17. On the other hand, the electrons move from the photoelectrode 7 to the counter electrode 13 via the transparent conductive layer 3 and the connecting portion 21, and reduce ions in the electrolytic solution 17 there. An electromotive force is generated by the oxidation-reduction potential of the ion species, and the power generation action of the battery is obtained. Below, the detail of each part of the dye-sensitized solar cell C which concerns on this embodiment is demonstrated.

基板1としては、光透過性を有するものを使用する。シリコン太陽電池や液晶表示パネルに用いられているものを使用することができ、具体的には、透明ガラス基板を好適に使用することができる。   As the substrate 1, a substrate having optical transparency is used. What is used for a silicon solar cell or a liquid crystal display panel can be used, and specifically, a transparent glass substrate can be used suitably.

透明導電層3は、光透過性を有する基板1上に形成される。透明導電層3は、例えば、基板1上に酸化スズを付着させることにより形成することができる。特に、フッ素をドープした酸化スズ(FTO)等の金属酸化物を用いれば、好適な透明導電層3を形成することができる。透明導電層3はスクライブ5を有しており、このスクライブ5の幅に相当する間隔を隔てて二つの透明導電層3が分離形成される。   The transparent conductive layer 3 is formed on the substrate 1 having optical transparency. The transparent conductive layer 3 can be formed, for example, by depositing tin oxide on the substrate 1. In particular, if a metal oxide such as tin oxide (FTO) doped with fluorine is used, a suitable transparent conductive layer 3 can be formed. The transparent conductive layer 3 has a scribe 5, and the two transparent conductive layers 3 are separately formed with an interval corresponding to the width of the scribe 5.

光極7は、分離形成された二つの透明導電層3の一方に積層され、受光に伴い電子を放出する色素11とn型半導体層9とを有する。n型半導体としては、金属酸化物半導体が適しており、例えば、チタン、亜鉛、スズ、インジウム、ジルコニウム等の酸化物が好適に用いられる。これらの半導体材料を微結晶又は多結晶状態にして薄膜化することにより、良好な多孔質のn型半導体層9を形成することができる。特に、多孔質の酸化チタン層は、光極7が有するn型半導体層9として好適である。色素11は、受光に伴い電子を放出する。このような色素11としては、可視光領域又は赤外領域に吸収を有する色素が適しており、例えば、金属錯体や有機色素を用いることができる。特に、ルテニウム錯体を用いると好適である。色素11は、多孔質のn型半導体層9の表面に付着させられる。付着は、化学吸着や物理吸着等によって行うことができる。具体的には、色素11を含む溶液中に多孔質のn型半導体層9を浸漬させる方法がある。   The photoelectrode 7 has a dye 11 and an n-type semiconductor layer 9 which are stacked on one of the two transparent conductive layers 3 formed separately and emit electrons upon receiving light. As the n-type semiconductor, a metal oxide semiconductor is suitable. For example, oxides such as titanium, zinc, tin, indium, and zirconium are preferably used. A good porous n-type semiconductor layer 9 can be formed by thinning these semiconductor materials into a microcrystalline or polycrystalline state. In particular, the porous titanium oxide layer is suitable as the n-type semiconductor layer 9 included in the photoelectrode 7. The dye 11 emits electrons upon receiving light. As such a pigment | dye 11, the pigment | dye which has absorption in visible region or an infrared region is suitable, For example, a metal complex and an organic pigment | dye can be used. In particular, it is preferable to use a ruthenium complex. The dye 11 is attached to the surface of the porous n-type semiconductor layer 9. Adhesion can be performed by chemical adsorption, physical adsorption, or the like. Specifically, there is a method of immersing the porous n-type semiconductor layer 9 in a solution containing the dye 11.

セパレータ層15は、光極7に積層され、光極7の片側を覆うように断面L字状に形成されている。セパレータ層15の一端は基板1上のスクライブ5と接触している。これにより、光極7と対極13との直接接触、及び光極7と接続部21との直接接触が回避される。セパレータ層15は、例えば、ルチル型の酸化チタンを用いて多孔質に形成され、その細孔の内部に電解液17を蓄える。つまり、セパレータ層15の内部に蓄えられた電解液17により、本発明の電解液層が形成される。   The separator layer 15 is laminated on the photoelectrode 7 and has an L-shaped cross section so as to cover one side of the photoelectrode 7. One end of the separator layer 15 is in contact with the scribe 5 on the substrate 1. As a result, direct contact between the photoelectrode 7 and the counter electrode 13 and direct contact between the photoelectrode 7 and the connecting portion 21 are avoided. The separator layer 15 is formed to be porous using, for example, rutile-type titanium oxide, and stores the electrolytic solution 17 inside the pores. That is, the electrolytic solution layer of the present invention is formed by the electrolytic solution 17 stored in the separator layer 15.

対極13は、光極7に対して所定の間隔を隔てて対向する。光極7と対極13とは等面積に形成される。対極13としては、導電性及び電解液17に対する耐久性を有する多孔質カーボンが好適に用いられる。このような多孔質のカーボン層からなる対極13は、その内部に電解液17を吸い込み、電解液17の中のイオンの、還元反応の触媒としても機能する。   The counter electrode 13 is opposed to the photoelectrode 7 with a predetermined interval. The photoelectrode 7 and the counter electrode 13 are formed in an equal area. As the counter electrode 13, porous carbon having conductivity and durability against the electrolytic solution 17 is preferably used. The counter electrode 13 composed of such a porous carbon layer sucks the electrolytic solution 17 into the inside thereof, and also functions as a catalyst for the reduction reaction of ions in the electrolytic solution 17.

接続部21は、対極13と透明導電層3とに亘って設けられ、これらを接続する部材である。接続部21は、導電性を有し、かつ、還元触媒としての機能を有さない材料を用いて形成される。このような材料としては、インジウム・スズ酸化物、アンチモン・スズ酸化物、フッ素ドープスズ酸化物、導電性酸化亜鉛等の導電性酸化物が好適に用いられる。これらは単独で用いても良いし、いずれか二つ以上を混合して用いても良い。接続部21は、図2に示すように、光極7が積層された透明導電層3とスクライブ5を隔てて隣設する透明導電層3から、セパレータ層15の一方の端面に接しつつ基板1に対して垂直に伸延している。そして、その上方の側面において対極13と接することにより、透明導電層3と対極13とを導通させている。
この接続部21が配置された位置は、図6の従来型の色素増感型太陽電池Cのセル構造において、対極104のうち、光極103とは対向せずに光極103の片側を覆う部位が占める位置(104a)に相当する。本発明における接続部21は、導電性を有し、かつ、還元触媒としての機能を有さないものであるため、発生した電子の適切な流れを確保しつつ、接続部21において還元反応のみが選択的に進行してしまうことを抑制することができる。これと、光極7と対極13とが等面積に形成されていることにより、電解液17の中のイオンの還元反応と酸化反応の進行度がほぼ等しくなり、酸化還元サイクルの偏りが防止される。よって、対極13の一部において還元反応のみが選択的に進行してレドックス対の濃度勾配が発生し、使用を続けるにつれて活性なイオン種の量が減少して電解液17の導電性が低下し、出力低下につながってしまう等の不都合の発生を抑制することができる。したがって、長期耐久性に優れた色素増感型太陽電池Cを提供することができる。
The connection portion 21 is a member that is provided across the counter electrode 13 and the transparent conductive layer 3 and connects them. The connection portion 21 is formed using a material that has conductivity and does not have a function as a reduction catalyst. As such a material, conductive oxides such as indium / tin oxide, antimony / tin oxide, fluorine-doped tin oxide, and conductive zinc oxide are preferably used. These may be used alone or in combination of any two or more. As shown in FIG. 2, the connecting portion 21 contacts the one end face of the separator layer 15 from the transparent conductive layer 3 adjacent to the transparent conductive layer 3 on which the photoelectrode 7 is laminated and the scribe 5, while contacting the one end face of the separator layer 15. It extends vertically. Then, the transparent conductive layer 3 and the counter electrode 13 are made conductive by being in contact with the counter electrode 13 on the upper side surface thereof.
In the cell structure of the conventional dye-sensitized solar cell C in FIG. 6, the position where the connecting portion 21 is disposed covers one side of the photoelectrode 103 without facing the photoelectrode 103 in the counter electrode 104. This corresponds to the position (104a) occupied by the part. Since the connection portion 21 in the present invention has conductivity and does not have a function as a reduction catalyst, only the reduction reaction is performed in the connection portion 21 while ensuring an appropriate flow of generated electrons. It can suppress that it advances selectively. Since the photoelectrode 7 and the counter electrode 13 are formed in an equal area, the progress of the reduction reaction and the oxidation reaction of the ions in the electrolytic solution 17 are almost equal, and the bias of the redox cycle is prevented. The Accordingly, only the reduction reaction proceeds selectively at a part of the counter electrode 13 to generate a redox pair concentration gradient, and the amount of active ionic species decreases as the use continues and the conductivity of the electrolytic solution 17 decreases. The occurrence of inconveniences such as lowering the output can be suppressed. Therefore, the dye-sensitized solar cell C excellent in long-term durability can be provided.

なお、セパレータ層15は光極7の片側を覆うように断面L字状に形成されており、接続部21はセパレータ層15の一方の端面と接しているため、厳密には、光極7の片側を覆う部位のセパレータ層15の厚み(スクライブ5の半幅〜全幅程度)の分だけ対極13の方が表面積が大きくなる。しかし、通常、スクライブ5の幅は光極7及び対極13の幅に対して極めて小さく、その差は無視できる程度であるので、ここでは等面積であるものとして扱う。つまり、本発明において、光極7と対極13とが「等面積」とは、実質的にみて面積が等しいことを意味し、たとえ多少大きさに差があったとしても、電解液17の中のイオンの還元反応と酸化反応の進行度が実質的に等しくなる程度の差は「等面積」に含まれるものとする。   The separator layer 15 is formed in an L-shaped cross section so as to cover one side of the photoelectrode 7, and the connecting portion 21 is in contact with one end face of the separator layer 15. The surface area of the counter electrode 13 is larger by the thickness of the separator layer 15 at the part covering one side (half width to about the full width of the scribe 5). However, since the width of the scribe 5 is usually extremely small with respect to the width of the photoelectrode 7 and the counter electrode 13 and the difference is negligible, it is treated here as having an equal area. That is, in the present invention, the “equal area” between the photoelectrode 7 and the counter electrode 13 means that the areas are substantially equal, and even if there is a slight difference in size, It is assumed that the difference between the degree of progress of the reduction reaction and the oxidation reaction of the ions is substantially included in the “equal area”.

ここで接続部21は、粒子径が1〜50nmの導電性酸化物粉末を原料とする焼結体であると好ましい。このような微細粉末を原料として透明導電層3の上に接続部21を焼結させて形成すれば、透明導電層3と接続部21とを密に結着させることができる。よって、当該結着部位における外力や膨張収縮ストレス等に対する機械的強度を向上させ、この点からも色素増感型太陽電池Cの長期耐久性を向上させることができる。   Here, the connecting portion 21 is preferably a sintered body made of a conductive oxide powder having a particle diameter of 1 to 50 nm as a raw material. If such a fine powder is used as a raw material to form the connection part 21 on the transparent conductive layer 3 by sintering, the transparent conductive layer 3 and the connection part 21 can be tightly bound. Therefore, the mechanical strength against external force and expansion / contraction stress at the binding site can be improved, and the long-term durability of the dye-sensitized solar cell C can be improved from this point.

これまで説明してきたような色素増感型太陽電池モジュールMは、基板1を加工する第一工程、n型半導体層9を形成する第二工程、セパレータ層15を形成する第三工程、接続部21を形成する第四工程、対極13を形成する第五工程、n型半導体層9に色素11を吸着させて光極7を形成する第六工程、光極7、対極13及びセパレータ層15に電解液17を浸漬する第七工程、を経て製造される。この製造工程については、以下に、実施例とともに具体的に説明する。   As described above, the dye-sensitized solar cell module M includes a first step of processing the substrate 1, a second step of forming the n-type semiconductor layer 9, a third step of forming the separator layer 15, and a connection portion. The fourth step of forming 21, the fifth step of forming the counter electrode 13, the sixth step of forming the photoelectrode 7 by adsorbing the dye 11 to the n-type semiconductor layer 9, the photoelectrode 7, the counter electrode 13 and the separator layer 15. It is manufactured through a seventh step of immersing the electrolytic solution 17. This manufacturing process will be specifically described below together with examples.

(実施例1)
図3に示すような工程により、色素増感型太陽電池Cを製造した。なお、性能評価試験を行う際には、光極7が積層された透明導電層3とスクライブ5を隔てて隣設する透明導電層3と対極13とに亘って、導電性を有し、かつ、還元触媒としての機能を有さない接続部21を備えたことが、純粋に連続作動による性能低下の抑制作用を発揮させていることを確認するため、1セルのみの構成としたものを用いた。
Example 1
The dye-sensitized solar cell C was manufactured by the process as shown in FIG. When performing the performance evaluation test, the transparent conductive layer 3 on which the photoelectrode 7 is laminated, the transparent conductive layer 3 adjacent to the scribe 5 and the counter electrode 13 have conductivity, and In order to confirm that the connection part 21 having no function as a reduction catalyst exhibits a function of suppressing performance degradation due to continuous operation purely, a structure having only one cell is used. It was.

図3(a)に示す第一工程では、基板1が加工される。まず透明ガラス基板上にフッ素ドープ酸化スズ(FTO)を付着させて膜厚0.5μmの透明導電層3を形成した。その後、透明導電層3にYAGレーザー加工を施すことにより50μmの幅のスクライブ5を形成し、隣設する透明導電層3どうしを絶縁した。   In the first step shown in FIG. 3A, the substrate 1 is processed. First, fluorine-doped tin oxide (FTO) was attached on a transparent glass substrate to form a transparent conductive layer 3 having a thickness of 0.5 μm. Thereafter, the transparent conductive layer 3 was subjected to YAG laser processing to form a scribe 5 having a width of 50 μm, and the adjacent transparent conductive layers 3 were insulated from each other.

図3(b)に示す第二工程では、n型半導体層9が形成される。平均粒子径25nm以下の酸化チタンを分散し、セルロース系バインダを混合した後、ブチルカルビトール等溶媒置換しながら混合し、最終的に酸化チタン固形分濃度が16wt%になるようにペーストを調合した。このペーストをスクリーン印刷にて透明導電層3に積層した後、乾燥し、450度で焼成した。このようにして、酸化チタン層からなるn型半導体層9を形成した。   In the second step shown in FIG. 3B, the n-type semiconductor layer 9 is formed. After dispersing titanium oxide having an average particle size of 25 nm or less and mixing a cellulose-based binder, mixing was performed while substituting with a solvent such as butyl carbitol, and a paste was prepared so that the titanium oxide solid content concentration was finally 16 wt%. . This paste was laminated on the transparent conductive layer 3 by screen printing, then dried and baked at 450 degrees. In this way, an n-type semiconductor layer 9 made of a titanium oxide layer was formed.

図3(c)に示す第三工程では、セパレータ層15が形成される。平均粒子径が250nmよりも大きな粒子のルチル100%酸化チタンと平均粒子径20nmの酸化ジルコニウムとを分散し、セルロース系バインダを混合した。その後、ブチルカルビトール等溶媒置換しながら混合し、最終的に酸化チタン、酸化ジルコニウム固形分濃度が15wt%になるようにペーストを調合した。このペーストをスクリーン印刷にて光極7に積層した後、乾燥し、450度で焼成した。このようにして、平均膜厚5μmのセパレータ層15を形成した。
なお、セパレータ層15は、その一端が基板1上のスクライブ5と接触し、かつ、光極7の片側を覆うように断面L字状に形成される。これにより、光極7と対極13との直接接触、及び光極7と接続部21との直接接触が回避される。
In the third step shown in FIG. 3C, the separator layer 15 is formed. Rutile 100% titanium oxide having an average particle size larger than 250 nm and zirconium oxide having an average particle size of 20 nm were dispersed, and a cellulose binder was mixed. Thereafter, mixing was performed while substituting with a solvent such as butyl carbitol, and a paste was prepared so that the final solid content of titanium oxide and zirconium oxide was 15 wt%. This paste was laminated on the photoelectrode 7 by screen printing, then dried and baked at 450 degrees. In this way, a separator layer 15 having an average film thickness of 5 μm was formed.
The separator layer 15 is formed in an L-shaped cross section so that one end thereof is in contact with the scribe 5 on the substrate 1 and covers one side of the light electrode 7. As a result, direct contact between the photoelectrode 7 and the counter electrode 13 and direct contact between the photoelectrode 7 and the connecting portion 21 are avoided.

図3(d)に示す第四工程では、接続部21が形成される。平均粒子径が1〜50nmのインジウム・スズ酸化物(ITO)のナノ粒子粉末を分散し、セルロース系バインダを混合した後、ブチルカルビトール等溶媒置換しながら混合し、最終的にITO固形分濃度が16wt%になるようにペーストを調合した。このペーストをスクリーン印刷にて、光極7が積層された透明導電層3とスクライブ5を隔てて隣設する透明導電層3に積層した後、乾燥し、450度で焼成した。このようにして、接続部21を形成した。
なお、接続部21は、その原料濃度を調節することにより、セパレータ層15の上面よりもやや高くなるように形成される。
In the fourth step shown in FIG. 3D, the connection portion 21 is formed. Disperse nanoparticle powder of indium tin oxide (ITO) with an average particle diameter of 1 to 50 nm, mix with cellulose binder, mix with solvent replacement such as butyl carbitol, and finally the ITO solid content concentration The paste was prepared so as to be 16 wt%. This paste was laminated by screen printing on the transparent conductive layer 3 adjacent to the transparent conductive layer 3 on which the photoelectrode 7 was laminated and the scribe 5, and then dried and baked at 450 degrees. Thus, the connection part 21 was formed.
The connecting portion 21 is formed to be slightly higher than the upper surface of the separator layer 15 by adjusting the raw material concentration.

図3(e)に示す第五工程では、対極13が形成される。比表面積800m2/g以上のカーボンブラック、平均粒子径5μmのグラファイト、平均一次粒子径6nmの酸化チタンを重量基準で1:5:1で混合し、更にセルロース系バインダを混合した。その後、ブチルカルビトール等溶媒置換しながら混合し、最終的に固形分濃度が30wt%になるようにペーストを調合した。このペーストをスクリーン印刷にて、接続部21とセパレータ層15の段差を埋めるようにしながらセパレータ層15に積層した後、乾燥し、450度で焼成した。このようにして、対極13を形成した。 In the fifth step shown in FIG. 3E, the counter electrode 13 is formed. Carbon black having a specific surface area of 800 m 2 / g or more, graphite having an average particle diameter of 5 μm, and titanium oxide having an average primary particle diameter of 6 nm were mixed at a weight ratio of 1: 5: 1, and further a cellulosic binder was further mixed. Thereafter, the mixture was mixed while substituting with a solvent such as butyl carbitol, and finally the paste was prepared so that the solid content concentration was 30 wt%. This paste was laminated on the separator layer 15 by screen printing so as to fill the step between the connection portion 21 and the separator layer 15, dried, and fired at 450 degrees. In this way, the counter electrode 13 was formed.

第六工程では、n型半導体層9に色素11が吸着される。第一工程から第五工程までを経た基板1を、ルテニウム錯体のエタノール溶液に所定時間(24時間)浸漬することにより、酸化チタン層からなるn型半導体層9に色素11、つまりルテニウム錯体を吸着させた。このようにして、色素11を含んだn型半導体層9を有する光極7を形成した。   In the sixth step, the dye 11 is adsorbed on the n-type semiconductor layer 9. The substrate 1 that has undergone the first to fifth steps is immersed in an ethanol solution of a ruthenium complex for a predetermined time (24 hours), thereby adsorbing the dye 11, that is, the ruthenium complex, to the n-type semiconductor layer 9 made of a titanium oxide layer. I let you. In this way, the photoelectrode 7 having the n-type semiconductor layer 9 containing the dye 11 was formed.

第七工程では、光極7、対極13及びセパレータ層15に電解液17が浸漬される。本実施例では、3−メトキシプロピオニトリルに0.05mol/Lのヨウ素(I2)と、0.5mol/Lのリチウムヨウ素(LiI)と0.5mol/Lの4−t−ブチルピリジンを溶解した電解質溶液を電解液17として注入し、セル内に封止した。このようにして、色素増感型太陽電池Cを製造した。 In the seventh step, the electrolytic solution 17 is immersed in the photoelectrode 7, the counter electrode 13, and the separator layer 15. In this example, 0.05 mol / L iodine (I 2 ), 0.5 mol / L lithium iodine (LiI), and 0.5 mol / L 4-t-butylpyridine were added to 3-methoxypropionitrile. The dissolved electrolyte solution was injected as an electrolyte solution 17 and sealed in the cell. In this way, a dye-sensitized solar cell C was manufactured.

このようにして得られた色素増感型太陽電池Cを二つ作製し、初期出力、連続作動耐久性能、性能回復性、温度サイクル耐久性の夫々について評価を行った。
初期出力については、AM1.5スペクトル分布のキセノンランプを用いたソーラーシュミレータで100mW/cm2の条件下での初期変換効率(A)を測定した。
連続作動耐久性能については、二つずつ作製した色素増感型太陽電池Cのうちの一つを、雰囲気温度が60℃に保たれ、AM1.5スペクトル分布を照射できるキセノン光源を具備した作動耐久試験機に設置し、電池の両端出力を導線でつないで100mW/cm2の光を照射しながら1000時間放置した後の連続作動後変換効率(B)を測定した。
性能回復性については、更にその後、その電池を室温下暗所で24時間放置後、暗所休止後変換効率(C0)を測定した。そして、連続作動後変換効率(B)に対する暗所休止後変換効率(C0)の比率を回復率(C)として求めた。
温度サイクル耐久性については、二つ作製した色素増感型太陽電池Cのうちの別の一つを用い、−40℃から90℃の温度サイクル試験を100サイクル行って、温度サイクル後変換効率(D0)を測定した。そして、初期変換効率(A)に対する温度サイクル後変換効率(D0)の比率を性能維持率(D)として求めた。
Two dye-sensitized solar cells C thus obtained were prepared and evaluated for each of initial output, continuous operation durability, performance recovery, and temperature cycle durability.
For the initial output, the initial conversion efficiency (A) was measured under a condition of 100 mW / cm 2 with a solar simulator using a xenon lamp with an AM 1.5 spectral distribution.
For continuous operation durability performance, one of the dye-sensitized solar cells C produced two by two has an operation durability equipped with a xenon light source capable of irradiating AM1.5 spectral distribution while maintaining the ambient temperature at 60 ° C. The conversion efficiency (B) after continuous operation was measured after installing the tester, connecting the both-end outputs of the battery with conducting wires, and leaving it to stand for 1000 hours while irradiating light of 100 mW / cm 2 .
Regarding performance recovery, the battery was then allowed to stand in the dark at room temperature for 24 hours, and the conversion efficiency (C0) was measured after resting in the dark. And the ratio of the conversion efficiency after dark stop (C0) with respect to the conversion efficiency after continuous operation (B) was calculated | required as a recovery rate (C).
For temperature cycle durability, another one of the two dye-sensitized solar cells C produced was used, and a temperature cycle test from −40 ° C. to 90 ° C. was performed 100 cycles, and the conversion efficiency after temperature cycle ( D0) was measured. And the ratio of the conversion efficiency after temperature cycle (D0) with respect to the initial conversion efficiency (A) was calculated | required as a performance maintenance factor (D).

(実施例2)
実施例1の接続部21を、平均粒子径が50nm以下のアンチモン・スズ酸化物(ATO)のナノ粒子粉末を用いて形成した以外は、全て実施例1と同じ条件で色素増感型太陽電池Cを作製し、実施例1と同様の評価を行った。
(Example 2)
A dye-sensitized solar cell was formed under the same conditions as in Example 1 except that the connecting portion 21 of Example 1 was formed using an antimony tin oxide (ATO) nanoparticle powder having an average particle diameter of 50 nm or less. C was produced and evaluated in the same manner as in Example 1.

なお、実施例1及び実施例2の共通の比較例として、図6に示すような従来型の色素増感型太陽電池Cを用いて、上記と同様の評価を行った。その結果を表1に示す。   As a common comparative example of Example 1 and Example 2, the same evaluation as described above was performed using a conventional dye-sensitized solar cell C as shown in FIG. The results are shown in Table 1.

Figure 0005311094
Figure 0005311094

表1によれば、実施例1のセル(No.1)や実施例2のセル(No.3)では、連続作動後変換効率(B)は初期変換効率(A)と比較してほとんど変化していない。一方、比較例のセル(No.5)では、1000時間の連続作動により変換効率が低下した。このことより、導電性酸化物を用いて形成した接続部21を備えることによって、セルの連続作動耐久性を向上させることができることが確認できた。これは、上記接続部21は還元触媒としての機能を有さないため、使用を続けるにつれて活性なイオン種の量が減少して電解液17の導電性が低下するといった不都合の発生が抑制されるからと考えられる。
また、温度サイクル耐久性については、実施例1のセル(No.2)や実施例2のセル(No.4)では、温度サイクル後変換効率(D0)は初期変換効率(A)と比較してほとんど変化がない。一方、比較例のセル(No.6)では、−40℃から90℃までの温度サイクル(100サイクル)により変換効率が低下した。このことより、導電性酸化物を用いて形成した接続部21を備えることによって、セルの温度サイクル耐久性をも向上させることができることが確認できた。これは、接続部21を形成する導電性酸化物の方が対極13を形成する多孔質カーボンよりも、透明導電層3に対してより緻密に結着して電解液17による膨潤が抑制されるため、電解液17の凍結及び溶解を繰り返すことによる膨張収縮ストレスに対して密着性が長期にわたって保証されるからと考えられる。
According to Table 1, in the cell of Example 1 (No. 1) and the cell of Example 2 (No. 3), the conversion efficiency (B) after continuous operation is almost the same as the initial conversion efficiency (A). Not done. On the other hand, in the cell (No. 5) of the comparative example, the conversion efficiency was lowered by 1000 hours of continuous operation. From this, it was confirmed that the continuous operation durability of the cell can be improved by providing the connection portion 21 formed using a conductive oxide. This is because the connection part 21 does not have a function as a reduction catalyst, so that the amount of active ionic species decreases as the use continues, and the occurrence of inconveniences such as a decrease in the conductivity of the electrolytic solution 17 is suppressed. It is thought to be from.
Regarding the temperature cycle durability, in the cell of Example 1 (No. 2) and the cell of Example 2 (No. 4), the conversion efficiency after temperature cycle (D0) is compared with the initial conversion efficiency (A). There is almost no change. On the other hand, in the cell (No. 6) of the comparative example, the conversion efficiency was lowered by the temperature cycle (100 cycles) from −40 ° C. to 90 ° C. From this, it was confirmed that the temperature cycle durability of the cell can be improved by providing the connection portion 21 formed using a conductive oxide. This is because the conductive oxide forming the connection portion 21 is more tightly bound to the transparent conductive layer 3 than the porous carbon forming the counter electrode 13, and swelling due to the electrolytic solution 17 is suppressed. For this reason, it is considered that adhesion is guaranteed over a long period against expansion and contraction stress caused by repeated freezing and thawing of the electrolytic solution 17.

(実施例3)
実施例1の電解液17を、イオン性液体からなる電解液とした以外は、全て実施例1と同じ条件で色素増感型太陽電池Cを作製した。イオン性液体からなる電解液としては、1−プロピル−3−メチルイミダゾリウムイオダイド(MPII)5molに0.5molのヨウ素(I2)と0.5molの4−t−ブチルピリジンを溶解させたものを用いた。その粘度は約900mPa・sであった。このイオン性液体からなる電解液をセル内に注入して封止した。このようにして、色素増感型太陽電池Cを製造した。
(Example 3)
A dye-sensitized solar cell C was produced under the same conditions as in Example 1 except that the electrolytic solution 17 of Example 1 was changed to an electrolytic solution made of an ionic liquid. As an electrolytic solution composed of an ionic liquid, 0.5 mol of iodine (I 2 ) and 0.5 mol of 4-t-butylpyridine were dissolved in 5 mol of 1-propyl-3-methylimidazolium iodide (MPII). Things were used. Its viscosity was about 900 mPa · s. An electrolytic solution made of this ionic liquid was injected into the cell and sealed. In this way, a dye-sensitized solar cell C was manufactured.

このようにして得られた色素増感型太陽電池Cを二つ作製し、実施例1及び実施例2と同様の評価を行った。なお、比較例として、図6に示すような従来型の色素増感型太陽電池Cにイオン性液体からなる電解液を封入したものを用いて、上記と同様の評価を行った。その結果を表2に示す。   Two dye-sensitized solar cells C thus obtained were produced and evaluated in the same manner as in Example 1 and Example 2. As a comparative example, the same evaluation as described above was performed using a conventional dye-sensitized solar cell C as shown in FIG. 6 in which an electrolytic solution made of an ionic liquid was sealed. The results are shown in Table 2.

Figure 0005311094
Figure 0005311094

表2によれば、実施例3のセル(No.7)では、連続作動後変換効率(B)は初期変換効率(A)と比較してほとんど変化していない。一方、比較例のセル(No.9)では、1000時間の連続作動により変換効率が大きく低下した。このことより、導電性酸化物を用いて形成した接続部21を備えることによって、セルの連続作動耐久性を大幅に向上させることができることが確認できた。これは、実施例1及び実施例2での考察と同様に、上記接続部21は還元触媒としての機能を有さないため、使用を続けるにつれて活性なイオン種の量が減少して電解液17の導電性が低下するといった不都合の発生が抑制されるからと考えられる。特に、イオン性液体からなる電解液のように粘性の高い電解液17を用いた場合には、電解液17自体の流動性が低いため、一旦レドックス対の濃度勾配が生じてしまうと元に戻るのに非常に時間がかかることから、その効果がより顕著に現れる。
また、温度サイクル耐久性については、実施例3のセル(No.8)では、温度サイクル後変換効率(D0)は初期変換効率(A)と比較してほとんど変化していない。一方、比較例のセル(No.10)では、−40℃から90℃までの温度サイクル(100サイクル)により変換効率が大きく低下した。このことより、本実施例においても、導電性酸化物を用いて形成した接続部21を備えることによって、セルの温度サイクル耐久性をも大幅に向上させることができることが確認できた。
According to Table 2, in the cell of Example 3 (No. 7), the conversion efficiency (B) after continuous operation hardly changes compared to the initial conversion efficiency (A). On the other hand, in the cell (No. 9) of the comparative example, the conversion efficiency was greatly reduced by continuous operation for 1000 hours. From this, it was confirmed that the continuous operation durability of the cell can be significantly improved by providing the connection portion 21 formed using a conductive oxide. This is because the connection portion 21 does not have a function as a reduction catalyst, similarly to the consideration in the first and second embodiments. Therefore, the amount of active ionic species decreases as the use continues, and the electrolytic solution 17 This is thought to be because the occurrence of inconveniences such as a decrease in the electrical conductivity is suppressed. In particular, when a highly viscous electrolytic solution 17 such as an electrolytic solution made of an ionic liquid is used, the fluidity of the electrolytic solution 17 itself is low, so that once the concentration gradient of the redox pair occurs, the original state is restored. Since it takes a very long time, the effect becomes more prominent.
Further, regarding the temperature cycle durability, in the cell (No. 8) of Example 3, the post-temperature cycle conversion efficiency (D0) hardly changes compared to the initial conversion efficiency (A). On the other hand, in the cell (No. 10) of the comparative example, the conversion efficiency was greatly reduced by the temperature cycle (100 cycles) from −40 ° C. to 90 ° C. From this, it was confirmed that the temperature cycle durability of the cell can be greatly improved by providing the connection portion 21 formed using the conductive oxide also in this example.

〔参考例〕
本発明の参考例について図面を参照して説明する。
図4は本実施形態に係る色素増感型太陽電池Cのセル構造を示す断面斜視図である。基本的な構造は第一の実施形態に係る色素増感型太陽電池Cと同様であるが、本参考例では接続部21を形成する材質が異なり、それに伴い製造方法が一部異なる。以下では、第一の実施形態との相違点を中心に説明する。
[Reference example]
Reference examples of the present invention will be described with reference to the drawings.
FIG. 4 is a cross-sectional perspective view showing the cell structure of the dye-sensitized solar cell C according to this embodiment. The basic structure is the same as that of the dye-sensitized solar cell C according to the first embodiment. However, in this reference example, the material forming the connection portion 21 is different, and the manufacturing method is partially different accordingly. Below, it demonstrates centering on difference with 1st embodiment.

本参考例においては、接続部21は、対極13を形成する材料と同じ材料を用いて対極13と一体的に形成される。すなわち、導電性及び電解液17に対する耐久性を有する多孔質カーボンを用いて、対極13と接続部21とが一体となって、光極7の片側を覆うように断面L字状に形成される。   In the present reference example, the connection portion 21 is formed integrally with the counter electrode 13 using the same material as that for forming the counter electrode 13. That is, using the porous carbon having conductivity and durability against the electrolytic solution 17, the counter electrode 13 and the connection portion 21 are integrated and formed in an L-shaped cross section so as to cover one side of the photoelectrode 7. .

そして、そのうちの接続部21に対して、樹脂材料31が含浸されている。樹脂材料31としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化性樹脂、光硬化性樹脂等を用いることができる。特に、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン等のポリオレフィン系の熱可塑性樹脂を主成分とする材料を用いれば、融点付近まで加熱して溶融しておき、接続部21の表面に塗布するだけで簡単に細孔33の内部へと含浸させることができるので好適である。   And the resin material 31 is impregnated with respect to the connection part 21 of them. As the resin material 31, a thermoplastic resin, a thermosetting resin, an ultraviolet curable resin, a photocurable resin, or the like can be used. In particular, for example, if a material mainly composed of a polyolefin-based thermoplastic resin such as polyethylene, polypropylene, polyisobutylene, etc. is used, it is easy to heat it up to the vicinity of the melting point and apply it to the surface of the connecting portion 21. This is preferable because it can be impregnated into the pores 33.

図5は、接続部21の拡大図である。対極13及び接続部21は多孔質カーボン層により形成されており、これらはその内部に細孔33を有する。対極13については通常どおり、この細孔33に電解液17が浸漬し、細孔33の表面においてカーボンが触媒として機能することにより、電解液17の中のイオンの還元反応が進行する。
一方、接続部21については、その外側から熱可塑性樹脂を主成分とする樹脂材料31が溶融されて塗布される。塗布された樹脂材料31は接続部21の内部へと含浸され、電解液17の中のイオンの還元反応の場としての細孔33がこの樹脂材料31により埋められてしまう。そのため、細孔33の表面においてカーボンが触媒として機能することが阻害され、接続部21の内部の細孔33においては還元反応がほとんど進行しなくなる。よって、還元反応のみが選択的に進行し、使用を続けるにつれて活性なイオン種の量が減少して電解液17の導電性が低下し、出力低下につながってしまう等の不都合が生じることが抑制される。したがって、長期耐久性に優れた色素増感型太陽電池Cを提供することができる。
FIG. 5 is an enlarged view of the connecting portion 21. The counter electrode 13 and the connection portion 21 are formed of a porous carbon layer, and these have pores 33 therein. As for the counter electrode 13, as usual, the electrolytic solution 17 is immersed in the pores 33, and carbon functions as a catalyst on the surface of the pores 33, whereby the reduction reaction of ions in the electrolytic solution 17 proceeds.
On the other hand, a resin material 31 mainly composed of a thermoplastic resin is melted and applied to the connection portion 21 from the outside. The applied resin material 31 is impregnated into the inside of the connection portion 21, and the pores 33 as a field for the reduction reaction of ions in the electrolytic solution 17 are filled with the resin material 31. For this reason, the function of carbon as a catalyst on the surface of the pore 33 is hindered, and the reduction reaction hardly proceeds in the pore 33 inside the connection portion 21. Therefore, only the reduction reaction proceeds selectively, and as the use continues, the amount of active ionic species decreases, the conductivity of the electrolytic solution 17 decreases, and it is possible to suppress inconveniences such as a decrease in output. Is done. Therefore, the dye-sensitized solar cell C excellent in long-term durability can be provided.

本発明は、色素増感型太陽電池及び色素増感型太陽電池モジュールに好適に利用することができる。   The present invention can be suitably used for dye-sensitized solar cells and dye-sensitized solar cell modules.

本発明に係る色素増感型太陽電池モジュールの全体構造を示す斜視図The perspective view which shows the whole structure of the dye-sensitized solar cell module which concerns on this invention 第一の実施形態に係る色素増感型太陽電池のセル構造を示す断面斜視図Sectional perspective view which shows the cell structure of the dye-sensitized solar cell which concerns on 1st embodiment 第一の実施形態に係る色素増感型太陽電池モジュールの製造工程図Manufacturing process diagram of the dye-sensitized solar cell module according to the first embodiment 参考例に係る色素増感型太陽電池のセル構造を示す断面斜視図Sectional perspective view showing cell structure of dye-sensitized solar cell according to Reference Example 参考例に係る色素増感型太陽電池の接続部の拡大図Enlarged view of the connection part of the dye-sensitized solar cell according to the reference example 従来型の色素増感型太陽電池のセル構造を示す断面斜視図Sectional perspective view showing the cell structure of a conventional dye-sensitized solar cell

C 色素増感型太陽電池
M 色素増感型太陽電池モジュール
1 基板
3 透明導電層
7 光極
9 n型半導体層
11 色素
13 対極
17 電解液
21 接続部
31 樹脂材料
C Dye-sensitized solar cell M Dye-sensitized solar cell module 1 Substrate 3 Transparent conductive layer 7 Photoelectrode 9 N-type semiconductor layer 11 Dye 13 Counter electrode 17 Electrolytic solution 21 Connection portion 31 Resin material

Claims (3)

光透過性を有する一枚の基板上に、所定の間隔を隔てて分離形成された二つの透明導電層と、
前記透明導電層の一方に積層された、受光に伴い電子を放出する色素を含んだn型半導体層を有する光極と、
前記光極上に積層され、電解液が内部に蓄えられる電解液層としてのセパレータ層と、
前記セパレータ層上に積層され、カーボン粒子を含む対極と、を備えた色素増感型太陽電池において、
前記透明導電層の他方と前記対極とに亘って設けられ、前記セパレータ層の一方の端面に接しつつ前記基板に対して垂直に伸延し、その側面において前記対極と接触する接続部を備え、
前記接続部は、導電性を有し、粒子径が1〜50nmの導電性酸化物粉末を原料とする焼結体で構成し
前記導電性酸化物末は、インジウム・スズ酸化物、アンチモン・スズ酸化物、フッ素ドープスズ酸化物及び導電性酸化亜鉛の中から選択される少なくともいずれか一つ以上からなるものである色素増感型太陽電池。
Two transparent conductive layers separately formed at a predetermined interval on a single substrate having optical transparency,
A photoelectrode having an n-type semiconductor layer, which is laminated on one of the transparent conductive layers, and contains a dye that emits electrons upon receiving light;
A separator layer as an electrolyte layer that is laminated on the photoelectrode and in which an electrolyte is stored;
In the dye-sensitized solar cell provided on the separator layer and provided with a counter electrode containing carbon particles,
Provided across the other of the transparent conductive layer and the counter electrode, extending perpendicularly to the substrate while in contact with one end surface of the separator layer, and provided with a connection portion in contact with the counter electrode on its side surface,
The connecting portion is made of a sintered body having conductivity and a conductive oxide powder having a particle diameter of 1 to 50 nm as a raw material ,
The conductive oxide powder is composed of at least one selected from indium / tin oxide, antimony / tin oxide, fluorine-doped tin oxide, and conductive zinc oxide. Solar cell.
前記接続部は、前記セパレータ層を形成後、前記導電性酸化物粉末を含むペーストをスクリーン印刷にて積層し、焼成することにより形成され、
前記対極は、前記接続部を形成後、カーボン粒子および結着性を有する酸化物粒子を含むペーストをスクリーン印刷にて、前記接続部と前記セパレータ層の段差を埋めるように積層し、焼成することにより形成してある請求項1に記載の色素増感型太陽電池。
The connection part is formed by laminating and baking a paste containing the conductive oxide powder by screen printing after forming the separator layer,
The counter electrode is formed by laminating a paste containing carbon particles and oxide particles having binding properties so as to fill a step between the connection portion and the separator layer after the formation of the connection portion, and firing the paste. The dye-sensitized solar cell according to claim 1, which is formed by:
請求項1又は2に記載された色素増感型太陽電池を複数用い、これらを直列に接続した色素増感型太陽電池モジュール。 A dye-sensitized solar cell module in which a plurality of dye-sensitized solar cells according to claim 1 or 2 are used and connected in series.
JP2008034693A 2008-02-15 2008-02-15 Dye-sensitized solar cell and dye-sensitized solar cell module Expired - Fee Related JP5311094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034693A JP5311094B2 (en) 2008-02-15 2008-02-15 Dye-sensitized solar cell and dye-sensitized solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034693A JP5311094B2 (en) 2008-02-15 2008-02-15 Dye-sensitized solar cell and dye-sensitized solar cell module

Publications (2)

Publication Number Publication Date
JP2009193863A JP2009193863A (en) 2009-08-27
JP5311094B2 true JP5311094B2 (en) 2013-10-09

Family

ID=41075696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034693A Expired - Fee Related JP5311094B2 (en) 2008-02-15 2008-02-15 Dye-sensitized solar cell and dye-sensitized solar cell module

Country Status (1)

Country Link
JP (1) JP5311094B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165580A (en) * 2010-02-12 2011-08-25 Hyogo Prefecture Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
JP6198407B2 (en) * 2013-02-27 2017-09-20 大阪瓦斯株式会社 Paste composition for photoelectric conversion element, and electrode and photoelectric conversion element for photoelectric conversion element using the same
WO2018030514A1 (en) * 2016-08-12 2018-02-15 シャープ株式会社 Dye-sensitized solar battery and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP5086520B2 (en) * 2004-07-15 2012-11-28 パナソニック株式会社 Photoelectric conversion element module
JP4963165B2 (en) * 2005-03-28 2012-06-27 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module

Also Published As

Publication number Publication date
JP2009193863A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
Rong et al. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes
Das et al. Bifunctional photo-supercapacitor with a new architecture converts and stores solar energy as charge
KR100696529B1 (en) Electrode for photoelectric conversion device including metal elements and dye sensitized solar cell using the same
KR101381873B1 (en) Polymer gel electrolyte composition, the preparing method for the composition, and dye-sensitized solar cell comprising the electrolyte
JP2006236960A (en) Dye-sensitized solar cell and its manufacturing method
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Wei et al. Fabrication of grid type dye sensitized solar modules with 7% conversion efficiency by utilizing commercially available materials
KR20150145010A (en) Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP5311094B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2009009936A (en) Photoelectric conversion device
EP2858166A1 (en) Dye-sensitized solar cell
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP2007073198A (en) Dye-sensitized solar battery
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
KR101044338B1 (en) Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building
KR20100106837A (en) Method for sealing dye sensitized solar cell and method for preparing comprising the sealing method
KR101042949B1 (en) Dye coating method of a metal oxide layer, dye-sensitized sollar cell and its fabrication method using the same
JP4932196B2 (en) Electrode and photoelectric conversion element
JP5181507B2 (en) Method for manufacturing photoelectric conversion element
KR20120080796A (en) Dye sensitized solar cell comprising multi-functional oxide layer and preparation method thereof
TWI449190B (en) Dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R151 Written notification of patent or utility model registration

Ref document number: 5311094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees