JP4932196B2 - Electrode and photoelectric conversion element - Google Patents

Electrode and photoelectric conversion element Download PDF

Info

Publication number
JP4932196B2
JP4932196B2 JP2005253265A JP2005253265A JP4932196B2 JP 4932196 B2 JP4932196 B2 JP 4932196B2 JP 2005253265 A JP2005253265 A JP 2005253265A JP 2005253265 A JP2005253265 A JP 2005253265A JP 4932196 B2 JP4932196 B2 JP 4932196B2
Authority
JP
Japan
Prior art keywords
electrode
porous carbon
carbon member
counter electrode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005253265A
Other languages
Japanese (ja)
Other versions
JP2007066788A (en
Inventor
弘紀 臼井
信夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005253265A priority Critical patent/JP4932196B2/en
Publication of JP2007066788A publication Critical patent/JP2007066788A/en
Application granted granted Critical
Publication of JP4932196B2 publication Critical patent/JP4932196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、色素増感太陽電池などの光電変換素子に用いられる対極として、多孔質カーボン部材から構成した電極及び前記電極を備えた光電変換素子に関する。 The present invention, as a counter electrode used in the photoelectric conversion element such as a dye-sensitized solar cell, a photoelectric conversion device having an electrode及beauty before Symbol electrodes constructed from porous carbon member.

色素増感太陽電池は、スイスのグレッツェルらにより開発されたものであり、光電変換効率が高く、製造コストが安いとの利点を持ち、新しいタイプの太陽電池として注目を集めている(例えば、特許文献1、2および非特許文献1参照)。   Dye-sensitized solar cells were developed by Gretzell et al. In Switzerland, and have the advantages of high photoelectric conversion efficiency and low manufacturing costs, and are attracting attention as new types of solar cells (for example, patents) Documents 1 and 2 and Non-Patent Document 1).

色素増感太陽電池の概略構造としては、透明な導電性の電極基板の上に、二酸化チタンなどの酸化物半導体微粒子(ナノ粒子)からなり、光増感色素が担持された多孔質膜を有する作用極と、この作用極に対向して設けられた対極とを備え、これらの作用極と対極との間に、酸化還元対を含有する電解質が充填されたものである。この種の色素増感型太陽電池は、太陽光などの入射光を吸収した光増感色素により酸化物半導体微粒子が増感され、作用極と対極との間に起電力が生じることにより、光エネルギーを電力に変換する光電変換素子として機能する。   As a schematic structure of the dye-sensitized solar cell, it has a porous film made of oxide semiconductor fine particles (nanoparticles) such as titanium dioxide on a transparent conductive electrode substrate and carrying a photosensitizing dye. A working electrode and a counter electrode provided opposite to the working electrode are provided, and an electrolyte containing a redox pair is filled between the working electrode and the counter electrode. In this type of dye-sensitized solar cell, the oxide semiconductor fine particles are sensitized by a photosensitizing dye that absorbs incident light such as sunlight, and an electromotive force is generated between the working electrode and the counter electrode. It functions as a photoelectric conversion element that converts energy into electric power.

電解質としては、I/I などの酸化還元対をアセトニトリル等の有機溶剤に溶解させた電解液を用いることが一般的であり、この他、不揮発性のイオン性液体を用いた構成、液状の電解質を適当なゲル化剤でゲル化させ擬固体化した構成、p型半導体などの固体半導体を用いた構成などが知られている。
イオン性液体は常温溶融性塩とも呼ばれ、室温付近を含む広い温度範囲において安定な液体として存在する正と負の電荷を帯びたイオンのみからなる塩である。このイオン性液体は実質的に蒸気圧を持たず、一般的な有機溶媒のような揮発、引火などの心配が無いことから、揮発によるセル特性の低下の解決手段として期待されている。
As the electrolyte, it is common to use an electrolytic solution obtained by dissolving a redox pair such as I / I 3 — in an organic solvent such as acetonitrile. In addition, a configuration using a non-volatile ionic liquid, There are known a configuration in which a liquid electrolyte is gelled with an appropriate gelling agent to make it pseudo-solid, a configuration using a solid semiconductor such as a p-type semiconductor, and the like.
The ionic liquid is also called a room temperature melting salt, and is a salt composed only of positive and negatively charged ions existing as a stable liquid in a wide temperature range including around room temperature. Since this ionic liquid has substantially no vapor pressure and is free from concerns such as volatilization and ignition like a general organic solvent, it is expected as a means for solving cell characteristic deterioration due to volatilization.

対極には、主に透明な導電性の電極基板または金属板に、蒸着またはスパッタリングにより形成した白金膜を有する電極が用いられる。
ところが、白金は高価であり、また電解質によっては白金が溶解し、発電特性の劣化を招くことがある。このため、化学的に安定なカーボンを利用した対極を用いることにより、長期安定性に優れた色素増感太陽電池の開発も行なわれている(例えば、特許文献3乃至6参照)。
しかしながら、このようなカーボン対極を用いた場合、白金を有する対極よりも発電特性が低下してしまうという欠点がある。
特許第2664194号公報 特開2001−160427号公報 特開2003−142168号公報 特開2004−111216号公報 特開2004−127849号公報 特開2004−152747号公報 ミカエル・グレッツェル(M.Graetzel)ら、ネイチャー(Nature)誌(英国)、1991年、第737号、p.353
For the counter electrode, an electrode having a platinum film formed by vapor deposition or sputtering on a transparent conductive electrode substrate or metal plate is mainly used.
However, platinum is expensive, and depending on the electrolyte, platinum may be dissolved, leading to deterioration of power generation characteristics. For this reason, by using a counter electrode using chemically stable carbon, a dye-sensitized solar cell excellent in long-term stability has been developed (see, for example, Patent Documents 3 to 6).
However, when such a carbon counter electrode is used, there is a drawback that power generation characteristics are deteriorated as compared with a counter electrode having platinum.
Japanese Patent No. 2664194 JP 2001-160427 A JP 2003-142168 A Japanese Patent Laid-Open No. 2004-111216 Japanese Patent Laid-Open No. 2004-127849 JP 2004-152747 A M. Graetzel et al., Nature (UK), 1991, No. 737, p. 353

本発明は上記事情に鑑みてなされたもので、発電効率の高く、長期安定性に優れた光電変換素子をもたらす対極として好適な電極及びその製造方法、並びにこの電極を用いた光電変換素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides an electrode suitable as a counter electrode that provides a photoelectric conversion element having high power generation efficiency and excellent long-term stability, a method for manufacturing the electrode, and a photoelectric conversion element using the electrode. The purpose is to do.

本発明の請求項1に係る電極は、作用極に対して、少なくとも一部に電解質層を挟んで配置される対極をなす電極であって、前記対極は、前記電解質層と接する側が少なくとも多孔質カーボン部材から構成され、前記多孔質カーボン部材に内在する空隙が、その厚さ方向において、前記電解質層に近づくほど大きいことを特徴とする。
本発明の請求項2に係る電極は、請求項1において、前記多孔質カーボン部材は、多層構造をなしていることを特徴とする
発明の請求項に係る光電変換素子は、増感色素を表面に担時させた多孔質酸化物半導体層を有する作用極、該作用極の多孔質酸化物半導体層側においてこれに対向して配置される対極、及びこれら両極の間の少なくとも一部に電解質層を少なくとも備えてなる光電変換素子であって、前記対極は、前記電解質層と接する側が少なくとも多孔質カーボン部材から構成され、前記多孔質カーボン部材に内在する空隙が、その厚さ方向において、前記電解質層に近づくほど大きいことを特徴とする。
An electrode according to claim 1 of the present invention is an electrode that forms a counter electrode that is disposed with at least a part of an electrolyte layer with respect to a working electrode, and the counter electrode is at least porous on the side in contact with the electrolyte layer It is comprised from a carbon member, The space | gap which exists in the said porous carbon member is large, so that it approaches the said electrolyte layer in the thickness direction, It is characterized by the above-mentioned.
The electrode according to claim 2 of the present invention is characterized in that, in claim 1, the porous carbon member has a multilayer structure .
The photoelectric conversion element according to claim 3 of the present invention is a working electrode having a porous oxide semiconductor layer having a sensitizing dye supported on the surface thereof, facing the porous oxide semiconductor layer side of the working electrode. A counter electrode, and a photoelectric conversion element comprising at least an electrolyte layer in at least a part between the two electrodes, wherein the counter electrode is composed of at least a porous carbon member on the side in contact with the electrolyte layer, The voids inherent in the porous carbon member are characterized by being larger in the thickness direction as they approach the electrolyte layer.

本発明に係る電極は、電解質層と接する側が少なくとも多孔質カーボン部材から構成され、前記多孔質カーボン部材に内在する空隙が、その厚さ方向において、前記電解質層に近づくほど大きいものとするので、空隙の大きい電解質層側から容易に電解質が多孔質カーボン部材内に浸透し、電極反応が円滑に進む。また、電解質層から離れるにつれて空隙が小さいので、多孔質カーボン部材を通過して電解質層をなす溶液が漏洩するのを抑制することもできる。ゆえに、本発明によれば、従来のカーボン電極よりも発電効率の向上が図れると共に、長期安定性に優れた発電特性を保持できる、光電変換素子用の対極として好適な電極が得られる。
また、本発明に係る電極の製造方法では、基材の一面にカーボンペーストを塗布してカーボン部材を形成する工程と、前記カーボン部材を熱処理して多孔質カーボン部材を形成する工程と、を少なくとも備えることにより、多孔質カーボン部材に内在する空隙が、その厚さ方向において、電解質層に近づくほど大きく、発電効率が向上する電極を対極として簡易に製造することができる。
さらに、本発明に係る電極を用いた光電変換素子は、上記電極を対極として備えるものであるので、長期安定性に優れ、高い発電効率をもつ光電変換素子の提供が可能となる。
Since the electrode according to the present invention is composed of at least a porous carbon member on the side in contact with the electrolyte layer, and the voids in the porous carbon member are larger in the thickness direction as it approaches the electrolyte layer, The electrolyte easily penetrates into the porous carbon member from the side of the electrolyte layer having a large void, and the electrode reaction proceeds smoothly. Moreover, since a space | gap is so small that it leaves | separates from an electrolyte layer, it can also suppress that the solution which passes a porous carbon member and makes an electrolyte layer leaks. Therefore, according to the present invention, it is possible to obtain an electrode suitable as a counter electrode for a photoelectric conversion element, which can improve the power generation efficiency as compared with the conventional carbon electrode and can maintain power generation characteristics excellent in long-term stability.
In the electrode manufacturing method according to the present invention, at least a step of applying a carbon paste to one surface of a substrate to form a carbon member, and a step of heat-treating the carbon member to form a porous carbon member are provided. By providing the porous carbon member, the voids in the porous carbon member are large in the thickness direction so as to approach the electrolyte layer, and the electrode that improves the power generation efficiency can be easily manufactured as a counter electrode.
Furthermore, since the photoelectric conversion element using the electrode according to the present invention includes the above electrode as a counter electrode, it is possible to provide a photoelectric conversion element having excellent long-term stability and high power generation efficiency.

以下、本発明について説明する。
本発明は、作用極に対して、少なくとも一部に電解質層を挟んで配置される対極をなす電極であって、前記対極は、前記電解質層と接する側が少なくとも多孔質カーボン部材から構成され、前記多孔質カーボン部材に内在する空隙は、その厚さ方向において、前記電解質層に近づくほど大きいことを特徴とするものである。
すなわち、多孔質カーボン部材に空隙が多いと、電解質が容易に多孔質カーボン部材内に滲入し、電解質と電極の接する面積が大きくなるため、電解質と電極間の電子の移動が容易に起こり、高い発電効率が得られるものとなる。しかしながら、多孔質カーボン部材内の空隙が多くなると、多孔質カーボン部材の機械的強度が落ちるため壊れ易く、また、多孔質カーボン部材を基板上に形成させる場合、基板との密着性も落ちてしまうため、容易に剥離し易いものとなってしまう。そこで、本発明の多孔質カーボン部材では、内在する空隙が密な領域と、疎な領域とを有し、電解質層に近づくほど空隙が大きく疎な領域となり、厚さ方向に対して変調するように、光電変換素子として、例えば色素増感太陽電池を組み立てるものとする。これにより、優れた変換効率が得られる光電変換素子を製造することができる。
The present invention will be described below.
The present invention is an electrode forming a counter electrode disposed at least partially with respect to the working electrode, wherein the counter electrode is composed of at least a porous carbon member on the side in contact with the electrolyte layer, The voids present in the porous carbon member are characterized by being larger in the thickness direction as they approach the electrolyte layer.
That is, if there are many voids in the porous carbon member, the electrolyte easily infiltrates into the porous carbon member, and the area where the electrolyte and the electrode are in contact with each other increases. Power generation efficiency can be obtained. However, when the voids in the porous carbon member are increased, the mechanical strength of the porous carbon member is reduced, so that the porous carbon member is fragile, and when the porous carbon member is formed on the substrate, the adhesion with the substrate is also reduced. Therefore, it will be easily peeled off. Therefore, in the porous carbon member of the present invention, the internal voids have a dense region and a sparse region, and the closer to the electrolyte layer, the larger the void becomes a sparse region, which modulates in the thickness direction. In addition, as a photoelectric conversion element, for example, a dye-sensitized solar cell is assembled. Thereby, the photoelectric conversion element from which the outstanding conversion efficiency is obtained can be manufactured.

また、多孔質カーボン部材は膜でも基材でも良く、膜として基材上に形成させる場合は、空隙が密な領域側の面が基材に接し、空隙が疎な領域側の面が電解質と接するように、基材上に多孔質カーボン部材(膜)を形成することにより、光電変換素子を構成するものとする。これにより、優れた変換効率が得られることはもちろんのこと、多孔質カーボン部材の機械的強度を保ちつつ、多孔質カーボン電極が具備される基板との密着性も向上した、色素増感太陽電池を製造することができる。   In addition, the porous carbon member may be a film or a substrate, and when the porous carbon member is formed on the substrate as a film, the surface on the region side where the voids are dense is in contact with the substrate, and the surface on the region side where the voids are sparse is the electrolyte and A photoelectric conversion element shall be comprised by forming a porous carbon member (film | membrane) on a base material so that it may contact | connect. As a result, it is possible to obtain excellent conversion efficiency, as well as maintaining the mechanical strength of the porous carbon member and improving the adhesion with the substrate on which the porous carbon electrode is provided. Can be manufactured.

次に、本発明の電極の一実施形態として、多孔質カーボン部材を膜とした場合について説明する。図1は、本発明の電極を用いた光電変換素子の構造を示す概略断面図である。
図1に示すように、本発明の光電変換素子1は、第一基材2と透明導電膜4と多孔質酸化物半導体層5からなる三層構造の透明基板を光が入射する側の窓極8を作用極とし、一方、第二基材3と多孔質カーボン部材7からなる電極を対極9として、この窓極8と対極9とで電解質(電解液もしくは電解質ゲル)6を挟み込んだ構成とするものである。
Next, a case where a porous carbon member is used as a film will be described as an embodiment of the electrode of the present invention. FIG. 1 is a schematic cross-sectional view showing the structure of a photoelectric conversion element using the electrode of the present invention.
As shown in FIG. 1, the photoelectric conversion element 1 of the present invention has a window on the side where light enters a transparent substrate having a three-layer structure including a first base material 2, a transparent conductive film 4, and a porous oxide semiconductor layer 5. The electrode 8 is the working electrode, while the electrode composed of the second base material 3 and the porous carbon member 7 is the counter electrode 9, and the electrolyte (electrolyte or electrolyte gel) 6 is sandwiched between the window electrode 8 and the counter electrode 9. It is what.

第一基材2は、表面に導電材料からなる膜(層)を形成することにより電気を通す導電性を有し、光透過性の高い透明な部材であれば何でも良く、特に制限されない。この第一基材2としては、ガラス板を使用するのが一般的であるが、ガラス板以外にも、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などのプラスチックシート、酸化チタン、アルミナなどセラミックスの研磨板などを用いることができる。ここで、表面とは、基材面のうち透明導電膜4等を形成し、対極9として作用する多孔質カーボン部材7と対向して配置される面をいう。
また、第一基材2は、後に透明導電膜を形成した基板上に色素担持用の多孔質酸化物半導体5として二酸化チタン(TiO)を焼き付ける場合は、500℃程度の高熱に耐える導電性耐熱ガラスが望ましい。
The first base material 2 is not particularly limited as long as it is a transparent member having electrical conductivity that conducts electricity by forming a film (layer) made of a conductive material on the surface and having high light transmittance. As the first base material 2, a glass plate is generally used, but other than the glass plate, for example, plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate (PC). A ceramic polishing plate such as a sheet, titanium oxide, or alumina can be used. Here, the surface refers to the surface of the base material surface that forms the transparent conductive film 4 and the like and is disposed to face the porous carbon member 7 that acts as the counter electrode 9.
In addition, the first base material 2 is a conductive material that can withstand high heat of about 500 ° C. when titanium dioxide (TiO 2 ) is baked on the substrate on which a transparent conductive film is formed later as the porous oxide semiconductor 5 for supporting the dye. Heat resistant glass is desirable.

透明導電層4は、第一基材2上に形成された導電材料からなる光透過率の高い導電性の膜である。透明導電層4としては、例えば、スズ添加酸化インジウム(ITO)や酸化スズ(SnO)、フッ素添加スズ(FTO)などの透明な酸化物半導体を単独で、もしくは複数種類を複合化して用いることもできるが、特に限定されるものではなく、光透過率や導電性の点で使用目的に適合するものを選べば良い。また、導電補助(集電)効果を与えるために、光透過性を著しく損ねない範囲で金属配線等を追加しても良い。
そして、第一基材2上に透明導電層4を形成することで窓極用基板とする。
The transparent conductive layer 4 is a conductive film having a high light transmittance made of a conductive material formed on the first substrate 2. As the transparent conductive layer 4, for example, a transparent oxide semiconductor such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), or fluorine-added tin (FTO) is used alone or in combination of a plurality of types. However, it is not particularly limited, and a material that meets the purpose of use in terms of light transmittance and conductivity may be selected. Further, in order to provide a conductive assist (collecting current) effect, a metal wiring or the like may be added within a range that does not significantly impair the light transmittance.
And it is set as the window electrode board | substrate by forming the transparent conductive layer 4 on the 1st base material 2. FIG.

多孔質酸化物半導体層5の素材、形成法などについて特に限定されるものは無いが、例えば、二酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO 、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを単独、または2種以上を複合させた、酸化物半導体粒子を主成分とする多孔質の薄膜であり、市販の微粒子やゾル−ゲル法により得られたコロイド溶液などから得ることができる。
多孔膜化の手法としては、例えばコロイド溶液や分散液(必要に応じて添加剤を含む)を、スクリーンプリント、インクジェットプリント、ロールコート、ドクターブレード、スピンコート、スプレー塗布など、種々の塗布法を用いて塗布する他、微粒子の泳動電着、発泡剤の併用などによるものでも構わない。この多孔質酸化物半導体層5には、増感色素が担持されている。
Although there are no particular limitations on the material and formation method of the porous oxide semiconductor layer 5, for example, titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ). , Zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), etc., alone or in combination of two or more, is a porous thin film mainly composed of oxide semiconductor particles. It can be obtained from a colloidal solution obtained by the gel method.
As a method for forming a porous film, for example, colloidal solutions and dispersions (including additives as necessary), various coating methods such as screen printing, inkjet printing, roll coating, doctor blade, spin coating, spray coating, etc. In addition to coating by coating, electrophoretic electrodeposition of fine particles, combined use of a foaming agent, etc. may be used. The porous oxide semiconductor layer 5 carries a sensitizing dye.

増感色素は、例えば、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体をはじめ、エロシン、ローダミン、メロシアニンなどの有機色素なども使用することができ、用途、使用する半導体多孔質膜によって適当なものを、特に限定されることなく選ぶことができる。   As the sensitizing dye, for example, a ruthenium complex containing a bipyridine structure, a terpyridine structure or the like as a ligand, a metal-containing complex such as porphyrin, phthalocyanine, or an organic dye such as erosine, rhodamine, or merocyanine can be used. An appropriate material can be selected without particular limitation depending on the use and the porous semiconductor membrane to be used.

また、第二基材3は、対極9に用いる多孔質カーボン部材7が具備される基板となるものであり、上記第一基材2と同様に、透明ガラス板を使用するのが一般的であるが、透明ガラス板以外にも、例えば、透明導電ガラスよりも電気導電性が良く、自由に厚みの設計が可能で、安価なチタン(Ti)板やカーボン板を用いることが可能である。   Further, the second base material 3 is a substrate on which the porous carbon member 7 used for the counter electrode 9 is provided. Like the first base material 2, it is common to use a transparent glass plate. However, in addition to the transparent glass plate, for example, it is possible to use an inexpensive titanium (Ti) plate or carbon plate that has better electrical conductivity than the transparent conductive glass, can be freely designed in thickness, and is inexpensive.

多孔質カーボン部材7は、例えば、溶剤を含有するカーボンペーストを第二基材3上に塗布または印刷することによりカーボン膜を形成し、これを加熱して含有する溶剤を蒸発させることで、多孔質カーボン部材7に空隙を形成させるようにするものである。また、この多孔質カーボン部材7に形成される空隙は、その厚さ方向において空隙率が変調している。
具体的には、図2に示すように、多孔質カーボン部材7は、空隙が密な領域7Aと、空隙が疎な領域7Bとを有し、空隙が密な領域7Aは電解質6から遠傍域にあり、空隙が疎な領域7Bは電解質6の近傍域に配するものとなっている。これにより、第二基材3の一面に、その厚さ方向において空隙率が変調している多孔質カーボン部材7を利用した電極が具備された対極9が形成される。
The porous carbon member 7 is formed by, for example, forming a carbon film by applying or printing a carbon paste containing a solvent on the second substrate 3 and evaporating the solvent contained by heating the carbon film. A void is formed in the carbonaceous material 7. The voids formed in the porous carbon member 7 have a modulated porosity in the thickness direction.
Specifically, as shown in FIG. 2, the porous carbon member 7 has a region 7 </ b> A in which the voids are dense and a region 7 </ b> B in which the voids are sparse, and the region 7 </ b> A where the voids are dense is far from the electrolyte 6. The region 7 </ b> B, which is in the region and has a small gap, is arranged in the vicinity of the electrolyte 6. Thereby, the counter electrode 9 provided with the electrode using the porous carbon member 7 whose porosity is modulated in the thickness direction is formed on one surface of the second base material 3.

このような厚さ方向において空隙の空隙率が変調する多孔質カーボン部材は、例えば、溶剤を含有するカーボン膜の加熱処理温度を調整してその溶剤を蒸発させるようにしても良いし、溶剤の含有量を変えたカーボン膜を積層して形成後、このカーボン膜を一括して加熱処理することにより溶剤を蒸発させたり、溶剤の含有量を変えたカーボン膜を形成するごとに加熱処理を繰り返してその溶剤を蒸発させたりすることにより、多層構造的に形成しても良い。
多孔質カーボン部材は、カーボン膜を一括して加熱処理し一体的に形成すると、製造処理工程が少なく、効率良く行なえる。また、カーボン膜を形成するごとに加熱処理を行なうと、ガス(溶剤)成分を効率良く除去することができる。そして、多孔質カーボン部材を多層構造に形成すると、厚さ方向において容易に空隙の大きさを変えることができるので、目的に応じた自由な設計をすることができる。
Such a porous carbon member in which the void ratio is modulated in the thickness direction may be configured to evaporate the solvent by adjusting the heat treatment temperature of the carbon film containing the solvent, for example. After stacking carbon films with different contents, heat treatment is repeated each time the carbon film is heated at once to evaporate the solvent or form a carbon film with different solvent contents. The solvent may be evaporated to form a multilayer structure.
When the porous carbon member is integrally formed by subjecting the carbon film to heat treatment, the number of manufacturing process steps is reduced and the porous carbon member can be efficiently performed. Further, if the heat treatment is performed every time the carbon film is formed, the gas (solvent) component can be efficiently removed. When the porous carbon member is formed in a multilayer structure, the size of the gap can be easily changed in the thickness direction, and a free design according to the purpose can be made.

特に、多孔質カーボン部材7に内在する空隙の大きさは、第二基材3に対する密着性と、発電効率を考慮して、例えば電解質6層から遠傍域、すなわち空隙が密な領域7Aで20nm以下(0〜20nm)、一方、電解質6層の近傍域、すなわち空隙が疎な領域7Bで50nm〜10μmとすると良い。すなわち、領域7Aが20nmを越えると、第二基材3に対して十分な密着力を得ることが出来ない虞が有り、一方、領域7Bが50nmを下回ると、より十分な発電効率を得ることが出来ない虞を有する。   In particular, the size of the voids present in the porous carbon member 7 is, for example, in a distant region from the electrolyte 6 layer, that is, in the region 7A where the voids are dense, in consideration of adhesion to the second substrate 3 and power generation efficiency. 20 nm or less (0 to 20 nm), on the other hand, it is good to set it as 50 nm-10 micrometers in the area | region 7B vicinity of the electrolyte 6 layer, ie, area | region 7B where a space | gap is sparse. That is, if the region 7A exceeds 20 nm, there is a possibility that sufficient adhesion to the second base material 3 cannot be obtained. On the other hand, if the region 7B is less than 50 nm, more sufficient power generation efficiency can be obtained. There is a possibility that it cannot be done.

また、電解液6は、電解質が液中で解離して陽イオンと陰イオンを生じる電導性を有する水溶液をいう。この電解液6としては、例えば、酸化還元対を含む有機溶媒や、イオン性液体(室温溶融塩)などを用いることができる。
酸化還元対も特に限定されるものでは無いが、例えばヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどを選ぶことができ、前者であればヨウ化物塩(リチウム塩、四級化イミダゾリウム塩、テトラブチルアンモニウム塩などを単独、あるいは複合して用いることができる)とヨウ素を単独、あるいは複合して添加することにより与えることができる。
有機溶媒としては、アセトニトリルやメトキシアセトニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いた揮発性電解液が例示される。
また、イオン性液体としては、例えば、四級化イミダゾリウム誘導体や四級化ピリジニウム誘導体、四級化アンモニウム誘導体といった四級化された窒素原子を有する化合物をカチオンとした室温で液体の常温溶融性塩がある。電解液としてイオン性液体を用いることで、安全性や耐久性が向上したものとすることができる。
Moreover, the electrolyte solution 6 refers to an aqueous solution having electrical conductivity in which the electrolyte is dissociated in the solution to generate cations and anions. As the electrolytic solution 6, for example, an organic solvent containing a redox pair, an ionic liquid (room temperature molten salt), or the like can be used.
The oxidation-reduction pair is not particularly limited. For example, iodine / iodide ion, bromine / bromide ion, etc. can be selected. In the former case, iodide salt (lithium salt, quaternized imidazolium salt, tetra Butylammonium salt and the like can be used alone or in combination, and iodine can be added alone or in combination.
Examples of the organic solvent include volatile electrolytes using acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, and the like.
In addition, as the ionic liquid, for example, a room temperature meltability of a liquid at room temperature using a compound having a quaternized nitrogen atom such as a quaternized imidazolium derivative, a quaternized pyridinium derivative, or a quaternized ammonium derivative as a cation. There is salt. By using an ionic liquid as the electrolyte, safety and durability can be improved.

また、このような電解液を適当なゲル化剤、充填剤を導入することにより流動性を抑えた疑似固体化したもの、いわゆるゲル電解質を用いても構わない。
電解液6には、更に必要に応じてリチウム塩やtert−ブチルピリジンなど種々の添加物を加えても構わない。更に、このような電解液と同様に電荷輸送能力を有する高分子固体電解質などを用いても構わない。
In addition, a so-called gel electrolyte obtained by quasi-solidifying such an electrolytic solution by suppressing the fluidity by introducing an appropriate gelling agent and filler may be used.
Various additives such as lithium salt and tert-butylpyridine may be further added to the electrolytic solution 6 as necessary. Further, a polymer solid electrolyte having a charge transporting ability as in the case of such an electrolytic solution may be used.

このように、本実施形態によれば、カーボン対極を用いた場合であっても、多孔質カーボン部材に内在する空隙の空隙率を、その厚さ方向において電解質層側が大きく変調するように構成することで、優れた変換効率が得られるものとすることが可能になる。しかも、多孔質カーボン部材は印刷法を用いて作成することができるため、容易にかつ安価に対極を提供することができる。しかも、本発明の孔質カーボン部材を用いた電極は、多孔質カーボン部材を基材上に膜として形成した場合であっても、基材との密着性を低下させずに形成することができる。   Thus, according to this embodiment, even when a carbon counter electrode is used, the porosity of the voids present in the porous carbon member is configured to be greatly modulated on the electrolyte layer side in the thickness direction. This makes it possible to obtain excellent conversion efficiency. Moreover, since the porous carbon member can be produced using a printing method, the counter electrode can be provided easily and inexpensively. Moreover, the electrode using the porous carbon member of the present invention can be formed without reducing the adhesion to the substrate even when the porous carbon member is formed as a film on the substrate. .

図3は、本発明に係る、電極を対極として備えた光電変換素子の構造例を示す概略断面図であり、色素増感型太陽電池に適用した場合を表している。
この光電変換素子100は、増感色素を担持させた多孔質半導体電極(以下、色素増感半導体電極とも呼ぶ)103が一方の面に形成された第一基板101と、導電膜104が形成された第二基板105と、これらの間に封入された例えばゲル状電解質からなる電解質層106を主な構成要素としている。
FIG. 3 is a schematic cross-sectional view showing a structural example of a photoelectric conversion element including an electrode as a counter electrode according to the present invention, and shows a case where it is applied to a dye-sensitized solar cell.
This photoelectric conversion element 100 includes a first substrate 101 having a porous semiconductor electrode 103 (hereinafter also referred to as a dye-sensitized semiconductor electrode) 103 carrying a sensitizing dye formed on one surface, and a conductive film 104. The main component is the second substrate 105 and the electrolyte layer 106 made of, for example, a gel electrolyte enclosed between them.

換言すると、図3に示す光電変換素子100は、増感色素を表面に担時させた多孔質酸化物半導体層103を有する作用極(窓極)108、該作用極の多孔質酸化物半導体層側においてこれに対向して配置される対極109、及びこれら両極の間の少なくとも一部に電解質層106を少なくとも備えている。   In other words, the photoelectric conversion element 100 shown in FIG. 3 includes a working electrode (window electrode) 108 having a porous oxide semiconductor layer 103 in which a sensitizing dye is supported on the surface, and a porous oxide semiconductor layer of the working electrode. A counter electrode 109 disposed on the side of the counter electrode 109 and an electrolyte layer 106 at least in part between the two electrodes are provided.

その際、特に対極109は、電解質層106と接する側が少なくとも多孔質カーボン部材104から構成され、該多孔質カーボン部材に内在する空隙が、その厚さ方向において、電解質層106に近づくほど大きくなるように構成されたものが好ましい。   At this time, in particular, the counter electrode 109 is composed of at least the porous carbon member 104 on the side in contact with the electrolyte layer 106, and the void existing in the porous carbon member increases in the thickness direction as it approaches the electrolyte layer 106. What was comprised in this is preferable.

次に、本発明に係る電極を用いた光電変換素子の一実施形態として、多孔質カーボン部材を膜として基材上に形成し電極とした場合について説明する。
まず、ガラス板などの第一基材上に透明導電膜102を形成することで窓極用基板を構成する。透明導電膜の形成方法としては、透明導電膜の材料に応じて公知の方法を用いて行えば良く、例えば、スパッタ法やCVD法(気相成長法)、SPD法(スプレー熱分解堆積法)、蒸着法などにより、スズ添加酸化インジウム(ITO)などの酸化物半導体からなる薄膜を形成する。これにより、導電性基板が構成される。そして、この透明導電膜は、厚過ぎると光透過性が劣り、一方、薄過ぎると導電性が劣ってしまうこととなるため、光透過性と導電性の両方を考慮して、0.1μm〜10μm程度の膜厚に形成する。
Next, as an embodiment of the photoelectric conversion element using the electrode according to the present invention, a case where a porous carbon member is formed on a substrate as a film and used as an electrode will be described.
First, a window electrode substrate is formed by forming a transparent conductive film 102 on a first substrate such as a glass plate. As a method for forming the transparent conductive film, a known method may be used depending on the material of the transparent conductive film. For example, a sputtering method, a CVD method (vapor phase growth method), an SPD method (spray pyrolysis deposition method). A thin film made of an oxide semiconductor such as tin-added indium oxide (ITO) is formed by a vapor deposition method or the like. Thereby, an electroconductive board | substrate is comprised. And if this transparent conductive film is too thick, the light transmittance is inferior, while if it is too thin, the conductivity is inferior, so that both the light transmittance and the conductivity are taken into consideration. The film is formed to a thickness of about 10 μm.

次いで、透明導電膜上に多孔質酸化物半導体層を形成することで作用極としての窓極を構成する。多孔質酸化物半導体層を形成する方法としては、例えば、二酸化チタン(TiO)の粉末を分散媒と混ぜてペーストを調整し、これをスクリーンプリント法やインクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法などにより、導電性基板上に塗布する。この多孔質酸化物半導体層は、1μm〜50μm程度の膜厚に形成する。
そして、多孔質酸化物半導体層が形成された窓極を色素液に浸漬することにより多孔質酸化物半導体層に色素を担持させる。
Next, a window electrode as a working electrode is formed by forming a porous oxide semiconductor layer on the transparent conductive film. As a method for forming a porous oxide semiconductor layer, for example, a titanium dioxide (TiO 2 ) powder is mixed with a dispersion medium to prepare a paste, and this is used for a screen printing method, an ink jet printing method, a roll coating method, a doctor blade. It coats on a conductive substrate by a method, a spin coat method, etc. This porous oxide semiconductor layer is formed to a thickness of about 1 μm to 50 μm.
And a pigment | dye is carry | supported by a porous oxide semiconductor layer by immersing the window pole in which the porous oxide semiconductor layer was formed in a pigment | dye liquid.

一方、チタン(Ti)板などの第二基材上に、溶剤としてポリエチレングリコールの含有量変えたカーボンペーストを塗布または印刷してカーボン膜を形成し、これを加熱して含有する溶剤であるポリエチレングリコールを蒸発させることで、多孔質カーボン部材を具備する対極を構成する。
多孔質カーボン部材の形成方法としては、例えば、二層構造とする場合、まず、溶剤としてポリエチレングリコールを含有する第一のカーボンペーストを、スクリーン印刷法などにより、第二基材上に塗布し、カーボン膜を形成する。次いで、このカーボン膜を、例えば120℃で30分間焼成する。これによりカーボン膜中から溶剤としてポリエチレングリコールが蒸発し、蒸発した箇所に空隙が生じて、多孔質カーボン部材の第一層が形成される。焼成後、焼成した多孔質カーボン部材の第一層が、例えば80℃付近まで冷えたら、引き続きポリエチレングリコールの含有量を変えた第二のカーボンペーストを前記第一層上に塗布してカーボン膜を形成し、再度120℃で30分間焼成する。これにより多孔質カーボン部材の第一層の上に、多孔質カーボン部材の第二層が形成され、二層構造の多孔質カーボン部材とすることができる。したがって、所望の積層させる層の数だけこの工程を繰り返すことにより、多層構造とした多孔質カーボン部材を形成することができる。
この際、空隙の大きさは、第二基材の近傍域で20nm以下、同遠傍域で50nm〜10μmとすると望ましい。
On the other hand, on a second substrate such as a titanium (Ti) plate, a carbon film having a polyethylene glycol content changed as a solvent is applied or printed to form a carbon film, which is then heated to contain polyethylene By evaporating the glycol, a counter electrode having a porous carbon member is formed.
As a method for forming a porous carbon member, for example, in the case of a two-layer structure, first, a first carbon paste containing polyethylene glycol as a solvent is applied onto a second substrate by a screen printing method or the like, A carbon film is formed. Next, this carbon film is baked, for example, at 120 ° C. for 30 minutes. As a result, polyethylene glycol as a solvent evaporates from the carbon film, and voids are generated at the evaporated locations, thereby forming the first layer of the porous carbon member. After the firing, when the first layer of the fired porous carbon member is cooled to, for example, around 80 ° C., a second carbon paste with a changed content of polyethylene glycol is subsequently applied onto the first layer to form a carbon film. Form and fire again at 120 ° C. for 30 minutes. Thereby, the 2nd layer of a porous carbon member is formed on the 1st layer of a porous carbon member, and it can be set as the porous carbon member of a two-layer structure. Therefore, a porous carbon member having a multi-layer structure can be formed by repeating this step for the desired number of layers to be laminated.
At this time, the size of the gap is desirably 20 nm or less in the vicinity region of the second base material and 50 nm to 10 μm in the remote region.

そして、窓極の多孔質酸化物半導体層と対極の多孔質カーボン部材とを対向して配置し、その間に電解質層として電解液を充填し、封止を施すことにより、本発明に係る対極を有した光電変換素子として色素増感太陽電池が製造される。なお、図3において、107は封止材を、110は電解液の注入口を示す。   Then, the porous oxide semiconductor layer of the window electrode and the porous carbon member of the counter electrode are arranged to face each other, and an electrolyte solution is filled as an electrolyte layer therebetween, and sealing is performed, whereby the counter electrode according to the present invention is provided. A dye-sensitized solar cell is manufactured as the photoelectric conversion element. In FIG. 3, reference numeral 107 denotes a sealing material, and 110 denotes an electrolyte solution inlet.

(実施例)
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
まず、本発明の電極が多孔質カーボン部材から構成され、さらに前記多孔質カーボン部材に内在する空隙は、対向する作用極との間に挟み込む電解質層に近づくほど大きいことが望ましいことを確認するため、以下に記載の各対極を作成し、その光電変換効率を測定した。
(Example)
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
First, in order to confirm that the electrode of the present invention is composed of a porous carbon member, and that the voids present in the porous carbon member are desirably large enough to approach the electrolyte layer sandwiched between the opposing working electrodes. Each counter electrode described below was prepared and its photoelectric conversion efficiency was measured.

多孔質カーボン部材を形成するカーボンペーストは、メソカーボンマイクロビーズ(大阪ガス社製カーボンペースト、以下「MCMB」と略記。)に対して、結着剤としてポリフッ化ビニリデン(以下、「PVdF」と略記。)を10wt%、溶剤としてN−メチル−2−ピロリドン(以下、「NMP」と略記。)を適量加えたものを第一カーボンペーストとして作製し、また、MCMBに対して、PVdFを10wt%、及びポリエチレングリコール(分子量20000)を1wt%混合し、さらに、溶剤としてNMPを適量加えて第二カーボンペーストを作成した。   The carbon paste that forms the porous carbon member is polyvinylidene fluoride (hereinafter abbreviated as “PVdF”) as a binder for mesocarbon microbeads (carbon paste manufactured by Osaka Gas Co., Ltd., hereinafter abbreviated as “MCMB”). ) Was added as a first carbon paste with 10 wt% of N-methyl-2-pyrrolidone (hereinafter abbreviated as “NMP”) as a solvent, and 10 wt% of PVdF with respect to MCMB. , And 1 wt% of polyethylene glycol (molecular weight 20000), and an appropriate amount of NMP was added as a solvent to prepare a second carbon paste.

次に、実施例1として、サイズが15mm×20mm×1のチタン板を基材として用い、その上面に第一カーボンペーストを塗布し、120℃で30分間焼成した。続いて、焼成した第一カーボンペーストの上面に第二カーボンペーストを塗布し、120℃で30分間焼成することにより、電解質層の近傍域に内在する空隙の大きさが51nmと大きい多孔質カーボン部材を3μm、及びその遠傍域に内在する空隙の大きさが5nmと小さい多孔質カーボン部材を0.5μm具備させた対極を作製した。 Next, as Example 1, a titanium plate having a size of 15 mm × 20 mm × 1 t was used as a base material, and the first carbon paste was applied on the upper surface, and baked at 120 ° C. for 30 minutes. Subsequently, the second carbon paste is applied to the upper surface of the fired first carbon paste, and is fired at 120 ° C. for 30 minutes, whereby a porous carbon member having a large void in the vicinity of the electrolyte layer is as large as 51 nm. Was prepared, and a counter electrode provided with 0.5 μm of a porous carbon member having a small pore size of 5 nm in the far side and 3 μm.

また、比較例1として、サイズが15mm×20mm×1のチタン板を基材として用い、その上面に第二カーボンペーストを塗布し、120℃で30分間焼成した。続いて、焼成した第二カーボンペーストの上面に第一カーボンペーストを塗布し、120℃で30分間焼成することにより、前記実施例1とは逆に、電解質層の近傍域に内在する空隙の大きさが5nmと小さい多孔質カーボン部材を0.5μm、及びその遠傍域に内在する空隙の大きさが51nmと大きい多孔質カーボン部材を3μm具備させた対極を作製した。 Further, as Comparative Example 1, a titanium plate having a size of 15 mm × 20 mm × 1 t was used as a base material, a second carbon paste was applied on the upper surface, and baked at 120 ° C. for 30 minutes. Subsequently, by applying the first carbon paste on the upper surface of the baked second carbon paste and baking it at 120 ° C. for 30 minutes, the size of the voids existing in the vicinity of the electrolyte layer is opposite to that in Example 1. A counter electrode comprising a porous carbon member having a thickness of 0.5 μm as small as 5 nm and a porous carbon member having a large void as large as 51 nm in the far side thereof was prepared.

さらに、比較例2として、サイズが15mm×20mm×1のチタン板を基材として用い、その上面に第一カーボンペーストを塗布し、120℃で30分間焼成することにより、内在する空隙の大きさが5nm以下で均一に形成された多孔質カーボン部材を0.5μm具備させた対極を作製した。 Furthermore, as Comparative Example 2, a titanium plate having a size of 15 mm × 20 mm × 1 t was used as a base material, and the first carbon paste was applied on the upper surface and baked at 120 ° C. for 30 minutes. A counter electrode provided with 0.5 μm of a porous carbon member uniformly formed with a thickness of 5 nm or less was produced.

また、サイズが15mm×20mm×1の耐熱ガラスを第一基材として用い、その上面にSPD法にて、シート抵抗1Ω/□のFTO/ITO二層膜からなる透明導電層として700nmの厚さに形成して、電極用基板とした。また、この電極用基板の上に、多孔質酸化物半導体として、平均粒径20nmの酸化チタンのスラリー状分散水溶液を塗布、乾燥し、450℃で1時間処理することにより、厚さ7μmの多孔質酸化物半導体層を形成した。これをルテニウムビピリジン錯体(N3色素)のエタノール色素液中に一晩浸漬して色素を担持させ、窓極を作成した。 In addition, a heat-resistant glass having a size of 15 mm × 20 mm × 1 t is used as a first base material, and a thickness of 700 nm is formed as a transparent conductive layer made of an FTO / ITO bilayer film having a sheet resistance of 1 Ω / □ on the upper surface by SPD. Then, an electrode substrate was formed. In addition, a slurry dispersion aqueous solution of titanium oxide having an average particle diameter of 20 nm is applied onto the electrode substrate as a porous oxide semiconductor, dried, and treated at 450 ° C. for 1 hour, whereby a porous layer having a thickness of 7 μm is obtained. A quality oxide semiconductor layer was formed. This was immersed in an ethanol dye solution of ruthenium bipyridine complex (N3 dye) overnight to support the dye, thereby creating a window electrode.

そして、作成した窓極と上記各対極とをそれぞれ重ね合わせ、電解液として、ヨウ素/ヨウ化物イオンレドックス対を含有するイオン性液体、1−エチル−3−メチルイミダゾリウム−ビス(トリフルオロメチルスルホニル)イミド(以下、「EMImTFSI」と略記。)を、両極間に充填して色素増感太陽電池の試験セルとし、色素増感太陽電池における光電変換効率を測定した。この際、光照射条件は、100mW/cmとした。その測定結果を表1に示す。
また、上記各対極材の基材に密着性をクロスカット法(JIS K 5600)により測定した。その測定結果を、併せて表1に示す。表1に示す密着性の欄において、良は単位面積あたり90%以上が剥がれないことを、不良は10%より多く剥がれてしまうことを、それぞれ表している。
Then, the prepared window electrode and each counter electrode are overlapped, and an ionic liquid containing iodine / iodide ion redox pair, 1-ethyl-3-methylimidazolium-bis (trifluoromethylsulfonyl), is used as an electrolytic solution. ) Imide (hereinafter abbreviated as “EMImTFSI”) was filled between both electrodes to form a test cell of a dye-sensitized solar cell, and the photoelectric conversion efficiency in the dye-sensitized solar cell was measured. At this time, the light irradiation condition was 100 mW / cm 2 . The measurement results are shown in Table 1.
Moreover, the adhesiveness to the base material of each said counter electrode material was measured by the crosscut method (JISK5600). The measurement results are also shown in Table 1. In the adhesion column shown in Table 1, “good” indicates that 90% or more per unit area is not peeled off, and “defective” indicates that more than 10% is peeled off.

Figure 0004932196
Figure 0004932196

以上のように、電極を多孔質カーボン部材から構成し、さらに前記多孔質カーボン部材に内在する空隙を、対向する作用極との間に挟み込む電解質層に近づくほど大きく形成した本発明に基づく実施例1の対極を用いることで、光電変換効率が向上し、望ましいものとなることがわかる。しかも、実施例1の対極は、基材に対する孔質カーボン部材の密着性も良好なものであることがわかる。   As described above, the embodiment is based on the present invention in which the electrode is composed of a porous carbon member, and the voids in the porous carbon member are formed so as to be closer to the electrolyte layer sandwiched between the opposing working electrodes. It can be seen that the use of one counter electrode improves the photoelectric conversion efficiency and is desirable. Moreover, it can be seen that the counter electrode of Example 1 has good adhesion of the porous carbon member to the substrate.

次に、上記実施例1に基づく構造の対極を用いることで、他の部材を用いた対極と比べても光電変換効率が望ましいものであることを確認するため、以下に記載の各対極を作成し、その光電変換効率を測定した。   Next, in order to confirm that the photoelectric conversion efficiency is desirable even when compared with the counter electrode using other members by using the counter electrode having the structure based on Example 1, the counter electrodes described below are prepared. The photoelectric conversion efficiency was measured.

まず、メソカーボンマイクロビーズ(MCMB)に対して、結着剤としてポリフッ化ビニリデン(以下、「PVdF」と略記。)を10wt%混合し、さらに、バインダ溶剤としてN−メチル−2−ピロリドン(以下、「NMP」と略記。)を適量加えて、第一カーボンペーストを作成した。次に、MCMBに対してPVdFを10wt%、及びポリエチレングリコール(分子量20000)を1wt%混合し、さらに、バインダ溶剤としてNMPを適量加えて第二カーボンペーストを作成した。また、MCMBに対してPVdFを10wt%、及びポリエチレングリコール(分子量20000)を3wt%混合し、さらに、溶剤としてNMPを適量加えて第三カーボンペーストを作成した。   First, 10 wt% of polyvinylidene fluoride (hereinafter abbreviated as “PVdF”) as a binder is mixed with mesocarbon microbeads (MCMB), and N-methyl-2-pyrrolidone (hereinafter referred to as a binder solvent). , Abbreviated as “NMP”) was added to prepare a first carbon paste. Next, 10 wt% of PVdF and 1 wt% of polyethylene glycol (molecular weight 20000) were mixed with respect to MCMB, and an appropriate amount of NMP was added as a binder solvent to prepare a second carbon paste. Further, 10 wt% of PVdF and 3 wt% of polyethylene glycol (molecular weight 20000) were mixed with MCMB, and an appropriate amount of NMP was added as a solvent to prepare a third carbon paste.

そして、実施例2として、サイズが15mm×20mm×1のチタン板を第二基材として用い、その上面に第一カーボンペーストを塗布し、120℃で30分間焼成した。続いて、焼成した第一カーボンペーストの上面に第二カーボンペーストを塗布し、300℃で30分間焼成した。さらに、第二カーボンペーストの上面に第三カーボンペーストを塗布し、300℃で30分間焼成することにより、三層の多孔質カーボン部材よりなる対極を作製した。
作製した対極の断面を、走査型電子顕微鏡(以下、「SEM」と略記。)で観察したところ、第三カーボンペーストを塗布した表面は空隙が多く、チタン板に接している第一カーボンペーストを塗布した部分では空隙が少なくカーボンが密になっていた。
Then, as Example 2, a titanium plate having a size of 15 mm × 20 mm × 1 t was used as the second base material, and the first carbon paste was applied on the upper surface, and baked at 120 ° C. for 30 minutes. Subsequently, the second carbon paste was applied to the upper surface of the fired first carbon paste and fired at 300 ° C. for 30 minutes. Furthermore, the counter electrode which consists of a three-layer porous carbon member was produced by apply | coating a 3rd carbon paste on the upper surface of a 2nd carbon paste, and baking for 30 minutes at 300 degreeC.
When the cross section of the prepared counter electrode was observed with a scanning electron microscope (hereinafter abbreviated as “SEM”), the surface on which the third carbon paste was applied had many voids, and the first carbon paste in contact with the titanium plate was removed. In the coated part, there were few voids and the carbon was dense.

次に、実施例3として、実施例2記載の対極と同様の方法で、チタン板の代わりにカーボン板を用いて三層の多孔質カーボン電極よりなる対極を作成した。
作成した対極の断面を、同様にSEMで観察したところ、実施例2記載の対極と同じく、第三カーボンペーストを塗布した表面は空隙が多く、カーボン板に接している第一カーボンペーストを塗布した部分では空隙が少なくカーボンが密になっていた。
Next, as Example 3, a counter electrode made of a three-layered porous carbon electrode was prepared in the same manner as the counter electrode described in Example 2, using a carbon plate instead of a titanium plate.
When the cross section of the created counter electrode was similarly observed with an SEM, the surface on which the third carbon paste was applied had many voids as in the counter electrode described in Example 2, and the first carbon paste in contact with the carbon plate was applied. The part had few voids and carbon was dense.

また、比較例3として、サイズが15mm×20mm×3のFTOガラス電極基板を用い、その上面にスパッタ法にて白金からなる電極層を100nm被覆することにより対極を作製した。
次に、比較例4として、サイズが15mm×20mm×3のチタン板を用い、その上面に蒸着によってカーボンを100nm成膜することにより対極を作製した。
さらに、比較例5として、サイズが15mm×20mm×1のカーボン板を対極として用いた。
そして、セルの作製および評価は実施例1と同様とした。その測定結果を表2に示す。
Moreover, as Comparative Example 3, a counter electrode was prepared by using an FTO glass electrode substrate having a size of 15 mm × 20 mm × 3 t and covering the upper surface thereof with an electrode layer made of platinum by a sputtering method to a thickness of 100 nm.
Next, as Comparative Example 4, a counter electrode was produced by using a titanium plate having a size of 15 mm × 20 mm × 3 t and forming a carbon film with a thickness of 100 nm on the upper surface thereof by vapor deposition.
Further, as Comparative Example 5, a carbon plate having a size of 15 mm × 20 mm × 1 t was used as a counter electrode.
The production and evaluation of the cell were the same as in Example 1. The measurement results are shown in Table 2.

Figure 0004932196
Figure 0004932196

以上のように、多孔質カーボン電極を対極として用いた実施例2及び3は、比較例4及び5に示すような従来のカーボンを対極とした場合のように発電特性が低下してしまうことなく、比較例3に示すような白金と同等の光電変換効率を有する望ましいものとなることがわかる。したがって、高価であり、また電解質によっては溶解して発電特性の劣化を招く虞のある白金を用いることなく、化学的に安定なカーボンを利用した対極とすることが出来、長期安定性に優れた光電変換素子を提供することができる。   As described above, in Examples 2 and 3 using the porous carbon electrode as the counter electrode, the power generation characteristics do not deteriorate as in the case where the conventional carbon as shown in Comparative Examples 4 and 5 is used as the counter electrode. It turns out that it becomes a desirable thing which has a photoelectric conversion efficiency equivalent to platinum as shown in the comparative example 3. Therefore, it can be used as a counter electrode using chemically stable carbon without using platinum which is expensive and may be dissolved depending on the electrolyte to cause deterioration of power generation characteristics, and has excellent long-term stability. A photoelectric conversion element can be provided.

本発明に係る電極を用いた光電変換素子の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the photoelectric conversion element using the electrode which concerns on this invention. 図1の光電変換素子の電極構造を示す部分拡大概略断面図である。It is a partial expanded schematic sectional drawing which shows the electrode structure of the photoelectric conversion element of FIG. 本発明に係る電極を用いた色素増感太陽電池の構造例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the dye-sensitized solar cell using the electrode which concerns on this invention.

符号の説明Explanation of symbols

1 光電変換素子(色素増感太陽電池)、2 第一基材、3 第二基材、4 透明導電層、5 多孔質酸化物半導体層、6 電解質層、7 多層カーボン部材、8 窓極(作用極)、9 対極、10、20 セル構造体。   DESCRIPTION OF SYMBOLS 1 Photoelectric conversion element (dye sensitized solar cell), 2 1st base material, 2nd base material, 4 transparent conductive layer, 5 porous oxide semiconductor layer, 6 electrolyte layer, 7 multilayer carbon member, 8 window pole ( Working electrode), 9 counter electrode, 10, 20 cell structure.

Claims (3)

作用極に対して、少なくとも一部に電解質層を挟んで配置される対極をなす電極であって、
前記対極は、前記電解質層と接する側が少なくとも多孔質カーボン部材から構成され、前記多孔質カーボン部材に内在する空隙が、その厚さ方向において、前記電解質層に近づくほど大きいことを特徴とする電極。
An electrode that forms a counter electrode that is disposed with an electrolyte layer interposed at least in part with respect to the working electrode,
The electrode is characterized in that the side in contact with the electrolyte layer is composed of at least a porous carbon member, and the voids in the porous carbon member are larger in the thickness direction as they approach the electrolyte layer.
前記多孔質カーボン部材は、多層構造をなしていることを特徴とする請求項1に記載の電極。   The electrode according to claim 1, wherein the porous carbon member has a multilayer structure. 増感色素を表面に担時させた多孔質酸化物半導体層を有する作用極、該作用極の多孔質酸化物半導体層側においてこれに対向して配置される対極、及びこれら両極の間の少なくとも一部に電解質層を少なくとも備えてなる光電変換素子であって、
前記対極は、前記電解質層と接する側が少なくとも多孔質カーボン部材から構成され、前記多孔質カーボン部材に内在する空隙が、その厚さ方向において、前記電解質層に近づくほど大きいことを特徴とする光電変換素子。
A working electrode having a porous oxide semiconductor layer carrying a sensitizing dye on its surface, a counter electrode disposed opposite to the working electrode on the porous oxide semiconductor layer side of the working electrode, and at least between these two electrodes A photoelectric conversion element comprising at least an electrolyte layer in part,
The counter electrode is composed of at least a porous carbon member on a side in contact with the electrolyte layer, and a void existing in the porous carbon member is larger in a thickness direction as it approaches the electrolyte layer. element.
JP2005253265A 2005-09-01 2005-09-01 Electrode and photoelectric conversion element Active JP4932196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005253265A JP4932196B2 (en) 2005-09-01 2005-09-01 Electrode and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005253265A JP4932196B2 (en) 2005-09-01 2005-09-01 Electrode and photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2007066788A JP2007066788A (en) 2007-03-15
JP4932196B2 true JP4932196B2 (en) 2012-05-16

Family

ID=37928728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005253265A Active JP4932196B2 (en) 2005-09-01 2005-09-01 Electrode and photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4932196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688006B2 (en) * 2011-12-29 2015-03-25 株式会社フジクラ Carbon counter electrode and dye-sensitized solar cell provided with the carbon counter electrode
KR102103740B1 (en) * 2012-12-14 2020-04-23 세키스이가가쿠 고교가부시키가이샤 Electrode substrate and dye-sensitized solar cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334960B2 (en) * 2002-10-11 2009-09-30 株式会社豊田中央研究所 Carbon electrode and electrode and dye-sensitized solar cell comprising the same

Also Published As

Publication number Publication date
JP2007066788A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5184548B2 (en) Method for manufacturing electrode substrate for photoelectric conversion element, and method for manufacturing photoelectric conversion element
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP5531300B2 (en) Dye-sensitized solar cell
JP2006236960A (en) Dye-sensitized solar cell and its manufacturing method
JP4914660B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5324558B2 (en) Counter electrode and photoelectric conversion element having the counter electrode
EP2530779A1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
JP5095126B2 (en) Photoelectric conversion element
JP2009043481A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2008065999A (en) Solar cell module and its manufacturing method
JP4932196B2 (en) Electrode and photoelectric conversion element
JP2009259485A (en) Dye-sensitized solar battery, its manufacturing method and dye-sensitized solar battery module
JP4799852B2 (en) Electrode for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5311094B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2008181691A (en) Photoelectric conversion element and first electrode used for the same
JP4932200B2 (en) Electrode, manufacturing method thereof, and photoelectric conversion element
JP5128076B2 (en) Dye-sensitized solar cell and method for producing the same
JP5485425B2 (en) Photoelectric conversion element
JP4799853B2 (en) Electrode for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
WO2012033049A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5191631B2 (en) Method for manufacturing counter electrode and method for manufacturing photoelectric conversion element
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R151 Written notification of patent or utility model registration

Ref document number: 4932196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250