JP2006236960A - Dye-sensitized solar cell and its manufacturing method - Google Patents

Dye-sensitized solar cell and its manufacturing method Download PDF

Info

Publication number
JP2006236960A
JP2006236960A JP2005159306A JP2005159306A JP2006236960A JP 2006236960 A JP2006236960 A JP 2006236960A JP 2005159306 A JP2005159306 A JP 2005159306A JP 2005159306 A JP2005159306 A JP 2005159306A JP 2006236960 A JP2006236960 A JP 2006236960A
Authority
JP
Japan
Prior art keywords
dye
porous
conductive layer
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005159306A
Other languages
Japanese (ja)
Inventor
Kenichi Okada
顕一 岡田
Nobuo Tanabe
信夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005159306A priority Critical patent/JP2006236960A/en
Publication of JP2006236960A publication Critical patent/JP2006236960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2081Serial interconnection of cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell of a monolithic type capable of utilizing an electrolytic solution with high power generating efficiency expected and having a structure capable of forming a counter electrode on top of the solid electrolyte, and its manufacturing method. <P>SOLUTION: The dye-sensitized solar cell 1 comprises a substrate 2, an electrode substrate composed of a first conductive layer 4 formed on one face of this substrate 2, and a cell structure 10 composed of a porous semiconductor layer 6, a porous insulator layer 5, and a second conductive layer 9 laminated in order on the first conductive layer 4. The porous conductive layer 6 and the porous insulator layer 5 contain electrolytic solutions 15 inside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、色素増感太陽電池とその製造方法に係り、より詳細には、対極基板を持たない構成であるモノリシック型の色素増感太陽電池及びその製造方法に関する。   The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same, and more particularly to a monolithic type dye-sensitized solar cell having a configuration without a counter electrode substrate and a method for manufacturing the same.

色素増感太陽電池(DSC:Dye-Sensitized Solar Cell)は、スイスのグレッツェルらにより開発されたものであり、変換効率が高く、製造コストが安いなどの利点をもち、新しいタイプの太陽電池として注目を集めている(例えば、特許文献1、特許文献2、非特許文献1を参照)。   Dye-Sensitized Solar Cell (DSC) was developed by Gretzell et al. In Switzerland and has advantages such as high conversion efficiency and low manufacturing cost. (See, for example, Patent Document 1, Patent Document 2, and Non-Patent Document 1).

色素増感太陽電池の概略構成は、図7や図8に示すように、通常、透明な第一基材102とその一面に透明導電膜104を設けてなる電極基板の上に、透明導電膜104と接するように、二酸化チタンなどの酸化物半導体微粒子(ナノ粒子)からなり、光増感色素が担持された多孔質膜106を有する作用極108と、この作用極108に対向して設けられた対極109とを備え、これら作用極108と対極109との間に、酸化還元対を含有する電解液(あるいは電解質ゲル)105が充填されたものであり、これが1つのセルを構成している。この種の色素増感太陽電池は、太陽光などの入射光を吸収した光増感色素により、多孔質膜106を構成する酸化物半導体微粒子が増感され、作用極108と対極109との間に起電力が生じることにより、光エネルギーを電力に変換する光電変換素子として機能する。   As shown in FIG. 7 and FIG. 8, the schematic structure of the dye-sensitized solar cell is usually a transparent conductive film on an electrode substrate in which a transparent first base material 102 and a transparent conductive film 104 are provided on one surface thereof. A working electrode 108 made of oxide semiconductor fine particles (nanoparticles) such as titanium dioxide and having a porous film 106 on which a photosensitizing dye is supported, and a working electrode 108 are provided so as to be in contact with the working electrode 104. The working electrode 108 and the counter electrode 109 are filled with an electrolyte solution (or electrolyte gel) 105 containing a redox pair, and this constitutes one cell. . In this type of dye-sensitized solar cell, the oxide semiconductor fine particles constituting the porous film 106 are sensitized by a photosensitizing dye that absorbs incident light such as sunlight, and the gap between the working electrode 108 and the counter electrode 109 is increased. When an electromotive force is generated, the photoelectric conversion element functions to convert light energy into electric power.

このような太陽電池において高電圧化を図るためには、小さなセル構造体を直列に多数並べる「直列接続型」が有効であり、図7に示す構造(以下、W型と称する。)と図8に示す構造(以下、Z型と称する。)の2つのタイプが広く採用されている。
図7に示すように、W型の色素増感太陽電池100Aは、繋ぎ合わせるセル101(a,b,c・・・)間にセル同士を仕切る隔壁103を設け、作用極108と対極109とが交互になるように配置すると共に、隣り合う位置にあるセル(例えば101a、101b)の対極109と作用極108が共通の透明導電膜104(106)を同一基材102上に設けて電気的に接続した構造からなる。
In order to increase the voltage in such a solar cell, a “series connection type” in which a large number of small cell structures are arranged in series is effective, and the structure shown in FIG. 7 (hereinafter referred to as W type) and FIG. Two types of structures shown in FIG. 8 (hereinafter referred to as Z-type) are widely adopted.
As shown in FIG. 7, the W-type dye-sensitized solar cell 100 </ b> A includes a partition wall 103 that partitions cells between cells 101 (a, b, c...) To be joined, and a working electrode 108 and a counter electrode 109. Are arranged alternately, and a transparent conductive film 104 (106) having a common counter electrode 109 and working electrode 108 of cells (for example, 101a and 101b) located adjacent to each other is provided on the same base material 102, and is electrically connected. It consists of the structure connected to.

一方、図8に示すように、Z型の色素増感太陽電池100Bは、繋ぎ合わせるセル101(a,b,c・・・)間にセル同士を仕切る隔壁103を設け、作用極108は何れか一方側、対極109は他方側となるようにそれぞれ分けて配置すると共に、隣り合う位置にあるセル(例えば101a、101b)の隣接する作用極108と対極109とは、隔壁103の内部に設けた導電部材107を用いて電気的に接続した構造からなる。   On the other hand, as shown in FIG. 8, the Z-type dye-sensitized solar cell 100B is provided with a partition wall 103 that partitions cells between cells 101 (a, b, c. The one side and the counter electrode 109 are separately arranged so as to be on the other side, and the adjacent working electrode 108 and the counter electrode 109 of the cells (for example, 101a and 101b) located adjacent to each other are provided inside the partition wall 103. The conductive member 107 is electrically connected.

ところが、このような作用極と対極を用いて電解液を挟み込む構造とした場合、電解質の溶媒として適している有機系溶媒の蒸気圧が比較的高いため、長期的に厳重な封止を施すことが難しいため、封止剤の劣化から電解液の液漏れや溶媒の蒸発が生じる虞があり、ひいては太陽電池の信頼性、長期安定性が損なわれるという課題がある。   However, when the electrolyte solution is sandwiched between the working electrode and the counter electrode, the vapor pressure of the organic solvent suitable as the solvent for the electrolyte is relatively high. Therefore, there is a risk that electrolyte solution leakage or solvent evaporation may occur due to deterioration of the sealant, and as a result, the reliability and long-term stability of the solar cell are impaired.

そこで、このような課題を解消し、長期安定性が期待できる電解質を固体化した色素増感太陽電池が注目されている。例えば、図9に示すように、作用極をなす基材112上に透明導電膜114、半導体層116、固体電解質層115、そして導電層からなる対極119を順に重ねて設けた構造(以下、モノリシック型と称する。)の色素増感太陽電池110が挙げられる(非特許文献1参照)。   Accordingly, attention has been paid to a dye-sensitized solar cell obtained by solidifying an electrolyte that can solve such problems and can be expected to have long-term stability. For example, as shown in FIG. 9, a transparent conductive film 114, a semiconductor layer 116, a solid electrolyte layer 115, and a counter electrode 119 made of a conductive layer are sequentially stacked on a base material 112 forming a working electrode (hereinafter referred to as a monolithic structure). (Referred to as Non-Patent Document 1).

このモノリシック型は、W型とZ型が、作用極と対極を別々に作製し、これらを貼り合わせた後、この間に電解液を注入することにより作製するのに対し、対極基板を持つ必要がないことから、その分の低コスト化が可能であり、また作用極をなす基板(単板)上に順次、各層を重ねて形成することで作製できるので、製造工程が比較的簡単であり、量産に適するという長所も備えている。   In this monolithic type, the W type and the Z type are manufactured by separately preparing the working electrode and the counter electrode, and bonding them together, and then injecting an electrolyte between them. Therefore, the cost can be reduced by that amount, and since it can be produced by sequentially layering each layer on the substrate (single plate) forming the working electrode, the production process is relatively simple, It also has the advantage of being suitable for mass production.

しかしながら、上述したモノリシック型の場合、電解質層が固体でないとその上に対極を成膜することができないため固体電解質を用いているが、固体電解質は液体電解質(電解液)に比べて抵抗が高いため、発電効率が低くならざるを得なかった。   However, in the case of the above-described monolithic type, the counter electrode cannot be formed on the electrolyte layer unless the electrolyte layer is solid, so a solid electrolyte is used. However, the solid electrolyte has higher resistance than the liquid electrolyte (electrolyte). Therefore, the power generation efficiency was inevitably low.

また、固体電解質を用いるモノリシック型においても、工程の関係から半導体層(例えば、酸化チタン多孔質層)に色素を担持させ、電解質を硬化した後に、対極を作製する必要があるため、これらの有機物層が耐えられる方法で対極を作製することが求められる。ゆえに、対極を成膜する際に使用する真空プロセスや高温プロセスの諸条件は厳しく制限されることから、材料選択の自由度が少なく、特性改善の余地が狭いものであった。   In addition, even in a monolithic type using a solid electrolyte, it is necessary to prepare a counter electrode after a dye is supported on a semiconductor layer (for example, a titanium oxide porous layer) and the electrolyte is cured because of the process. It is required to produce the counter electrode by a method that the layer can withstand. Therefore, various conditions of the vacuum process and high temperature process used when forming the counter electrode are severely limited, so that the degree of freedom of material selection is small and the room for improving the characteristics is narrow.

つまり、従来は、発電効率の向上が期待される電解液を用いたモノリシック型の色素増感太陽電池は作製することができず、また、固体電解質を用いたモノリシック型の色素増感太陽電池の場合でも製造工程が煩雑で、その製法も制限されるものであった。
Journal of JSES、1999年 Vol.25, No.25、p.22-31「色素増感電気化学太陽電池の固体化」(柳田祥三、北村隆之、和田雄二)
That is, conventionally, a monolithic dye-sensitized solar cell using an electrolyte solution that is expected to improve power generation efficiency cannot be produced, and a monolithic dye-sensitized solar cell using a solid electrolyte is not available. Even in this case, the manufacturing process is complicated, and the manufacturing method is limited.
Journal of JSES, 1999 Vol.25, No.25, p.22-31 “Solidification of dye-sensitized electrochemical solar cells” (Yoshida Yanagida, Takayuki Kitamura, Yuji Wada)

本発明は上記事情に鑑みてなされたもので、高い発電効率が期待される電解液の利用が可能であり、かつ、固体電解質と同様にその上に対極を容易に作製できる構成を備えた、モノリシック型の色素増感太陽電池及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to use an electrolyte solution that is expected to have high power generation efficiency, and has a configuration in which a counter electrode can be easily produced on the same as a solid electrolyte. An object is to provide a monolithic dye-sensitized solar cell and a method for producing the same.

本発明の請求項1に係る色素増感太陽電池は、基材及び前記基材の一面に配された第一導電層からなる電極用基板、前記第一導電層上に順に重ねて配される多孔質半導体層、多孔質絶縁体層、並びに第二導電層から構成されるセル構造体を備え、前記多孔質半導体層及び前記多孔質絶縁体層はその内部に電解液を含むことを特徴とする。   The dye-sensitized solar cell according to claim 1 of the present invention is arranged in such a manner that a base material and an electrode substrate composed of a first conductive layer disposed on one surface of the base material are sequentially stacked on the first conductive layer. A cell structure comprising a porous semiconductor layer, a porous insulator layer, and a second conductive layer is provided, wherein the porous semiconductor layer and the porous insulator layer contain an electrolytic solution therein. To do.

本発明の請求項2に係る色素増感太陽電池は、請求項1において、前記第一導電層、多孔質半導体層、多孔質絶縁体、及び第二導電層を全て覆うとともに、隣接するセル構造体間を仕切るように配置された保護部材を備えたことを特徴とする。   The dye-sensitized solar cell according to claim 2 of the present invention covers the first conductive layer, the porous semiconductor layer, the porous insulator, and the second conductive layer according to claim 1, and has an adjacent cell structure. A protective member arranged to partition the body is provided.

本発明の請求項3に係る色素増感型太陽電池は、請求項1において、前記セル構造体を複数個、直列に繋ぎ合わせてなり、セル構造体の数に応じた段数が、電流−電圧曲線状上に観測されることを特徴とする。   A dye-sensitized solar cell according to a third aspect of the present invention is the dye-sensitized solar cell according to the first aspect, wherein a plurality of the cell structures are connected in series, and the number of stages according to the number of the cell structures is a current-voltage. It is characterized by being observed on a curved line.

本発明の請求項4に係る色素増感太陽電池の製造方法は、基材及び前記基材の一面に配された第一導電層からなる電極用基板、前記第一導電層上に順に重ねて配される多孔質半導体層、多孔質絶縁体層、並びに第二導電層から構成されるセル構造体を備えてなる色素増感太陽電池の製造方法であって、前記多孔質半導体層を構成する多孔質半導体上に前記多孔質絶縁体層を構成する多孔質絶縁体を設け、次いで該多孔質絶縁体上に前記第二導電層を形成した後、前記多孔質半導体と前記多孔質絶縁体の内部に電解液を含ませる工程を少なくとも具備したことを特徴とする。   In the method for producing a dye-sensitized solar cell according to claim 4 of the present invention, an electrode substrate including a base material and a first conductive layer disposed on one surface of the base material, and the first conductive layer are sequentially stacked. A method for producing a dye-sensitized solar cell comprising a cell structure composed of a porous semiconductor layer, a porous insulator layer, and a second conductive layer, wherein the porous semiconductor layer is formed After providing a porous insulator constituting the porous insulator layer on the porous semiconductor and then forming the second conductive layer on the porous insulator, the porous semiconductor and the porous insulator It is characterized by comprising at least a step of containing an electrolytic solution therein.

本発明に係る色素増感太陽電池は、多孔質半導体層及び多孔質絶縁体層がその内部に電解液を含むことにより、多孔質体の粒子間に存在する孔部内に発電効率の高い電解液がしみこんだ構成となる。また、多孔質絶縁体層は固体からなるので、その上に対極として機能する第二導電層を容易に作製できる。この構成によれば、対極をなす第二導電層から作用極をなす第一導電層に向けて移動する電子は、多孔質絶縁体層では孔部内に含まれる電解液中を進み、多孔質半導体層に至ることになる。   In the dye-sensitized solar cell according to the present invention, the porous semiconductor layer and the porous insulator layer contain the electrolytic solution therein, so that the electrolytic solution having high power generation efficiency in the pores existing between the particles of the porous body. It becomes a structure that has been soaked. Further, since the porous insulator layer is made of a solid, a second conductive layer functioning as a counter electrode can be easily formed thereon. According to this configuration, electrons moving from the second conductive layer forming the counter electrode toward the first conductive layer forming the working electrode travel in the electrolyte contained in the pores in the porous insulator layer, and the porous semiconductor Will lead to a layer.

ゆえに、本発明によれば、従来の固体電解質に比べて優れた導電性能をもつ電解液を利用できるので、発電効率の極めて高い、モノリシック型の色素増感太陽電池の提供が可能となる。また、孔部内にしみこんだ電解液は、不揮発性のイオン性液体をゲル化した構成の電解質と同様に流動性に乏しいことから、本発明は、液状の電解質だけをそのまま用いた場合に比して、安定性、耐久性、取り扱い性に優れ、セル構造体の特性を損なうことのない色素増感太陽電池をもたらす。   Therefore, according to the present invention, it is possible to use an electrolytic solution having superior conductive performance as compared with a conventional solid electrolyte, and therefore it is possible to provide a monolithic dye-sensitized solar cell with extremely high power generation efficiency. In addition, since the electrolyte solution soaked in the pores is poor in fluidity like the electrolyte in which the nonvolatile ionic liquid is gelled, the present invention is compared with the case where only the liquid electrolyte is used as it is. Thus, a dye-sensitized solar cell that is excellent in stability, durability, and handleability and does not impair the characteristics of the cell structure is provided.

また、本発明に係る色素増感太陽電池の製造方法は、予め、多孔質半導体層を構成する多孔質半導体上に多孔質絶縁体層を構成する多孔質絶縁体を設け、次いで該多孔質絶縁体上に対極として機能する第二導電層を形成した後に、多孔質半導体及び多孔質絶縁体の内部、すなわち各多孔質体の粒子間に存在する孔部内に、電解液を含ませる工程を備えているので、多孔質半導体層へ色素を担持させるとともに、多孔質半導体層及び多孔質絶縁体層へ電解液を含ませることができる。   Further, the method for producing a dye-sensitized solar cell according to the present invention is provided by previously providing a porous insulator constituting the porous insulator layer on the porous semiconductor constituting the porous semiconductor layer, and then the porous insulation. After the second conductive layer functioning as a counter electrode is formed on the body, the method includes a step of including an electrolytic solution in the porous semiconductor and the porous insulator, that is, in the pores existing between the particles of each porous body. Therefore, the dye can be supported on the porous semiconductor layer, and the electrolytic solution can be contained in the porous semiconductor layer and the porous insulator layer.

つまり、本発明によれば、先に対極を形成した後、その下層に位置する多孔質絶縁体と及び多孔質絶縁体に色素や電解液を導入する手順がとれるので、対極の形成に、従来公知の高温プロセスや真空プロセスを採用し、対極として好ましい材料や組成からなる薄膜を適宜自由に設けることできる。そして、このように対極をなす第二導電層まで積層してなるセル構造体をまず用意し、このセル構造体自体の温度を使用する色素や電解液に影響のない温度範囲にした後、色素を含む電解液に浸漬することにより、2つの多孔質体内にこれらを含浸させることが可能となる。ゆえに、対極形成条件に煩わされることなく、色素や電解液の材料やその作製条件を選択できるので、ひいては本製法は更なる特性の改善にも貢献する。   That is, according to the present invention, after the counter electrode is formed first, the porous insulator located in the lower layer and the procedure of introducing the dye or the electrolyte into the porous insulator can be taken. A known high-temperature process or vacuum process is employed, and a thin film made of a preferable material or composition as a counter electrode can be provided as appropriate. Then, a cell structure formed by laminating up to the second conductive layer as a counter electrode is first prepared, and after the temperature of the cell structure itself is set to a temperature range that does not affect the dye or electrolyte, the dye It is possible to impregnate these into the two porous bodies by immersing them in an electrolytic solution containing. Therefore, the material of the dye and the electrolytic solution and the production conditions thereof can be selected without being troubled by the counter electrode formation conditions, so that this production method contributes to further improvement of characteristics.

以下では、本発明に係る色素増感太陽電池の一実施形態を図面に基づいて説明する。
図1は、本発明に係る色素増感太陽電池の構造例を示す概略断面図である。図2は、図1に示す色素増感型太陽電池の部分拡大断面図であり、多孔質絶縁体層における電子の流れを模式的に説明する図である。
Hereinafter, an embodiment of a dye-sensitized solar cell according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a structural example of a dye-sensitized solar cell according to the present invention. FIG. 2 is a partially enlarged cross-sectional view of the dye-sensitized solar cell shown in FIG. 1, schematically illustrating the flow of electrons in the porous insulator layer.

本発明に係る色素増感太陽電池1は、図1及び図2に示すように、基材2と、前記基材2の一面に配された第一導電層4とからなる電極用基板と、前記第一導電層4上に順に重ねて配される多孔質半導体層6、多孔質絶縁体層5、及び第二導電層9とから構成されるセル構造体10を備え、前記多孔質半導体層7及び前記多孔質絶縁体層6はその内部に電解液15を含む構成からなる。   As shown in FIGS. 1 and 2, the dye-sensitized solar cell 1 according to the present invention includes an electrode substrate including a base material 2 and a first conductive layer 4 disposed on one surface of the base material 2. A cell structure 10 comprising a porous semiconductor layer 6, a porous insulator layer 5, and a second conductive layer 9 that are arranged on the first conductive layer 4 in order, and the porous semiconductor layer; 7 and the porous insulator layer 6 are configured to include an electrolytic solution 15 therein.

基材2は、一面に導電材料からなる膜(層)を形成することにより電気を通す導電性を有し、光透過性の高い透明な部材であれば何でも良く、特に制限されない。この基材2としては、ガラス板を使用するのが一般的であるが、ガラス板以外にも、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などのプラスチックシート、酸化チタン、アルミナなどセラミックスの研磨板などを用いることができる。ここで、一面とは、部材面のうち第一導電層4等を形成し、対極として作用する第二導電層9と対向して配置される面をいう。
また、基材2は、後に導電膜を形成した基板上に色素担持用の多孔質半導体として二酸化チタン(TiO)を焼き付ける場合は、500℃程度の高熱に耐える導電性耐熱ガラスが望ましい。
The base material 2 is not particularly limited as long as it is a transparent member having electrical conductivity that conducts electricity by forming a film (layer) made of a conductive material on one surface and having high light transmittance. As this base material 2, it is common to use a glass plate, but besides the glass plate, for example, a plastic sheet such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), A ceramic polishing plate such as titanium oxide or alumina can be used. Here, the term “one surface” refers to a surface of the member surface that forms the first conductive layer 4 and the like and is disposed to face the second conductive layer 9 that acts as a counter electrode.
Further, the substrate 2 is, if the baking titanium dioxide (TiO 2) as a porous semiconductor for the dye carried on the substrate a conductive film is formed after the desired conductive heat resistant glass to withstand 500 ° C. of about high heat.

第一導電層4は、基材2上に形成された導電材料からなる光透過率の高い導電性の膜である。第一導電層4としては、例えば、スズ添加酸化インジウム(ITO)や酸化スズ(SnO)、フッ素添加スズ(FTO)などの透明な酸化物半導体を単独で、もしくは複数種類を複合化して用いるようにしても良い。
そして、基材2上に第一導電層4を形成することで電極用基板とする。
The first conductive layer 4 is a conductive film having a high light transmittance made of a conductive material formed on the substrate 2. As the first conductive layer 4, for example, a transparent oxide semiconductor such as tin-added indium oxide (ITO), tin oxide (SnO 2 ), or fluorine-added tin (FTO) is used alone, or a plurality of types are used in combination. You may do it.
Then, an electrode substrate is formed by forming the first conductive layer 4 on the base material 2.

多孔質半導体層6は、多孔質半導体8に色素16を担持させたものである。多孔質半導体8としては、例えば、二酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などの1種または2種以上を複合させた多孔質の薄膜であり、例えば、平均粒径が6nm〜50nmの酸化物半導体粒子を主成分とするものが好ましい。この多孔質半導体8の粒子間には、色素16だけでなく電解液15も含まれている。
また、色素16としては、例えば、ルテニウム錯体や鉄錯体、ポルフィリン系あるいはフタロシアニン系の金属錯体の他、エオシン、ローダミン、メロシアニン、クマリンなどの有機色素が挙げられ、これらを用途や多孔質半導体層の材料に応じて適宜選択して用いる。
The porous semiconductor layer 6 is obtained by supporting a dye 16 on a porous semiconductor 8. Examples of the porous semiconductor 8 include one or two of titanium dioxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), and the like. A porous thin film in which more than one species are combined, and for example, a thin film mainly composed of oxide semiconductor particles having an average particle diameter of 6 nm to 50 nm is preferable. Between the particles of the porous semiconductor 8, not only the dye 16 but also the electrolytic solution 15 is contained.
Examples of the dye 16 include organic dyes such as eosin, rhodamine, merocyanine, and coumarin in addition to a ruthenium complex, an iron complex, a porphyrin-based or phthalocyanine-based metal complex, and these can be used for a porous semiconductor layer. It is appropriately selected according to the material.

多孔質絶縁体7は、後に電解液15を粒子間にしみこませることで多孔質絶縁体層5とするものであり、例えば、酸化珪素やアルミナといった絶縁体の多孔質焼結が好適に用いられる。中でも多孔質絶縁体層として酸化珪素を用いることで、多孔質絶縁体層には色素が殆ど吸着せず、たとえ色素が吸着したとしても電解液の特性に殆ど影響を与えないので、さらに発電効率が向上したものとすることができる。また、多孔質絶縁体層の孔径は、粒子を充填したときの空隙径に相当し、この粒子の粒径が5〜100nmであると、不揮発性のイオン性液体をゲル化した構成の電解質と同様の効果が効率的に得られるので望ましい。
図10は、多孔質絶縁体層として粒径の異なる酸化珪素を用いて作製した色素増感太陽電池の変換効率を示すグラフである。図10より、粒子の粒径が5〜100nmの範囲としたとき、比較的高い発電効率が得られることが分かった。粒径が5nmを下回ると細孔が小さくなりすぎ、電解液中のヨウ素イオンの拡散を阻害して電荷輸送がスムーズに行われにくくなり、粒径が100nmを越えると多孔質の表面積が減少するため十分な数のヨウ素イオンが高速電荷輸送に寄与しにくくなるものと思われる。
The porous insulator 7 is a porous insulator layer 5 that is obtained by soaking the electrolyte solution 15 between the particles later. For example, porous sintering of an insulator such as silicon oxide or alumina is preferably used. . In particular, by using silicon oxide as the porous insulator layer, almost no dye is adsorbed on the porous insulator layer, and even if the dye is adsorbed, it hardly affects the characteristics of the electrolyte solution. Can be improved. Further, the pore diameter of the porous insulator layer corresponds to the void diameter when the particles are filled, and when the particle diameter of the particles is 5 to 100 nm, the electrolyte having a structure in which a nonvolatile ionic liquid is gelled, It is desirable because the same effect can be obtained efficiently.
FIG. 10 is a graph showing the conversion efficiency of a dye-sensitized solar cell produced using silicon oxides having different particle diameters as the porous insulator layer. From FIG. 10, it was found that relatively high power generation efficiency can be obtained when the particle diameter is in the range of 5 to 100 nm. When the particle size is less than 5 nm, the pores become too small, and the diffusion of iodine ions in the electrolyte is inhibited, making it difficult to transport charges smoothly. When the particle size exceeds 100 nm, the porous surface area is reduced. Therefore, it is considered that a sufficient number of iodine ions hardly contributes to high-speed charge transport.

ここで、電解液15とは、電解質が液中で解離して陽イオンと陰イオンを生じる電導性を有する水溶液をいう。この電解液15としては、例えば、メトキシアセトニトリルやアセトニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトンなどを用いた揮発性電解液の他、イオン性液体なども用いることができる。このイオン性液体としては、例えば、四級化イミダゾリウム誘導体や四級化ピリジニウム誘導体、四級化アンモニウム誘導体といった四級化された窒素原子を有する化合物をカチオンとした室温で液体の常温溶融性塩がある。電解液としてイオン性液体を用いることで、一層発電効率が向上したものとすることができる。
また、電解液中には、酸化還元対を存在させることもできる。酸化還元対としては、例えば、ヨウ素/ヨウ化物イオン、臭素/臭化物イオンなどが挙げられる。
Here, the electrolyte solution 15 refers to an aqueous solution having electrical conductivity in which the electrolyte is dissociated in the solution to generate cations and anions. As the electrolytic solution 15, for example, an ionic liquid can be used in addition to a volatile electrolytic solution using methoxyacetonitrile, acetonitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, or the like. . Examples of the ionic liquid include, for example, a room temperature meltable salt which is a quaternary imidazolium derivative, a quaternized pyridinium derivative, a quaternized ammonium derivative, and a compound having a quaternized nitrogen atom as a cation at room temperature. There is. By using an ionic liquid as the electrolytic solution, the power generation efficiency can be further improved.
In addition, a redox pair can be present in the electrolytic solution. Examples of the redox pair include iodine / iodide ions and bromine / bromide ions.

第二導電層9は、導電材料からなる導電性の膜であり、対極として機能すると共に、セル構造体を複数個、直列に繋ぎ合わせる場合にはセル構造体間接続部材としての役割も担う。この第二導電層9は、例えば、スズ添加酸化インジウム(ITO)、フッ素添加スズ(FTO)などの導電性酸化物半導体や、金、白金、炭素系材料などの導電性材料を蒸着、塗布等することにより形成される。また、スズ添加酸化インジウム(ITO)、フッ素添加スズ(FTO)などの導電性酸化物半導体からなる薄膜上に、白金やカーボンなどの層を形成したものとすることもできる。   The second conductive layer 9 is a conductive film made of a conductive material. The second conductive layer 9 functions as a counter electrode and also serves as a connection member between cell structures when a plurality of cell structures are connected in series. For example, the second conductive layer 9 is formed by depositing or applying a conductive oxide semiconductor such as tin-added indium oxide (ITO) or fluorine-added tin (FTO), or a conductive material such as gold, platinum, or a carbon-based material. It is formed by doing. Alternatively, a layer of platinum or carbon may be formed on a thin film made of a conductive oxide semiconductor such as tin-added indium oxide (ITO) or fluorine-added tin (FTO).

次に、本発明に係る色素増感太陽電池1の製造方法について説明する。
まず、ガラス板などの基材2上に第一導電層4を形成することで電極用基板を構成する。第一導電層4は、色素増感太陽電池1において作用極(窓極)として機能する。この第一導電層4の形成方法としては、第一導電層4の材料に応じて公知の方法を用いて行えば良く、例えば、スパッタ法やCVD法(気相成長法)、SPD法(スプレー熱分解堆積法)、蒸着法などにより、スズ添加酸化インジウム(ITO)などの酸化物半導体からなる薄膜を形成する。これにより、一面のみ導電性を有する基板(電極用基板)が構成される。そして、この電極用基板を通して太陽光(図2にhνと表示)を太陽電池内部に入射させる場合、第一導電層4は、厚過ぎると光透過性が劣り、一方、薄過ぎると導電性が劣ってしまうことになるため、光透過性と導電性の機能を両立させることを考慮すると、0.1μm〜1μm程度の膜厚範囲が好ましい。
Next, the manufacturing method of the dye-sensitized solar cell 1 which concerns on this invention is demonstrated.
First, the electrode substrate is formed by forming the first conductive layer 4 on the substrate 2 such as a glass plate. The first conductive layer 4 functions as a working electrode (window electrode) in the dye-sensitized solar cell 1. As a method for forming the first conductive layer 4, a known method may be used according to the material of the first conductive layer 4. For example, sputtering, CVD (vapor deposition), SPD (spray) A thin film made of an oxide semiconductor such as tin-added indium oxide (ITO) is formed by a thermal decomposition deposition method) or an evaporation method. Thereby, the board | substrate (substrate for electrodes) which has electroconductivity only on one surface is comprised. When sunlight (indicated as hν in FIG. 2) is incident on the inside of the solar cell through this electrode substrate, the first conductive layer 4 is inferior in light transmittance when it is too thick, whereas it is inconductive when it is too thin. Since it will be inferior, the film thickness range of about 0.1 μm to 1 μm is preferable in consideration of achieving both the light transmission and conductivity functions.

次いで、第一導電層4上に多孔質半導体層8を形成することで作用極を構成する。多孔質半導体層8を形成する方法としては、例えば、二酸化チタン(TiO)の粉末を分散媒と混ぜてペーストを調整し、これをスクリーンプリント法やインクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法などを用い、導電性基板上に塗布する方法が挙げられる。そして、この多孔質半導体層8は、増感色素が適量担持(表面吸着)されるように膜厚範囲を設定すればよく、その膜厚が5μmより薄い場合には利用されない光が多くなり、20μmより厚い場合には利用されない色素が多くなるという理由から、5μm〜20μm程度の膜厚範囲が好ましい。 Next, the working electrode is formed by forming the porous semiconductor layer 8 on the first conductive layer 4. As a method for forming the porous semiconductor layer 8, for example, a titanium dioxide (TiO 2 ) powder is mixed with a dispersion medium to prepare a paste, and this is used for a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method. And a method of coating on a conductive substrate using a spin coat method or the like. And this porous semiconductor layer 8 should just set a film thickness range so that a suitable amount of a sensitizing dye may be carried (surface adsorption), and when the film thickness is thinner than 5 μm, more light is not used, When it is thicker than 20 μm, a film thickness range of about 5 μm to 20 μm is preferable because more dyes are not used.

また、多孔質半導体層8上に多孔質絶縁体層7を形成する。多孔質絶縁体層7を形成する方法としては、例えば、酸化珪素の粉末を分散媒と混ぜてペーストを調整し、これを多孔質半導体層8と同様に、スクリーンプリント法やインクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法などを用い、多孔質半導体層8上に塗布する方法が挙げられる。そして、この多孔質絶縁体層7は、その膜厚が2μmより薄い場合にはピンホールなどが発生しやすいため、次に塗る(その上に設ける)対極層9と多孔質半導体層8とが接触する虞があり、20μmより厚い場合には電極間距離(第一導電層4と対極層9との離間距離)が長すぎて内部抵抗が大きくなるという理由から、2μm〜20μm程度の膜厚範囲が好適である。   In addition, the porous insulator layer 7 is formed on the porous semiconductor layer 8. As a method for forming the porous insulator layer 7, for example, a paste is prepared by mixing a silicon oxide powder with a dispersion medium, and this is the same as the porous semiconductor layer 8, using a screen printing method, an ink jet printing method, a roll. Examples of the method include coating on the porous semiconductor layer 8 using a coating method, a doctor blade method, a spin coating method, or the like. Since the porous insulator layer 7 is likely to generate pinholes when the film thickness is less than 2 μm, the counter electrode layer 9 and the porous semiconductor layer 8 to be applied (provided thereon) are formed next. If it is thicker than 20 μm, the distance between the electrodes (the distance between the first conductive layer 4 and the counter electrode layer 9) is too long and the internal resistance increases, so that the film thickness is about 2 μm to 20 μm. A range is preferred.

さらに、多孔質絶縁体層7上に対極としての第二導電層9を形成する。第二導電層9を形成する方法としては、例えば、スクリーン印刷法などを用い、多孔質絶縁体層7上に塗布する方法が挙げられる。この第二導電層9は、その膜厚が4μmより薄い場合には抵抗が大きくなり、20μmより厚い場合には内部応力に起因して、膜内部あるいは膜表面において割れが生じたり、その下に設けた多孔質絶縁体層7との間で膜ハガレが発生しやすいという理由から、4μm〜20μm程度の膜厚範囲が好適である。   Further, a second conductive layer 9 as a counter electrode is formed on the porous insulator layer 7. Examples of a method for forming the second conductive layer 9 include a method of applying the second conductive layer 9 on the porous insulator layer 7 using a screen printing method or the like. When the thickness of the second conductive layer 9 is less than 4 μm, the resistance increases. When the thickness of the second conductive layer 9 is greater than 20 μm, cracks occur in the film or on the surface of the film due to internal stress. A film thickness range of about 4 μm to 20 μm is suitable for the reason that film peeling easily occurs between the provided porous insulator layer 7.

そして最後に、全体を色素液に浸漬することにより多孔質半導体8に色素16を担持させるとともに、多孔質半導体8及び多孔質絶縁体7に液状の電解質15を垂らして電解液15を含浸させることにより、多孔質半導体層6、及び多孔質絶縁体層5とする。
これにより、本発明に係る色素増感太陽電池1が製造される。
And finally, the porous semiconductor 8 carries the dye 16 by immersing the whole in the dye solution, and the liquid electrolyte 15 is dropped on the porous semiconductor 8 and the porous insulator 7 to impregnate the electrolyte solution 15. Thus, the porous semiconductor layer 6 and the porous insulator layer 5 are obtained.
Thereby, the dye-sensitized solar cell 1 which concerns on this invention is manufactured.

上述のように構成した色素増感太陽電池1においては、図2に示すように、対極としての第二導電層9から多孔質絶縁体層5へ侵入した電子(図2にeと表示)は、多孔質絶縁体層5を構成する多孔質絶縁体7の粒子間に存在する孔部内にしみこんだ電解液15の中を流れることでイオン伝導により効率良く多孔質半導体層6へ到達し、さらに多孔質半導体8では粒子内を流れて電子伝導により作用極である基材に到達し、発電するものとなる。 In the dye-sensitized solar cell 1 configured as described above, as shown in FIG. 2, electrons have entered the porous insulator layer 5 from the second conductive layer 9 as a counter electrode (indicated as e − in FIG. 2). Reaches the porous semiconductor layer 6 efficiently by ionic conduction by flowing in the electrolyte solution 15 soaked in the pores existing between the particles of the porous insulator 7 constituting the porous insulator layer 5, Furthermore, the porous semiconductor 8 flows in the particles, reaches the base material which is the working electrode by electron conduction, and generates electricity.

また、この色素増感太陽電池1は、固体電解質を用いた従来のモノリシック型色素増感太陽電池の発電効率に比して格段と向上し、図3に示すように、発電電流の著しい(例えば1桁以上異なる)増大をもたらす。   Further, the dye-sensitized solar cell 1 is remarkably improved as compared with the power generation efficiency of a conventional monolithic dye-sensitized solar cell using a solid electrolyte. As shown in FIG. Resulting in an increase).

上述した構成の色素増感太陽電池1を大型化する場合は、図4に示すように、複数のセル構造体10a,10b,10c・・・を直列的に配置し、隣接するセル構造体10a,10b(10b,10c、10c,・・・)の素子間において、一方の素子を構成する対極としての第二導電層9と、他方の素子を構成する基材2上に設けられた第一導電層4とを、第二導電層9をセル構造体間接続部材として用いて順次繋ぎ合わせる。そして、基材2上に設けられた第一導電層4、多孔質半導体層6、多孔質絶縁体層5、及び第二導電層9を全て覆う保護部材12aとともに、隣接するセル構造体10,10間を仕切るように保護部材12bを形成する。この保護部材12としては、光硬化性樹脂とすると熱を使用することがないので、色素へのダメージがなく望ましい。   When the dye-sensitized solar cell 1 having the above-described configuration is enlarged, as shown in FIG. 4, a plurality of cell structures 10a, 10b, 10c,... , 10b (10b, 10c, 10c,...), The second conductive layer 9 as a counter electrode constituting one element and the first substrate provided on the base material 2 constituting the other element. The conductive layer 4 and the conductive layer 4 are sequentially connected using the second conductive layer 9 as a connection member between cell structures. And with the protection member 12a which covers all the 1st conductive layer 4, the porous semiconductor layer 6, the porous insulator layer 5, and the 2nd conductive layer 9 provided on the base material 2, the adjacent cell structure 10, The protective member 12b is formed so as to partition the ten. The protective member 12 is preferably a photo-curing resin because it does not use heat and is not damaged by the pigment.

これにより、対極9に対して外部より負荷が加わり、電池回路が崩れたり、正常な稼動状態が阻害されたりするのを保護部材12aによって防ぐことができるとともに、隣接するセル構造体10,10間において、一方のセル構造体10(例えば10a)を構成する対極9と、他方のセル構造体10(例えば10b)を構成する第一導電層4上に形成された多孔質半導体層6とが接触することを保護部材12bによって妨げ、この部分での漏電を防止し、図2に示すように、対極9→多孔質絶縁体層5→多孔質半導体層6という方向への電子の流れを促進することができる。   As a result, a load is applied to the counter electrode 9 from the outside, and the battery circuit can be prevented from being damaged or the normal operation state can be prevented by the protective member 12a. In addition, between the adjacent cell structures 10 and 10 can be prevented. , The counter electrode 9 constituting one cell structure 10 (for example, 10a) and the porous semiconductor layer 6 formed on the first conductive layer 4 constituting the other cell structure 10 (for example, 10b) are in contact with each other. The protection member 12b prevents the leakage of current and prevents leakage of the current in this portion, and promotes the flow of electrons in the direction of the counter electrode 9 → the porous insulator layer 5 → the porous semiconductor layer 6 as shown in FIG. be able to.

以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
まず、基材2として100mm×100mm×1.1tの耐熱ガラスを用い、その上面にエッチング法により溝を格子回路パターン状に形成した。エッチングは、フォトリソにてパターン形成した後、フッ酸を用いて行った。これに、メッキ形成を可能とするためにスパッタ法により金属導電層(シード層)を形成し、さらにアディティブメッキにより金属配線層を形成した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example.
First, 100 mm × 100 mm × 1.1 t heat-resistant glass was used as the base material 2, and grooves were formed in a lattice circuit pattern on the upper surface by an etching method. Etching was performed using hydrofluoric acid after pattern formation by photolithography. A metal conductive layer (seed layer) was formed by sputtering in order to enable plating, and a metal wiring layer was further formed by additive plating.

そして、この上からスプレー熱分解堆積法にて、シート抵抗10Ω/□のスズ添加酸化インジウム(ITO)膜を第一導電層として300nmの厚さに形成して、電極用基板とした。その後、図5に示すように、巾9.5mmの導電部と、巾0.5mmの絶縁部が交互に得られるように、スズ添加酸化インジウム(ITO)膜を部分的にエッチング除去した。   Then, a tin-added indium oxide (ITO) film having a sheet resistance of 10Ω / □ was formed as a first conductive layer to a thickness of 300 nm by a spray pyrolysis deposition method to form an electrode substrate. Thereafter, as shown in FIG. 5, the tin-added indium oxide (ITO) film was partially removed by etching so that a conductive portion having a width of 9.5 mm and an insulating portion having a width of 0.5 mm were alternately obtained.

次いで、上記電極用基板における導電部上に、多孔質半導体として平均粒径15nmの酸化チタンペースト(Ti-nanoxide T : Solaronix s.a.社製)を塗布し、オーブンで乾燥させ、厚さ8μmの多孔質半導体層を形成した。   Next, a titanium oxide paste (Ti-nanoxide T: manufactured by Solaronix sa) having an average particle diameter of 15 nm is applied as a porous semiconductor on the conductive portion of the electrode substrate, dried in an oven, and porous having a thickness of 8 μm. A semiconductor layer was formed.

また、その上に多孔質絶縁体として粒経25nmの酸化珪素ナノ粒子を含むペーストを塗布し、乾燥させて厚さ12μmの多孔質絶縁体層を形成した。   Further, a paste containing silicon oxide nanoparticles having a particle size of 25 nm was applied thereon as a porous insulator and dried to form a porous insulator layer having a thickness of 12 μm.

さらに、カーボン印刷ペーストを隣接するセル構造体の第一導電層に触れるようにスクリーン印刷法にて印刷し、乾燥して、隣接セル構造体との接合を兼ねる対極としての第二導電層を形成した。   Furthermore, the carbon printing paste is printed by screen printing so as to touch the first conductive layer of the adjacent cell structure and dried to form a second conductive layer as a counter electrode that also serves as a joint with the adjacent cell structure. did.

そして、対極としての第二導電層まで形成した後、これを450℃のオーブンにて1時間焼成し、全層を焼結して、セル構造体10(10a,10b,10c・・・)が9列繋ぎ合わさった構造とした。   And after forming to the 2nd conductive layer as a counter electrode, this is baked in 450 degreeC oven for 1 hour, all the layers are sintered, and the cell structure 10 (10a, 10b, 10c ...) becomes. Nine rows were connected.

次いで、ルテニウムビピリジン錯体(N3色素)を色素としたエタノール溶液中にこれを一晩浸漬して、酸化チタン多孔膜からなる多孔質半導体層に色素を担持するとともに、EMIm-TFSI(1-Ethyl-3-methylimidazolium-Bis(trifluoromethylsulfonyl)imide)イオン性溶液を用いた電解液を各セル構造体10a,10b,10c・・・上に垂らして、多孔質絶縁体層及び多孔質絶縁体層の内部に電解液を含ませた後、余分な電解液を除去した。   Next, this was immersed overnight in an ethanol solution containing a ruthenium bipyridine complex (N3 dye) as a dye, and the dye was supported on the porous semiconductor layer made of the titanium oxide porous film, and EMIm-TFSI (1-Ethyl- An electrolytic solution using a 3-methylimidazolium-Bis (trifluoromethylsulfonyl) imide) ionic solution is hung on each cell structure 10a, 10b, 10c..., And placed inside the porous insulator layer and the porous insulator layer. After the electrolyte solution was included, excess electrolyte solution was removed.

最後に、基材上に設けられた第一導電層、多孔質半導体層、多孔質絶縁体層、及び第二導電層を全て被覆するとともに、隣接セル構造体間を仕切るように、光硬化性樹脂からなる保護部材12a,12bをそれぞれ配置し、硬化させることで封止を行った。   Finally, the first conductive layer, the porous semiconductor layer, the porous insulator layer, and the second conductive layer provided on the base material are all covered and photocurable so as to partition adjacent cell structures. Sealing was performed by arranging protective members 12a and 12b made of resin and curing them.

そして、上述のように大型化した色素増感太陽電池における光電変特性を評価したところ、従来のモノリシック型色素増感太陽電池の発電効率がおよそ0.1%に留まるのに対し、本発明に係るモノリシック型色素増感太陽電池では4%を越える程度まで著しく増大することから、本発明の太陽電池は電子を効率良く伝達可能であることが分かった。   And when the photoelectric conversion characteristic in the dye-sensitized solar cell enlarged as described above was evaluated, the power generation efficiency of the conventional monolithic dye-sensitized solar cell is only about 0.1%, whereas In such a monolithic dye-sensitized solar cell, it is remarkably increased to a level exceeding 4%. Therefore, it was found that the solar cell of the present invention can efficiently transmit electrons.

また、この本発明に係る太陽電池の発電電流−電圧特性は、図6に示すようなI−V曲線を有する。このI−V曲線から明らかなように、本発明の太陽電池は発電電流が増大したことによって、複数のセル構造体を直列に配置し繋ぎ合わせることで電圧も増大し、かつ、特性の増大効果が繋ぎ合わせたセル構造体の数と等しい段差となって観測されるという特長をもつ。   Further, the generated current-voltage characteristic of the solar cell according to the present invention has an IV curve as shown in FIG. As is apparent from this IV curve, the solar cell of the present invention has an increased power generation current, so that a plurality of cell structures are arranged in series and connected to increase the voltage, and the characteristics can be increased. Is observed as a step equal to the number of cell structures joined together.

本発明に係る色素増感太陽電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the dye-sensitized solar cell which concerns on this invention. 図1に示す色素増感太陽電池における電気の流れを説明する模式的な部分拡大断面図である。It is a typical partial expanded sectional view explaining the flow of electricity in the dye-sensitized solar cell shown in FIG. 図1に示す色素増感太陽電池における発電効率の増大効果を示すIV曲線である。It is IV curve which shows the increase effect of the electric power generation efficiency in the dye-sensitized solar cell shown in FIG. 図1に示す色素増感太陽電池を繋ぎ合わせて大型化した状態を示す部分概略断面図である。It is a partial schematic sectional drawing which shows the state which connected the dye-sensitized solar cell shown in FIG. 1, and enlarged. 図1に示す色素増感太陽電池を繋ぎ合わせて大型化した状態を示す概略平面図である。It is a schematic plan view which shows the state which connected the dye-sensitized solar cell shown in FIG. 1, and enlarged. 図5に示す大型化した色素増感太陽電池における発電効率の増大効果を示すI−V曲線である。It is an IV curve which shows the increase effect of the power generation efficiency in the enlarged dye-sensitized solar cell shown in FIG. 従来のW型色素増感太陽電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional W type | mold dye-sensitized solar cell. 従来のZ型色素増感太陽電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional Z-type dye-sensitized solar cell. 従来のモノリシック型色素増感太陽電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional monolithic type dye-sensitized solar cell. 多孔質絶縁体層として粒径の異なる酸化珪素を用いて作製した色素増感太陽電池の変換効率を示すグラフである。It is a graph which shows the conversion efficiency of the dye-sensitized solar cell produced using the silicon oxide from which a particle size differs as a porous insulator layer.

符号の説明Explanation of symbols

1 色素増感太陽電池、2 基材、4 第一導電層、5 多孔質絶縁体層、6 多孔質半導体層、7 多孔質絶縁体、8 多孔質半導体、9 第二導電層(対極兼セル構造体間接続部材)、10 セル構造体、12a、12b 保護部材、15 液状電解質(電解液)、16 色素。
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell, 2 base material, 1st conductive layer, 5 porous insulator layer, 6 porous semiconductor layer, 7 porous insulator, 8 porous semiconductor, 9 2nd conductive layer (counter electrode and cell) Connecting member between structures), 10 cell structure, 12a, 12b protective member, 15 liquid electrolyte (electrolyte), 16 dye.

Claims (4)

基材及び前記基材の一面に配された第一導電層からなる電極用基板、前記第一導電層上に順に重ねて配される多孔質半導体層、多孔質絶縁体層、並びに第二導電層から構成されるセル構造体を備え、
前記多孔質半導体層及び前記多孔質絶縁体層はその内部に電解液を含むことを特徴とする色素増感太陽電池。
A substrate for an electrode comprising a base material and a first conductive layer disposed on one surface of the base material, a porous semiconductor layer, a porous insulator layer, and a second conductive layer, which are sequentially stacked on the first conductive layer Comprising a cell structure composed of layers,
The dye-sensitized solar cell, wherein the porous semiconductor layer and the porous insulator layer contain an electrolytic solution therein.
前記第一導電層、多孔質半導体層、多孔質絶縁体、及び第二導電層を全て覆うとともに、隣接するセル構造体間を仕切るように配置された保護部材を備えたことを特徴とする請求項1記載の色素増感太陽電池。   The protective member is provided so as to cover all of the first conductive layer, the porous semiconductor layer, the porous insulator, and the second conductive layer and to partition between adjacent cell structures. Item 2. The dye-sensitized solar cell according to Item 1. 前記セル構造体を複数個、直列に繋ぎ合わせてなり、セル構造体の数に応じた段数が、電流−電圧曲線上に観測されることを特徴とする請求項1に記載の色素増感太陽電池。   2. The dye-sensitized solar according to claim 1, wherein a plurality of the cell structures are connected in series, and the number of stages corresponding to the number of the cell structures is observed on a current-voltage curve. battery. 基材及び前記基材の一面に配された第一導電層からなる電極用基板、前記第一導電層上に順に重ねて配される多孔質半導体層、多孔質絶縁体層、並びに第二導電層から構成されるセル構造体を備えてなる色素増感太陽電池の製造方法であって、
前記多孔質半導体層を構成する多孔質半導体上に前記多孔質絶縁体層を構成する多孔質絶縁体を設け、次いで該多孔質絶縁体上に前記第二導電層を形成した後、
前記多孔質半導体と前記多孔質絶縁体の内部に電解液を含ませる工程を少なくとも具備したことを特徴とする色素増感太陽電池の製造方法。
A substrate for an electrode comprising a base material and a first conductive layer disposed on one surface of the base material, a porous semiconductor layer, a porous insulator layer, and a second conductive layer, which are sequentially stacked on the first conductive layer A method for producing a dye-sensitized solar cell comprising a cell structure composed of layers,
After providing a porous insulator constituting the porous insulator layer on the porous semiconductor constituting the porous semiconductor layer, and then forming the second conductive layer on the porous insulator,
A method for producing a dye-sensitized solar cell, comprising at least a step of including an electrolytic solution in the porous semiconductor and the porous insulator.
JP2005159306A 2005-01-28 2005-05-31 Dye-sensitized solar cell and its manufacturing method Pending JP2006236960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159306A JP2006236960A (en) 2005-01-28 2005-05-31 Dye-sensitized solar cell and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005021216 2005-01-28
JP2005159306A JP2006236960A (en) 2005-01-28 2005-05-31 Dye-sensitized solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006236960A true JP2006236960A (en) 2006-09-07

Family

ID=37044351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159306A Pending JP2006236960A (en) 2005-01-28 2005-05-31 Dye-sensitized solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006236960A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012377A (en) * 2005-06-29 2007-01-18 Tokyo Univ Of Science Solar cell module
WO2007046499A1 (en) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
WO2009057445A1 (en) * 2007-10-30 2009-05-07 Sony Corporation Dye-sensitized photoelectric conversion device module, method for manufacturing the same, and electronic device
JP2010003557A (en) * 2008-06-20 2010-01-07 Sharp Corp Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
WO2010125929A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2011165580A (en) * 2010-02-12 2011-08-25 Hyogo Prefecture Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
CN102214517A (en) * 2010-04-07 2011-10-12 德元太阳能科技股份有限公司 Method for manufacturing large-area solar cell and mold structure
EP2402967A2 (en) 2010-06-29 2012-01-04 Sony Corporation Photoelectric conversion element, method of manufacturing the same, photoelectric conversion element module, and method of manufacturing the same
US20120043989A1 (en) * 2010-08-17 2012-02-23 Sony Corporation Inspection method and inspection apparatus
JP2012104505A (en) * 2006-12-11 2012-05-31 Fujikura Ltd Photoelectric conversion element
WO2014038570A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module
JP2014053150A (en) * 2012-09-06 2014-03-20 Sharp Corp Photoelectric conversion element and photoelectric conversion module
JP2016522993A (en) * 2013-05-17 2016-08-04 エクセジャー スウェーデン エービーExeger Sweden Ab Dye-sensitized solar cell and method for manufacturing the solar cell
CN108963311A (en) * 2018-07-13 2018-12-07 宁德时代新能源科技股份有限公司 Secondary battery and pole piece thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223939A (en) * 2002-01-29 2003-08-08 Nippon Shokubai Co Ltd Interlaminar material for solar cell and dye sensitizing solar cell using it
JP2003297446A (en) * 2002-01-29 2003-10-17 Nippon Shokubai Co Ltd Dye-sensitized solar cell
JP2004055536A (en) * 2002-05-29 2004-02-19 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell
JP2004111277A (en) * 2002-09-19 2004-04-08 Toyota Central Res & Dev Lab Inc Dye sensitizing solar cell
JP2004111276A (en) * 2002-09-19 2004-04-08 Toyota Central Res & Dev Lab Inc Dye sensitizing solar cell
JP2004127849A (en) * 2002-10-07 2004-04-22 Toyota Central Res & Dev Lab Inc Carbon electrode and dye-sensitized solar cell with the same
JP2004152613A (en) * 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell
JP2004247158A (en) * 2003-02-13 2004-09-02 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003223939A (en) * 2002-01-29 2003-08-08 Nippon Shokubai Co Ltd Interlaminar material for solar cell and dye sensitizing solar cell using it
JP2003297446A (en) * 2002-01-29 2003-10-17 Nippon Shokubai Co Ltd Dye-sensitized solar cell
JP2004055536A (en) * 2002-05-29 2004-02-19 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell
JP2004111277A (en) * 2002-09-19 2004-04-08 Toyota Central Res & Dev Lab Inc Dye sensitizing solar cell
JP2004111276A (en) * 2002-09-19 2004-04-08 Toyota Central Res & Dev Lab Inc Dye sensitizing solar cell
JP2004127849A (en) * 2002-10-07 2004-04-22 Toyota Central Res & Dev Lab Inc Carbon electrode and dye-sensitized solar cell with the same
JP2004152613A (en) * 2002-10-30 2004-05-27 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell
JP2004247158A (en) * 2003-02-13 2004-09-02 Toyota Central Res & Dev Lab Inc Dye-sensitized solar cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012377A (en) * 2005-06-29 2007-01-18 Tokyo Univ Of Science Solar cell module
WO2007046499A1 (en) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
JP2012104505A (en) * 2006-12-11 2012-05-31 Fujikura Ltd Photoelectric conversion element
WO2009057445A1 (en) * 2007-10-30 2009-05-07 Sony Corporation Dye-sensitized photoelectric conversion device module, method for manufacturing the same, and electronic device
JP2009110796A (en) * 2007-10-30 2009-05-21 Sony Corp Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2010003557A (en) * 2008-06-20 2010-01-07 Sharp Corp Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP2010262760A (en) * 2009-04-30 2010-11-18 Sharp Corp Porous electrode, dye-sensitized solar cell, and dye-sensitized solar-cell module
JP4683396B2 (en) * 2009-04-30 2011-05-18 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2010125929A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US9607772B2 (en) 2009-04-30 2017-03-28 Sharp Kabushiki Kaisha Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2011165580A (en) * 2010-02-12 2011-08-25 Hyogo Prefecture Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
CN102214517A (en) * 2010-04-07 2011-10-12 德元太阳能科技股份有限公司 Method for manufacturing large-area solar cell and mold structure
CN102214517B (en) * 2010-04-07 2012-12-19 财团法人交大思源基金会 Method for manufacturing large-area solar cell
EP2402967A2 (en) 2010-06-29 2012-01-04 Sony Corporation Photoelectric conversion element, method of manufacturing the same, photoelectric conversion element module, and method of manufacturing the same
CN102401882A (en) * 2010-08-17 2012-04-04 索尼公司 Inspection method and inspection apparatus
US20120043989A1 (en) * 2010-08-17 2012-02-23 Sony Corporation Inspection method and inspection apparatus
JP2014053150A (en) * 2012-09-06 2014-03-20 Sharp Corp Photoelectric conversion element and photoelectric conversion module
WO2014038570A1 (en) * 2012-09-07 2014-03-13 シャープ株式会社 Photoelectric conversion element, method for producing same, photoelectric conversion element module, and method for manufacturing photoelectric conversion element module
JP5922242B2 (en) * 2012-09-07 2016-05-24 シャープ株式会社 Photoelectric conversion element, method for manufacturing the same, photoelectric conversion element module, and method for manufacturing the same
JP2016522993A (en) * 2013-05-17 2016-08-04 エクセジャー スウェーデン エービーExeger Sweden Ab Dye-sensitized solar cell and method for manufacturing the solar cell
CN108963311A (en) * 2018-07-13 2018-12-07 宁德时代新能源科技股份有限公司 Secondary battery and pole piece thereof
CN108963311B (en) * 2018-07-13 2020-04-07 宁德时代新能源科技股份有限公司 Secondary battery and pole piece thereof

Similar Documents

Publication Publication Date Title
JP2006236960A (en) Dye-sensitized solar cell and its manufacturing method
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
KR100658263B1 (en) Tandem structured photovoltaic cell and preparation method thereof
US7939748B2 (en) Photoelectric conversion element
KR100854711B1 (en) Photo electrodes equipped blocking layer for dye-sensitized photovoltaic cell and method for preparing the same
US20100132785A1 (en) Dye-sensitized photoelectric conversion element module and a method of manufacturing the same, and photoelectric conversion element module and a method of manufacturing the same, and electronic apparatus
JP2011216190A (en) Photoelectric conversion device and its manufacturing method
JP4914660B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP4515061B2 (en) Method for producing dye-sensitized solar cell
JPWO2010119775A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2005235725A (en) Dye-sensitized solar cell module
JP2007012377A (en) Solar cell module
JP5144986B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5095226B2 (en) Dye-sensitized solar cell and method for producing the same
JP5085078B2 (en) Solar cell module and manufacturing method thereof
JP2009009936A (en) Photoelectric conversion device
JP5197965B2 (en) Photoelectric conversion element
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP2013122874A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and building
JP2013122875A (en) Photoelectric conversion element, method for manufacturing the same, counter electrode for photoelectric conversion element, electronic device, and building
JP4932196B2 (en) Electrode and photoelectric conversion element
JP2007157490A (en) Photoelectric conversion element and photoelectric conversion element module
JP2003123855A (en) Electrode for photoelectric conversion element
JP5128076B2 (en) Dye-sensitized solar cell and method for producing the same
JP4799853B2 (en) Electrode for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121017

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121207