JP2011165580A - Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element - Google Patents

Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element Download PDF

Info

Publication number
JP2011165580A
JP2011165580A JP2010029330A JP2010029330A JP2011165580A JP 2011165580 A JP2011165580 A JP 2011165580A JP 2010029330 A JP2010029330 A JP 2010029330A JP 2010029330 A JP2010029330 A JP 2010029330A JP 2011165580 A JP2011165580 A JP 2011165580A
Authority
JP
Japan
Prior art keywords
porous
layer
conductive layer
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010029330A
Other languages
Japanese (ja)
Inventor
Shogo Ito
省吾 伊藤
Kaoru Takahashi
薫 高橋
Tatsuhiko Mori
竜彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Nissha Printing Co Ltd
Original Assignee
Hyogo Prefectural Government
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government, Nissha Printing Co Ltd filed Critical Hyogo Prefectural Government
Priority to JP2010029330A priority Critical patent/JP2011165580A/en
Publication of JP2011165580A publication Critical patent/JP2011165580A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element based on a dye-sensitization phenomenon in which a monolithic structure is employed. <P>SOLUTION: The photoelectric conversion element 1 is provided with a translucent substrate 2, a first translucent conductive layer 3 partially arranged on the translucent substrate 2, a second translucent conductive layer 4 arranged on the translucent substrate 2 with a wider interval than the first translucent conductive layer 3, a porous semiconductor layer 5 arranged on the first translucent conductive layer 3, a dye 6 adsorbed on the surface of the porous semiconductor layer 5, a porous insulation layer 7 arranged to cover the porous semiconductor layer 5 and each of the translucent conductive layers 3, 4, a porous carbon conductive layer 8 arranged continuously on the porous insulation layer 7 and the second translucent conductive layer 4, a sealing member 9 contacting each of the translucent conductive layers 3, 4 and surrounding the porous insulation layer 7 and the porous carbon conductive layer 8, and a charge transport layer 10 surrounded by the sealing member 9 arranged on the micropores of the porous semiconductor layer 5, the porous insulation layer 7 and the porous carbon conductive layer 8. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高い光電変換効率が得られ、量産に適し、低コストで製造可能な光電変換素子とその光電変換素子を用いた光発電装置に関する。   The present invention relates to a photoelectric conversion element that can obtain high photoelectric conversion efficiency, is suitable for mass production, and can be manufactured at low cost, and a photovoltaic device using the photoelectric conversion element.

我々の高度な文化生活は資源によって支えられているが、長期間によって使い続けてきた資源は枯渇してきている。それだけではなく、化石燃料を燃焼させることで発生する温室効果ガスなどによる地球の環境破壊が進行している。このように人類の未来のために解決しなければならない問題が発生している。   Our advanced cultural life is supported by resources, but the resources we have been using for a long time have been depleted. Not only that, the destruction of the earth's environment due to greenhouse gases generated by burning fossil fuels is advancing. Thus, there are problems that must be solved for the future of humanity.

そこで、再生可能な自然エネルギー資源である太陽光、風力、波力、および地熱などが注目されている。これらのエネルギー資源は、化石燃料などに比べて、枯渇の心配がない、資源量が多い、環境への負荷が小さいなどの特徴がある。特に、自然エネルギーの中でも太陽光は、地球に降り注ぐ総エネルギー量が他の再生可能エネルギーに比べて数ケタ大きく、地球上のどこででも利用可能なことから注目が集まっている。しかし、従来の太陽電池発電システムは非常に高額で、政府の補助無しでは普及出来ない状態である。低価格な次世代太陽電池の開発は人類の存亡に対し急務である。   Thus, renewable natural energy resources such as sunlight, wind power, wave power, and geothermal heat have attracted attention. Compared to fossil fuels and the like, these energy resources have features such as no fear of depletion, a large amount of resources, and a small environmental load. In particular, among natural energies, sunlight attracts attention because the total amount of energy falling on the earth is several orders of magnitude larger than other renewable energies and can be used anywhere on the earth. However, conventional solar power generation systems are very expensive and cannot be used without government assistance. The development of low-cost next-generation solar cells is an urgent need for the existence of humankind.

ところで、低コストの太陽電池として色素増感太陽電池に注目があつまっている。色素増感太陽電池は、グレッツェル電池とも呼ばれ、1988 年にスイスのグレッツェル博士らが開発したもので、従来のシリコーン太陽電池に代わる次世代の太陽光発電と期待されている。色素増感太陽電池は、色素を使って太陽の光を電気に変えるといった、安価で電気への変換効率も高い新しいタイプの太陽電池である。また、製作に大掛かりな設備を必要とせず、低コストの太陽電池として期待され研究開発がなされている。   Incidentally, attention has been focused on dye-sensitized solar cells as low-cost solar cells. Dye-sensitized solar cells, also called Gretzell cells, were developed by Dr. Gretzell in Switzerland in 1988 and are expected to be the next generation of solar power generation to replace conventional silicone solar cells. The dye-sensitized solar cell is a new type of solar cell that is inexpensive and has high conversion efficiency to electricity, such as using a dye to convert sunlight into electricity. In addition, large-scale equipment is not required for production, and research and development are expected as a low-cost solar cell.

しかし、上記の色素増感太陽電池は電荷輸送剤が液体であるため、その寿命が短いのが特徴である。工業的利用のためには高耐久性が必要であるため、実用化に向けて高耐久性色素増感太陽電池の開発が急務である。   However, the dye-sensitized solar cell is characterized in that its life is short because the charge transport agent is liquid. Since high durability is necessary for industrial use, development of a highly durable dye-sensitized solar cell is urgently needed for practical use.

高効率の色素増感太陽電池は液体の電荷輸送剤が使用されているが、電荷輸送剤の揮発のために、それを使用した色素増感太陽電池の高耐久性化を妨げている。そこで、揮発する電荷輸送剤を使用しない、または電荷輸送剤が揮発しにくい構造を採用した色素増感太陽電池の開発が急務である。   A high-efficiency dye-sensitized solar cell uses a liquid charge transport agent. However, due to the volatilization of the charge transport agent, the durability of a dye-sensitized solar cell using the same is hindered. Accordingly, there is an urgent need to develop a dye-sensitized solar cell that employs a structure that does not use a volatile charge transfer agent or that does not easily evaporate.

電荷輸送剤が揮発しにくい構造の選択肢としては、多孔質電極の毛細管力を利用したモノリシック型色素増感太陽電池が考えられる。2010年1月現在ではソニー株式会社が変換効率8.2%を記録するモノリシック型色素増感太陽電池を報告している。   A monolithic dye-sensitized solar cell that utilizes the capillary force of a porous electrode can be considered as an option for a structure in which the charge transfer agent is less likely to volatilize. As of January 2010, Sony Corporation has reported a monolithic dye-sensitized solar cell with a conversion efficiency of 8.2%.

しかし、モノリシック型色素増感太陽電池の構造と簡便な作製手順は報告されていても、詳細な作製手順および多孔質層を形成するペーストの作製手順は報告されておらず、モノリシック型色素増感太陽電池の作製および多孔質層を形成するペーストの作製に関する詳細なプロセスが必要である。   However, although the structure of monolithic dye-sensitized solar cells and simple preparation procedures have been reported, detailed preparation procedures and preparation procedures for the paste that forms the porous layer have not been reported. There is a need for a detailed process relating to the fabrication of solar cells and the paste that forms the porous layer.

従って、本発明は、上記従来の問題点に鑑みて完成されたものであり、その目的は、モノリシック型構造を採用した色素増感現象による光電変換素子であって、安価かつ高耐久性のものを提供することである。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and its object is a photoelectric conversion element based on a dye sensitization phenomenon employing a monolithic structure, which is inexpensive and highly durable. Is to provide.

本発明の光電変換素子は、透光性基板と、前記透光性基板の主面上に部分的に配置された第1の透光性導電層と、前記透光性基板の主面上に前記第1の透光性導電層より間隔をあけて設けられた第2の透光性導電層と、前記第1の透光性導電層上に設けられた多孔質半導体層と、前記多孔質半導体層の表面に単分子層として吸着された色素と、前記多孔質半導体層と前記第1の透光性導電層と前記第2の透光性導電層間を覆うように設けられた多孔質絶縁層と、前記多孔質絶縁層および前記第2の透光性導電層上に連続して設けられた多孔質性を有するカーボン導電層と、前記第1の透光性導電層と前記第2の透光性導電層の主面と接触し、前記多孔質絶縁層と前記カーボン導電層を囲う様に設けられた封止部材と、前記多孔質半導体層と前記多孔質絶縁層および前記カーボン導電層の微細孔に設けられた前記封止部材内に囲まれた電荷輸送層とで形成されている。   The photoelectric conversion element of the present invention includes a translucent substrate, a first translucent conductive layer partially disposed on the main surface of the translucent substrate, and a main surface of the translucent substrate. A second light-transmitting conductive layer provided at a distance from the first light-transmitting conductive layer, a porous semiconductor layer provided on the first light-transmitting conductive layer, and the porous Dye adsorbed as a monomolecular layer on the surface of the semiconductor layer, and porous insulation provided so as to cover the porous semiconductor layer, the first light-transmitting conductive layer, and the second light-transmitting conductive layer A porous carbon conductive layer continuously provided on the porous insulating layer and the second translucent conductive layer, the first translucent conductive layer, and the second translucent conductive layer. A sealing member provided in contact with the main surface of the translucent conductive layer and surrounding the porous insulating layer and the carbon conductive layer; and the porous semiconductor layer and the front It is formed in the porous insulating layer and the enclosed within the sealing member provided in the micropores of the carbon conductive layer charge transport layer.

本発明の光電変換素子は、前記カーボン導電層は、アモルファスカーボンとグラファイトカーボン(質量比 2:3)およびTiOを高分子および溶媒に分散させたペーストを、前記多孔質絶縁層上に印刷し、焼結させることで形成されるが好ましい。 In the photoelectric conversion element of the present invention, the carbon conductive layer is obtained by printing a paste in which amorphous carbon, graphite carbon (mass ratio 2: 3) and TiO 2 are dispersed in a polymer and a solvent on the porous insulating layer. It is preferably formed by sintering.

本発明の光電変換素子は、前記多孔質絶縁層は、ZrO、Alなどの絶縁性粒子を高分子および溶媒に分散させたペーストを、前記多孔質半導体層上に印刷し、焼結させることで形成されるが好ましい。 In the photoelectric conversion element of the present invention, the porous insulating layer is formed by printing a paste in which insulating particles such as ZrO 2 and Al 2 O 3 are dispersed in a polymer and a solvent on the porous semiconductor layer, and baking it. It is preferably formed by bonding.

本発明の光電変換素子は、前記カーボン導電層を形成する前に、前記多孔質絶縁層の仮焼結を500℃で行うことが好ましい。   In the photoelectric conversion element of the present invention, the porous insulating layer is preferably pre-sintered at 500 ° C. before forming the carbon conductive layer.

本発明の光電変換素子は、前記多孔質半導体層が、TiO、WO、ZnO、Nb、Ta、またはSrTiOのうち少なくとも1つから成ることが好ましい。 In the photoelectric conversion element of the present invention, it is preferable that the porous semiconductor layer is made of at least one of TiO 2 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , or SrTiO 3 .

本発明の光電変換素子は、前記透光性導電層が、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物のうち少なくとも1つから成ることが好ましい。   In the photoelectric conversion element of the present invention, the translucent conductive layer is at least one of fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide. Preferably it consists of.

本発明の光電変換素子は、前記電荷輸送層が、沃化物、コバルト錯体、鉄錯体、CuI、CuSCN、または有機ホール輸送材のうち少なくとも1つから成ることが好ましい。   In the photoelectric conversion element of the present invention, it is preferable that the charge transport layer is made of at least one of iodide, cobalt complex, iron complex, CuI, CuSCN, or organic hole transport material.

本発明の光電変換素子は、前記色素が、Ru錯体色素などの金属錯体色素、ポルフィリン色素、インドリン色素などの有機色素のうち少なくとも1つから成ることが好ましい。   In the photoelectric conversion element of the present invention, the dye preferably comprises at least one of a metal complex dye such as a Ru complex dye, and an organic dye such as a porphyrin dye and an indoline dye.

本発明の光電変換素子は、請求項1〜8のいずれか1項に記載の光電変換素子を発電手段として用い、前記発電手段の発電電力を負荷へ供給するように成すことが好ましい。   It is preferable that the photoelectric conversion element of the present invention uses the photoelectric conversion element according to any one of claims 1 to 8 as a power generation unit, and supplies the generated power of the power generation unit to a load.

本発明の光電変換素子は、透光性基板と、前記透光性基板の主面上に部分的に配置された第1の透光性導電層と、前記透光性基板の主面上に前記第1の透光性導電層より間隔をあけて設けられた第2の透光性導電層と、前記第1の透光性導電層上に設けられた多孔質半導体層と、前記多孔質半導体層の表面に単分子層として吸着された色素と、前記多孔質半導体層と前記第1の透光性導電層と前記第2の透光性導電層間を覆うように設けられた多孔質絶縁層と、前記多孔質絶縁層および前記第2の透光性導電層上に連続して設けられた多孔質性を有するカーボン導電層と、前記第1の透光性導電層と前記第2の透光性導電層の主面と接触し、前記多孔質絶縁層と前記カーボン導電層を囲う様に設けられた封止部材と、前記多孔質半導体層と前記多孔質絶縁層および前記カーボン導電層の微細孔に設けられた前記封止部材内に囲まれた電荷輸送層とで形成されていることから、前記色素が吸収した光エネルギーを効率良く変換することができる。しかも、透光性導電層上に熱分解によってPtを施したものに代えて、多孔質カーボン導電層を設けたので、Ptに比べ得て安価であり、またPtのように溶けることなく耐久性がより優れたものとなる。   The photoelectric conversion element of the present invention includes a translucent substrate, a first translucent conductive layer partially disposed on the main surface of the translucent substrate, and a main surface of the translucent substrate. A second light-transmitting conductive layer provided at a distance from the first light-transmitting conductive layer, a porous semiconductor layer provided on the first light-transmitting conductive layer, and the porous Dye adsorbed as a monomolecular layer on the surface of the semiconductor layer, and porous insulation provided so as to cover the porous semiconductor layer, the first light-transmitting conductive layer, and the second light-transmitting conductive layer A porous carbon conductive layer continuously provided on the porous insulating layer and the second translucent conductive layer, the first translucent conductive layer, and the second translucent conductive layer. A sealing member provided in contact with the main surface of the translucent conductive layer and surrounding the porous insulating layer and the carbon conductive layer; and the porous semiconductor layer and the front Since it is formed of a porous insulating layer and a charge transport layer surrounded by the sealing member provided in the micropores of the carbon conductive layer, the light energy absorbed by the dye can be efficiently converted. Can do. In addition, since a porous carbon conductive layer is provided in place of the one obtained by thermally decomposing Pt on the translucent conductive layer, it is less expensive than Pt and is durable without melting like Pt. Will be better.

また、本発明の光電変換素子は、前記カーボン導電層は、アモルファスカーボンとグラファイトカーボン(質量比 2:3)およびTiOを高分子および溶媒に分散させたペーストを、前記多孔質絶縁層上に印刷し焼結させることで多孔質カーボン電極となる。 Further, in the photoelectric conversion element of the present invention, the carbon conductive layer includes a paste in which amorphous carbon, graphite carbon (mass ratio 2: 3), and TiO 2 are dispersed in a polymer and a solvent on the porous insulating layer. A porous carbon electrode is obtained by printing and sintering.

また、本発明の光電変換素子は、前記多孔質絶縁層は、ZrO、Alなどの絶縁性粒子を高分子および溶媒に分散させたペーストを、前記多孔質半導体層上に印刷し焼結させることで形成し、前記多孔質半導体層と前記カーボン導電層との接触を防ぐスペーサーとなる。 In the photoelectric conversion element of the present invention, the porous insulating layer is obtained by printing a paste in which insulating particles such as ZrO 2 and Al 2 O 3 are dispersed in a polymer and a solvent on the porous semiconductor layer. The spacer is formed by sintering and serves as a spacer for preventing contact between the porous semiconductor layer and the carbon conductive layer.

また、本発明の光電変換素子は、前記カーボン導電層を形成する前に、前記多孔質絶縁層の仮焼結を500℃で行うことで高分子が凝縮し、前記カーボン導電層を印刷して乾燥させたときに、前記多孔質絶縁層の凝縮が起こらないため、ひび割れ、剥離が発生しない。   In addition, the photoelectric conversion element of the present invention prints the carbon conductive layer by preliminarily sintering the porous insulating layer at 500 ° C. before the carbon conductive layer is formed. When dried, the porous insulating layer does not condense and therefore does not crack or peel off.

また、本発明の光電変換素子は、TiO、WO、ZnO、Nb、TaまたはSrTiOのうち少なくとも1つから成る層を多孔質層として構成することにより、色素が前記多孔質半導体層表面に効率的に吸着担持し、かつ色素から効率良く電子を受け取る電極となる。 Moreover, the photoelectric conversion element of the present invention comprises a layer composed of at least one of TiO 2 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 or SrTiO 3 as a porous layer, whereby It becomes an electrode that efficiently adsorbs and supports the surface of the porous semiconductor layer and efficiently receives electrons from the dye.

また、本発明の光電変換素子は、透光性導電層をフッ素ドープ錫酸化物、インジウムドープ錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物またはニオブドープチタン酸化物のうち少なくとも1つから構成することにより、光を色素に導入するための窓層となり、色素から得られた電力を効率的に取り出すことができる。   In the photoelectric conversion device of the present invention, the light-transmitting conductive layer is at least one of fluorine-doped tin oxide, indium-doped tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide. By being constituted, it becomes a window layer for introducing light into the dye, and the electric power obtained from the dye can be efficiently taken out.

また、本発明の光電変換素子は、前記電荷輸送層を、沃化物、コバルト錯体、鉄錯体、CuI、CuSCN、または有機ホール輸送材のうち少なくとも1つから構成することで、励起電子が前記多孔質半導体層に移動し酸化した色素に前記電荷輸送層が効率良く電子を供給することができる。   In the photoelectric conversion element of the present invention, the charge transport layer is composed of at least one of iodide, a cobalt complex, an iron complex, CuI, CuSCN, or an organic hole transport material, so that excited electrons are contained in the porous layer. The charge transport layer can efficiently supply electrons to the dye that has moved to the oxidized semiconductor layer and oxidized.

また、本発明の光電変換素子は、前記色素が、Ru錯体色素などの金属錯体色素、ポルフィリン色素、インドリン色素などの有機色素のうち少なくとも1つを使用することで、前記透光性基板および前記透光性導電層から入射してくる光を効率よく電子に変換することができる。   In the photoelectric conversion element of the present invention, the dye is a metal complex dye such as a Ru complex dye, or an organic dye such as a porphyrin dye or an indoline dye. Light incident from the translucent conductive layer can be efficiently converted into electrons.

また、本発明の光発電装置は、上記本発明の光電変換素子を発電手段として用い、発電手段の発電電力を負荷へ供給するようにしたことから、光電変換特性が向上したものとなる。   In addition, the photovoltaic device of the present invention uses the photoelectric conversion element of the present invention as a power generation means and supplies the generated power of the power generation means to a load, so that the photoelectric conversion characteristics are improved.

本発明の光電変換素子について実施の形態の一例を示す断面図Sectional drawing which shows an example of embodiment about the photoelectric conversion element of this invention 多孔質カーボン導電層とPt加工フッ素ドープ酸化錫ガラス基板を使用したモノリシック型色素増感太陽電池の光電特性Photoelectric characteristics of monolithic dye-sensitized solar cells using porous carbon conductive layer and Pt-processed fluorine-doped tin oxide glass substrate

以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1に示すように、1は光電変換素子、2は透光性基板、3はITO(インジウムドープ錫酸化物)層もしくはFTO(フッ素ドープ錫酸化物)等から成る第1の透光性導電層、4はITO(インジウムドープ錫酸化物)層もしくはFTO(フッ素ドープ錫酸化物)等から成る第2の透光性導電層、5は多孔質半導体電極、6は色素、7は多孔質絶縁体から成るスペーサー、8は多孔質カーボン電極、9は封止部材、10は電荷輸送層である。   As shown in FIG. 1, 1 is a photoelectric conversion element, 2 is a translucent substrate, 3 is a first translucent conductive layer made of an ITO (indium doped tin oxide) layer, FTO (fluorine doped tin oxide) or the like. 4 is a second light-transmitting conductive layer made of ITO (indium-doped tin oxide) or FTO (fluorine-doped tin oxide), 5 is a porous semiconductor electrode, 6 is a dye, and 7 is porous insulation. A body spacer, 8 is a porous carbon electrode, 9 is a sealing member, and 10 is a charge transport layer.

光電変換素子1は、色素6から多孔質半導体層および透光性導電層3を通じ外部回路に向かって電子が移動し、外部回路から移動してきた電子が多孔質カーボン導電層8および電荷輸送層10を通じて酸化状態の色素に供給されることで発電する。   In the photoelectric conversion element 1, electrons move from the dye 6 to the external circuit through the porous semiconductor layer and the translucent conductive layer 3, and the electrons moved from the external circuit are in the porous carbon conductive layer 8 and the charge transport layer 10. Power is generated by being supplied to the oxidized pigment through

透光性基板2は、透明なガラス板やプラスチック板等から成り、厚みは0.1〜5mm程度である。   The translucent board | substrate 2 consists of a transparent glass plate, a plastic board, etc., and thickness is about 0.1-5 mm.

透光性導電層3(4)は、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物のうち少なくとも1つから成り、厚みは0.3〜2μm程度が好ましい。0.3μm未満では、シート抵抗が高くなり、光電変換素子1の直列抵抗が高くなるため、フィルファクター特性が悪くなる傾向がある。透光性導電層3(4)は、CVD法、スパッタリング法、スプレー法等によって形成される。   The translucent conductive layer 3 (4) is made of at least one of fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide, and has a thickness of About 0.3-2 micrometers is preferable. When the thickness is less than 0.3 μm, the sheet resistance increases and the series resistance of the photoelectric conversion element 1 increases, so that the fill factor characteristic tends to deteriorate. The translucent conductive layer 3 (4) is formed by a CVD method, a sputtering method, a spray method, or the like.

多孔質半導体層5は、透光性導電層3の上に形成され、色素6で増感されている。   The porous semiconductor layer 5 is formed on the translucent conductive layer 3 and sensitized with the dye 6.

多孔質半導体層5の材料や組成としては、酸化チタン(TiO2)が最適であり、他の材料としては、チタン(Ti),亜鉛(Zn),錫(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V),タングステン(W)等の金属元素の少なくとも1種以上の金属酸化物半導体がよく、例えば、TiO、WO、ZnO、Nb、Ta、またはSrTiOのうち少なくとも1つから成る。また窒素(N),炭素(C),フッ素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有していてもよい。酸化チタン等はいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。また、多孔質半導体層5の材料は、電子エネルギー準位においてその伝導帯が色素6の伝導帯よりも低いn型半導体がよい。 The material and composition of the porous semiconductor layer 5 is optimally titanium oxide (TiO 2 ), and other materials are titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), indium. (In), Yttrium (Y), Lanthanum (La), Zirconium (Zr), Tantalum (Ta), Hafnium (Hf), Strontium (Sr), Barium (Ba), Calcium (Ca), Vanadium (V), Tungsten A metal oxide semiconductor of at least one metal element such as (W) is preferable, and is composed of at least one of TiO 2 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , or SrTiO 3 , for example. . Moreover, you may contain 1 or more types of nonmetallic elements, such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), phosphorus (P). Titanium oxide or the like is preferable because it has an electron energy band gap in the range of 2 to 5 eV, which is larger than the energy of visible light. The material of the porous semiconductor layer 5 is preferably an n-type semiconductor whose conduction band is lower than that of the dye 6 in the electron energy level.

多孔質半導体層5としては、上記材料からなるとともに内部に微細な空孔(空孔径が好ましくは10〜40nm程度のものであり、22nmのときに光電変換効率がピークを示す)を多数有する多孔質のn型酸化物半導体層等であるのがよい。多孔質半導体層5の空孔径が10nm未満の場合、色素6の浸透吸着が阻害され、十分な色素6の吸着量が得られにくく、また、電解質の拡散が妨げられるために拡散抵抗が増大することから、光電変換効率が低下する傾向がある。40nmを超えると、多孔質半導体層5の比表面積が減少するため色素6の吸着量が減少し、さらに、光が透過しにくくなり色素6が光を吸収できなくなる。また、多孔質半導体層5に注入された電荷の移動距離が長くなるため電荷の再結合によるロスが大きくなること、さらに、電解質の拡散距離も増大するため拡散抵抗が増大することから、やはり光電変換効率が低下する傾向がある。   The porous semiconductor layer 5 is made of the above-mentioned material and has a large number of fine pores (having a pore diameter of preferably about 10 to 40 nm, and a peak of photoelectric conversion efficiency at 22 nm). A good n-type oxide semiconductor layer or the like is preferable. When the pore diameter of the porous semiconductor layer 5 is less than 10 nm, the osmotic adsorption of the dye 6 is hindered, it is difficult to obtain a sufficient amount of the dye 6 adsorbed, and the diffusion resistance increases because the diffusion of the electrolyte is hindered. For this reason, the photoelectric conversion efficiency tends to decrease. If it exceeds 40 nm, the specific surface area of the porous semiconductor layer 5 is reduced, so that the amount of adsorption of the dye 6 is reduced. Further, the light is hardly transmitted and the dye 6 cannot absorb the light. In addition, since the movement distance of the charge injected into the porous semiconductor layer 5 becomes longer, the loss due to the recombination of charges becomes larger, and further, the diffusion distance of the electrolyte also increases so that the diffusion resistance increases. Conversion efficiency tends to decrease.

多孔質半導体層5は、粒状体、または針状体,チューブ状体,柱状体等の線状体またはこれら種々の線状体が集合してなるものであって、多孔質体であることにより、色素6を吸着する表面積が増え、光電変換効率を高めることができる。多孔質半導体層5は、空孔率が20〜80%、より好適には40〜60%である多孔質体であるのがよい。多孔質化により、緻密体である場合と比較して、光作用極層としての表面積を1000倍以上に高めることができ、光吸収と光電変換と電子伝導を効率よく行うことができる。   The porous semiconductor layer 5 is a granular body, or a linear body such as a needle-shaped body, a tubular body, a columnar body, or a collection of these various linear bodies, and is a porous body. The surface area for adsorbing the dye 6 is increased, and the photoelectric conversion efficiency can be increased. The porous semiconductor layer 5 may be a porous body having a porosity of 20 to 80%, more preferably 40 to 60%. By making porous, the surface area as the light working electrode layer can be increased by 1000 times or more compared to the case of a dense body, and light absorption, photoelectric conversion, and electron conduction can be performed efficiently.

なお、多孔質半導体層5の空孔率は、ガス吸着測定装置を用いて窒素ガス吸着法によって試料の等温吸着曲線を求め、BJH(Barrett-Joyner-Halenda)法,CI(Chemical Ionization)法,DH(Dollimore-Heal)法等によって空孔容積を求め、これと試料の粒子密度から得ることができる。   The porosity of the porous semiconductor layer 5 is determined by obtaining an isothermal adsorption curve of the sample by a nitrogen gas adsorption method using a gas adsorption measuring device, and using a BJH (Barrett-Joyner-Halenda) method, a CI (Chemical Ionization) method, The pore volume can be obtained by the DH (Dollimore-Heal) method or the like and obtained from the particle density of the sample.

多孔質半導体層5の形状は、その表面積が大きくなりかつ電気抵抗が小さい方がよく、例えば微細粒子もしくは微細線状体からなるのがよい。その平均粒径もしくは平均線径は5〜500nmであるのがよく、より好適には10〜200nmがよい。ここで、平均粒径もしくは平均線径の5〜500nmにおける下限値は、これ未満になると材料の微細化ができず、上限値は、これを超えると接合面積が小さくなり、光電流が著しく小さくなることによる。   The shape of the porous semiconductor layer 5 is preferably that the surface area is large and the electric resistance is small. For example, the porous semiconductor layer 5 is preferably composed of fine particles or fine linear bodies. The average particle diameter or average wire diameter is preferably 5 to 500 nm, and more preferably 10 to 200 nm. Here, if the lower limit of the average particle diameter or the average wire diameter of 5 to 500 nm is less than this, the material cannot be miniaturized, and if the upper limit exceeds this, the junction area becomes smaller and the photocurrent is remarkably reduced. By becoming.

多孔質半導体層5を微粒子の多孔質体とすることにより、微細孔に色素6を担持し表面が凹凸状となり光閉じ込め効果をもたらすため、光電変換効率をより高めることができる。   By forming the porous semiconductor layer 5 as a porous body of fine particles, the dye 6 is supported in the micropores, the surface becomes uneven, and a light confinement effect is brought about, so that the photoelectric conversion efficiency can be further increased.

また、多孔質半導体層5の厚みは1〜15μmがよい。ここで、1〜15μmにおける下限値はこれより厚みが小さくなると光電変換作用が著しく小さくなって実用に適さず、上限値はこれを超えて厚みが厚くなると、多孔質半導体層5と多孔質カーボン導電層8の絶縁が困難になる。   The thickness of the porous semiconductor layer 5 is preferably 1 to 15 μm. Here, the lower limit value at 1 to 15 μm is not suitable for practical use because the photoelectric conversion action is remarkably reduced when the thickness is smaller than this, and the upper limit value is larger than this and the thickness becomes thicker. Insulation of the conductive layer 8 becomes difficult.

多孔質半導体層5は、前記酸化物半導体を高分子および溶剤に分散させたペーストを印刷し、焼結させることにより形成する。例えば、多孔質半導体層5が酸化チタンからなる場合、以下のようにして形成される。まず、TiO2のアナターゼ粉末に酢酸を添加した後、脱イオン水とエタノールともに混練し、溶媒と高分子で安定化させた酸化チタンのペーストを調製する。調製したペーストをドクターブレード法やバーコート法等によって、透光性導電層3上に一定速度で塗布し、大気中で400〜600℃で、10〜60分、好適には20〜40分加熱処理することにより、多孔質半導体層5を形成する。この手法は簡便であり、好ましい。 The porous semiconductor layer 5 is formed by printing and sintering a paste in which the oxide semiconductor is dispersed in a polymer and a solvent. For example, when the porous semiconductor layer 5 is made of titanium oxide, it is formed as follows. First, acetic acid is added to a TiO 2 anatase powder, and then kneaded with deionized water and ethanol to prepare a titanium oxide paste stabilized with a solvent and a polymer. The prepared paste is applied on the translucent conductive layer 3 at a constant speed by a doctor blade method or a bar coating method, and heated in the atmosphere at 400 to 600 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes. By processing, the porous semiconductor layer 5 is formed. This method is simple and preferable.

また、必要により多孔質半導体層5に対して低温成長法にて後工程を行なってもよい。当該低温成長法としては、電析法、泳動電着法、水熱合成法等が好ましく、電子輸送特性を高めるための後処理としては、マイクロ波処理、CVD法によるプラズマ処理や熱触媒処理等、UV照射処理等がよい。低温成長法による多孔質半導体層5としては、電析法による多孔質ZnO層、泳動電着法による多孔質TiO2層等からなるものがよい。 Further, if necessary, a post-process may be performed on the porous semiconductor layer 5 by a low temperature growth method. As the low temperature growth method, an electrodeposition method, an electrophoretic electrodeposition method, a hydrothermal synthesis method and the like are preferable. As a post-treatment for improving electron transport properties, a microwave treatment, a plasma treatment by a CVD method, a thermal catalyst treatment, etc. UV irradiation treatment is preferable. The porous semiconductor layer 5 formed by the low temperature growth method is preferably composed of a porous ZnO layer formed by the electrodeposition method, a porous TiO 2 layer formed by the electrophoretic electrodeposition method, and the like.

多孔質半導体層5と透光性導電層3の間に、n型酸化物半導体から成る極薄(厚み200nm程度)の緻密層を挿入するとよく、逆電流が抑制できるので光電変換効率が高まる。   An ultrathin (thickness: about 200 nm) dense layer made of an n-type oxide semiconductor may be inserted between the porous semiconductor layer 5 and the translucent conductive layer 3, and the reverse current can be suppressed, so that the photoelectric conversion efficiency is increased.

多孔質半導体層5は、酸化物半導体微粒子の焼結体から成るとともに、酸化物半導体微粒子の平均粒径が透光性基板3側より厚み方向に漸次大きくなっていることが好ましく、例えば多孔質半導体層5が酸化物半導体微粒子の平均粒径が異なる2層の積層体からなるものとするのがよい。具体的には、透光性導電層3上に平均粒径が小さい酸化物半導体微粒子を用い、その形成した半導体層の上に平均粒径が大きい酸化物半導体微粒子(散乱粒子)を用いることで、平均粒径が大きい多孔質半導体層5によって光散乱と光反射による光閉じ込め効果が生じ、光電変換効率を高めることができる。   The porous semiconductor layer 5 is preferably composed of a sintered body of oxide semiconductor fine particles, and the average particle diameter of the oxide semiconductor fine particles is preferably gradually increased in the thickness direction from the translucent substrate 3 side. The semiconductor layer 5 is preferably composed of a two-layer laminate in which the average particle diameters of the oxide semiconductor particles are different. Specifically, oxide semiconductor fine particles having a small average particle diameter are used on the translucent conductive layer 3, and oxide semiconductor fine particles (scattering particles) having a large average particle diameter are used on the formed semiconductor layer. The porous semiconductor layer 5 having a large average particle diameter produces a light confinement effect due to light scattering and light reflection, and can increase the photoelectric conversion efficiency.

より具体的には、平均粒径が小さい酸化物半導体微粒子として、平均粒径が約20nmのものを100wt%(重量%)使用し、平均粒径が大きい酸化物半導体微粒子として、平均粒径が約10nmのものを10wt%及び平均粒径が約400nmのものを90wt%混合して使用すればよい。これらの重量比、平均粒径、それぞれの膜厚を変えることによって、最適な光閉じ込め効果が得られる。また、積層数を2層から3層以上の複数層に増やしたり、これらの境界が生じないように塗布形成したりすることにより、平均粒径を透光性導電層3側から厚み方向に漸次大きくなるように形成することができる。   More specifically, as oxide semiconductor fine particles having a small average particle diameter, 100 wt% (wt%) having an average particle diameter of about 20 nm is used, and as the oxide semiconductor fine particles having a large average particle diameter, the average particle diameter is What is necessary is just to use 10 wt% of about 10 nm, and 90 wt% of those having an average particle diameter of about 400 nm. By changing the weight ratio, the average particle diameter, and the respective film thicknesses, an optimum light confinement effect can be obtained. Further, by increasing the number of laminated layers from two layers to three or more layers, or by coating and forming such that these boundaries do not occur, the average particle diameter is gradually increased from the translucent conductive layer 3 side in the thickness direction. It can be formed to be large.

多孔質半導体層5に色素6を吸着させる方法としては、例えば透光性基板3上に形成された多孔質半導体層5を、色素6を溶解した溶液に浸漬する方法が挙げられる。   Examples of the method for adsorbing the dye 6 to the porous semiconductor layer 5 include a method of immersing the porous semiconductor layer 5 formed on the translucent substrate 3 in a solution in which the dye 6 is dissolved.

多孔質半導体層5に色素6を吸着させる際の色素6を溶解させる溶液の溶媒としては、水、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。溶液中の色素6の濃度は5×10-5〜2×10-3mol/l(l(リットル):1000cm3)程度が好ましい。 Solvents for dissolving the dye 6 when adsorbing the dye 6 on the porous semiconductor layer 5 include water, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, and nitrogen compounds such as acetonitrile. Or a mixture of two or more thereof. The concentration of the dye 6 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l (liter): 1000 cm 3 ).

多孔質半導体層5に色素6を吸着させる際、溶液および雰囲気の温度の条件は特に限定するものではなく、例えば、大気圧下もしくは真空中、室温もしくは加熱の条件が挙げられる。色素6の吸着にかける時間は色素6および溶液の種類、溶液の濃度、色素6の溶液の循環量等により適宜調整することができる。これにより、色素6を多孔質半導体層5に吸着させることができる。   When adsorbing the dye 6 to the porous semiconductor layer 5, the conditions of the temperature of the solution and the atmosphere are not particularly limited, and examples thereof include atmospheric pressure or vacuum, room temperature, or heating conditions. The time required for adsorption of the dye 6 can be appropriately adjusted depending on the kind of the dye 6 and the solution, the concentration of the solution, the circulation amount of the solution of the dye 6 and the like. Thereby, the pigment | dye 6 can be made to adsorb | suck to the porous semiconductor layer 5. FIG.

多孔質絶縁層7に用いる材料は、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)などの粒子がある。 Materials used for the porous insulating layer 7 include particles such as zirconium oxide (ZrO 2 ) and aluminum oxide (Al 2 O 3 ).

多孔質絶縁層7に用いる酸化絶縁物の粒子の大きさは40〜100nm程度が好ましい。40nmより小さいと、形成される微細孔が小さくなるため電荷輸送剤が浸透しにくくなる。100nmより大きいと、形成される微細孔が大きくなるためカーボン粒子が微細孔を通じ短絡してしまう可能性がある。   The size of the oxide insulator particles used for the porous insulating layer 7 is preferably about 40 to 100 nm. If the thickness is smaller than 40 nm, the formed micropores are small, so that the charge transfer agent does not easily penetrate. If it is larger than 100 nm, the formed fine pores become large, so that the carbon particles may be short-circuited through the fine pores.

多孔質カーボン導電層8は、アモルファスカーボン、グラファイトカーボン、およびTiOを高分子および溶媒に分散させたペーストを、多孔質絶縁層7上に印刷し、焼結させることによって形成する。 The porous carbon conductive layer 8 is formed by printing on a porous insulating layer 7 and sintering a paste in which amorphous carbon, graphite carbon, and TiO 2 are dispersed in a polymer and a solvent.

多孔質絶縁層7と多孔質カーボン導電層8は、例えば、以下のようにして形成される。まず、多孔質絶縁層7にZrOを使用した場合、ZrOのナノ粒子に酢酸を添加した後、脱イオン水とエタノールともに混練し、溶媒と高分子で安定化させたZrOのペーストを調製する。調製したペーストをドクターブレード法やバーコート法等によって、多孔質半導体層5上に一定速度で塗布し、大気中で100〜140℃で、3〜6分、加熱処理することにより、絶縁層を形成する。次に、アモルファスカーボン粒子とグラファイトカーボン粒子を混合したカーボン粒子およびTiOを、脱イオン水とエタノールとともに混練し、溶媒と高分子で安定化させたカーボンのペーストを調製する。形成した絶縁層の上に、調製したカーボンのペーストをドクターブレード法やバーコート法等によって一定速度で塗布し、大気中で100〜140℃で、3〜6分、加熱処理することにより、カーボン導電層を形成する。形成した電極を大気中で150〜650℃で、2〜60分、加熱処理をすることにより、多孔質絶縁層7と多孔質カーボン導電層8を得る。 The porous insulating layer 7 and the porous carbon conductive layer 8 are formed as follows, for example. First, when ZrO 2 is used for the porous insulating layer 7, after adding acetic acid to the ZrO 2 nanoparticles, a paste of ZrO 2 stabilized by a solvent and a polymer is kneaded with deionized water and ethanol. Prepare. The prepared paste is applied onto the porous semiconductor layer 5 at a constant speed by a doctor blade method, a bar coating method, or the like, and is heat-treated at 100 to 140 ° C. for 3 to 6 minutes in the air to thereby form an insulating layer. Form. Next, carbon particles mixed with amorphous carbon particles and graphite carbon particles and TiO 2 are kneaded with deionized water and ethanol to prepare a carbon paste stabilized with a solvent and a polymer. On the formed insulating layer, the prepared carbon paste is applied at a constant speed by a doctor blade method, a bar coating method, or the like, and is heated at 100 to 140 ° C. for 3 to 6 minutes in the atmosphere, so that carbon is obtained. A conductive layer is formed. The formed electrode is heat-treated at 150 to 650 ° C. for 2 to 60 minutes in the atmosphere to obtain the porous insulating layer 7 and the porous carbon conductive layer 8.

多孔質絶縁層7は、厚さ30〜40μmで形成するのが好ましい。厚さが30μmより小さいと、多孔質カーボン導電層8のカーボン粒子が多孔質絶縁層7の微細孔内に入り短絡を引き起こす確率が高くなる。厚さが40μmより大きいと多孔質半導体層5と多孔質カーボン導電層8との距離が大きくなり、電荷輸送層の抵抗が大きくなるため光電特性が低下する。   The porous insulating layer 7 is preferably formed with a thickness of 30 to 40 μm. When the thickness is smaller than 30 μm, the probability that the carbon particles of the porous carbon conductive layer 8 enter the micropores of the porous insulating layer 7 and cause a short circuit increases. When the thickness is larger than 40 μm, the distance between the porous semiconductor layer 5 and the porous carbon conductive layer 8 is increased, and the resistance of the charge transport layer is increased, so that the photoelectric characteristics are deteriorated.

多孔質絶縁層7と多孔質カーボン導電層8を形成する場合、調製したペーストから絶縁層を形成した後、大気中で150〜650℃で、2〜60分、加熱処理することにより絶縁層中の高分子を先に収縮させ、カーボン導電層を形成した際にカーボン導電層のひび割れ・剥離を抑えることができる。   When forming the porous insulating layer 7 and the porous carbon conductive layer 8, after forming the insulating layer from the prepared paste, the insulating layer is heated in the atmosphere at 150 to 650 ° C. for 2 to 60 minutes. When the carbon conductive layer is first contracted to form the carbon conductive layer, cracking and peeling of the carbon conductive layer can be suppressed.

多孔質カーボン導電層8に用いるアモルファスカーボンとグラファイトカーボンは、質量比2:3程度の時、多孔質カーボン導電層8を形成した際に最も低抵抗となる。   Amorphous carbon and graphite carbon used for the porous carbon conductive layer 8 have the lowest resistance when the porous carbon conductive layer 8 is formed when the mass ratio is about 2: 3.

多孔質カーボン導電層8の厚さは、抵抗値を限りになく小さくするために50〜200μmにしたほうが好ましい。50μmより小さいと、多孔質カーボン導電層8の抵抗が高くなるため、光電特性が減少する。200μmより大きいと、多孔質カーボン導電層8を形成した際にひび割れ・剥離が発生しやすくなる。   The thickness of the porous carbon conductive layer 8 is preferably 50 to 200 μm in order to make the resistance value as small as possible. If it is smaller than 50 μm, the resistance of the porous carbon conductive layer 8 becomes high, and the photoelectric characteristics are reduced. If it is larger than 200 μm, cracks and peeling are likely to occur when the porous carbon conductive layer 8 is formed.

封止部材9は、厚み(高さ)が100〜1000μm程度であることが好ましい。100μm未満では、多孔質半導体層5、多孔質絶縁層7、多孔質カーボン導電層8の厚みよりも薄くなってしまうため、電荷輸送層10を封止することが難しくなる。1000μmを超えると、電荷輸送層10が厚くなりすぎて内部抵抗が増加することにより、光電変換素子1の光電変換効率が低下する傾向があるからである。   The sealing member 9 preferably has a thickness (height) of about 100 to 1000 μm. If it is less than 100 μm, it becomes thinner than the thickness of the porous semiconductor layer 5, the porous insulating layer 7, and the porous carbon conductive layer 8, so that it is difficult to seal the charge transport layer 10. If the thickness exceeds 1000 μm, the charge transport layer 10 becomes too thick and the internal resistance increases, so that the photoelectric conversion efficiency of the photoelectric conversion element 1 tends to decrease.

封止部材9は、ポリエチレン,ポリプロピレン,エポキシ樹脂,フッ素樹脂またはシリコーン樹脂等の樹脂接着剤、もしくはガラスフリット,セラミックス等の無機接着剤からなる。   The sealing member 9 is made of a resin adhesive such as polyethylene, polypropylene, epoxy resin, fluororesin or silicone resin, or an inorganic adhesive such as glass frit or ceramics.

封止部材9によって電荷輸送層10を封止することから、光電変換素子1の光照射および高温加熱に対する耐久性及び信頼性を有効に保持できる。即ち、電荷輸送層10が光照射および高温加熱によって光電変換素子から漏出するのを有効に抑えることができる。   Since the charge transport layer 10 is sealed by the sealing member 9, the durability and reliability of the photoelectric conversion element 1 against light irradiation and high-temperature heating can be effectively maintained. That is, leakage of the charge transport layer 10 from the photoelectric conversion element due to light irradiation and high-temperature heating can be effectively suppressed.

また、電荷輸送層10は液状電解質もしくはゲル状電解質であることがよい。電荷の輸送特性に優れる液状電解質もしくはゲル状電解質を用いることによって、光電変換効率が向上する。また、電荷輸送層10は、ポリマー電解質等の固体電解質、ポリチオフェン・ポリピロール,ポリフェニレンビニレン等の導電性ポリマー、またはフラーレン誘導体,ペンタセン誘導体,ペリレン誘導体,トリフェニルジアミン誘導体等の有機分子電子輸送剤から成るものであってもよい。   The charge transport layer 10 is preferably a liquid electrolyte or a gel electrolyte. Photoelectric conversion efficiency is improved by using a liquid electrolyte or a gel electrolyte excellent in charge transport characteristics. The charge transport layer 10 is made of a solid electrolyte such as a polymer electrolyte, a conductive polymer such as polythiophene / polypyrrole or polyphenylene vinylene, or an organic molecular electron transport agent such as a fullerene derivative, a pentacene derivative, a perylene derivative, or a triphenyldiamine derivative. It may be a thing.

また、電荷輸送層10は、ヨウ素/ヨウ化物塩,臭素/臭化物塩,コバルト錯体およびフェロシアン化カリウム等を含む。   The charge transport layer 10 includes iodine / iodide salt, bromine / bromide salt, cobalt complex, potassium ferrocyanide, and the like.

電荷輸送層10の厚みは40〜300μm程度がよい。40μm未満では、多孔質半導体層5、多孔質絶縁層7および多孔質カーボン導電層8の微細孔を満たすことができず、電子の授受が行われない。300μmを超えると、抵抗成分である電荷輸送層10の増加による光電変換効率の低下を招き易く、また、電荷輸送層10が液状電解質である場合、液体部分の増量による封止の不具合が生じ易い。   The thickness of the charge transport layer 10 is preferably about 40 to 300 μm. When the thickness is less than 40 μm, the micropores of the porous semiconductor layer 5, the porous insulating layer 7, and the porous carbon conductive layer 8 cannot be filled, and electrons are not transferred. If it exceeds 300 μm, the photoelectric conversion efficiency is likely to decrease due to an increase in the charge transport layer 10 that is a resistance component, and if the charge transport layer 10 is a liquid electrolyte, a sealing failure due to an increase in the liquid portion is likely to occur. .

本発明の光発電装置は、上記本発明の光電変換素子1を発電手段として用い、発電手段の発電電力を負荷へ供給するように成した構成である。具体的には、光発電装置は、光電変換素子1、光電変換素子1から出力された直流電流を交流電流に変換するインバータ装置、電気モーターや照明装置等の負荷等を有する構成であり、建築物の屋根や壁面に設置される太陽電池等として使用される。   The photovoltaic device of the present invention has a configuration in which the photoelectric conversion element 1 of the present invention is used as a power generation means, and the generated power of the power generation means is supplied to a load. Specifically, the photovoltaic device has a configuration including a photoelectric conversion element 1, a load such as an inverter device that converts a direct current output from the photoelectric conversion device 1 into an alternating current, an electric motor, a lighting device, and the like. Used as a solar cell or the like installed on the roof or wall of an object.

以下、本発明の光電変換素子1の実施例について説明する。図1に示される構成の光電変換素子を以下のようにして作製した。   Hereinafter, the Example of the photoelectric conversion element 1 of this invention is described. A photoelectric conversion element having the configuration shown in FIG. 1 was produced as follows.

第1の透光性導電層3と第2の透光性導電層4を具備した透光性基板2として、シート抵抗10Ω/□(スクエア)の厚み1μmのSnO2:F層(フッ素ドープSnO2層)から成る第1の透光性導電層3と第2の透光性導電層4が一主面上に形成されたガラス基板(サイズ25mm×15cm、厚み2mm)を準備した。 As the translucent substrate 2 having the first translucent conductive layer 3 and the second translucent conductive layer 4, a SnO 2 : F layer (fluorine-doped SnO) having a sheet resistance of 10Ω / □ (square) and a thickness of 1 μm. the first transparent conductive layer 3 and the glass substrate in which the second transparent conductive layer 4 is formed on one principal surface (size 25 mm × 15cm consisting of 2 layers), was prepared thickness 2 mm).

この透光性導電層3の上に、酸化チタンからなる多孔質半導体層5を形成した。酸化チタンは平均粒径30nmナノ粒子からなるペーストをスクリーン印刷法により10μm積層塗布して、500℃で60分加熱処理した。   A porous semiconductor layer 5 made of titanium oxide was formed on the translucent conductive layer 3. Titanium oxide was applied by laminating a paste composed of nanoparticles having an average particle size of 30 nm by screen printing to a thickness of 10 μm, followed by heat treatment at 500 ° C. for 60 minutes.

多孔質絶縁層7は、多孔質半導体層5、透光性導電層3および透光性導電層4を覆う様にスクリーン印刷法により30μm積層塗布して、500℃で多孔質絶縁層が濃い茶色になるまでの約3分間、加熱処理した。もしくは、200℃で30分間加熱することも同様の効果がある。   The porous insulating layer 7 is formed by coating 30 μm by screen printing so as to cover the porous semiconductor layer 5, the translucent conductive layer 3 and the translucent conductive layer 4, and the porous insulating layer is dark brown at 500 ° C. It was heat-processed for about 3 minutes until it became. Alternatively, heating at 200 ° C. for 30 minutes has the same effect.

加熱処理した多孔質絶縁層7から透光性導電層4にかけて、カーボンペーストをスクリーン印刷法により50μm積層塗布して、400℃で60分加熱処理した。   A carbon paste was laminated and applied to the light-transmitting conductive layer 4 from the heat-treated porous insulating layer 7 by a screen printing method, and heat-treated at 400 ° C. for 60 minutes.

このままでは、酸化チタンが焦げ付いたままなので、焦げを落とすために再度500℃で5分間加熱した。   In this state, since the titanium oxide remains burned, it was heated again at 500 ° C. for 5 minutes in order to remove the burn.

色素6としては、Ru金属錯体のZ907を用いた。このZ907をアセトニトリルとt−ブチルアルコールの混合溶媒(体積比1:1)に溶かし、0.3mMの色素溶液を作製し、酸化チタンから成る多孔質半導体層5に吸着させた。   As the dye 6, Ru metal complex Z907 was used. This Z907 was dissolved in a mixed solvent of acetonitrile and t-butyl alcohol (volume ratio 1: 1) to prepare a 0.3 mM dye solution, which was adsorbed on the porous semiconductor layer 5 made of titanium oxide.

次に、電荷輸送層10である沃素(I2),1−メチル−2−プロピルイミダゾリウムアイオダイド(MPII)およびテトラブチルピリジンを含む液状電解質を多孔質半導体層5上の多孔質カーボン導電層8から染み込ませた。 Next, a liquid electrolyte containing iodine (I 2 ), 1-methyl-2-propylimidazolium iodide (MPII) and tetrabutylpyridine, which are charge transport layers 10, is used as a porous carbon conductive layer on the porous semiconductor layer 5. Soaked from 8.

その後、封止部材9である熱可塑性接着剤(三井-デュポンポリケミカル社製、商品名「ハイミラン」)で、多孔質絶縁層7と多孔質カーボン導電層8を囲う様に封止した。   Thereafter, the sealing member 9 was sealed so as to surround the porous insulating layer 7 and the porous carbon conductive layer 8 with a thermoplastic adhesive (manufactured by Mitsui-Dupont Polychemical Co., Ltd., trade name “HIMILAN”).

また、比較例として図2に示すように、シート抵抗10Ω/□(スクエア)の厚み1μmのSnO2:F層(フッ素ドープSnO2層)から成る透光性導電層が一主面上に形成されたガラス基板(サイズ25mm×25cm、厚み2mm)の透光性導電層上に熱分解によってPtを施したものを準備し、多孔質カーボン導電層の代わりに使用した。 As a comparative example, as shown in FIG. 2, a translucent conductive layer made of SnO 2 : F layer (fluorine-doped SnO 2 layer) having a sheet resistance of 10Ω / □ (square) and a thickness of 1 μm is formed on one main surface. A glass substrate (size 25 mm × 25 cm, thickness 2 mm) on which a Pt was applied by thermal decomposition on a light-transmitting conductive layer was prepared and used instead of the porous carbon conductive layer.

なお、図2は、多孔質カーボン導電層とPt加工フッ素ドープ酸化錫ガラス基板を使用したモノリシック型色素増感太陽電池の光電特性を示すグラフである。
カーボン電極セル: 短絡電流密度6.29mA/cm、開放電圧0.599V、フィルファクター0.455、光電変換効率1.69%
Pt電極セル: 短絡電流密度6.91mA/cm、開放電圧0.544V、フィルファクター0.592、光電変換効率2.22%
FIG. 2 is a graph showing photoelectric characteristics of a monolithic dye-sensitized solar cell using a porous carbon conductive layer and a Pt-processed fluorine-doped tin oxide glass substrate.
Carbon electrode cell: short-circuit current density 6.29 mA / cm 2 , open circuit voltage 0.599 V, fill factor 0.455, photoelectric conversion efficiency 1.69%
Pt electrode cell: short-circuit current density 6.91 mA / cm 2 , open-circuit voltage 0.544 V, fill factor 0.592, photoelectric conversion efficiency 2.22%

実施例および比較例の光電変換素子について、AM1.5のソーラーシミュレータの光(100mW/cm)を照射し、光電特性の測定を行った。図1に示す本実施形態の色素6を使用した光電変換素子1は、短絡電流密度が6.29mA/cm、開放電圧が0.599V、フィルファクターが0.455、光電変換効率が1.69%であった。 About the photoelectric conversion element of an Example and a comparative example, the light (100mW / cm < 2 >) of the solar simulator of AM1.5 was irradiated, and the photoelectric characteristic was measured. The photoelectric conversion element 1 using the dye 6 of the present embodiment shown in FIG. 1 has a short-circuit current density of 6.29 mA / cm 2 , an open-circuit voltage of 0.599 V, a fill factor of 0.455, and a photoelectric conversion efficiency of 1. It was 69%.

これに対して、図2に示される比較例の光電変換素子は、光電変換効率が2.22%であった。   In contrast, the photoelectric conversion element of the comparative example shown in FIG. 2 had a photoelectric conversion efficiency of 2.22%.

本実施例の光電変換素子1は比較例の光電変換素子と比較して光電変換効率が80%を達成することができた。多孔質カーボン導電層8の抵抗値を抑えることができた結果である。しかも、比較例に近い光電変換効率を達成しながら、安価で高耐久性が得られるという点については比較例よりも遥かに優れた光電変換素子が得られた。   The photoelectric conversion element 1 of this example was able to achieve a photoelectric conversion efficiency of 80% as compared with the photoelectric conversion element of the comparative example. This is a result of suppressing the resistance value of the porous carbon conductive layer 8. And the photoelectric conversion element far superior to the comparative example was obtained about the point that it is cheap and can obtain high durability, achieving the photoelectric conversion efficiency close | similar to a comparative example.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

本発明の光発電装置は、上記光電変換素子1を発電手段として用い、発電手段の発電電力を負荷へ供給するように成した構成で、より具体的には光電変換素子1から出力された直流電流を交流電流に変換するインバータ装置、電気モーターや照明装置等の負荷等を有する構成であり、建築物の屋根や壁面に設置される太陽光電池等として利用される。   The photovoltaic device according to the present invention has a configuration in which the photoelectric conversion element 1 is used as a power generation means and the generated power of the power generation means is supplied to a load. More specifically, the direct current output from the photoelectric conversion element 1 is provided. It has a configuration including an inverter device that converts current into alternating current, an electric motor, a lighting device, and the like, and is used as a solar cell or the like installed on the roof or wall of a building.

1:光電変換素子
2:透光性基板
3:透光性導電層
4:透光性導電層
5:多孔質半導体層
6:色素
7:多孔質絶縁層
8:多孔質カーボン導電層
9:封止部材
10:電荷輸送層
1: Photoelectric conversion element 2: Translucent substrate 3: Translucent conductive layer 4: Translucent conductive layer 5: Porous semiconductor layer 6: Dye 7: Porous insulating layer 8: Porous carbon conductive layer 9: Sealing Stop member 10: charge transport layer

Claims (9)

透光性基板と、前記透光性基板の主面上に部分的に配置された第1の透光性導電層と、前記透光性基板の主面上に前記第1の透光性導電層より間隔をあけて設けられた第2の透光性導電層と、前記第1の透光性導電層上に設けられた多孔質半導体層と、前記多孔質半導体層の表面に単分子層として吸着された色素と、前記多孔質半導体層と前記第1の透光性導電層と前記第2の透光性導電体間を覆うように設けられた多孔質絶縁層と、前記多孔質絶縁層および前記第2の透光性導電層上に連続して設けられた多孔質カーボン導電層と、前記第1の透光性導電層と前記第2の透光性導電層の主面と接触し、前記多孔質絶縁層と前記多孔質カーボン導電層を囲う様に設けられた封止部材と、前記多孔質半導層と前記多孔質絶縁層および前記多孔質カーボン導電層の微細孔に設けられた前記封止部材内に囲まれた電荷輸送層とを具備する光電変換素子。   A translucent substrate, a first translucent conductive layer partially disposed on the main surface of the translucent substrate, and the first translucent conductive layer on the main surface of the translucent substrate A second light-transmitting conductive layer provided at a distance from the layer, a porous semiconductor layer provided on the first light-transmitting conductive layer, and a monomolecular layer on the surface of the porous semiconductor layer A dye adsorbed as a porous insulating layer, a porous insulating layer provided so as to cover the porous semiconductor layer, the first translucent conductive layer, and the second translucent conductor, and the porous insulation A porous carbon conductive layer continuously provided on the layer and the second translucent conductive layer, and the main surface of the first translucent conductive layer and the second translucent conductive layer A sealing member provided so as to surround the porous insulating layer and the porous carbon conductive layer, the porous semiconductor layer, the porous insulating layer, and the porous Photoelectric conversion element and a charge transport layer Bon provided micropores conductive layer surrounded by the sealing member. 前記多孔質カーボン導電層は、アモルファスカーボン、グラファイトカーボン、およびTiOを高分子および溶媒に分散させたペーストを、前記多孔質絶縁層上に印刷し、焼結させることで形成されることを特徴とする請求項1に記載の光電変換素子。 The porous carbon conductive layer is formed by printing and sintering a paste in which amorphous carbon, graphite carbon, and TiO 2 are dispersed in a polymer and a solvent on the porous insulating layer. The photoelectric conversion element according to claim 1. 前記多孔質絶縁層は、ZrO、Alなどの絶縁性粒子を高分子および溶媒に分散させたペーストを、前記多孔質半導体層上に印刷し、焼結させることで形成されることを特徴とする請求項1〜2のいずれか1項に記載の光電変換素子。 The porous insulating layer is formed by printing and sintering a paste in which insulating particles such as ZrO 2 and Al 2 O 3 are dispersed in a polymer and a solvent on the porous semiconductor layer. The photoelectric conversion element according to claim 1, wherein: 前記多孔質カーボン導電層を形成する前に、前記多孔質絶縁層の加熱処理を150〜650℃で行うことを特徴とする請求項1〜3のいずれかに記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the porous insulating layer is heat-treated at 150 to 650 ° C. before forming the porous carbon conductive layer. 前記多孔質半導体層は、TiO、WO、ZnO、Nb、Ta、またはSrTiOのうち少なくとも1つから成ることを特徴とする請求項1〜4のいずれか1項に記載の光電変換素子。 The porous semiconductor layer is made of at least one of TiO 2 , WO 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , or SrTiO 3. The photoelectric conversion element as described in 2. 前記透光性導電層は、フッ素ドープ錫酸化物、インジウム錫酸化物、ガリウムドープ亜鉛酸化物、アルミドープ亜鉛酸化物、またはニオブドープチタン酸化物のうち少なくとも1つから成ることを特徴とする請求項1〜5のいずれか1項に記載の光電変換素子。   The translucent conductive layer is made of at least one of fluorine-doped tin oxide, indium tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, or niobium-doped titanium oxide. Item 6. The photoelectric conversion element according to any one of Items 1 to 5. 前記電荷輸送層は、沃化物、コバルト錯体、鉄錯体、CuI、CuSCN、または有機ホール輸送材のうち少なくとも1つから成ることを特徴とする請求項1〜6のいずれか1項に記載の光電変換素子。   The photoelectric transport layer according to claim 1, wherein the charge transport layer is made of at least one of an iodide, a cobalt complex, an iron complex, CuI, CuSCN, or an organic hole transport material. Conversion element. 前記色素は、Ru錯体色素などの金属錯体色素、ポルフィリン色素、インドリン色素などの有機色素のうち少なくとも1つから成ることを特徴とする請求項1〜7のいずれか1項に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the dye comprises at least one of a metal complex dye such as a Ru complex dye, and an organic dye such as a porphyrin dye and an indoline dye. . 請求項1〜8のいずれか1項に記載の光電変換素子を発電手段として用い、前記発電手段の発電電力を負荷へ供給することを特徴とする光発電装置。   A photovoltaic device using the photoelectric conversion element according to any one of claims 1 to 8 as a power generation means, and supplying the generated power of the power generation means to a load.
JP2010029330A 2010-02-12 2010-02-12 Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element Pending JP2011165580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029330A JP2011165580A (en) 2010-02-12 2010-02-12 Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029330A JP2011165580A (en) 2010-02-12 2010-02-12 Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2011165580A true JP2011165580A (en) 2011-08-25

Family

ID=44596002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029330A Pending JP2011165580A (en) 2010-02-12 2010-02-12 Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2011165580A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129097A1 (en) * 2012-02-28 2013-09-06 富士フイルム株式会社 Photoelectric conversion element, metal-complex dye, liquid dye-adsorption composition for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method therefor
JP2014053150A (en) * 2012-09-06 2014-03-20 Sharp Corp Photoelectric conversion element and photoelectric conversion module
JP2016522993A (en) * 2013-05-17 2016-08-04 エクセジャー スウェーデン エービーExeger Sweden Ab Dye-sensitized solar cell and method for manufacturing the solar cell
KR20170051575A (en) * 2015-10-29 2017-05-12 한국기계연구원 Photoelectrode for PEC cell including nanoparticles of metal oxide hydroxide and capping layer of graphene and hybrid organic PEC cell having them
CN117587357A (en) * 2024-01-19 2024-02-23 北京开元新能科技有限公司 Metal bipolar plate for proton exchange membrane fuel cell and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367686A (en) * 2001-06-12 2002-12-20 Aisin Seiki Co Ltd Dye sensitization type solar cell and manufacturing method therefor
JP2006236960A (en) * 2005-01-28 2006-09-07 Fujikura Ltd Dye-sensitized solar cell and its manufacturing method
JP2007172916A (en) * 2005-12-20 2007-07-05 Fujikura Ltd Photoelectric conversion element
JP2009110796A (en) * 2007-10-30 2009-05-21 Sony Corp Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2009193863A (en) * 2008-02-15 2009-08-27 Aisin Seiki Co Ltd Dye-sensitized solar cell and dye-sensitized solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367686A (en) * 2001-06-12 2002-12-20 Aisin Seiki Co Ltd Dye sensitization type solar cell and manufacturing method therefor
JP2006236960A (en) * 2005-01-28 2006-09-07 Fujikura Ltd Dye-sensitized solar cell and its manufacturing method
JP2007172916A (en) * 2005-12-20 2007-07-05 Fujikura Ltd Photoelectric conversion element
JP2009110796A (en) * 2007-10-30 2009-05-21 Sony Corp Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2009193863A (en) * 2008-02-15 2009-08-27 Aisin Seiki Co Ltd Dye-sensitized solar cell and dye-sensitized solar cell module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129097A1 (en) * 2012-02-28 2013-09-06 富士フイルム株式会社 Photoelectric conversion element, metal-complex dye, liquid dye-adsorption composition for dye-sensitized solar cell, dye-sensitized solar cell, and manufacturing method therefor
JP2013178968A (en) * 2012-02-28 2013-09-09 Fujifilm Corp Photoelectric conversion element, metal complex dye, dye adsorption liquid composition for dye-sensitized solar cell, dye-sensitized solar cell and manufacturing method thereof
JP2014053150A (en) * 2012-09-06 2014-03-20 Sharp Corp Photoelectric conversion element and photoelectric conversion module
JP2016522993A (en) * 2013-05-17 2016-08-04 エクセジャー スウェーデン エービーExeger Sweden Ab Dye-sensitized solar cell and method for manufacturing the solar cell
KR20170051575A (en) * 2015-10-29 2017-05-12 한국기계연구원 Photoelectrode for PEC cell including nanoparticles of metal oxide hydroxide and capping layer of graphene and hybrid organic PEC cell having them
KR102262641B1 (en) * 2015-10-29 2021-06-10 한국재료연구원 Photoelectrode for PEC cell including nanoparticles of metal oxide hydroxide and capping layer of graphene and hybrid organic PEC cell having them
CN117587357A (en) * 2024-01-19 2024-02-23 北京开元新能科技有限公司 Metal bipolar plate for proton exchange membrane fuel cell and preparation method and application thereof
CN117587357B (en) * 2024-01-19 2024-04-09 北京开元新能科技有限公司 Metal bipolar plate for proton exchange membrane fuel cell and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Maniarasu et al. Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization
Ke et al. Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers
Kim et al. Laser processing of nanocrystalline TiO 2 films for dye-sensitized solar cells
Yue et al. A dye-sensitized solar cell based on PEDOT: PSS counter electrode
JP5489621B2 (en) Photoelectric conversion element and photovoltaic device using the photoelectric conversion element
EP3221906A1 (en) Photovoltaic device
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2012059599A (en) Carbon based electrode and electrochemical device
JP2011165580A (en) Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
Sanap et al. Exploring vanadium-chalcogenides toward solar cell application: A review
JP2011146384A (en) Electrode substrate for dye-sensitized solar cell, and dye-sensitized solar cell equipped with this
JP2009009936A (en) Photoelectric conversion device
Yilmaz et al. Integrated photocapacitors based on dye-sensitized TiO2/FTO as photoanode and MnO2 coated micro-array CNTs as supercapacitor counter electrode with TEABF4 electrolyte
KR20180024870A (en) Hole transport material for perovskite structure solar cell
JP5364999B2 (en) Laminate for oxide semiconductor electrode, oxide semiconductor electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
KR20110132926A (en) Dye-sensitized solar cell and manufacturing method of the same
KR101447618B1 (en) Light sensitized Solar Cell and Method for manufacturing the same
Jonathan et al. Photovoltaic perfomance of dye sensitized solar cells using natural dyes extracted from bougainvillea flower and mango leaves
KR101044338B1 (en) Dye sensitized solar cell comprising negative electrode including nano oxide layer adsorbed with dye and polyatomic anion and preparation method thereof
JP2008244258A (en) Photoelectric conversion device and photovoltaic generator
JP5311094B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Orebiyi et al. Dye-sensitized solar cells
KR101462356B1 (en) Dye sensitized solar cell and method of fabricating the same
JP5153248B2 (en) Photoelectric conversion device and photovoltaic power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701