JP2002367686A - Dye sensitization type solar cell and manufacturing method therefor - Google Patents

Dye sensitization type solar cell and manufacturing method therefor

Info

Publication number
JP2002367686A
JP2002367686A JP2001177745A JP2001177745A JP2002367686A JP 2002367686 A JP2002367686 A JP 2002367686A JP 2001177745 A JP2001177745 A JP 2001177745A JP 2001177745 A JP2001177745 A JP 2001177745A JP 2002367686 A JP2002367686 A JP 2002367686A
Authority
JP
Japan
Prior art keywords
photoelectrode
solar cell
dye
separator
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001177745A
Other languages
Japanese (ja)
Other versions
JP5050301B2 (en
JP2002367686A5 (en
Inventor
Toshiyuki Sano
利行 佐野
Junji Nakajima
淳二 中島
Tatsuo Toyoda
竜生 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2001177745A priority Critical patent/JP5050301B2/en
Publication of JP2002367686A publication Critical patent/JP2002367686A/en
Publication of JP2002367686A5 publication Critical patent/JP2002367686A5/ja
Application granted granted Critical
Publication of JP5050301B2 publication Critical patent/JP5050301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell in which transmission of carbon is prevented and the carbon does not directly contact the transparent conductive membrane installed on the photo-electrode side, and, after firing and installation on the solar cell, electrical potential is generated between the photo-electrode and the counter electrode when light is irradiated on it and performs completely as a battery, and which has improved yield of manufacture and improved conversion efficiency. SOLUTION: This is a dye sensitization type solar cell in which a transparent conductive membrane 31 is laminated on a glass substrate 31 and a first photo-electrode 34 made of a dense material is laminated on the transparent conductive membrane 32, and a second photo-electrode 35 made of a porous material is laminated on the first photo-electrode 34, and a separator 36 made of a porous material is laminated on the second photo-electrode 35, and a counter electrode 37 made of a porous carbon layer is laminated on the separator, and a photo-sensitization dye is carried by the above first photo-electrode 34 and the second photo-electrode 35, and an electrolyte is filled between the above transparent conductive membrane 32 and the counter electrode 37. The mean particle size of the constituting particles of the first photo-electrode 34 is smaller than the mean particle size of the constituting particles of the second photo-electrode 35.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、色素増感型太陽電
池とその製造方法に関する。
The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年の産業の発達によりエネルギー及び
電力の使用量が急増している。そのため一酸化炭素など
環境汚染物質の排出も増え、地球環境を守るため無視で
きない量になっている。太陽エネルギーを電気に変換す
る太陽電池は、直接には汚染物質を排出せずに電力を製
造できるので、その普及が期待されている。しかし、従
来のシリコンを使用した太陽電池は、製造コストが高い
問題があり、大規模電力用としては期待されるような普
及に至っていない。
2. Description of the Related Art The use of energy and electric power has been rapidly increasing due to recent industrial development. As a result, the emission of environmental pollutants such as carbon monoxide has also increased, and has become a considerable amount to protect the global environment. BACKGROUND ART Solar cells that convert solar energy into electricity can produce electric power without directly discharging pollutants, and thus are expected to spread. However, the conventional solar cell using silicon has a problem of high manufacturing cost, and has not yet spread as expected for large-scale electric power.

【0003】このシリコンを使用した太陽電池に替わる
製造コストが低い太陽電池として、半導体粒子に可視光
を吸収する色素を担持した光電変換活物質層を有する色
素増感型太陽電池(湿式太陽電池ともいう)が注目され
ている。これは色素に光が照射されると伝導電子とホー
ルが生成し、伝導電子は色素を担持している半導体粒子
に移動、ホールは接触している電解液中の酸化還元種か
ら電子を受け取り消滅する。これらの光電気化学反応に
より、電子の流れが発生し、光エネルギーを電気エネル
ギーに変換できるものである。
As a solar cell having a low manufacturing cost in place of a solar cell using silicon, a dye-sensitized solar cell having a photoelectric conversion active material layer in which semiconductor particles carry a dye that absorbs visible light (also referred to as a wet solar cell). ) Is attracting attention. When the dye is irradiated with light, conduction electrons and holes are generated, the conduction electrons move to the semiconductor particles carrying the dye, and the holes receive electrons from the redox species in the contacting electrolyte and disappear. I do. The flow of electrons is generated by these photoelectrochemical reactions, and light energy can be converted into electric energy.

【0004】色素増感型太陽電池とそのモジュールに関
する文献として、AndreausKay,Micae
l GraetzelのSolar Energy M
aterials Solar Cells”(vol
44(1996)99−117頁)のLow cos
t photovoltanic modulesba
sed on dye sensitized nan
ocrystaline titanium diox
ide and carbon powderが開示さ
れている。
[0004] References relating to dye-sensitized solar cells and modules thereof include AndreausKay, Micae.
l Graetzel's Solar Energy M
materials Solar Cells "(vol.
44 (1996) pp. 99-117).
t photovoltanic modules ba
sed on dye sensitive nan
ocrystaline titanium diox
Ide and carbon powder are disclosed.

【0005】この文献には、図9に示すように、光電極
235、多孔質層からなるセパレータ236、多孔質カ
ーボンからなる対極237といった3層構造が開示され
ている。この3層構造の製造方法としては、まず第1層
の光電極235をグラビア印刷やスクリーン印刷で全面
を印刷し、乾燥、焼成後にパターン化を機械加工、エア
ージェット、レーザースクライビング等で行う。次に第
2層であるセパレータ236を全面印刷し乾燥、焼成す
る。このときも第1層と同様の加工を行う。さらに第3
層目の対極237を全面印刷し、乾燥、焼成後、上記と
同様の加工を行なう。
This document discloses a three-layer structure including a photoelectrode 235, a separator 236 made of a porous layer, and a counter electrode 237 made of porous carbon, as shown in FIG. As a manufacturing method of this three-layer structure, first, the entire surface of the photoelectrode 235 of the first layer is printed by gravure printing or screen printing, and after drying and firing, patterning is performed by machining, air jet, laser scribing, or the like. Next, the entire surface of the separator 236 as the second layer is printed, dried and fired. At this time, the same processing as that for the first layer is performed. Third
After printing the entire surface of the counter electrode 237 of the layer, drying and firing, the same processing as described above is performed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記技
術において、光電極235、セパレータ236は電気化
学的反応面積を増やすためとイオンの拡散抵抗を低減す
るため、多孔質なものが求められるが、3層目の対極2
37であるカーボンを印刷する際に、微細なカーボンが
多孔質なセパレータ236や光電極235を貫通し、透
明導電膜232まで到達する場合がある。そのため、焼
成後も光電極235と対極電位が同じになり電池内部シ
ョートが多発し、電池として機能しないことがある。
However, in the above technique, the photoelectrode 235 and the separator 236 are required to be porous in order to increase the electrochemical reaction area and to reduce the diffusion resistance of ions. Counter electrode 2 of layer
When printing carbon 37, fine carbon may pass through the porous separator 236 and the photoelectrode 235 and reach the transparent conductive film 232 in some cases. For this reason, even after firing, the counter electrode potential becomes the same as that of the photoelectrode 235, and a short circuit inside the battery occurs frequently, and the battery may not function.

【0007】また、直列セルを形成するため光電極23
5、セパレータ236、対極237をそれぞれ全面に印
刷しているが、各工程ごとにセルを分離するための加工
が必要であり煩雑である。また各層の乾燥収縮量や熱膨
張率の違いがあり、乾燥時や焼成時においてクラックが
入りやすく、製造可能なサイズには制限がある。
Further, the photoelectrode 23 for forming a series cell is used.
5, the separator 236 and the counter electrode 237 are printed on the entire surface, but processing for separating cells is required for each process, which is complicated. In addition, there are differences in the amount of drying shrinkage and the coefficient of thermal expansion of each layer, cracks are easily formed during drying and firing, and the size that can be manufactured is limited.

【0008】さらに、直列セルを形成するため各層ごと
に機械加工やエアージェット、レーザースクライビング
を用いてセル間を分離しているが、機械加工やエアージ
ェットにおいては加工幅が大きくなり、所望の微細加工
や加工精度が十分得られない。
Further, in order to form a series cell, the cells are separated from each other by machining, air jet, or laser scribing for each layer. Processing and processing accuracy cannot be obtained sufficiently.

【0009】また機械加工やレーザースクライビングで
は光電気化学反応に寄与する1層のみを加工することが
困難で、時として完全に除去しなければいけない層が残
ってしまったり、透明導電膜232まで加工してしま
い、セルの直列性がなくなることがある。
Further, it is difficult to machine only one layer contributing to the photoelectrochemical reaction by machining or laser scribing, and sometimes a layer which must be completely removed remains, or even the transparent conductive film 232 is worked. As a result, the seriality of cells may be lost.

【0010】機械加工、エアージェット、レーザースク
ライビングの3者に共通する問題点は、加工の際に大量
の加工屑が発生し、この加工屑は、完全除去できず一部
加工溝に残った加工屑が導電パスを形成し、電池内部シ
ョートやマイクロショートを誘発する可能性がある。ま
たこうした加工屑はセル間のシールを担う熱融着シート
の完全融着を阻害し電解液が隣のセルと共用になり、そ
の結果、電池内部ショートになる可能性が生じる。
[0010] A problem common to the three processes of machining, air jet, and laser scribing is that a large amount of processing chips are generated during processing, and the processing chips cannot be completely removed and are partially left in the processing grooves. Debris can form conductive paths and cause shorts and micro shorts inside the battery. In addition, such processing wastes impede the complete fusion of the heat-sealing sheet serving as a seal between the cells, and the electrolyte is shared with the adjacent cells. As a result, there is a possibility that a short circuit occurs inside the battery.

【0011】本発明は、上記課題を解決したもので、光
電極を第1光電極と第2光電極の2層にし、カーボンを
主体とする多孔質対極の印刷の際、たとえ多孔質セパレ
ータや第2光電極に浸透しても、透明導電膜に接触する
緻密な第1光電極層を配設することにより、直接カーボ
ンが第1光電極側の透明導電膜と接することを防ぐもの
である。それゆえ、焼成後、太陽電池セルに組付ける
と、第1光電極及び第2光電極と、対極との間に電位が
発生し、太陽電池として完全に機能し、変換効率が良好
で、太陽電池生産の歩留まりが向上する色素増感型太陽
電池とその製造方法を提供するものである。
The present invention has solved the above-mentioned problems. In the present invention, the photoelectrode has two layers of a first photoelectrode and a second photoelectrode, and when printing a porous counter electrode mainly composed of carbon, for example, a porous separator or Even if it penetrates into the second photoelectrode, the dense first photoelectrode layer that is in contact with the transparent conductive film is provided to prevent carbon from directly contacting the transparent conductive film on the first photoelectrode side. . Therefore, when the solar cell is assembled after firing, a potential is generated between the first photoelectrode and the second photoelectrode and the counter electrode, which completely functions as a solar cell, has good conversion efficiency, and has a high conversion efficiency. An object of the present invention is to provide a dye-sensitized solar cell with improved battery production yield and a method for manufacturing the same.

【0012】また、セルを構成する各層を1つづつ区切
ってパターン印刷すれば、全面積を印刷するのに比較
し、印刷面積が小さくなり、乾燥時や焼成時の収縮量が
小さくなるためクラックが入りにくい。さらに電池の製
造の際、機械加工等の加工工程がなく工程が簡素化でき
るばかりでなく、加工屑が出ないというメリットがあ
り、各工程において光電極、セパレータ、対極の粒子で
汚染することがない。また加工屑が誘発する電池内部シ
ョートやシール不良からくる電解液短絡ショートもない
色素増感型太陽電池とその製造方法を提供するものであ
る。
[0012] Further, when pattern printing is performed by dividing each layer constituting the cell one by one, the printed area becomes smaller and the amount of shrinkage during drying and baking becomes smaller than when printing the entire area. Is difficult to enter. Furthermore, in the production of batteries, there is a merit that not only there is no machining process such as machining but the process can be simplified, but also there is an advantage that no processing waste is generated, and in each process, contamination by a photoelectrode, a separator, and particles of a counter electrode can occur. Absent. It is another object of the present invention to provide a dye-sensitized solar cell free from short-circuits in the battery and short-circuits in the electrolyte caused by poor sealing caused by processing waste and a method for manufacturing the same.

【0013】また、カーボンを主体とする多孔質対極の
印刷時に、印刷後のレベリングで回り込んで透明導電性
膜にカーボンが接することを防止し、焼成後も光電極と
対極電位が発生し電池として完全に機能し、電池生産の
歩留まりが著しく向上する色素増感型太陽電池とその製
造方法を提供するものである。
In addition, during printing of a porous counter electrode mainly composed of carbon, it is possible to prevent the carbon from coming into contact with the transparent conductive film due to the leveling after printing and to generate a photoelectrode and a counter electrode potential even after firing. The present invention provides a dye-sensitized solar cell which completely functions as a photovoltaic cell and significantly improves the yield of battery production, and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた請求項1の発明は、ガラス基板に透明
導電膜が積層され、前記透明導電膜に緻密質からなる第
1光電極が積層され、前記第1光電極に多孔質からなる
第2光電極が積層され、前記第2光電極に多孔質からな
るセパレータが積層され、前記セパレータに多孔質であ
るカーボン層からなる対極が積層され、前記第1光電極
と前記第2光電極には光増感色素が担持され、前記透明
導電膜と前記対極の間に電解質が充填された色素増感型
太陽電池であって、前記第1光電極の構成粒子の平均粒
子径は前記第2光電極の構成粒子の平均粒子径よりも小
さいことを特徴とする色素増感型太陽電池である。
According to a first aspect of the present invention, there is provided a first photoelectrode comprising a transparent conductive film laminated on a glass substrate and the transparent conductive film formed of a dense material. Are stacked, a second photoelectrode made of porous is stacked on the first photoelectrode, a separator made of porous is stacked on the second photoelectrode, and a counter electrode made of a porous carbon layer is formed on the separator. A dye-sensitized solar cell stacked, wherein the first photoelectrode and the second photoelectrode carry a photosensitizing dye, and an electrolyte is filled between the transparent conductive film and the counter electrode; The dye-sensitized solar cell is characterized in that the average particle diameter of the constituent particles of the first photoelectrode is smaller than the average particle diameter of the constituent particles of the second photoelectrode.

【0015】請求項1の発明により、第1光電極に第2
光電極よりも微細な平均粒子径をもつ構成粒子を用いる
ことにより、第1光電極は第2光電極に比べ緻密化され
る。カーボンを主体とする多孔質対極の印刷の際、例え
ば多孔質からなるセパレータや第2光電極に浸透して
も、透明導電膜に接触する第1光電極層が緻密化してお
り、第2光電極を通過したカーボンの通過を防ぎ、直接
カーボンが光電極側に設置された透明導電膜に接するこ
となく、焼成後も太陽電池セルに組み付けると光を照射
した際に光電極と対極に電位が発生し、電池として完全
に機能し、また電池生産の歩留まりが向上し変換効率が
向上する。
According to the first aspect of the present invention, the second photoelectrode is provided with the second photoelectrode.
By using constituent particles having a finer average particle diameter than the photoelectrode, the first photoelectrode is more compact than the second photoelectrode. When printing a porous counter electrode mainly composed of carbon, for example, even if it permeates a porous separator or a second photoelectrode, the first photoelectrode layer that is in contact with the transparent conductive film is densified, and Prevents the passage of carbon that has passed through the electrode and prevents the carbon from directly contacting the transparent conductive film provided on the photoelectrode side.When assembled in a solar cell even after firing, the potential is applied to the photoelectrode and counter electrode when irradiated with light. Occurs, functioning completely as a battery, improving the yield of battery production and improving the conversion efficiency.

【0016】上記技術的課題を解決するためになされた
請求項2の発明は、前記第1光電極の平均孔径は、前記
第2光電極の平均孔径よりも小さく、前記対極のカーボ
ン2次粒子の平均粒子径よりも小さいことを特徴とする
請求項1記載の色素増感型太陽電池である。
According to a second aspect of the present invention, there is provided an image forming apparatus, wherein the average pore size of the first photoelectrode is smaller than the average pore size of the second photoelectrode; The dye-sensitized solar cell according to claim 1, wherein the average particle diameter is smaller than the average particle diameter of the dye-sensitized solar cell.

【0017】請求項2の発明により、第1光電極の平均
孔径が第2光電極の平均孔径よりも小さく且つカーボン
の2次粒子の平均粒子径よりも小さいため、第2光電極
の細孔を通過したカーボンの通過を防ぐことができ、請
求項1と同様の効果である直接カーボンが光電極側に設
置された透明導電膜に接することなく、焼成後も太陽電
池セルに組み付けると光を照射した際に光電極と対極に
電位が発生し、電池として完全に機能し、また電池生産
の歩留まりが向上し変換効率が向上する。
According to the second aspect of the present invention, the average pore size of the first photoelectrode is smaller than the average pore size of the second photoelectrode and smaller than the average particle size of the secondary particles of carbon. It is possible to prevent the passage of carbon that has passed through, and the same effect as in claim 1, wherein the direct carbon does not come into contact with the transparent conductive film provided on the photoelectrode side, and when baked into the solar cell even after firing, light Upon irradiation, a potential is generated between the photoelectrode and the counter electrode, which fully functions as a battery, improves the yield of battery production, and improves conversion efficiency.

【0018】上記技術的課題を解決するためになされた
請求項3の発明は、前記第1光電極の平均膜厚は、前記
第2光電極、前記セパレータ、前記対極のいずれの平均
膜厚よりも薄いことを特徴とする請求項1記載の色素増
感型太陽電池である。
According to a third aspect of the present invention, which is made to solve the above technical problem, the average thickness of the first photoelectrode is set to be larger than the average thickness of any of the second photoelectrode, the separator, and the counter electrode. 2. The dye-sensitized solar cell according to claim 1, wherein the solar cell is also thin.

【0019】請求項3の発明により、クラックの入りや
すい緻密質な第1光電極のクラックが無くなり、第2光
電極の細孔を通過したカーボンがクラックを介した通過
を防ぐことができ、請求項1と同様の効果である直接カ
ーボンが光電極側に設置された透明導電膜に接すること
なく、焼成後も太陽電池セルに組み付けると光を照射し
た際に光電極と対極に電位が発生し、電池として完全に
機能し、また電池生産の歩留まりが向上し変換効率が向
上する。
According to the third aspect of the present invention, cracks in the dense first photoelectrode which are apt to crack can be eliminated, and carbon which has passed through the pores of the second photoelectrode can be prevented from passing through the cracks. The same effect as in item 1 does not directly contact carbon with the transparent conductive film provided on the photoelectrode side, and when assembled into a solar cell even after firing, a potential is generated between the photoelectrode and the counter electrode when irradiated with light. It functions completely as a battery, improves the yield of battery production, and improves conversion efficiency.

【0020】なお、上記のクラックがなくなる原因は、
第1電極は、緻密でほとんど気孔のないものが望まれる
ため、微細な粒子で構成されているが、電極膜が薄けれ
ば基板と粒子の接合力が支配的で、膜がはがれないが、
膜が厚くなると粒子間の接合力が支配的になり、相対的
に基板と粒子の接合力が弱くなり、焼成の際に粒子間距
離の収縮が3次元的におこり、電極膜が踏みとどまるこ
とができず、クラックが入る。一方、第2電極、セパレ
ータ、対極などの多孔質な膜は、気孔が粒子間距離の収
縮や粒子間の接合力の緩衝作用をもち、膜厚を厚くして
もクラックが入りにくく、またクラックの成長が気孔で
止まると推定される。
The reason why the cracks disappear is as follows.
Since the first electrode is desired to be dense and almost free of pores, it is composed of fine particles. However, if the electrode film is thin, the bonding force between the substrate and the particles is dominant, and the film does not peel off.
As the film becomes thicker, the bonding force between the particles becomes dominant, the bonding force between the substrate and the particles becomes relatively weaker, and the distance between the particles shrinks three-dimensionally during firing, and the electrode film may stop. No, cracks. On the other hand, porous membranes such as the second electrode, the separator, and the counter electrode have pores that shrink the distance between particles and buffer the bonding force between particles. It is presumed that growth of ceases at the stomata.

【0021】上記技術的課題を解決するためになされた
請求項4の発明は、前記第2光電極の構成粒子は、前記
セパレータの構成粒子の平均粒子径よりも小さいことを
特徴とする請求項1記載の色素増感型太陽電池である。
According to a fourth aspect of the present invention, there is provided a liquid crystal display device, wherein the constituent particles of the second photoelectrode are smaller than the average particle diameter of the constituent particles of the separator. 2. The dye-sensitized solar cell according to item 1.

【0022】請求項4の発明により、セパレータよりも
小さい平均粒子径をもつ構成粒子を第2光電極に用いる
ことにより、セパレータに比べ第2光電極の気孔率は減
少し、セパレータの細孔を通過したカーボンが第2光電
極によって通過量を減少することができ、請求項1と同
様の効果である直接カーボンが光電極側に設置された透
明導電膜に接することなく、焼成後も太陽電池セルに組
み付けると光を照射した際に光電極と対極に電位が発生
し、電池として完全に機能し、また電池生産の歩留まり
が向上し変換効率も向上する。また電気化学的には直接
反応場とならないセパレータに大きな構成粒子を用いる
ことにより、入射光反射や散乱が増加される効果があ
り、変換効率が向上する一因となる。
According to the fourth aspect of the present invention, by using constituent particles having an average particle diameter smaller than that of the separator for the second photoelectrode, the porosity of the second photoelectrode is reduced as compared with the separator, and the pores of the separator are reduced. The amount of carbon that has passed can be reduced by the second photoelectrode, and the same effect as in claim 1 can be achieved without direct carbon contacting the transparent conductive film provided on the photoelectrode side, and even after firing. When assembled in a cell, a potential is generated between the photoelectrode and the counter electrode when irradiated with light, so that the cell functions completely as a battery, and the yield of battery production is improved and the conversion efficiency is also improved. In addition, by using large constituent particles for a separator which does not directly act as a reaction field electrochemically, there is an effect that incident light reflection and scattering are increased, which contributes to an improvement in conversion efficiency.

【0023】上記技術的課題を解決するためになされた
請求項5の発明は、前記第2光電極の平均膜厚は、前記
セパレータの平均膜厚よりも大きいことを特徴とする請
求項1記載の色素増感型太陽電池である。
According to a fifth aspect of the present invention, which is made to solve the above technical problem, an average thickness of the second photoelectrode is larger than an average thickness of the separator. Is a dye-sensitized solar cell.

【0024】請求項5の発明により、第2光電極の平均
膜厚をセパレータより大きくすることでセパレータの細
孔を通過したカーボンが第2光電極によって通過量を減
少させることができ、請求項1と同様の効果である直接
カーボンが光電極側に設置された透明導電膜に接するこ
となく、焼成後も太陽電池セルに組み付けると光を照射
した際に光電極と対極に電位が発生し、電池として完全
に機能し、また電池生産の歩留まりが向上し変換効率も
向上する。また電池セル内に電気化学的には直接反応場
とならないセパレータの体積を相対的に減少させること
により、第2光電極と対極の反応場が増加するため 変
換効率が向上する一因となる。
According to the fifth aspect of the present invention, by increasing the average film thickness of the second photoelectrode to be greater than that of the separator, the amount of carbon passing through the pores of the separator can be reduced by the second photoelectrode. Direct carbon, which is the same effect as 1, does not come into contact with the transparent conductive film provided on the photoelectrode side, and when assembled into a solar cell after firing, a potential is generated at the photoelectrode and the counter electrode when irradiated with light, It functions perfectly as a battery, improves the yield of battery production and improves conversion efficiency. Also, by relatively reducing the volume of the separator that does not act as a reaction field electrochemically in the battery cell, the reaction field between the second photoelectrode and the counter electrode increases, which contributes to an improvement in conversion efficiency.

【0025】上記技術的課題を解決するためになされた
請求項6の発明は、前記の対極は前記セパレータ端面よ
り内方に積層されていることを特徴とする請求項1記載
の色素増感型太陽電池である。
According to a sixth aspect of the present invention, which has been made to solve the above technical problem, the counter electrode is laminated inward from the end face of the separator. It is a solar cell.

【0026】請求項6の発明により、対極の片方の端部
をセパレータよりも内側に入れることによって、ペース
ト状のカーボンがセパレータや第2光電極の外側を流れ
透明導電膜に直達することを防止するものである。太陽
電池セルを直列接続する場合、対極のカーボンが隣接す
るセルの光電極と同じ電位になるようスクライブで絶縁
された隣接するセルの透明導電膜と1ヶ所接触する。対
極が同じセル内の透明導電膜と接触する部分が存在する
と、電池内部でのショートが発生する。これを回避する
ためセパレータよりも内側に対極のカーボンを設置する
ことで歩留まり向上が可能となる。
According to the sixth aspect of the present invention, by inserting one end of the counter electrode inside the separator, it is possible to prevent paste-like carbon from flowing outside the separator and the second photoelectrode and directly reaching the transparent conductive film. Is what you do. When the solar cells are connected in series, the carbon of the counter electrode comes in contact with the transparent conductive film of the adjacent cell which is insulated by scribe so as to have the same potential as the photoelectrode of the adjacent cell. If there is a portion where the counter electrode contacts the transparent conductive film in the same cell, a short circuit occurs inside the battery. In order to avoid this, the yield can be improved by installing the counter electrode carbon inside the separator.

【0027】上記技術的課題を解決するためになされた
請求項7の発明は、ガラス基板に透明導電膜を積層する
工程と、前記透明導電膜に緻密質からなる第1光電極を
積層する工程と、前記第1光電極に多孔質からなる第2
光電極を積層する工程と、前記第2光電極に多孔質であ
るセパレータを積層する工程と、前記セパレータに多孔
質であるカーボン層からなる対極を積層する工程とから
なる色素増感型太陽電池の製造方法であって、前記第1
光電極の構成粒子径は前記第2光電極の構成粒子の平均
粒子径よりも小さいことを特徴とする色素増感型太陽電
池の製造方法である。
In order to solve the above technical problems, the invention according to claim 7 is a step of laminating a transparent conductive film on a glass substrate, and a step of laminating a dense first photoelectrode on the transparent conductive film. And a second porous electrode formed on the first photoelectrode.
A dye-sensitized solar cell comprising: a step of laminating a photoelectrode; a step of laminating a porous separator on the second photoelectrode; and a step of laminating a counter electrode composed of a porous carbon layer on the separator. The method according to claim 1, wherein
A method for producing a dye-sensitized solar cell, wherein the constituent particle diameter of the photoelectrode is smaller than the average particle diameter of the constituent particles of the second photoelectrode.

【0028】請求項7により、カーボンを主体とする多
孔質対極を印刷する際、例えば多孔質層からなるセパレ
ータや第2光電極にカーボンが浸透しても、透明導電膜
に接触する第1光電極を緻密な層にすることにより第2
光電極を通過したカーボンの通過を防ぎ、直接カーボン
が光電極側に設置された透明導電膜に接することなく、
焼成後も太陽電池セルに組み付けると光を照射した際に
光電極と対極に電位が発生し、電池として完全に機能
し、また電池生産の歩留まりが向上し、変換効率が向上
する。
According to the seventh aspect, when printing the porous counter electrode mainly composed of carbon, for example, even if the carbon penetrates into the separator or the second photoelectrode made of the porous layer, the first light contacting the transparent conductive film is obtained. By forming the electrode in a dense layer,
Prevents the passage of carbon that has passed through the photoelectrode, without directly touching the transparent conductive film installed on the photoelectrode side,
When the solar cell is assembled after firing, a potential is generated between the photoelectrode and the counter electrode when irradiated with light, so that the cell functions completely as a battery, the yield of battery production is improved, and the conversion efficiency is improved.

【0029】上記技術的課題を解決するためになされた
請求項8の発明は、前記各工程の積層はパターンを形成
したスクリーン印刷にて印刷、乾燥、焼成をそれぞれ各
工程で行うことを特徴とする請求項7記載の色素増感型
太陽電池の製造方法である。
[0029] The invention of claim 8 made in order to solve the above technical problem is characterized in that the lamination in each of the steps is performed by printing, drying and firing in a screen printing with a pattern formed in each step. A method for producing a dye-sensitized solar cell according to claim 7.

【0030】請求項8により、セルを構成する各層を1
つづつ区切って所望の形状にパターンを形成したスクリ
ーン印刷にて印刷するため、全面積を印刷するのに比較
し、印刷面積が小さくなり乾燥時や焼成時の収縮量が小
さくなるためクラックが入りにくい。さらに電池の製造
の際、機械加工等の加工工程が無く、工程が簡素化でき
るばかりでなく、加工屑が出ないというメリットがあ
り、各工程において光電極、セパレータ、対極カーボン
の粒子でセルを汚染することがない。
According to claim 8, each layer constituting the cell is defined as 1
Since printing is performed by screen printing in which a pattern is formed in a desired shape by dividing into sections one by one, compared to printing the entire area, the printing area is smaller and the amount of shrinkage during drying and firing is small, so cracks are formed. Hateful. Furthermore, in the production of batteries, there is no processing step such as mechanical processing, which not only simplifies the process, but also has the advantage that no processing dust is generated.In each step, the cell is formed by photoelectrodes, separators, and counter electrode carbon particles. No pollution.

【0031】また加工屑が誘発する光電極と対極の直接
接触による電池内部ショートやシール部に加工屑を巻き
込んでおこるシール不良で隣接するセルの電解液の短絡
がない。また、積層する層を形成する各々の工程で焼成
するメリットは、印刷の際、焼成により下層が堅牢化さ
れ印刷精度が出しやすい点とペーストに含まれる有機成
分が短時間で除去可能であり、各層に残留する有機成分
が極力減らすことが可能である点である。
Further, there is no short circuit inside the battery due to the direct contact between the photoelectrode and the counter electrode induced by the processing dust, and there is no short circuit of the electrolytic solution of the adjacent cell due to defective sealing caused by the processing dust being involved in the seal portion. In addition, the merit of baking in each step of forming a layer to be laminated is that, during printing, the baking layer makes the lower layer robust and printing accuracy is easily obtained, and the organic components contained in the paste can be removed in a short time. The point is that organic components remaining in each layer can be reduced as much as possible.

【0032】上記技術的課題を解決するためになされた
請求項9の発明は、前記各工程の積層はパターンを形成
したスクリーン印刷法にて、印刷、乾燥をそれぞれ各工
程で行い、前記対極の乾燥後、一度に前記第1光電極、
前記第2光電極、前記セパレータ、前記対極を焼成する
ことを特徴とする請求項7記載の色素増感型太陽池の製
造方法である。
According to a ninth aspect of the present invention, there is provided a method according to claim 9, wherein the laminating in each of the steps is performed in each step by printing and drying by a screen printing method in which a pattern is formed. After drying, the first photoelectrode at once,
8. The method according to claim 7, wherein the second photoelectrode, the separator, and the counter electrode are fired.

【0033】請求項9により、セルを構成する各層を1
つづつ区切って所望の形状にパターンを形成したスクリ
ーン印刷にて印刷するため、全面積を印刷するのに比較
し、印刷面積が小さくなり乾燥時や焼成時の収縮量が小
さくなるためクラックが入りにくい。さらに電池の製造
の際、機械加工等の加工工程が無く工程が簡素化できる
ばかりでなく加工屑が出ないというメリットがあり各工
程において光電極、セパレータ、対極カーボンの粒子で
セルを汚染することがない。
According to the ninth aspect, each layer constituting the cell is defined as 1
Since printing is performed by screen printing in which a pattern is formed in a desired shape by dividing into sections one by one, compared to printing the entire area, the printing area is smaller and the amount of shrinkage during drying and firing is small, so cracks are formed. Hateful. Furthermore, in the production of batteries, there is an advantage that not only there is no machining process such as machining but the process can be simplified, but also there is an advantage that no processing dust is generated.In each process, the cell is contaminated with particles of the photoelectrode, separator and counter electrode carbon. There is no.

【0034】また加工屑が誘発する光電極と対極の直接
接触による電池内部ショートやシール部に加工屑を巻き
込んでおこるシール不良で隣接するセルの電解液が短絡
することのない色素増感型太陽電池およびそのモジュー
ルとその製造方法を提供することが可能である。一度に
焼成をするメリットは4回の焼成回数を1回で済ますた
め、エネルギーコストやリードタイムの大幅な短縮化が
可能であるという点である。
A dye-sensitized solar cell in which the electrolytic solution in an adjacent cell is not short-circuited due to short-circuiting inside the battery due to direct contact between the photoelectrode and the counter electrode induced by processing debris or a defective seal caused by entrapping processing debris in the seal portion. It is possible to provide a battery, its module, and its manufacturing method. The merit of firing at once is that four firings can be performed only once, so that energy cost and lead time can be significantly reduced.

【0035】上記技術的課題を解決するためになされた
請求項10の発明は、前記第1光電極の平均粒子径は2
5nm以下であることを特徴とする請求項1あるいは請
求項7記載の色素増感型太陽電池及びその製造方法であ
る。
According to a tenth aspect of the present invention which has been made to solve the above technical problem, the first photoelectrode has an average particle diameter of 2 μm.
The dye-sensitized solar cell according to claim 1 or 7, wherein the thickness is 5 nm or less, and a method for manufacturing the same.

【0036】請求項10により、第1光電極の平均粒子
径は25nm以下であると緻密化が進み第2光電極を通
過したカーボンの通過を第1光電極で防ぐことができ、
直接カーボンが光電極側に設置された透明導電膜に接す
ることなく、焼成後も太陽電池セルに組み付けると光を
照射した際に光電極と対極に電位が発生し、電池として
完全に機能し、また電池生産の歩留まりが向上し変換効
率が向上する。第1光電極の平均粒子径が25nmより
大であると緻密化が進まずカーボンが第1光電極を通過
し透明導電膜に直達する可能性がある。
According to the tenth aspect, when the average particle diameter of the first photoelectrode is 25 nm or less, densification progresses, and the passage of carbon that has passed through the second photoelectrode can be prevented by the first photoelectrode.
When the carbon is not directly in contact with the transparent conductive film installed on the photoelectrode side and assembled to the solar cell even after firing, a potential is generated at the photoelectrode and the counter electrode when irradiated with light, and the battery functions completely, Also, the yield of battery production is improved and the conversion efficiency is improved. If the average particle diameter of the first photoelectrode is larger than 25 nm, densification does not proceed and carbon may pass through the first photoelectrode and reach the transparent conductive film directly.

【0037】上記技術的課題を解決するためになされた
請求項11の発明は、前記第1光電極の平均孔径が50
nm以下であることを特徴とする請求項1あるいは請求
項7記載の色素増感型太陽電池及びその製造方法であ
る。
According to an eleventh aspect of the present invention, which has been made to solve the above technical problem, the first photoelectrode has an average pore diameter of 50%.
The dye-sensitized solar cell according to claim 1 or 7, and a method for producing the same.

【0038】請求項11により、第1光電極の平均細孔
径が50nm以下であると、第2光電極を通過したカー
ボンの通過を第1光電極で防ぐことができ、直接カーボ
ンが光電極側に設置された透明導電膜に接することな
く、焼成後も太陽電池セルに組み付けると光を照射した
際に光電極と対極に電位が発生し、電池として完全に機
能し、また電池生産の歩留まりが向上し変換効率が向上
する。第1光電極の平均細孔径が50nmより大である
と、カーボンが第1光電極を通過し、透明導電膜に直達
する可能性がある。
According to the eleventh aspect, when the average pore diameter of the first photoelectrode is 50 nm or less, the passage of carbon that has passed through the second photoelectrode can be prevented by the first photoelectrode, and the carbon can be directly transferred to the photoelectrode side. If it is assembled to a solar cell even after firing without contacting the transparent conductive film installed in the cell, a potential is generated between the photoelectrode and the counter electrode when irradiated with light, and the battery functions completely as a battery, and the yield of battery production is reduced. The conversion efficiency is improved. If the average pore diameter of the first photoelectrode is larger than 50 nm, carbon may pass through the first photoelectrode and reach the transparent conductive film directly.

【0039】上記技術的課題を解決するためになされた
請求項12の発明は、前記第1光電極の平均膜厚が1μ
m以下であることを特徴とする請求項1あるいは請求項
7記載の色素増感型太陽電池及びその製造方法である。
According to a twelfth aspect of the present invention for solving the above technical problem, the first photoelectrode has an average film thickness of 1 μm.
8. The dye-sensitized solar cell according to claim 1 or 7, and a method for producing the same.

【0040】請求項12により、第1光電極の平均膜厚
が1μm以下であるとクラックの入りやすい緻密質な第
1光電極のクラックが無くなり、第2光電極を通過した
カーボンの通過を第1光電極で防ぐことができ、直接カ
ーボンが光電極側に設置された透明導電膜に接すること
なく 焼成後も太陽電池セルに組み付けると光を照射し
た際に光電極と対極に電位が発生し、電池として完全に
機能し、また電池生産の歩留まりが向上し変換効率が向
上する。第1光電極の平均膜厚が1μmより大であると
クラックが発生し、カーボンが第1光電極を通過し、透
明導電膜に直達する可能性がある。
According to the twelfth aspect, when the average film thickness of the first photoelectrode is 1 μm or less, cracks in the dense first photoelectrode that are apt to crack are eliminated, and the passage of carbon that has passed through the second photoelectrode is prevented. It can be prevented by one photoelectrode, and carbon is not directly in contact with the transparent conductive film installed on the photoelectrode side. If it is assembled to the solar cell even after firing, a potential is generated between the photoelectrode and the counter electrode when irradiated with light. It functions completely as a battery, improves the yield of battery production, and improves conversion efficiency. If the average thickness of the first photoelectrode is larger than 1 μm, cracks may occur, and carbon may pass through the first photoelectrode and reach the transparent conductive film directly.

【0041】上記技術的課題を解決するためになされた
請求項13の発明は、請求項13により、前記第2光電
極の平均粒子径が250nmより小さく、前記セパレー
タの平均粒子径は250nmより大であることを特徴と
する請求項1あるいは請求項7記載の色素増感型太陽電
池及びその製造方法である。
According to a thirteenth aspect of the present invention, an average particle diameter of the second photoelectrode is smaller than 250 nm, and an average particle diameter of the separator is larger than 250 nm. The dye-sensitized solar cell according to claim 1 or 7, and a method for manufacturing the same.

【0042】請求項13により、第2光電極の平均粒子
径が250nmより小さく、セパレータの平均粒子径が
250nmより大であると、セパレータに比べ第2光電
極の気孔率は減少しセパレータの細孔を通過したカーボ
ンが第2光電極によって通過量を減少することができ、
請求項1と同様の効果である直接カーボンが光電極側に
設置された透明導電膜に接することなく、焼成後も太陽
電池セルに組み付けると光を照射した際に光電極と対極
に電位が発生し、電池として完全に機能し、また電池生
産の歩留まりが向上し変換効率も向上する。また電気化
学的には直接反応場とならないセパレータに大きな構成
粒子を用いることにより、入射光反射や散乱が増加され
る効果があり、変換効率が向上する一因となる。
According to the thirteenth aspect, when the average particle size of the second photoelectrode is smaller than 250 nm and the average particle size of the separator is larger than 250 nm, the porosity of the second photoelectrode is reduced as compared with the separator, and the separator is thinner. The amount of carbon passing through the hole can be reduced by the second photoelectrode,
The same effect as in claim 1, wherein the potential is generated between the photoelectrode and the counter electrode when irradiated with light when the carbon is assembled to the solar cell even after firing without direct contact with the transparent conductive film provided on the photoelectrode side. However, it functions completely as a battery, improves the yield of battery production, and improves the conversion efficiency. In addition, by using large constituent particles for a separator which does not directly act as a reaction field electrochemically, there is an effect that incident light reflection and scattering are increased, which contributes to an improvement in conversion efficiency.

【0043】第2光電極の平均粒子径が250nm以上
で、セパレータの平均粒子径が250nm以下である
と、セパレータを通過したカーボンが第2光電極を容易
の通過し透明導電膜に直達する可能性が増加する。
When the average particle diameter of the second photoelectrode is 250 nm or more and the average particle diameter of the separator is 250 nm or less, carbon passing through the separator can easily pass through the second photoelectrode and directly reach the transparent conductive film. Gender increases.

【0044】上記技術的課題を解決するためになされた
請求項14の発明は、前記第2光電極の平均膜厚が7μ
mより大であり、前記セパレータの平均膜厚が7μmよ
り小さいことを特徴とする請求項1あるいは請求項7記
載の色素増感型太陽電池及びその製造方法である。
In order to solve the above-mentioned technical problem, the invention of claim 14 is directed to an invention wherein the average thickness of the second photoelectrode is 7 μm.
The dye-sensitized solar cell according to claim 1 or 7, wherein the average thickness of the separator is smaller than 7 µm.

【0045】請求項14は、第2光電極の平均膜厚が7
μmより大きく、セパレータの平均膜厚が7μm以下で
あると、第2光電極の平均膜厚をセパレータより大きく
することでセパレータの細孔を通過したカーボンが第2
光電極によって通過量を減少することができ、請求項1
と同様の効果である直接カーボンが光電極側に設置され
た透明導電膜に接することなく 焼成後も太陽電池セル
に組み付けると光を照射した際に光電極と対極に電位が
発生し、電池として完全に機能し、また電池生産の歩留
まりが向上し変換効率も向上する。また電池セル内に電
気化学的には直接反応場とならないセパレータの体積を
相対的に減少させることにより、第2光電極と対極の反
応場が増加するため 変換効率が向上する一因となる。
第2光電極の平均膜厚が7μm以下で、セパレータの平
均膜厚が7μmより大であるとセパレータを通過したカ
ーボンが第2光電極を容易の通過し透明導電膜に直達す
る可能性が増加する。
According to a fourteenth aspect, the average thickness of the second photoelectrode is 7 mm.
If the average thickness of the second photoelectrode is larger than that of the separator, the carbon that has passed through the pores of the separator is reduced to the second thickness.
2. The amount of passage can be reduced by the photoelectrode,
The same effect as above, without direct carbon contacting the transparent conductive film installed on the photoelectrode side, when assembled into a solar cell even after firing, a potential is generated at the photoelectrode and the counter electrode when irradiated with light, and as a battery It is fully functional and improves battery production yield and conversion efficiency. Also, by relatively reducing the volume of the separator that does not act as a reaction field electrochemically in the battery cell, the reaction field between the second photoelectrode and the counter electrode increases, which contributes to an improvement in conversion efficiency.
If the average film thickness of the second photoelectrode is 7 μm or less and the average film thickness of the separator is larger than 7 μm, the possibility that carbon passing through the separator easily passes through the second photoelectrode and directly reaches the transparent conductive film increases. I do.

【0046】[0046]

【発明の実施の形態】以下、本発明について図1〜図7
を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to FIGS.
This will be described with reference to FIG.

【0047】本発明は、図2に示すように、ガラス基板
31に透明導電膜32が積層され、前記透明導電膜32
に緻密質からなる第1光電極34が積層され、前記第1
光電極34に多孔質からなる第2光電極35が積層さ
れ、前記第2光電極35に多孔質からなるセパレータ3
6が積層され、前記セパレータに多孔質であるカーボン
層からなる対極37が積層され、前記第1光電極34と
前記第2光電極35には光増感色素が担持され、前記透
明導電膜32と前記対極37の間に電解質が充填された
色素増感型太陽電池であって、前記第1光電極34の構
成粒子の平均粒子径は前記第2光電極35の構成粒子の
平均粒子径よりも小さい。
According to the present invention, as shown in FIG. 2, a transparent conductive film 32 is
A first photoelectrode 34 made of dense material is laminated on the first
A second photoelectrode 35 made of porous material is laminated on the photoelectrode 34, and the separator 3 made of porous material is formed on the second photoelectrode 35.
6, a counter electrode 37 made of a porous carbon layer is laminated on the separator, a photosensitizing dye is carried on the first photoelectrode 34 and the second photoelectrode 35, and the transparent conductive film 32 is And a counter-electrode 37 filled with an electrolyte, wherein the average particle diameter of the constituent particles of the first photoelectrode 34 is larger than the average particle diameter of the constituent particles of the second photoelectrode 35. Is also small.

【0048】前記第1光電極34の平均孔径は前記対極
37のカーボン2次粒子の平均粒子径より小さい。第1
光電極34の平均粒子径は25nm以下であることが好
ましい。またその平均粒径は50nm以下であることが
好ましい。
The average pore size of the first photoelectrode 34 is smaller than the average particle size of the carbon secondary particles of the counter electrode 37. First
The average particle diameter of the photoelectrode 34 is preferably 25 nm or less. The average particle size is preferably 50 nm or less.

【0049】また、図3に示すように、前記対極37は
前記セパレータ36端面より内方に積層する構造によっ
て電池内部でのショート防止効果を図ることができる。
As shown in FIG. 3, the counter electrode 37 has a structure in which the counter electrode 37 is laminated inward from the end face of the separator 36, so that an effect of preventing a short circuit inside the battery can be achieved.

【0050】また上記色素増感型太陽電池の製造方法
は、図1に示すように、ガラス基板31に透明導電膜3
2を積層する工程と、前記透明導電膜32に緻密質から
なる第1光電極34を積層する工程と、前記第1光電極
34に多孔質からなる第2光電極35を積層する工程
と、前記第2光電極35に多孔質であるセパレータ36
を積層する工程と、前記セパレータ36に多孔質である
カーボン層からなる対極37を積層する工程とからなる
色素増感型太陽電池の製造方法であって、前記第1光電
極34の構成粒子径は前記第2光電極35の構成粒子の
平均粒子径よりも小さい。
In the method of manufacturing the dye-sensitized solar cell, as shown in FIG.
2, a step of stacking a dense first photoelectrode 34 on the transparent conductive film 32, and a step of stacking a porous second photoelectrode 35 on the first photoelectrode 34. A porous separator 36 is provided on the second photoelectrode 35.
And a step of laminating a counter electrode 37 made of a porous carbon layer on the separator 36, wherein the particle diameter of the first photoelectrode 34 is Is smaller than the average particle diameter of the constituent particles of the second photoelectrode 35.

【0051】上記工程は、前記各工程の積層はパターン
を形成したスクリーン印刷にて印刷、乾燥、焼成をそれ
ぞれ各工程で行う製造方法と、前記各工程の積層はパタ
ーンを形成したスクリーン印刷法にて、印刷、乾燥をそ
れぞれ各工程で行い、前記対極の乾燥後、一度に前記第
1光電極、前記第2光電極、前記セパレータ、前記対極
を焼成する製造方法とがある。
In the above-mentioned steps, the lamination in each of the steps is performed by a printing method in which printing, drying and baking are performed in each step by screen printing in which a pattern is formed, and the lamination in each step is performed by a screen printing method in which a pattern is formed. Then, there is a manufacturing method in which printing and drying are performed in respective steps, and after drying the counter electrode, the first photoelectrode, the second photoelectrode, the separator, and the counter electrode are fired at once.

【0052】次に具体的にその実施例を、実施例1から
実施例3に基づいて説明する。
Next, the embodiment will be specifically described based on Embodiments 1 to 3.

【0053】(実施例1)純粋に第1光電極34の緻密
層がカーボンと透明導電膜32との接触を防止する効果
を確認するため1セルのみの構成にした。
(Example 1) In order to confirm the effect of preventing the dense layer of the first photoelectrode 34 from purely contacting the carbon and the transparent conductive film 32, only one cell was used.

【0054】図1(a)はガラス基板加工を示す工程図
である。厚み1.1mmのガラスに0.5μmのフッ素
ドープ酸化スズからなる透明導電膜32付きのガラス基
板31にセルを直列接続させるためセル間の絶縁を目的
に、50μm幅のスクライブ33をYAGレーザーにて
加工した。
FIG. 1A is a process diagram showing the processing of a glass substrate. To connect cells in series to a glass substrate 31 having a transparent conductive film 32 made of 0.5 μm fluorine-doped tin oxide on 1.1 mm thick glass, a 50 μm width scribe 33 is applied to a YAG laser for the purpose of insulating between cells. Processed.

【0055】図1(b)は第1光電極(光電極緻密層)
34形成のためのマスクのスクリーン印刷を示す工程図
である。図1(c)は第1光電極34のディップコート
またはスクリーン印刷(パターン印刷)を示す工程図で
ある。
FIG. 1B shows a first photoelectrode (photoelectrode dense layer).
It is a flowchart showing the screen printing of the mask for 34 formation. FIG. 1C is a process diagram showing dip coating or screen printing (pattern printing) of the first photoelectrode 34.

【0056】図1(b)、(c)に示すよう、第1光電
極(緻密層)34は次のように形成される。予め塗布し
ない部分を焼成温度で熱分解ガス化するペースト材料か
らなるマスクMでマスクし、アナターゼ100%の酸化
チタン平均1次粒子径6nmのチタニアゾルを数回ディ
ップコート、もしくは平均粒子径25nm以下の酸化チ
タンを分散し、セルロース系バインダを混合した。
As shown in FIGS. 1B and 1C, the first photoelectrode (dense layer) 34 is formed as follows. A portion which is not applied in advance is masked with a mask M made of a paste material which is thermally decomposed and gasified at a firing temperature, and dip-coated several times with a titania sol having anatase 100% titanium oxide having an average primary particle diameter of 6 nm or an average particle diameter of 25 nm or less. Titanium oxide was dispersed and a cellulosic binder was mixed.

【0057】その後、ブチルカルビトール等溶媒置換し
ながら混合し、最終的に酸化チタン固形分濃度16wt
%になるようスクリーン印刷用のペーストを調合したも
のを使用する。印刷後、乾燥し、450°Cで焼成し
た。膜厚は1μm以内で第1光電極34が形成される。
Thereafter, mixing was performed while replacing the solvent such as butyl carbitol, and finally, the solid content of titanium oxide was 16 wt.
% Of a paste for screen printing is used. After printing, it was dried and baked at 450 ° C. The first photoelectrode 34 is formed with a thickness within 1 μm.

【0058】図1(d)は第2光電極35の印刷(パタ
ーン印刷)・乾燥・焼成を示す工程図である。
FIG. 1D is a process diagram showing printing (pattern printing), drying and baking of the second photoelectrode 35.

【0059】第2光電極35は、次のように形成され
る。アナターゼ100%の酸化チタン平均粒子径250
nm以下の粒子を分散し、セルロース系バインダを混合
した。その後ブチルカルビトール等溶媒置換しながら混
合し、最終的に酸化チタン固形分濃度10wt%になる
ようスクリーン印刷用のペーストを調合した。印刷乾燥
後450°Cで焼成した。膜厚8−17μm(平均膜厚
12.5μm)の第2光電極35が形成された。
The second photoelectrode 35 is formed as follows. Mean particle size of titanium oxide of 100% anatase 250
Particles of nm or less were dispersed, and a cellulose-based binder was mixed. Thereafter, mixing was carried out while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was finally prepared so as to have a titanium oxide solid content concentration of 10 wt%. After printing and drying, it was baked at 450 ° C. The second photoelectrode 35 having a thickness of 8 to 17 μm (average thickness of 12.5 μm) was formed.

【0060】図1(e)はセパレータ36の印刷(パタ
ーン印刷)・乾燥・焼成を示す工程図である。
FIG. 1E is a process diagram showing printing (pattern printing), drying and baking of the separator 36.

【0061】セパレータ(多孔質層)36は、次のよう
に形成される。ルチル100%の酸化チタン平均粒子径
が250nmより大きな粒子と平均粒子径20nmの酸
化ジルコニウムを分散し、セルロース系バインダ混合し
た。その後ブチルカルビトール等溶媒置換しながら混合
し、最終的に酸化チタン、酸化ジルコニウム固形分濃度
15wt%になるようスクリーン印刷用のペーストを調
合し、印刷乾燥後450°Cで焼成した。膜厚3−7μ
m(平均膜厚5μm)のセパレータ36が形成された。
The separator (porous layer) 36 is formed as follows. Rutile 100% titanium oxide particles having an average particle diameter of more than 250 nm and zirconium oxide having an average particle diameter of 20 nm were dispersed and mixed with a cellulose binder. Thereafter, mixing was performed while replacing the solvent such as butyl carbitol, and a paste for screen printing was finally prepared so as to have a solid content of titanium oxide and zirconium oxide of 15 wt%. Film thickness 3-7μ
m (average film thickness: 5 μm) was formed.

【0062】図1(f)は対極(多孔質カーボン層)3
7の印刷(パターン印刷)・乾燥・焼成を示す工程図で
ある。
FIG. 1F shows a counter electrode (porous carbon layer) 3
FIG. 7 is a process chart showing printing (pattern printing), drying, and baking of No. 7;

【0063】対極37は、次のように形成される。比表
面積800m/g以上のカーボンブラック、平均粒子
径5μmのグラファイト、平均1次粒子径6nmの酸化
チタンを1:5:1とし、セルロース系バインダを混合
した。その後ブチルカルビトール等、溶媒置換しながら
混合し、最終的に固形分濃度30wt%になるようペー
ストを調合し、印刷乾燥後450°Cで焼成した。膜厚
50−60μmの対極37が形成された。
The counter electrode 37 is formed as follows. Carbon black having a specific surface area of 800 m 2 / g or more, graphite having an average particle diameter of 5 μm, and titanium oxide having an average primary particle diameter of 6 nm were 1: 5: 1, and a cellulose binder was mixed. Thereafter, mixing was performed while replacing the solvent with butyl carbitol or the like, and a paste was prepared so that the solid content concentration was finally 30 wt%. After printing and drying, the paste was baked at 450 ° C. The counter electrode 37 having a thickness of 50 to 60 μm was formed.

【0064】なお上記セパレータ36は、直接接続する
対極37(多孔質カーボン層)がスクライブラインを超
える必要があり、第1光電極34及び第2光電極35
と、対極37の側面での直接接触を避けるため、断面L
字状に形成され、その一端(図1、図2の下端)がガラ
ス基板31のスクライブ33と接触している。
In the separator 36, the counter electrode 37 (porous carbon layer) directly connected must exceed the scribe line, and the first photoelectrode 34 and the second photoelectrode 35
To avoid direct contact on the side of the counter electrode 37,
One end (the lower end in FIGS. 1 and 2) is in contact with the scribe 33 of the glass substrate 31.

【0065】また対極37も断面L字状に形成され、直
接接合を形成する際の電池のインターコネクションとし
て、その一端(図1、図2の下端)が透明導電膜32と
接触している。
The counter electrode 37 is also formed in an L-shaped cross section. One end (lower end in FIGS. 1 and 2) of the counter electrode 37 is in contact with the transparent conductive film 32 as a battery interconnection when forming a direct junction.

【0066】上記工程により形成された実施例1の電極
本体D1の断面斜視図を図2に示す。また図3は、対極
37をセパレータ36の端面よりも内部に後退させて積
層させた電極本体D2の断面斜視図である。これは上記
の対極37がセパレータ36の端面よりdの距離、内方
に積層されている。dの距離は、一般的には0.2mm
から0.5mmが望ましい。
FIG. 2 is a sectional perspective view of the electrode body D1 of the first embodiment formed by the above steps. FIG. 3 is a cross-sectional perspective view of the electrode body D2 in which the counter electrode 37 is retracted inside the end face of the separator 36 and stacked. In this configuration, the counter electrode 37 is stacked inward from the end face of the separator 36 by a distance d. The distance of d is generally 0.2 mm
To 0.5 mm is desirable.

【0067】また、図4は、比較例としての従来技術で
ある第1光電極(緻密層)34のない電極DPの断面斜
視図である。
FIG. 4 is a cross-sectional perspective view of an electrode DP without a first photoelectrode (dense layer) 34 according to the prior art as a comparative example.

【0068】次に、各上記電極ともアセトニトリルに色
素cis−Di(tiocyanato)−bis
(2,2−bipyridyl−4,4‘−dicar
boxylate)−Rurheniumを3×10
−4mol/L濃度になるよう溶解し、色素溶液とした
ものに、上記対極まで焼成した電極本体D1、D2、D
Pを含浸し、色素を第1光電極34と第2光電極35に
吸着させた。
Next, a dye cis-Di (tiocyanato) -bis was added to acetonitrile for each of the above electrodes.
(2,2-bipyridyl-4,4'-dicar
boxylate) -Rurhenium 3 × 10
-4 mol / L, dissolved in a dye solution, and baked to the above counter electrode D1, D2, D
P was impregnated, and the dye was adsorbed on the first photoelectrode 34 and the second photoelectrode 35.

【0069】さらに、図5に示すように、熱融着シート
としてアイオノマーのSurlyn(商標名:デュポン
製)をラミネートしたPETフィルム38をトップカバ
ーとして透明導電膜32が露出している部分を熱融着
し、電極本体D1、D2、DPに対応するセルC1、C
2、CPを作成した。
Further, as shown in FIG. 5, a PET film 38 laminated with an ionomer Surlyn (trade name: manufactured by DuPont) was used as a heat-sealing sheet as a top cover, and the portion where the transparent conductive film 32 was exposed was heat-sealed. And the cells C1, C2 corresponding to the electrode bodies D1, D2, DP
2. CP was created.

【0070】その後、アセトニトリルに0.03mol
/LのI(ヨウ素)と 0.3mol/LのLiI
(リチウムヨウ素)を溶解したものを、電解液とし、上
記のセルC1の空間部Vに注入し封止を行い、色素増感
型太陽電池セルC11を製造した。セルC2、CPも同
様な方法で色素増感型太陽電池セルC22、CPPを製
造した。
Then, 0.03 mol was added to acetonitrile.
/ L of I 2 (iodine) and 0.3 mol / L of LiI
A solution in which (lithium iodine) was dissolved was used as an electrolytic solution, injected into the space V of the cell C1, and sealed to produce a dye-sensitized solar cell C11. For cells C2 and CP, dye-sensitized solar cells C22 and CPP were manufactured in the same manner.

【0071】上記の方法で得られた色素増感型太陽電池
を、それぞれ5ヶづつ作製し、AM1.5スペクトル分
布のキセノンランプを用いたソーラーシミュレータで1
00mW/cm2の条件下の太陽電池特性を測定した。
その結果を表1に示す。
Five dye-sensitized solar cells obtained by the above-described method were manufactured, and five of them were manufactured by a solar simulator using a xenon lamp having an AM1.5 spectral distribution.
The solar cell characteristics under the condition of 00 mW / cm2 were measured.
Table 1 shows the results.

【0072】[0072]

【表1】 表1から、本発明実施例1のNo.6−10、11−1
5のように、光電極を第1光電極34と第2光電極35
の2層とし、第1光電極を緻密層としたものは、従来の
比較例1もNo.1−5に比べ歩留まりが向上した。
[Table 1] From Table 1, it can be seen that the sample No. 6-10, 11-1
5, the first and second photoelectrodes 34 and 35
No. 2 and the first photoelectrode was a dense layer. The yield was improved as compared with 1-5.

【0073】また、対極カーボンの光電極側の透明導電
膜32への浸透による内部ショートの防止の効果も確認
された。電子顕微鏡で第1電極34の緻密層を観察した
が、カーボンが緻密層を貫通し光極側の透明導電膜へ到
達したものはみとめられなかった。
Further, the effect of preventing the internal short circuit due to the penetration of the counter electrode carbon into the transparent conductive film 32 on the photoelectrode side was confirmed. Observation of the dense layer of the first electrode 34 with an electron microscope revealed that no carbon penetrated the dense layer and reached the transparent conductive film on the light electrode side.

【0074】No.15のショートはカーボンが緻密層
を貫通したのではなく、印刷後のレベリングの際、本来
対極37がL字型に印刷−乾燥−焼成されるが、対極3
7のペーストが流れ、コの字型になり透明導電膜32に
接触していることが判った。
No. In the short circuit of No. 15, the carbon did not penetrate the dense layer, and the counter electrode 37 was originally printed in an L-shape, dried and fired at the leveling after printing.
It was found that the paste of No. 7 flowed, became U-shaped, and was in contact with the transparent conductive film 32.

【0075】また実施例1は、変換効率もよく性能も向
上した。この理由は、光電極を第1光電極32、第2光
電極33のように2層以上にすることで光の散乱効率が
向上し、取り出すことのできる電流が散乱効率に応じ上
昇し、出力(変換効率)が向上したと考えられる。
In the first embodiment, the conversion efficiency is good and the performance is improved. The reason for this is that the photoelectrode has two or more layers, such as the first photoelectrode 32 and the second photoelectrode 33, so that the light scattering efficiency is improved, the current that can be taken out increases according to the scattering efficiency, and the output power increases. It is considered that (conversion efficiency) was improved.

【0076】また実施例1のNo.16―25の対極3
6をセパレータ層より小さくしたセルC2からなる色素
増感型太陽電池は、対極36がコの字型にならず、L字
型に印刷−乾燥−焼成されるようになりショートがなく
なり、歩留まりがさらに向上した。これは、対極面積が
減少した分、変換効率も面積減少に応じ若干低下した
が、電池内部でのショート防止効果が確認できた。
In the case of No. 1 of the first embodiment, Counter electrode 3 of 16-25
In the dye-sensitized solar cell including the cell C2 in which 6 is smaller than the separator layer, the counter electrode 36 does not have a U-shape, but is printed, dried, and fired in an L-shape. Further improved. Although the conversion efficiency was slightly reduced as the area of the counter electrode was reduced due to the reduced area, the effect of preventing short circuit inside the battery was confirmed.

【0077】(実施例2)次に、上記の実施例1は単位
セルにより説明したが、モジュールの製造法を図6
(a)から図6(e)に示す。
(Embodiment 2) Next, Embodiment 1 has been described with reference to a unit cell.
(A) to FIG. 6 (e).

【0078】図6(a):100×100mm厚み1.
1mmの透明導電膜500nm付きのガラス基板131
にセルを直列接続させるためセル間絶縁を目的に、50
μm幅のスクライブ133をYAGレーザーを用いて加
工した。
FIG. 6A: 100 × 100 mm thickness 1.
Glass substrate 131 with 500 nm 1 mm transparent conductive film
In order to connect cells in series, 50
A scribe 133 having a width of μm was processed using a YAG laser.

【0079】図6(b):第1光電極(緻密層)134
は、平均粒子径25nm以下の酸化チタンを水に分散
し、セルロース系バインダを混合した。その後ブチルカ
ルビトール等溶媒置換しながら混合し、最終的に酸化チ
タン固形分濃度16wt%になるようスクリーン印刷用
のペーストを調合した。 幅10 mm 長さ90 mmで
7セル分同時に印刷可能なパターンのスクリーンを用
い、印刷後、乾燥し450°Cで焼成した。膜厚は1μ
m以下で形成されていた。
FIG. 6B: First photoelectrode (dense layer) 134
Was prepared by dispersing titanium oxide having an average particle size of 25 nm or less in water and mixing a cellulose binder. Thereafter, mixing was performed while replacing the solvent such as butyl carbitol, and a paste for screen printing was finally prepared so as to have a titanium oxide solid content concentration of 16% by weight. Using a screen having a pattern of 10 mm in width, 90 mm in length, and a pattern capable of simultaneously printing 7 cells, after printing, dried and fired at 450 ° C. The film thickness is 1μ
m or less.

【0080】図6(c):第2光電極(多孔質層)13
5は、酸化チタン平均1次粒子径25nmの粒子を分散
し、セルロース系バインダを混合した。その後ブチルカ
ルビトール等溶媒置換しながら混合し、最終的に酸化チ
タン固形分濃度10wt%になるようスクリーン印刷用
のペーストを調合した。
FIG. 6C: Second photoelectrode (porous layer) 13
In No. 5, particles having an average primary particle diameter of titanium oxide of 25 nm were dispersed, and a cellulose-based binder was mixed. Thereafter, mixing was carried out while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was finally prepared so as to have a titanium oxide solid content concentration of 10 wt%.

【0081】図6(d):スクリーンは第1光電極(緻
密層)134と同様のパターンであるがメッシュを粗く
した。第1光電極(緻密層)134と重なるよう印刷乾
燥後450°Cで焼成した膜の厚みは8−17μmであ
った。
FIG. 6 (d): The screen has the same pattern as the first photoelectrode (dense layer) 134, but the mesh is coarse. The thickness of the film fired at 450 ° C. after printing and drying so as to overlap the first photoelectrode (dense layer) 134 was 8 to 17 μm.

【0082】セパレータ136にはルチル100%の酸
化チタン平均粒子径で250nmより大きな粒子と平均
1次粒子径20nmの酸化ジルコニウムを分散しセルロ
ース系バインダ混合した。その後ブチルカルビトール等
溶媒置換しながら混合し、最終的に酸化チタン、酸化ジ
ルコニウム固形分濃度15wt%になるようスクリーン
印刷用のペーストを調合した。 幅11mm 長さ90m
mで7セル分、第1光電極134の端面にパターンを合
わせ、図6(d)に示すように、1 mmは第1光電極1
34の片側を覆うようL字状に印刷した。印刷乾燥後4
50°Cで焼成した。膜厚は3―7μmであった。
The separator 136 contains particles having a mean particle diameter of titanium oxide of 100% rutile and larger than 250 nm.
Zirconium oxide having a primary particle diameter of 20 nm was dispersed and mixed with a cellulose binder. Thereafter, mixing was performed while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was prepared so that the solid content of titanium oxide and zirconium oxide finally became 15 wt%. 11mm in width 90m in length
m, the pattern is aligned with the end face of the first photoelectrode 134 for 7 cells, and as shown in FIG.
34 was printed in an L-shape to cover one side. After printing and drying 4
It was fired at 50 ° C. The thickness was 3-7 μm.

【0083】その後、対極137のカーボンは、比表面
積800m/g以上のカーボンブラック、平均粒子径
5μmのグラファイト、平均1次粒子径6nmの酸化チ
タンを1:5:1としセルロース系バインダを混合し
た。
Thereafter, the carbon at the counter electrode 137 was prepared by mixing carbon black having a specific surface area of 800 m 2 / g or more, graphite having an average particle diameter of 5 μm, and titanium oxide having an average primary particle diameter of 6 nm in a ratio of 1: 5: 1 and a cellulose-based binder. did.

【0084】その後ブチルカルビトール等溶媒置換しな
がら混合し、最終的に固形分濃度30wt%になるよう
ペーストを調合し、最終的に固形分濃度30wt%にな
るようにペーストを調合し、幅12mm 長さ90mm
で7セル分、第1光電極134、第2光電極135の端
面にパターンを合わせ、図6(d)のように、1mmは
セパレータ136の片側を覆うようL字状に印刷した。
印刷乾燥後450°Cで焼成した。膜厚は20−60μ
mであった。4層全体の全体の膜厚は30−75μmで
あった。乾燥、焼成を繰り返した各層は乾燥収縮や焼成
収縮によるクラックは認められなかった。
Thereafter, mixing was carried out while replacing the solvent such as butyl carbitol, and a paste was prepared so as to finally have a solid concentration of 30 wt%, and finally the paste was prepared so as to have a solid concentration of 30 wt%. 90mm length
The pattern was aligned with the end faces of the first photoelectrode 134 and the second photoelectrode 135 for 7 cells, and 1 mm was printed in an L shape so as to cover one side of the separator 136 as shown in FIG.
After printing and drying, it was baked at 450 ° C. Film thickness is 20-60μ
m. The total thickness of all four layers was 30-75 μm. No crack due to drying shrinkage or firing shrinkage was observed in each of the layers repeatedly dried and fired.

【0085】上記の方法で7セル直列接続されたモジュ
ールを3つ作製した。各セルともアセトニトリルに色素
cis−Di(tiocyanato)−bis(2,
2−bipyridyl−4,4‘−dicarbox
ylate)−Rurheniumを3×10−4mo
l/Lを3×10−4mol/L濃度になるよう溶解
し、色素溶液としたものに上記対極まで焼成したセルを
含浸し色素を吸着させた。その後、図7に示すように、
熱融着シートとしてアイオノマーのSurlynをラミ
ネートしたPETフィルム138をトップカバーとして
透明導電膜が露出している部分を熱融着しセルを作成し
た。その後アセトニトリルに0.03mol/LのI
(ヨウ素)と、0.3mol/LのLiI(ヨウ化リチ
ウム)を溶解したものを電解液とし、上記の各空隙部V
に注入し、封止を行い、モジュールMが完成した。
[0086] Three modules connected in series with 7 cells were produced by the above method. In each cell, the dye cis-Di (tiocyanato) -bis (2,2) was added to acetonitrile.
2-bipyridyl-4,4'-dicarbox
ylate) -Rurhenium 3 × 10 −4 mo
1 / L was dissolved to a concentration of 3 × 10 −4 mol / L, and a dye solution was impregnated with the cell fired up to the counter electrode to adsorb the dye. Then, as shown in FIG.
Using a PET film 138 laminated with Surlyn, an ionomer, as a heat-sealing sheet as a top cover, a portion where the transparent conductive film was exposed was heat-sealed to form a cell. Then, 0.03 mol / L of I 2 was added to acetonitrile.
(Iodine) and 0.3 mol / L of LiI (lithium iodide) dissolved therein were used as an electrolytic solution.
To complete sealing. The module M was completed.

【0086】その後、AM1.5スペクトル分布のキセ
ノンランプを用いたソーラーシミュレータで100mW
/cm2の条件下で太陽電池特性を測定した。 (実施例3)次に本発明の実施例3の色素増感型太陽電
池モジュールによる製造法を示す。各工程図の図は実施
例2と同様であり、モジュールの製造法を図6(a)か
ら図6(e)に示す。焼成のタイミングを変更したのが
本製造方法である。
After that, 100 mW by a solar simulator using a xenon lamp having an AM1.5 spectrum distribution.
The solar cell characteristics were measured under the conditions of / cm 2. (Embodiment 3) Next, a manufacturing method using the dye-sensitized solar cell module of Embodiment 3 of the present invention will be described. The drawings of the respective process diagrams are the same as those in Example 2, and the method for manufacturing the module is shown in FIGS. 6 (a) to 6 (e). The present manufacturing method changed the firing timing.

【0087】図6(a):100mm×100mm 厚
み1.1mmの透明導電膜500nm付きのガラス基板
にセルを直列接続させるためセル間絶縁を目的に50μ
m幅のスクライブ133をYAGレーザーを用いて加工
した。
FIG. 6 (a): 50 μm for the purpose of inter-cell insulation for connecting cells in series to a glass substrate having a transparent conductive film of 500 nm having a thickness of 100 mm × 100 mm and 1.1 mm.
A scribe 133 having a width of m was processed using a YAG laser.

【0088】図6(b):第1光電極(緻密層)134
は平均1次粒子径25nmの酸化チタンを分散しセルロ
ース系バインダを混合した。その後ブチルカルビトール
等溶媒置換しながら混合し最終的に酸化チタン固形分濃
度16wt%になるようスクリーン印刷用のペーストを
調合した。幅10mm 長さ90mmで7セル分同時に
印刷可能なパターンのスクリーンを用い、印刷後 十分
に乾燥した。乾燥膜厚は2μm以下で形成されていた。
FIG. 6B: First photoelectrode (dense layer) 134
Was prepared by dispersing titanium oxide having an average primary particle diameter of 25 nm and mixing with a cellulose binder. Thereafter, mixing was performed while replacing the solvent such as butyl carbitol, and a paste for screen printing was finally prepared so as to have a titanium oxide solid content concentration of 16% by weight. Using a screen having a pattern of 10 mm in width and 90 mm in length and capable of printing 7 cells simultaneously, the printing was sufficiently dried. The dry film thickness was 2 μm or less.

【0089】図6(c):第2光電極(多孔質層)13
5は、酸化チタン平均1次粒子径25nmの粒子を分散
しセルロース系バインダを混合した。その後ブチルカル
ビトール等溶媒置換しながら混合し最終的に酸化チタン
固形分濃度10wt%になるようスクリーン印刷用のペ
ーストを調合した。
FIG. 6C: Second photoelectrode (porous layer) 13
In No. 5, particles having an average primary particle diameter of titanium oxide of 25 nm were dispersed and mixed with a cellulose binder. Thereafter, mixing was performed while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was finally prepared so as to have a titanium oxide solid content concentration of 10 wt%.

【0090】図6(d):スクリーンは第2光電極(緻
密層)135と同様のパターンであるがメッシュを粗く
した。光電極緻密層と重なるよう印刷し十分に乾燥した
膜の厚みは25−50μmであった。
FIG. 6 (d): The screen has the same pattern as the second photoelectrode (dense layer) 135, but the mesh is coarse. The thickness of the film printed and sufficiently dried so as to overlap the dense layer of the photoelectrode was 25 to 50 μm.

【0091】セパレータ136にはルチル100%の酸
化チタン平均粒子径250nm以上の粒子と平均粒子径
20nmの酸化ジルコニウムを分散しセルロース系バイ
ンダ混合した。その後ブチルカルビトール等溶媒置換し
ながら混合し、最終的に酸化チタン,酸化ジルコニウム
固形分濃度15wt%になるようスクリーン印刷用のペ
ーストを調合した。 幅11mm 長さ90mmで,7セ
ル分、第1光電極134、第2光電極135の端面にパ
ターンを合わせ、図6(d)に示すように、1mmはセ
パレータ136の片側を覆うよう断面L字状に印刷し
た。印刷後十分に乾燥した。乾燥膜厚は10−25μm
であった。
In the separator 136, 100% rutile particles of titanium oxide having an average particle diameter of 250 nm or more and zirconium oxide having an average particle diameter of 20 nm were dispersed and mixed with a cellulose binder. Thereafter, mixing was performed while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was finally prepared so as to have a solid content concentration of titanium oxide and zirconium oxide of 15% by weight. The pattern is aligned with the end faces of the first photoelectrode 134 and the second photoelectrode 135 for a width of 11 mm, a length of 90 mm, and 7 cells, and a cross section L of 1 mm covers one side of the separator 136 as shown in FIG. Printed in a letter shape. It dried sufficiently after printing. Dry film thickness is 10-25 μm
Met.

【0092】次に、対極137のカーボンは比表面積8
00m/g以上のカーボンブラック、平均粒子径5μ
mのグラファイト、平均1次粒子径6ナノメートルの酸
化チタンを1:5:1としセルロース系バインダを混合
した。
Next, the carbon of the counter electrode 137 has a specific surface area of 8
00m 2 / g or more carbon black, average particle size 5μ
m of graphite, titanium oxide having an average primary particle diameter of 6 nanometers was 1: 5: 1, and a cellulosic binder was mixed.

【0093】その後、ブチルカルビトール等溶媒置換し
ながら混合し、最終的に固形分濃度30wt%になるよ
うペーストを調合し、幅12mm 長さ90mmで7セ
ル分、第2光電極134の端面にパターンを合わせ、図
6(e)に示すように,1 mmは光電極の片側をL字状
に覆うよう印刷した。印刷した後、十分に乾燥し450
°Cで、光電極焼成2層、セパレータ、対極を一度に焼
成した。全体の膜厚は30−85μmであった。
Then, the mixture was mixed while replacing the solvent with butyl carbitol or the like, and a paste was prepared so that the solid content concentration was finally 30 wt%. The pattern was matched, and as shown in FIG. 6E, 1 mm was printed so as to cover one side of the photoelectrode in an L-shape. After printing, dry thoroughly
At 2 ° C., the two fired photoelectrode layers, the separator and the counter electrode were fired at once. The overall film thickness was 30-85 μm.

【0094】乾燥を繰り返した各層は、乾燥収縮による
クラックも発見されず、焼成後もクラックは認められな
かった。上記の方法で7セル直列接続されたモジュール
を3つ作製した。
In each of the layers that were repeatedly dried, no crack due to drying shrinkage was found, and no crack was observed after firing. Three modules with 7 cells connected in series by the above method were produced.

【0095】各セルともアセトニトリルに色素cis−
Di(tiocyanato)−bis(2,2−bi
pyridyl−4,4‘−dicarboxylat
e)−Rurheniumを3X10−4mol/Lを
3X10−4mol/L濃度になるよう溶解し、色素溶
液としたものに上記対極まで焼成したセルを含浸し、色
素を吸着させた。その後、図7に示すように、熱融着シ
ートとしてアイオノマーのSurlynをラミネートし
たPETフィルム138をトップカバーとして透明導電
膜が露出している部分を熱融着しセルを作成した。次
に、アセトニトリルに0.03mol/LのI(ヨウ
素)と 0.3mol/LのLiI(リチウムヨウ素)
を溶解したものを電解液とし、上記の各空隙部Vに注入
し、封止を行い色素増感型太陽電池モジュールMが完成
した。
In each cell, the dye cis- was added to acetonitrile.
Di (tiocyanato) -bis (2,2-bi
pyridyl-4,4'-dicarboxylat
The e) -Rurhenium dissolved so that a 3X10 -4 mol / L to 3X10 -4 mol / L concentration, to that the dye solution to impregnate the cells that are firing to the counter electrode, to adsorb the dye. After that, as shown in FIG. 7, a PET film 138 laminated with ionomer Surlyn was used as a heat-sealing sheet as a top cover, and a portion where the transparent conductive film was exposed was heat-sealed to form a cell. Next, 0.03 mol / L of I 2 (iodine) and 0.3 mol / L of LiI (lithium iodine) were added to acetonitrile.
Was dissolved in each of the above-mentioned void portions V, and the resulting solution was sealed to complete a dye-sensitized solar cell module M.

【0096】その後、AM1.5スペクトル分布のキセ
ノンランプを用いたソーラーシミュレータで100mW
/cm2の条件下で太陽電池特性を測定した。
Thereafter, 100 mW was applied to a solar simulator using a xenon lamp having an AM1.5 spectral distribution.
The solar cell characteristics were measured under the conditions of / cm 2.

【0097】(比較例)図8に比較例として前述の文献
にもとづき3層のセルの色素増感型太陽電池モジュール
の製造法を示す。
Comparative Example FIG. 8 shows, as a comparative example, a method of manufacturing a dye-sensitized solar cell module having three layers of cells based on the above-mentioned literature.

【0098】図8(a)に示すように、100×100
mm 厚み1.1mmの透明導電膜232(厚さ500
nm)付きのガラス基板231にセルを直列接続させる
ためセル間絶縁を目的に50μm幅のスクライブ233
をYAGレーザーを用いて加工した。
As shown in FIG. 8A, 100 × 100
mm 1.1 mm thick transparent conductive film 232 (thickness 500
scribe 233 having a width of 50 μm for the purpose of insulating cells from each other in order to connect cells in series to a glass substrate 231 with
Was processed using a YAG laser.

【0099】光電極235は酸化チタン平均粒子径25
nm以下の粒子を分散しセルロース系バインダを混合し
た。その後ブチルカルビトール等溶媒置換しながら混合
し最終的に酸化チタン固形分濃度10wt%になるよう
スクリーン印刷用のペーストを調合した。
The photoelectrode 235 has a titanium oxide average particle diameter of 25.
Particles of nm or less were dispersed and a cellulose binder was mixed. Thereafter, mixing was performed while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was finally prepared so as to have a titanium oxide solid content concentration of 10 wt%.

【0100】図8(b)に示すように、スクリーンは、
幅90mm 長さ90mmで、印刷可能なパターンのス
クリーンを用いた。印刷、乾燥後450°Cで焼成し
た。膜の厚みは10−15μmであった。
As shown in FIG. 8B, the screen is
A screen with a printable pattern having a width of 90 mm and a length of 90 mm was used. After printing and drying, it was baked at 450 ° C. The thickness of the film was 10-15 μm.

【0101】図8(c)に示すように、焼成後の光電極
235の膜を超硬製のニードルにて7セルが直列接続で
きるよう所定位置にスクライブを行った。このとき、局
所的に焼成中にできたと思われるマイクロクラックが発
生していた。
As shown in FIG. 8C, the baked film of the photoelectrode 235 was scribed at a predetermined position with a carbide needle so that seven cells could be connected in series. At this time, microcracks, which are considered to have been locally formed during firing, had occurred.

【0102】図8(d)に示すように、セパレータ23
6にはルチル100%の酸化チタン平均粒子径0.3μ
mの粒子と平均1次粒子径20nmの酸化ジルコニウム
を分散しセルロース系バインダ混合した。
[0102] As shown in FIG.
No. 6 has an average particle diameter of titanium oxide of 100% rutile of 0.3 μm.
m and zirconium oxide having an average primary particle diameter of 20 nm were dispersed and mixed with a cellulose binder.

【0103】図8(e)に示すように、その後ブチルカ
ルビトール等溶媒置換しながら混合し、最終的に酸化チ
タン、酸化ジルコニウム固形分濃度15wt%になるよ
うスクリーン印刷用のペーストを調合した。幅90m
m、長さ90mmで印刷可能なパターンのスクリーンを
用いスクライブを行った光電極235の膜に重なるよう
印刷した。セパレータ236の膜厚は3−5μmであっ
た。焼成後の膜を光電極と同様に、超硬製のニードルに
て7セルが直列接続できるよう所定位置にスクライブを
行った。このとき、セパレータ236にはマイクロクラ
ックの発生が認められなかった。
As shown in FIG. 8 (e), mixing was performed while replacing the solvent with butyl carbitol or the like, and a paste for screen printing was finally prepared so that the solid content of titanium oxide and zirconium oxide became 15 wt%. 90m width
Using a screen having a printable pattern with a length of 90 mm and a length of 90 mm, printing was performed so as to overlap the scribed film of the photoelectrode 235. The thickness of the separator 236 was 3-5 μm. Like the photoelectrode, the fired film was scribed at a predetermined position so that seven cells could be connected in series with a carbide needle. At this time, generation of microcracks was not recognized in the separator 236.

【0104】図8(e)に示すように、その後対極23
7のカーボンを比表面積800m/g以上のカーボン
ブラック、平均粒子径5μmのグラファイト、平均1次
粒子径6nmの酸化チタンを1:5:1としセルロース
系バインダを混合した。その後ブチルカルビトール等溶
媒置換しながら混合し、最終的に固形分濃度30wt%
になるようペーストを調合し、幅90mm 長さ90m
mで、印刷可能なパターンのスクリーンを用いスクライ
ブを行ったセパレータ237の膜に重なるよう印刷し
た。
Then, as shown in FIG.
Carbon No. 7 was prepared by mixing carbon black having a specific surface area of 800 m 2 / g or more, graphite having an average particle diameter of 5 μm, and titanium oxide having an average primary particle diameter of 6 nm in a ratio of 1: 5: 1 and a cellulose binder. After that, mixing was performed while replacing the solvent such as butyl carbitol, and finally the solid concentration was 30 wt%.
Mix paste to make 90mm width 90m
m, printing was performed so as to overlap the film of the scribed separator 237 using a screen having a printable pattern.

【0105】その後、上記印刷されたものを乾燥し、4
50°Cで対極を焼成した。対極の膜厚みは20−60
μmであった。光電極〜対極部全体の膜厚は30−85
μmであった。
Thereafter, the printed matter is dried and dried.
The counter electrode was fired at 50 ° C. The film thickness of the counter electrode is 20-60
μm. The thickness of the entire photoelectrode to the counter electrode is 30 to 85.
μm.

【0106】図8(g)に示すように、焼成後の対極の
膜を超硬製のニードルにて7セルが直列接続できるよう
所定位置にスクライブを行った。上記の方法で7セル直
列接続されたモジュールを3つ作製した。
As shown in FIG. 8 (g), the counter electrode film after firing was scribed at a predetermined position so that seven cells could be connected in series with a carbide needle. Three modules with 7 cells connected in series by the above method were produced.

【0107】その他の色素吸着、モジュールの完成、太
陽電池の特性測定は上記実施例1〜実施例3と同様であ
るので説明は省略する。
The other steps such as dye adsorption, completion of the module, and measurement of the characteristics of the solar cell are the same as those in the first to third embodiments, so that the description will be omitted.

【0108】表2は、実施例2、実施例3、比較例の結
果を表した測定結果である。
Table 2 shows measurement results showing the results of Example 2, Example 3, and Comparative Example.

【0109】[0109]

【表2】 比較例2のNo.1−3はモジュールの測定中にも不安
定な挙動を示し、繰り返しの測定では3回目にモジュー
ルが光電変換を示さなくなった。故障の詳細を一部分解
して調べてみると、熱融着シールが完全除去できなかっ
た光電極層を巻き込み、そこから電解液がしみ出し隣の
セルと液間短絡をしたり、対極237のカーボンが透明
導電膜232に一部接触しマイクロショートが発生して
いた。また光電極235をスクライブした際に透明導電
膜232の一部を損傷した欠陥が認められた。また総じ
て電解液や光電極内部に黒色の対極材料カーボン粒子が
浮遊、付着していた。
[Table 2] No. 2 of Comparative Example 2. 1-3 showed unstable behavior even during the measurement of the module, and the module stopped showing photoelectric conversion for the third time in the repeated measurement. When the details of the failure were partially disassembled and investigated, the heat-sealing seal could not be completely removed and the photoelectrode layer was involved. The electrolyte leaked out of the layer and short-circuited with the next cell. The carbon was partially in contact with the transparent conductive film 232, and a micro short circuit occurred. Further, a defect in which a part of the transparent conductive film 232 was damaged when the photoelectrode 235 was scribed was observed. In general, black carbon particles of the counter electrode material floated and adhered to the electrolyte and the inside of the photoelectrode.

【0110】一方、実施例2においてはいずれもモジュ
ールのセル間シールは良好で、比較例にみられた電解液
がしみ出し、隣のセルとの液短絡は皆無であった。電解
液や光電極内部に黒色の対極材料カーボン粒子が浮遊、
付着もなく、こうしたカーボン粒子はスクライブした際
に除去しきれなかった加工屑が原因と考えられる。
On the other hand, in Example 2, the seal between the cells of the module was good, and the electrolytic solution observed in the comparative example oozed, and there was no liquid short circuit with the adjacent cell. The black counter electrode material carbon particles float inside the electrolyte or photoelectrode,
It is considered that such carbon particles did not adhere, and were caused by processing chips that could not be completely removed when scribing.

【0111】また実施例3においてもいずれもモジュー
ルのセル間シールは良好で、比較例2にみられた電解液
がしみ出しや隣のセルと液短絡は皆無であった。
Also in Example 3, the intercellular seal of the module was good in each case, and there was no leakage of the electrolytic solution and no liquid short-circuit with the adjacent cells as seen in Comparative Example 2.

【0112】実施例2、実施例3とも比較例2と比較し
て変換効率も高いことが確認された。
It was confirmed that both Examples 2 and 3 had higher conversion efficiency than Comparative Example 2.

【0113】以上のことから、光電極を2層以上とし、
透明導電膜に接する1層を緻密層で構成する色素増感型
太陽電池は変換効率の向上と信頼性を高めることが明白
になった。
From the above, the photoelectrode has two or more layers,
It has become clear that a dye-sensitized solar cell in which one layer in contact with a transparent conductive film is composed of a dense layer has improved conversion efficiency and improved reliability.

【0114】また、直列接続するセルで構成されるモジ
ュールの各セルの光電極、セパレータ、対極をそれぞれ
パターンで区切ったスクリーンで印刷後、焼成する事
が、全面を印刷後、加工で、そのセルのパターンを形成
する従来の方法に比べ、クリーンで加工屑が引き起こす
故障を解消する効果が大きいことが判明した。
Also, after printing on a screen in which the photoelectrode, separator, and counter electrode of each cell of the module composed of cells connected in series are separated by a pattern, and firing, printing is performed on the entire surface, and processing is performed on the cell. It has been found that the effect of eliminating the trouble caused by the processing dust is greater than that of the conventional method of forming the pattern of (1).

【0115】[0115]

【発明の効果】本発明の請求項1の発明は、ガラス基板
に透明導電膜が積層され、前記透明導電膜に緻密質から
なる第1光電極が積層され、前記第1光電極に多孔質か
らなる第2光電極が積層され、前記第2光電極に多孔質
からなるセパレータが積層され、前記セパレータに多孔
質であるカーボン層からなる対極が積層され、前記第1
光電極と前記第2光電極には光増感色素が担持され、前
記透明導電膜と前記対極の間に電解質が充填された色素
増感型太陽電池であって、前記第1光電極の構成粒子の
平均粒子径は前記第2光電極の構成粒子の平均粒子径よ
りも小さいことを特徴とする色素増感型太陽電池である
ので、第1光電極に第2光電極よりも微細な平均粒子径
をもつ構成粒子を用いることにより第1光電極は第2光
電極に比べ緻密化される。カーボンを主体とする多孔質
対極の印刷の際、例えば多孔質からなるセパレータや第
2光電極に浸透しても透明導電膜に接触する第1光電極
層が緻密化しており、第2光電極を通過したカーボンの
通過を防ぎ、直接カーボンが光電極側に設置された透明
導電膜に接することなく、焼成後も太陽電池セルに組み
付けると光を照射した際に光電極と対極に電位が発生
し、電池として完全に機能し、また電池生産の歩留まり
が向上し変換効率が向上する。
According to the first aspect of the present invention, a transparent conductive film is laminated on a glass substrate, a dense first photoelectrode is laminated on the transparent conductive film, and a porous material is formed on the first photoelectrode. A second photoelectrode comprising: a second electrode; a second electrode having a porous separator laminated thereon; a second electrode having a porous carbon layer laminated on the separator;
A dye-sensitized solar cell, in which a photosensitizing dye is supported on a photoelectrode and the second photoelectrode, and an electrolyte is filled between the transparent conductive film and the counter electrode, wherein the configuration of the first photoelectrode is Since the dye-sensitized solar cell is characterized in that the average particle size of the particles is smaller than the average particle size of the constituent particles of the second photoelectrode, the first photoelectrode has a finer average particle size than the second photoelectrode. By using constituent particles having a particle diameter, the first photoelectrode is more dense than the second photoelectrode. When printing a porous counter electrode mainly composed of carbon, for example, the first photoelectrode layer that is in contact with the transparent conductive film even if it permeates the porous separator or the second photoelectrode is dense, and the second photoelectrode Prevents the passage of carbon that has passed through, and the carbon is not directly in contact with the transparent conductive film installed on the photoelectrode side, and when assembled into a solar cell even after firing, a potential is generated at the photoelectrode and the counter electrode when irradiated with light In addition, it functions completely as a battery, and the yield of battery production is improved and the conversion efficiency is improved.

【0116】請求項7の発明は、本発明の請求項1の製
造方法に関する発明であって、ガラス基板に透明導電膜
を積層する工程と、前記透明導電膜に緻密質からなる第
1光電極を積層する工程と、前記第1光電極に多孔質か
らなる第2光電極を積層する工程と、前記第2光電極に
多孔質であるセパレータを積層する工程と、前記セパレ
ータに多孔質であるカーボン層からなる対極を積層する
工程とからなる色素増感型太陽電池の製造方法であっ
て、前記第1光電極の構成粒子径は前記第2光電極の構
成粒子の平均粒子径よりも小さいことを特徴とする色素
増感型太陽電池の製造方法であるので、カーボンを主体
とする多孔質対極を印刷する際、例えば多孔質層からな
るセパレータや第2光電極にカーボンが浸透しても、透
明導電膜に接触する第1光電極を緻密な層にすることに
より第2光電極を通過したカーボンの通過を防ぎ、直接
カーボンが光電極側に設置された透明導電膜に接するこ
となく、焼成後も太陽電池セルに組み付けると光を照射
した際に光電極と対極に電位が発生し、電池として完全
に機能し、また電池生産の歩留まりが向上し、変換効率
が向上する。
[0116] The invention of claim 7 relates to the invention relating to the production method of claim 1 of the present invention, wherein a step of laminating a transparent conductive film on a glass substrate and a step of forming the first photoelectrode made of dense material on the transparent conductive film are performed. Laminating, laminating a porous second photoelectrode on the first photoelectrode, laminating a porous separator on the second photoelectrode, and porous the separator. Laminating a counter electrode comprising a carbon layer, wherein the constituent particle diameter of the first photoelectrode is smaller than the average particle diameter of the constituent particles of the second photoelectrode. Since the method for manufacturing a dye-sensitized solar cell is characterized in that, when printing a porous counter electrode mainly composed of carbon, for example, even if carbon permeates the separator or the second photoelectrode made of a porous layer Contacts the transparent conductive film By making one photoelectrode a dense layer, the passage of carbon that has passed through the second photoelectrode is prevented, and the carbon is not directly in contact with the transparent conductive film provided on the photoelectrode side, but is assembled to the solar cell even after firing. When light is applied, a potential is generated between the photoelectrode and the counter electrode, which fully functions as a battery, improves the yield of battery production, and improves conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例のセルを製造する各工程図。FIG. 1 is a process chart for manufacturing a cell according to a first embodiment.

【図2】第1実施例のセルの断面斜視図。FIG. 2 is a sectional perspective view of the cell of the first embodiment.

【図3】第1実施例において対極をセパレータ端面より
内方に積層した電極本体の断面斜視図。
FIG. 3 is a cross-sectional perspective view of an electrode main body in which a counter electrode is laminated inward from an end face of a separator in the first embodiment.

【図4】比較例の断面斜視図。FIG. 4 is a sectional perspective view of a comparative example.

【図5】第1実施例の色素増感型太陽電池セルの断面
図。
FIG. 5 is a cross-sectional view of the dye-sensitized solar cell of the first embodiment.

【図6】第2実施例のモジュールを製造する工程図。FIG. 6 is a process chart for manufacturing the module of the second embodiment.

【図7】第2実施例のモジュールの断面図。FIG. 7 is a sectional view of a module according to a second embodiment.

【図8】比較例のモジュールを製造する各工程図。FIG. 8 is a process chart for manufacturing a module of a comparative example.

【図9】比較例のモジュール断面図。FIG. 9 is a sectional view of a module according to a comparative example.

【符号の説明】[Explanation of symbols]

31、131、231・・・ガラス基板 34、132・・・第1光電極 35、135、136・・・第2光電極 36、136、236・・・セパレータ 37、137、237・・・対極 31, 131, 231 ... glass substrate 34, 132 ... first photoelectrode 35, 135, 136 ... second photoelectrode 36, 136, 236 ... separator 37, 137, 237 ... counter electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA14 5H032 AA06 AS12 AS16 BB00 BB02 BB10 CC06 CC11 CC14 CC16 EE01 EE08 EE16 HH04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 AA14 5H032 AA06 AS12 AS16 BB00 BB02 BB10 CC06 CC11 CC14 CC16 EE01 EE08 EE16 HH04

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板に透明導電膜が積層され、前
記透明導電膜に緻密質からなる第1光電極が積層され、
前記第1光電極に多孔質からなる第2光電極が積層さ
れ、前記第2光電極に多孔質からなるセパレータが積層
され、前記セパレータに多孔質であるカーボン層からな
る対極が積層され、前記第1光電極と前記第2光電極に
は光増感色素が担持され、前記透明導電膜と前記対極の
間に電解質が充填された色素増感型太陽電池であって、
前記第1光電極の構成粒子の平均粒子径は前記第2光電
極の構成粒子の平均粒子径よりも小さいことを特徴とす
る色素増感型太陽電池。
1. A transparent conductive film is laminated on a glass substrate, and a dense first photoelectrode is laminated on the transparent conductive film.
A second photoelectrode made of a porous material is laminated on the first photoelectrode, a separator made of a porous material is laminated on the second photoelectrode, a counter electrode made of a porous carbon layer is laminated on the separator, A dye-sensitized solar cell in which a photosensitizing dye is supported on the first photoelectrode and the second photoelectrode, and an electrolyte is filled between the transparent conductive film and the counter electrode,
A dye-sensitized solar cell, wherein the average particle diameter of the constituent particles of the first photoelectrode is smaller than the average particle diameter of the constituent particles of the second photoelectrode.
【請求項2】 前記第1光電極の平均孔径は、前記第2
光電極の平均孔径よりも小さく、前記対極のカーボン2
次粒子の平均粒子径よりも小さいことを特徴とする請求
項1記載の色素増感型太陽電池。
2. The method according to claim 1, wherein the average diameter of the first photoelectrode is equal to the second pore size.
Carbon 2 which is smaller than the average pore diameter of the photoelectrode,
The dye-sensitized solar cell according to claim 1, wherein the average particle diameter of the secondary particles is smaller than that of the secondary particles.
【請求項3】 前記第1光電極の平均膜厚は、前記第2
光電極、前記セパレータ、前記対極のいずれの平均膜厚
よりも薄いことを特徴とする請求項1記載の色素増感型
太陽電池。
3. An average film thickness of the first photoelectrode is equal to the second film thickness of the second photoelectrode.
The dye-sensitized solar cell according to claim 1, wherein the average thickness of the photoelectrode, the separator, and the counter electrode is smaller than any of the average thickness.
【請求項4】 前記第2光電極の構成粒子は、前記セパ
レータの構成粒子の平均粒子径よりも小さいことを特徴
とする請求項1記載の色素増感型太陽電池。
4. The dye-sensitized solar cell according to claim 1, wherein constituent particles of the second photoelectrode are smaller than an average particle diameter of constituent particles of the separator.
【請求項5】 前記第2光電極の平均膜厚は、前記セパ
レータの平均膜厚よりも大きいことを特徴とする請求項
1記載の色素増感型太陽電池。
5. The dye-sensitized solar cell according to claim 1, wherein the average thickness of the second photoelectrode is larger than the average thickness of the separator.
【請求項6】 前記の対極は前記セパレータ端面より内
方に積層されていることを特徴とする請求項1記載の色
素増感型太陽電池。
6. The dye-sensitized solar cell according to claim 1, wherein said counter electrode is laminated inside said separator end face.
【請求項7】 ガラス基板に透明導電膜を積層する工程
と、前記透明導電膜に緻密質からなる第1光電極を積層
する工程と、前記第1光電極に多孔質からなる第2光電
極を積層する工程と、前記第2光電極に多孔質であるセ
パレータを積層する工程と、前記セパレータに多孔質で
あるカーボン層からなる対極を積層する工程とからなる
色素増感型太陽電池の製造方法であって、前記第1光電
極の構成粒子径は前記第2光電極の構成粒子の平均粒子
径よりも小さいことを特徴とする色素増感型太陽電池の
製造方法。
7. A step of laminating a transparent conductive film on a glass substrate, a step of laminating a dense first photoelectrode on the transparent conductive film, and a step of laminating a porous second photoelectrode on the first photoelectrode. Manufacturing a dye-sensitized solar cell, comprising: stacking a porous separator on the second photoelectrode; and stacking a counter electrode made of a porous carbon layer on the separator. A method of manufacturing a dye-sensitized solar cell, wherein the constituent particle diameter of the first photoelectrode is smaller than the average particle diameter of the constituent particles of the second photoelectrode.
【請求項8】 前記各工程の積層はパターンを形成した
スクリーン印刷にて印刷、乾燥、焼成をそれぞれ各工程
で行うことを特徴とする請求項7記載の色素増感型太陽
電池の製造方法。
8. The method for producing a dye-sensitized solar cell according to claim 7, wherein the lamination in each of the steps is performed by printing, drying, and baking in screen printing with a pattern formed in each of the steps.
【請求項9】 前記各工程の積層はパターンを形成した
スクリーン印刷法にて、印刷、乾燥をそれぞれ各工程で
行い、前記対極の乾燥後、一度に前記第1光電極、前記
第2光電極、前記セパレータ、前記対極を焼成すること
を特徴とする請求項7記載の色素増感型太陽池の製造方
法。
9. The lamination in each step is performed by printing and drying in each step by a screen printing method in which a pattern is formed, and after the counter electrode is dried, the first photoelectrode and the second photoelectrode are simultaneously formed. The method for producing a dye-sensitized solar pond according to claim 7, wherein the separator and the counter electrode are fired.
【請求項10】 前記第1光電極の平均粒子径は25n
m以下であることを特徴とする請求項1あるいは請求項
7記載の色素増感型太陽電池及びその製造方法。
10. An average particle diameter of the first photoelectrode is 25n.
The dye-sensitized solar cell according to claim 1 or 7, and a method for producing the same.
【請求項11】 前記第1光電極の平均孔径が50nm
以下であることを特徴とする請求項1あるいは請求項7
記載の色素増感型太陽電池及びその製造方法。
11. An average pore diameter of the first photoelectrode is 50 nm.
9. The method according to claim 1, wherein:
The dye-sensitized solar cell according to the above and a method for producing the same.
【請求項12】 前記第1光電極の平均膜厚が1μm以
下であることを特徴とする請求項1あるいは請求項7記
載の色素増感型太陽電池及びその製造方法。
12. The dye-sensitized solar cell according to claim 1, wherein an average film thickness of the first photoelectrode is 1 μm or less.
【請求項13】 前記第2光電極の平均粒子径が250
nmより小さく、前記セパレータの平均粒子径は250
nmより大であることを特徴とする請求項1あるいは請
求項7記載の色素増感型太陽電池及びその製造方法。
13. The second photoelectrode having an average particle diameter of 250.
nm, the average particle size of the separator is 250
8. The dye-sensitized solar cell according to claim 1 or 7, and a method for producing the same.
【請求項14】 前記第2光電極の平均膜厚が7μmよ
り大であり、前記セパレータの平均膜厚が7μmより小
さいことを特徴とする請求項1あるいは請求項7記載の
色素増感型太陽電池及びその製造方法。
14. The dye-sensitized solar cell according to claim 1, wherein the average thickness of the second photoelectrode is larger than 7 μm, and the average thickness of the separator is smaller than 7 μm. Battery and manufacturing method thereof.
JP2001177745A 2001-06-12 2001-06-12 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP5050301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177745A JP5050301B2 (en) 2001-06-12 2001-06-12 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177745A JP5050301B2 (en) 2001-06-12 2001-06-12 Dye-sensitized solar cell and method for producing the same

Publications (3)

Publication Number Publication Date
JP2002367686A true JP2002367686A (en) 2002-12-20
JP2002367686A5 JP2002367686A5 (en) 2010-12-16
JP5050301B2 JP5050301B2 (en) 2012-10-17

Family

ID=19018541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177745A Expired - Fee Related JP5050301B2 (en) 2001-06-12 2001-06-12 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP5050301B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171827A (en) * 2002-11-18 2004-06-17 Aisin Seiki Co Ltd Wet type solar cell
JP2004319872A (en) * 2003-04-18 2004-11-11 Tdk Corp Dye-sensitized photoelectric conversion device
JP2005039013A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Method of depositing porous metal compound thin film, and organic dye-sensitized solar cell
WO2005053081A1 (en) * 2003-11-25 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
WO2005053082A1 (en) * 2003-11-28 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
WO2007046499A1 (en) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
WO2007083461A1 (en) 2006-01-18 2007-07-26 Sharp Kabushiki Kaisha Dye sensitized solar cell and dye sensitized solar cell module
WO2009057445A1 (en) * 2007-10-30 2009-05-07 Sony Corporation Dye-sensitized photoelectric conversion device module, method for manufacturing the same, and electronic device
WO2009075229A1 (en) 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
WO2010001877A1 (en) 2008-07-02 2010-01-07 シャープ株式会社 Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
WO2010044445A1 (en) 2008-10-17 2010-04-22 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
WO2010119775A1 (en) 2009-04-15 2010-10-21 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010125929A1 (en) 2009-04-30 2010-11-04 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2011086869A1 (en) 2010-01-12 2011-07-21 シャープ株式会社 Wet-type solar battery and wet-type solar battery module
JP2011165580A (en) * 2010-02-12 2011-08-25 Hyogo Prefecture Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
WO2011155441A1 (en) 2010-06-09 2011-12-15 シャープ株式会社 Wet-type solar cell and wet-type solar cell module
EP2466647A2 (en) * 2009-08-11 2012-06-20 Dongjin Semichem Co., Ltd. Dye-sensitive solar cell and module consisting of same
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2013164967A1 (en) 2012-05-01 2013-11-07 シャープ株式会社 Photoelectric conversion element and photoelectric conversion module
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
JPWO2014030686A1 (en) * 2012-08-22 2016-07-28 住友大阪セメント株式会社 Dye-sensitized solar cell paste, porous light reflecting insulating layer, and dye-sensitized solar cell
US10014122B2 (en) 2011-06-08 2018-07-03 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
US10916382B2 (en) 2011-06-08 2021-02-09 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
CN113140843A (en) * 2021-05-06 2021-07-20 深圳新源柔性科技有限公司 Thin film battery and battery core printing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219078B2 (en) 2018-12-12 2023-02-07 株式会社ダイセル Separator composition, separator, and production method and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093591A (en) * 1999-09-28 2001-04-06 Toshiba Corp Photoelectric conversion device

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171827A (en) * 2002-11-18 2004-06-17 Aisin Seiki Co Ltd Wet type solar cell
JP2004319872A (en) * 2003-04-18 2004-11-11 Tdk Corp Dye-sensitized photoelectric conversion device
JP2005039013A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Method of depositing porous metal compound thin film, and organic dye-sensitized solar cell
WO2005053081A1 (en) * 2003-11-25 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
AU2004310584C1 (en) * 2003-11-28 2009-10-08 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
WO2005053082A1 (en) * 2003-11-28 2005-06-09 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
AU2004310584B2 (en) * 2003-11-28 2007-11-29 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
WO2007046499A1 (en) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
WO2007083461A1 (en) 2006-01-18 2007-07-26 Sharp Kabushiki Kaisha Dye sensitized solar cell and dye sensitized solar cell module
US10366842B2 (en) 2006-01-18 2019-07-30 Sharp Kabushiki Kaisha Dye-sensitized solar cell and method for manufacturing thereof
WO2009057445A1 (en) * 2007-10-30 2009-05-07 Sony Corporation Dye-sensitized photoelectric conversion device module, method for manufacturing the same, and electronic device
JP2009110796A (en) * 2007-10-30 2009-05-21 Sony Corp Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
WO2009075229A1 (en) 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
EP2897144A1 (en) 2007-12-12 2015-07-22 Sharp Kabushiki Kaisha Photosensitized solar cell module and production method thereof
WO2010001877A1 (en) 2008-07-02 2010-01-07 シャープ株式会社 Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
US9406446B2 (en) 2008-07-02 2016-08-02 Sharp Kabushiki Kaisha Dye-sensitized solar cell, method of producing the same, and dye-sensitized solar cell module
EP2348570A4 (en) * 2008-10-17 2012-08-22 Sharp Kk Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010044445A1 (en) 2008-10-17 2010-04-22 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
EP2348570A1 (en) * 2008-10-17 2011-07-27 Sharp Kabushiki Kaisha Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010119775A1 (en) 2009-04-15 2010-10-21 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010125929A1 (en) 2009-04-30 2010-11-04 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US9607772B2 (en) 2009-04-30 2017-03-28 Sharp Kabushiki Kaisha Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
EP2466647A2 (en) * 2009-08-11 2012-06-20 Dongjin Semichem Co., Ltd. Dye-sensitive solar cell and module consisting of same
EP2466647A4 (en) * 2009-08-11 2013-08-07 Dongjin Semichem Co Ltd Dye-sensitive solar cell and module consisting of same
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US9251965B2 (en) 2010-01-12 2016-02-02 Sharp Kabushiki Kaisha Wet-type solar battery and wet-type solar battery module
WO2011086869A1 (en) 2010-01-12 2011-07-21 シャープ株式会社 Wet-type solar battery and wet-type solar battery module
JP2011165580A (en) * 2010-02-12 2011-08-25 Hyogo Prefecture Photoelectric conversion element, and photovoltaic generator device using the photoelectric conversion element
WO2011155441A1 (en) 2010-06-09 2011-12-15 シャープ株式会社 Wet-type solar cell and wet-type solar cell module
US10014122B2 (en) 2011-06-08 2018-07-03 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
US10916382B2 (en) 2011-06-08 2021-02-09 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2013164967A1 (en) 2012-05-01 2013-11-07 シャープ株式会社 Photoelectric conversion element and photoelectric conversion module
JPWO2014030686A1 (en) * 2012-08-22 2016-07-28 住友大阪セメント株式会社 Dye-sensitized solar cell paste, porous light reflecting insulating layer, and dye-sensitized solar cell
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
CN113140843A (en) * 2021-05-06 2021-07-20 深圳新源柔性科技有限公司 Thin film battery and battery core printing method
CN113140843B (en) * 2021-05-06 2023-08-29 深圳新源柔性科技有限公司 Thin film battery and battery core printing method

Also Published As

Publication number Publication date
JP5050301B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050301B2 (en) Dye-sensitized solar cell and method for producing the same
JP5002595B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
Späth et al. Reproducible manufacturing of dye‐sensitized solar cells on a semi‐automated baseline
JP4278615B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
CN102396101B (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5080018B2 (en) Dye-sensitized solar cell
EP2224533A1 (en) Pigment sensitizing photoelectric conversion element, and its manufacturing method
JP4863662B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
TWI505482B (en) Pigment sensitized solar cells
WO2008139479A2 (en) Photovoltaic cell
JP2007066875A (en) Dye-sensitized solar cell
Pettersson et al. The monolithic multicell: a tool for testing material components in dye‐sensitized solar cells
JP4448478B2 (en) Dye-sensitized solar cell module
Vesce et al. Fabrication of spacer and catalytic layers in monolithic dye-sensitized solar cells
JP2006134870A (en) Dye-sensitized solar cell, its manufacturing method and dye-sensitized solar cell module
JP4615878B2 (en) Dye-sensitized solar cell and solar cell unit panel using the same
WO2013077317A1 (en) Photoelectric conversion element and photoelectric conversion element module
CN101572190A (en) Method for preparing TiO2 slurry of organic carrier system
JP2005302499A (en) Dye-sensitized solar cell
JP2008192376A (en) Solar cell and dye-sensitized solar cell
JP2007172917A (en) Photoelectric transducer
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP2005085491A (en) Dye-sensitized solar cell and its manufacturing process
WO2012086377A1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module, and processes for production of those
JP2007157490A (en) Photoelectric conversion element and photoelectric conversion element module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees