JP2008065999A - Solar cell module and its manufacturing method - Google Patents

Solar cell module and its manufacturing method Download PDF

Info

Publication number
JP2008065999A
JP2008065999A JP2006239498A JP2006239498A JP2008065999A JP 2008065999 A JP2008065999 A JP 2008065999A JP 2006239498 A JP2006239498 A JP 2006239498A JP 2006239498 A JP2006239498 A JP 2006239498A JP 2008065999 A JP2008065999 A JP 2008065999A
Authority
JP
Japan
Prior art keywords
electrode
conductive layer
solar cell
base material
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006239498A
Other languages
Japanese (ja)
Other versions
JP5085078B2 (en
Inventor
Kenichi Okada
顕一 岡田
Takayuki Kitamura
隆之 北村
Hideyuki Shibata
秀幸 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006239498A priority Critical patent/JP5085078B2/en
Publication of JP2008065999A publication Critical patent/JP2008065999A/en
Application granted granted Critical
Publication of JP5085078B2 publication Critical patent/JP5085078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module improved in power generation efficiency by suppressing reverse electron movement without increasing an internal resistance. <P>SOLUTION: The solar cell module is constructed by having a porous oxide semiconductor layer 5 carrying sensitizing dyes, and comprises a first electrode functioning as a window electrode and a second electrode arranged opposed to the first electrode through an electrolyte layer at least at a part, and a first base material having the first electrode or a second base material having the second electrode has a partition part to separate adjoining unit cells. In the first base material, a first conductive layer consisting of a transparent conductive film and a second conductive layer consisting of a tin oxide film are arranged overlapped in the order in a region to make partition parts. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、色素増感型太陽電池をはじめとする湿式太陽電池(以下、DSC(Dye-Sensitized Solar Cell) と略記する。)のユニットセルを直列接続してなる太陽電池モジュール及びその製造方法に関する。   The present invention relates to a solar cell module in which unit cells of wet solar cells (hereinafter abbreviated as DSC (Dye-Sensitized Solar Cell)) including a dye-sensitized solar cell are connected in series, and a method for manufacturing the same. .

DSCを大型化する方法としては、セル内に配線を施して内部抵抗を下げることで電流を得る方法と、基板内でセルを分割し、それぞれのセルを直列に接続することで高電圧低電流のモジュールとする方法がある。このうち、後者のように単一の基板内に直列DSCモジュールを形成する方法としては、電流の経路形状から名付けられたZ型、W型と呼ばれるモジュールが知られている(例えば、特許文献1参照)。   There are two methods for increasing the size of DSC: a method in which wiring is provided in a cell and current is obtained by lowering the internal resistance, and a cell is divided in a substrate and each cell is connected in series to provide a high voltage and low current. There is a method to make the module. Among these, as the method of forming a series DSC module in a single substrate as in the latter, modules called Z-type and W-type named from the current path shape are known (for example, Patent Document 1). reference).

このZ型、W型と呼ばれるモジュールは、例えば、図5及び図6にそれぞれ示すように、何れも基材101と透明導電層102と半導体層103からなる三層構造の透明基板を光が入射する側の作用極(窓側電極)108とし、一方、透明導電層102を塗布した基材101を対極109として、この作用極108と対極109とで電解質層(電解液もしくは電解質ゲル)105を挟み込んだ構造をしている。   As shown in FIGS. 5 and 6, for example, the modules called Z-type and W-type each receive light incident on a transparent substrate having a three-layer structure including a base material 101, a transparent conductive layer 102, and a semiconductor layer 103. On the other hand, the working electrode (window side electrode) 108 is used as the counter electrode 109, and the working electrode 108 and the counter electrode 109 sandwich the electrolyte layer (electrolytic solution or electrolyte gel) 105. It has a structure.

そして、Z型のモジュールは図5に示すように、隔壁106で分割された各セル110a,b,c…を、作用極108はいずれか一方側に、対極109は他方側となるようにそれぞれ分けて配置するとともに、隣接する各セル110a,b,c…の作用極108と対極109とをセル間接続部材107を用いて繋ぎ合わせて電気接続した構造をしている。   As shown in FIG. 5, in the Z-type module, the cells 110a, b, c,... Divided by the partition wall 106 are arranged so that the working electrode 108 is on one side and the counter electrode 109 is on the other side. The working electrodes 108 and the counter electrodes 109 of the adjacent cells 110 a, b, c... Are connected together using an inter-cell connecting member 107 and are electrically connected.

一方、W型のモジュールは、図6に示すように、隔壁106で分割された各セル110a,b,c…を隣接する作用極108と対極109とが交互になるように配置して裏面入射可能とするとともに、隣り合う一対のセル110a,110b,110c…の作用極108と対極109とを同一基材101上に設けて接続した構造をしている。   On the other hand, in the W-type module, as shown in FIG. 6, each cell 110a, b, c... Divided by the partition wall 106 is arranged so that the adjacent working electrode 108 and counter electrode 109 are alternately arranged. The working electrode 108 and the counter electrode 109 of a pair of adjacent cells 110a, 110b, 110c... Are provided on the same base material 101 and connected.

このうちZ型のモジュールは、W型のモジュールのように光電変換効率の劣る裏面入射となるユニットセルが存在しないことから、W型モジュールに比べてモジュール単位での発電効率の向上が図れる。しかしながら、Z型のモジュールは、作用極と対極とを接続する構成が複雑となることから、製造時の作業性が低く、また多くの製造工程も要するので、製造コストが嵩む等の問題がある。   Among them, the Z-type module does not have unit cells that are back-incident with inferior photoelectric conversion efficiency unlike the W-type module, so that the power generation efficiency in module units can be improved compared to the W-type module. However, since the configuration for connecting the working electrode and the counter electrode is complicated, the Z-type module has problems such as low workability at the time of manufacture and many manufacturing steps, resulting in an increase in manufacturing cost. .

Z型のモジュールにおいて良好な特性を得る方法としては、例えば、作用極と対極との間に、オレフィン樹脂からなる絶縁性材料中に導電剤を含んだ導電性材料を設け、両極間を電気的に接続するようにしたものが提案されている(例えば、特許文献2参照)。
また、Z型のモジュールからさらに進んだ構造として、一つの基板上にユニットセルを並べて配し、隣接するユニットセル同士を電気的に接続してなるモノシリック型モジュールを実現しようとするアイデアも提案されている(例えば、特許文献3参照)。
As a method for obtaining good characteristics in a Z-type module, for example, a conductive material containing a conductive agent in an insulating material made of an olefin resin is provided between the working electrode and the counter electrode, and the gap between the two electrodes is electrically There has been proposed one that is connected to (see, for example, Patent Document 2).
In addition, as a structure further advanced from the Z-type module, an idea to realize a monolithic module in which unit cells are arranged side by side on one substrate and the adjacent unit cells are electrically connected is also proposed. (For example, refer to Patent Document 3).

発電効率の面で有利なZ型モジュールを作製する場合、基板上に多くのユニットセルを並べて配し、それぞれ隣接したセルの作用極と対極とを接続部材を用いて直列に接続しなければならないが、接続に用いる領域は非発電領域となるため、極力狭くする必要がある。また、電解液が隣接するユニットセル間を往来しないように、ユニットセル間の分離性に優れた構造の開発が期待されている。   When producing a Z-type module that is advantageous in terms of power generation efficiency, a large number of unit cells must be arranged side by side on the substrate, and the working electrode and counter electrode of each adjacent cell must be connected in series using a connecting member. However, since the region used for connection is a non-power generation region, it is necessary to make it as narrow as possible. In addition, development of a structure excellent in separability between unit cells is expected so that the electrolyte does not travel between adjacent unit cells.

そこで、いずれか一方の電極(対極または作用極)を設けた基材に、隣接するユニットセル間を分離する隔壁部を備えた構成を有するモジュールを考案し、本発明者らは先に出願をしている(特許文献4参照)。   In view of this, a module having a configuration in which a base member provided with any one electrode (counter electrode or working electrode) is provided with a partition wall that separates adjacent unit cells is devised. (See Patent Document 4).

図7に作用極に隔壁部を設けた例を示すように、このモジュールは、隣接するユニットセル120間を分離する隔壁部121を備えた透明部材からなる第一基材122と、第一電極として機能する導電層123と、導電層上に設けた多孔質酸化物半導体層124とからなる構造体を、光が入射する側の窓極(作用極)基板125とする。一方、第二基材126と第二電極として機能する導電層127と、電極部材128とからなる構造体を、対極基板129とする。そして、窓極基板125と対極基板129との間に電解質層130(電解液もしくは電解質ゲル)を設けてなる。また、窓極基板125の導電層123は一端が隔壁部121の頂面まで延び、この頂面において対極基板129との間に導電性接着部材131を設けることによって間接接続するように構成されたものである。   As shown in the example in which the partition wall is provided on the working electrode in FIG. 7, this module includes a first base material 122 made of a transparent member having a partition wall 121 that separates adjacent unit cells 120, and a first electrode. A structure including the conductive layer 123 functioning as a conductive layer and the porous oxide semiconductor layer 124 provided over the conductive layer is used as a window electrode (working electrode) substrate 125 on the light incident side. On the other hand, a structure including the second base material 126, the conductive layer 127 functioning as the second electrode, and the electrode member 128 is referred to as a counter electrode substrate 129. An electrolyte layer 130 (electrolytic solution or electrolyte gel) is provided between the window electrode substrate 125 and the counter electrode substrate 129. Further, one end of the conductive layer 123 of the window electrode substrate 125 extends to the top surface of the partition wall 121, and is configured to be indirectly connected by providing a conductive adhesive member 131 between the top surface and the counter electrode substrate 129. Is.

この構成によれば、従来に比べて隣接するユニットセル間の構成が簡単となり、ひいては組立の容易性を格段と向上させることが可能となる。しかも、上記隔壁部を利用して隣接するユニットセル同士を接続するものであるので、隔壁部の厚みを調整するだけで、ユニットセル同士の接続に用いられて非発電領域となる部分を極力狭めた構成とすることができる。   According to this configuration, the configuration between adjacent unit cells is simplified as compared with the conventional case, and as a result, the ease of assembly can be significantly improved. In addition, since the adjacent unit cells are connected to each other using the partition wall, only the thickness of the partition wall is adjusted, and the portion used as a connection between the unit cells to become a non-power generation region is narrowed as much as possible. Can be configured.

ところで、このようなモジュールに用いられている基材として、ITOを成膜したプラスチック基板が広く用いられている。プラスチック基板を用いた色素増感型太陽電池の窓側電極において、プラスチック基板上に低温成膜した非晶質〜微結晶のITO透明導電膜と電解液との間では、逆電子移動が起きやすい[図7(b)]。その結果、内部抵抗要素Rshの低下による形状因子FF低下が原因となり発電効率が低下してしまう。
内部抵抗要素Rshの向上策として、TiOなどからなる逆電子移動層を成膜することが報告されている[図7(c)]が、この場合、セル間接続抵抗が高くなり、結果として、内部抵抗要素Rsの増加による形状因子FFの低下が原因となり、発電効率が低下してしまう。
特開平8−306399号公報 特開2005−93252号公報 特開2004−303463号公報 特願2005−190247
By the way, as a base material used in such a module, a plastic substrate on which ITO is formed is widely used. In the window-side electrode of a dye-sensitized solar cell using a plastic substrate, reverse electron transfer is likely to occur between the amorphous to microcrystalline ITO transparent conductive film formed on the plastic substrate at a low temperature and the electrolytic solution [ FIG. 7 (b)]. As a result, the power generation efficiency decreases due to the reduction in the shape factor FF due to the decrease in the internal resistance element Rsh.
As a measure for improving the internal resistance element Rsh, it has been reported that a reverse electron transfer layer made of TiO 2 or the like is formed [FIG. 7 (c)]. The power generation efficiency is lowered due to the decrease in the shape factor FF due to the increase in the internal resistance element Rs.
JP-A-8-306399 JP 2005-93252 A JP 2004-303463 A Japanese Patent Application No. 2005-190247

本発明はこのような従来の実情に鑑みて考案されたものであり、内部抵抗を増大させずに逆電子移動を抑制して、発電効率を高めた太陽電池モジュールを提供することを第一の目的とする。
また、本発明は、低温成膜のプロセス条件においても、内部抵抗を増大させずに逆電子移動を抑制して、発電効率を高めた太陽電池モジュールを得ることができる太陽電池モジュールの製造方法を提供することを第二の目的とする。
The present invention has been devised in view of such a conventional situation, and it is a first object to provide a solar cell module with improved power generation efficiency by suppressing reverse electron transfer without increasing internal resistance. Objective.
Further, the present invention provides a method for manufacturing a solar cell module capable of obtaining a solar cell module with improved power generation efficiency by suppressing reverse electron transfer without increasing internal resistance even under low temperature film formation process conditions. The second purpose is to provide it.

本発明の請求項1に記載の太陽電池モジュールは、増感色素を担持させた多孔質酸化物半導体層を有して構成され、窓極として機能する第一電極と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極とを備え、前記第一電極を設ける第一基材もしくは前記第二電極を設ける第二基材は、隣接するユニットセル間を分離する隔壁部を有する太陽電池モジュールであって、前記第一基材は、前記隔壁部間をなす領域において、透明導電膜からなる第一導電層と酸化スズ膜からなる第二導電層が順に重ねて配されていることを特徴とする。
本発明の請求項2に記載の太陽電池モジュールは、請求項1において、前記第一導電層は、その一端が、前記隔壁部の一方の側面とこれに連なる頂面の両方、もしくは前記隔壁部に対向する領域、を覆うように延設されていることを特徴とする。
本発明の請求項3に記載の太陽電池モジュールの製造方法は、増感色素を担持させた多孔質酸化物半導体層を有して構成され、窓極として機能する第一電極と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極とを備え、前記第一電極を設ける第一基材もしくは前記第二電極を設ける第二基材は、隣接するユニットセル間を分離する隔壁部を有する太陽電池モジュールであって、前記第一基材は、前記隔壁部間をなす領域において、透明導電膜からなる第一導電層と酸化スズ膜からなる第二導電層が順に重ねて配されている太陽電池モジュールの製造方法であって、前記第二導電層は200℃以下で形成されることを特徴とする。
The solar cell module according to claim 1 of the present invention includes a porous oxide semiconductor layer carrying a sensitizing dye, a first electrode functioning as a window electrode, and at least a part of an electrolyte layer A first electrode provided with the first electrode or a second substrate provided with the second electrode is provided between adjacent unit cells. In the solar cell module having a partition wall part to be separated, the first base material has a first conductive layer made of a transparent conductive film and a second conductive layer made of a tin oxide film in order in a region between the partition wall parts. It is characterized by being arranged in layers.
The solar cell module according to claim 2 of the present invention is the solar cell module according to claim 1, wherein one end of the first conductive layer has one side surface of the partition wall and a top surface connected to the one side wall, or the partition wall. It extends so that the area | region which opposes may be covered.
The method for producing a solar cell module according to claim 3 of the present invention comprises a porous oxide semiconductor layer carrying a sensitizing dye, a first electrode functioning as a window electrode, and at least a part thereof A first base material on which the first electrode is provided or a second base material on which the second electrode is provided is an adjacent unit. A solar cell module having partition walls separating cells, wherein the first base material is a second conductive layer composed of a transparent conductive film and a tin oxide film in a region between the partition walls. It is a manufacturing method of the solar cell module with which the layers are arranged in order, and the second conductive layer is formed at 200 ° C. or less.

本発明では、窓極として機能する第一電極において、隔壁部間をなす領域において、透明導電膜からなる第一導電層と酸化スズ膜からなる第二導電層が順に重ねて配することで、内部抵抗を増大させずに逆電子移動を抑制することができる。これにより発電効率を高めた太陽電池モジュールを提供することができる。
また、本発明では、前記第二導電層として酸化スズ膜を200℃以下の温度で形成することにより、内部抵抗を増大させずに逆電子移動を抑制できる被膜とすることができる。ゆえに、本発明は、低温成膜が求められるプラスチック基板などの上に、発電効率を高めた太陽電池モジュールを構築可能な製造方法をもたらす。
In the present invention, in the first electrode functioning as the window electrode, in the region formed between the partition walls, the first conductive layer made of a transparent conductive film and the second conductive layer made of a tin oxide film are sequentially stacked and arranged. Reverse electron transfer can be suppressed without increasing the internal resistance. Thereby, a solar cell module with improved power generation efficiency can be provided.
Moreover, in this invention, it can be set as the film which can suppress a reverse electron transfer, without increasing an internal resistance by forming a tin oxide film as a said 2nd conductive layer at the temperature of 200 degrees C or less. Therefore, the present invention provides a manufacturing method capable of constructing a solar cell module with improved power generation efficiency on a plastic substrate or the like that requires low-temperature film formation.

以下、本発明に係る太陽電池モジュールの一実施形態を図面に基づいて説明する。   Hereinafter, one embodiment of a solar cell module according to the present invention will be described with reference to the drawings.

図1は、本発明に係る太陽電池モジュールの一実施形態を示す概略断面図であり、隔壁部を窓極基板側に配置した例である。
本実施形態に係る太陽電池モジュール1は、隣接するユニットセル20間を分離する隔壁部21を備えた透明部材からなる第一基材2と、第一電極として機能する、透明導電膜からなる第一導電層3および酸化スズ膜からなる第二導電層4と、酸化スズ膜上に設けた多孔質酸化物半導体層5とからなる構造体を、光が入射する側の窓極(作用極)基板6とする。一方、第二基材7と第二電極として機能する第三導電層8と、電極部材9とからなる構造体を、対極基板10とする。そして、窓極基板6と対極基板10との間に電解質層11(電解液もしくは電解質ゲル)を設けてなる。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a solar cell module according to the present invention, which is an example in which a partition wall is arranged on the window electrode substrate side.
The solar cell module 1 according to the present embodiment includes a first base material 2 made of a transparent member provided with a partition wall portion 21 that separates adjacent unit cells 20, and a transparent conductive film that functions as a first electrode. A window electrode (working electrode) on the light incident side of a structure composed of one conductive layer 3 and a second conductive layer 4 made of a tin oxide film and a porous oxide semiconductor layer 5 provided on the tin oxide film. The substrate 6 is used. On the other hand, a structure including the second base material 7, the third conductive layer 8 functioning as the second electrode, and the electrode member 9 is referred to as a counter electrode substrate 10. An electrolyte layer 11 (electrolytic solution or electrolyte gel) is provided between the window electrode substrate 6 and the counter electrode substrate 10.

また、本発明の太陽電池モジュール1においては、各ユニットセルごとに、窓極基板6の第一導電層3はその一端が隔壁部21の頂面まで延び、この頂面において、隣接するユニットセルの対極基板10を構成する第三導電層8(又は電極部材9)との間に設けられた導電性接着部材13によって電気的にも機械的にも接合されるように構成されている。   Further, in the solar cell module 1 of the present invention, one end of the first conductive layer 3 of the window electrode substrate 6 extends to the top surface of the partition wall 21 for each unit cell, and on the top surface, adjacent unit cells. It is comprised so that it may join electrically and mechanically with the conductive adhesive member 13 provided between the 3rd conductive layers 8 (or electrode member 9) which comprise the counter electrode board | substrate 10 of this.

そして、本発明の太陽電池モジュール1は、前記第一基材2は、前記隔壁部21の間をなす領域すなわち凹部底面上に透明導電膜からなる第一導電層3を備え、さらに該第一導電層3上に酸化スズ膜からなる第二導電層4が重ねて配されていることを特徴とする。これにより内部抵抗を増大させずに逆電子移動を抑制することができる。その結果、発電効率を高めた太陽電池モジュールを提供することができる。   In the solar cell module 1 of the present invention, the first base material 2 includes a first conductive layer 3 made of a transparent conductive film on a region between the partition walls 21, that is, on the bottom surface of the recess, A second conductive layer 4 made of a tin oxide film is disposed on the conductive layer 3 so as to overlap therewith. Thereby, reverse electron transfer can be suppressed without increasing the internal resistance. As a result, a solar cell module with improved power generation efficiency can be provided.

第一導電層3をなすITO導電層は従来から利用されてはいるが、低温で成膜したアモルファス〜微結晶のITO導電層は、電解液に対して逆電子移動を起こしやすく、色素増感型太陽電池に用いると形状因子FFが低下する傾向があった。色素増感型太陽電池において導電層に起因する形状因子FF低下を解決する手法には、導電層上に酸化チタンや酸化ニオブをコーティングする例が知られているが、いずれも高温で焼成するタイプの色素増感型太陽電池に対するもので、プラスチック基板を用いた場合は効果が再現できない。おそらく、コーティングした層がアモルファス状態になっていることが原因と思われる。本発明者らは、種々材料を検討した結果、コーティング層を低温で焼成する場合には特に酸化スズ(TO)コーティングが優れていることを初めて見いだした。これに基づき、本発明をを考案するに至った。   Although the ITO conductive layer forming the first conductive layer 3 has been used in the past, the amorphous to microcrystalline ITO conductive layer formed at a low temperature is likely to cause reverse electron transfer to the electrolyte, and is dye-sensitized. When used in a solar cell, the shape factor FF tended to decrease. Examples of methods for solving the decrease in form factor FF caused by the conductive layer in dye-sensitized solar cells are known in which the conductive layer is coated with titanium oxide or niobium oxide. The effect cannot be reproduced when a plastic substrate is used. Probably because the coated layer is in an amorphous state. As a result of studying various materials, the present inventors have found for the first time that a tin oxide (TO) coating is particularly excellent when the coating layer is fired at a low temperature. Based on this, the present invention has been devised.

本発明に係る酸化スズ膜からなる第二導電層4は、スパッタ法など、200℃以下の低温成膜が可能な方法で成膜されていることが好ましい。
上記の方法で成膜した酸化スズ膜は導電性が低いため、酸化チタン等からなる多孔質酸化物半導体層からの集電程度の電流密度には使用できるが、隣接セルと接続するための隔壁部21のように電流が集中する箇所には使用できない。そのため隔壁部21を避けてパターニングし、隔壁部21の頂面では直接、第一導電層3が、対極基板10を構成する第三導電層8(又は電極部材9)と触れる構造とする必要がある。
The second conductive layer 4 made of a tin oxide film according to the present invention is preferably formed by a method capable of forming at a low temperature of 200 ° C. or lower, such as a sputtering method.
Since the tin oxide film formed by the above method has low conductivity, it can be used for collecting current from a porous oxide semiconductor layer made of titanium oxide or the like, but can be used as a partition wall for connecting to an adjacent cell. It cannot be used in places where current concentrates like the portion 21. Therefore, it is necessary to perform patterning while avoiding the partition wall portion 21 and to have a structure in which the first conductive layer 3 directly contacts the third conductive layer 8 (or the electrode member 9) constituting the counter electrode substrate 10 on the top surface of the partition wall portion 21. is there.

なお、本発明に係る[ITO(アモルファス)/TO(アモルファス)]複合膜と良く似た構成である[ITO(結晶)/FTO(フッ素をドープしたTO:結晶)]複合膜は特願2003−009758に、[ITO(結晶)/TO(結晶)]複合膜は特開平05−294673号公報に、それぞれ例示されてはいるが、いずれも耐熱性向上を目指したもので、色素増感型太陽電池に適用した際の形状因子向上効果は謳われていない。   The [ITO (crystal) / FTO (fluorine-doped TO: crystal)] composite film having a structure very similar to the [ITO (amorphous) / TO (amorphous)] composite film according to the present invention is disclosed in Japanese Patent Application No. 2003-2003. In [0158], [ITO (crystal) / TO (crystal)] composite films are exemplified in Japanese Patent Application Laid-Open No. 05-294673, but each of them aims to improve heat resistance. The effect of improving the form factor when applied to a battery is not praised.

第一基材2は、表面に導電材料からなる膜(層)を形成することにより電気を通す導電性を有し、光透過性の高い透明な部材であれば何でも良く、特に制限されない。この第一基材2としては、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等のプラスチックを用いることができる。   The first base material 2 is not particularly limited as long as it is a transparent member having electrical conductivity that conducts electricity by forming a film (layer) made of a conductive material on the surface and having high light transmittance. As this 1st base material 2, plastics, such as a polyethylene terephthalate (PET), a polyethylene naphthalate (PEN), and a polycarbonate (PC), can be used.

隣接するユニットセル20間を分離する隔壁部21は、本実施形態の場合、第一基材2と一体化されており、例えば、第一基材2の表面に凹凸加工を施すことで形成することができる。この凹凸加工は、第一基材2としてガラス板を用いた場合、エッチング法等を用いることで行なうことができる。また、第一基材2がプラスチックである場合は、射出成形や切削法ダイスタンプ法等簡便な方法で凹凸加工を施すことができる。しかも、第一基材2にプラスチックを用いた場合、経済的に、軽量なモジュールを得ることができる。
このように、第一基材2に凹凸加工を施し、隔壁部21を第一基材2と一体化して形成することで、両極基板を接着する導電性接着部材12と電解質層11との接触面積が低減し、セルの耐薬品性が向上するとともに、暗電流の問題が起こりにくいものとなる。
In the case of this embodiment, the partition part 21 which isolate | separates between the adjacent unit cells 20 is integrated with the 1st base material 2, For example, it forms by giving unevenness | corrugation to the surface of the 1st base material 2. be able to. This uneven | corrugated process can be performed by using an etching method etc., when a glass plate is used as the 1st base material 2. FIG. Moreover, when the 1st base material 2 is a plastics, an uneven | corrugated process can be given by simple methods, such as injection molding and the cutting method die stamp method. In addition, when plastic is used for the first base member 2, a lightweight module can be obtained economically.
In this way, the unevenness is applied to the first base material 2, and the partition wall portion 21 is formed integrally with the first base material 2, so that the conductive adhesive member 12 that adheres the bipolar substrate and the electrolyte layer 11 are in contact with each other. The area is reduced, the chemical resistance of the cell is improved, and the problem of dark current is less likely to occur.

また、第一基材2は途中熱プレスの工程を経ることから、このときに用いるプラスチックは例えば、ポリカーボネートやポリアリレート等、耐熱温度が130℃以上を有するエンジニアリングプラスチックが望ましい。   Further, since the first base material 2 undergoes a hot pressing process, the plastic used at this time is preferably an engineering plastic having a heat resistant temperature of 130 ° C. or higher, such as polycarbonate or polyarylate.

第一導電層3は、第一基材2上に形成された導電材料からなる導電性の膜であり、例えば、スズ添加インジウム(ITO)が好ましい。第一導電層3が第一基材2上に形成される場合、光透過率の高いものが好適である。   The first conductive layer 3 is a conductive film made of a conductive material formed on the first substrate 2, and for example, tin-added indium (ITO) is preferable. When the 1st conductive layer 3 is formed on the 1st base material 2, the thing with a high light transmittance is suitable.

また、第一導電層3は、隔壁部21の一方の側面とこれに連なる頂面のみを覆うように設けられ、隣接する位置にあるセル構造体を直列に繋ぎ合わせるセル間接続部材として作用する。したがって、本実施形態の場合、第一導電層3をそのまま利用して窓極と対極とを電気的に接続可能とする構成となっている。
そして、第一基材2上に光透過率の高い透明な第一導電層3を形成することにより、窓極(作用極)基板とする。
The first conductive layer 3 is provided so as to cover only one side surface of the partition wall 21 and the top surface continuous therewith, and acts as an inter-cell connecting member that connects cell structures in adjacent positions in series. . Therefore, in the case of the present embodiment, the window electrode and the counter electrode can be electrically connected using the first conductive layer 3 as it is.
And the window electrode (working electrode) board | substrate is set by forming the transparent 1st conductive layer 3 with a high light transmittance on the 1st base material 2. FIG.

多孔質酸化物半導体層5は、酸化スズ膜からなる第二導電層4の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層5を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。 The porous oxide semiconductor layer 5 is provided on the second conductive layer 4 made of a tin oxide film, and a sensitizing dye is supported on the surface thereof. The semiconductor for forming the porous oxide semiconductor layer 5 is not particularly limited, and any semiconductor can be used as long as it is generally used for forming a porous oxide semiconductor for a photoelectric conversion element. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .

多孔質酸化物半導体層5を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、この溶媒を加熱処理により除去して空隙を形成させ多孔質化する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 5, for example, a dispersion obtained by dispersing commercially available oxide semiconductor fine particles in a desired dispersion medium or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding a desired additive, after applying by a known coating method such as a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, a spray coating method, etc., this solvent is removed by heat treatment to remove voids. A method of forming and making it porous can be applied.

増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。   As the sensitizing dye, a ruthenium complex containing a bipyridine structure or a terpyridine structure as a ligand, a metal-containing complex such as porphyrin or phthalocyanine, or an organic dye such as eosin, rhodamine or merocyanine can be applied. Therefore, those exhibiting behavior suitable for the intended use and the semiconductor used can be selected without particular limitation.

一方、第二基材7は、その内面に第二電極として機能する第三導電層8を設けることにより導電性を備え、光透過性の高い部材である必要はなく、特に制限されない。この第二基材7としては、ガラス板を使用するのが一般的であるが、ガラス板以外にも、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等のプラスチック、酸化チタンやアルミナ等のセラミックスを用いることができる。中でも、第二基材7としては、熱膨張に起因した反りの発生を抑えるために、窓極を構成する第一基材2と同じ材料またはほぼ同じ熱膨張率の材料が好ましい。なお、第二基材7の内面に設けられる導電層としては、上述した導電層と同様の部材が用いられる。   On the other hand, the 2nd base material 7 does not need to be a member provided with electroconductivity by providing the 3rd conductive layer 8 which functions as a 2nd electrode in the inner surface, and is a highly light-transmissive member, and is not restrict | limited. As the second substrate 7, a glass plate is generally used, but other than the glass plate, for example, plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polycarbonate (PC). Ceramics such as titanium oxide and alumina can be used. Especially, as the 2nd base material 7, in order to suppress generation | occurrence | production of the curvature resulting from thermal expansion, the material same as the 1st base material 2 which comprises a window pole, or the material of a substantially the same thermal expansion coefficient is preferable. In addition, as a conductive layer provided in the inner surface of the 2nd base material 7, the member similar to the conductive layer mentioned above is used.

また、電極部材9は、窓極との間で起電力を生じさせる電極であり、例えば、化学的に安定な白金やカーボンが好適に用いられる。電極部材9の形成方法に関しては、例えば、電極部材9が白金からなる場合、スパッタ法や蒸着法といった真空成膜法、基板表面に塩化白金酸溶液等の含白金溶液を塗布後に熱処理を加える湿式成膜法等を用いて行なうことができる。   The electrode member 9 is an electrode that generates an electromotive force with the window electrode. For example, chemically stable platinum or carbon is preferably used. As for the method of forming the electrode member 9, for example, when the electrode member 9 is made of platinum, a vacuum film-forming method such as sputtering or vapor deposition, or a wet process in which a heat treatment is applied after applying a platinum-containing solution such as a chloroplatinic acid solution to the substrate surface It can be performed using a film formation method or the like.

また、電解質層11をなす電解液は、電解質が液中で解離して陽イオンと陰イオンを生じ電導性を有する溶液をいう。この電解液としては、例えば、酸化還元対を含む有機溶媒や、イオン液体(室温溶融塩)等を用いることができる。
酸化還元対も特に限定されるものではないが、例えばヨウ素/ヨウ化物イオン、臭素/臭化物イオン等を選ぶことができ、前者であればヨウ化物塩(リチウム塩、四級化イミダゾリウム塩、テトラブチルアンモニウム塩等を単独、あるいは複合して用いることができる)とヨウ素を単独、あるいは複合して添加することにより与えることができる
The electrolyte solution forming the electrolyte layer 11 refers to a solution having electrical conductivity by dissociating the electrolyte in the solution to generate cations and anions. As the electrolytic solution, for example, an organic solvent containing a redox pair, an ionic liquid (room temperature molten salt), or the like can be used.
The oxidation-reduction pair is not particularly limited. For example, iodine / iodide ion, bromine / bromide ion, etc. can be selected. In the former case, iodide salt (lithium salt, quaternized imidazolium salt, tetra Butylammonium salt or the like can be used alone or in combination) and iodine can be provided by adding alone or in combination.

有機溶媒としては、アセトニトリルやメトキシアセトニトリル、プロピオニトリル、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン等を用いた揮発性電解液が例示される。
また、イオン液体としては、例えば、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体といった四級化された窒素原子を有する化合物をカチオンとしたものがある。
Examples of the organic solvent include volatile electrolytes using acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, diethyl carbonate, γ-butyrolactone, and the like.
Examples of the ionic liquid include those using, as a cation, a compound having a quaternized nitrogen atom such as a quaternized imidazolium derivative, a quaternized pyridinium derivative, or a quaternized ammonium derivative.

また、このような電解液を適当なゲル化剤、充填剤を導入することにより流動性を抑えて擬似固体化したもの、いわゆるゲル電解質を電解質層11として用いても構わない。
電解液には、更に必要に応じてリチウム塩やtert-ブチルピリジン等種々の添加物を加えても構わない。更に、このような電解液と同様に電荷輸送能力を有する高分子固体電解質等を電解質層11として用いても構わない。
In addition, a so-called gel electrolyte obtained by suppressing the fluidity by introducing an appropriate gelling agent and filler into the electrolyte solution, that is, a so-called gel electrolyte, may be used as the electrolyte layer 11.
Various additives such as lithium salt and tert-butylpyridine may be further added to the electrolytic solution as necessary. Further, a polymer solid electrolyte having a charge transporting ability as in the case of such an electrolytic solution may be used as the electrolyte layer 11.

導電性接着部材12は、加熱加圧することで接合する異方性導電接着剤が好適である。異方性導電接着剤は、接着・導電・絶縁という3つの機能を兼ね備えた接続材料であって、熱圧着することにより、その厚み方向には導通性、面方向には絶縁性という電気的異方性をもつ。この導電性接着部材12としては、例えば、ペースト状のACP(Anisotropic Conductive Paste)等が挙げられる。また、導電性を向上させるために、金属導線を異方性接着剤と組み合わせることも有効である。なお、金属導線と組み合わせて利用する場合は、異方性導電接着剤に代えて、絶縁性接着部材であるNCP(Non Conductive Paste)やNCF(Non Conductive Film) を用いてもよい。   The conductive adhesive member 12 is preferably an anisotropic conductive adhesive that is joined by heating and pressing. An anisotropic conductive adhesive is a connecting material that has the three functions of adhesion, conductivity, and insulation. By thermocompression bonding, the electrical conductivity is electrically different in the thickness direction and insulating in the surface direction. Has a direction. Examples of the conductive adhesive member 12 include pasty ACP (Anisotropic Conductive Paste). In order to improve conductivity, it is also effective to combine a metal conductor with an anisotropic adhesive. When used in combination with a metal conductor, NCP (Non Conductive Paste) or NCF (Non Conductive Film), which is an insulating adhesive member, may be used instead of the anisotropic conductive adhesive.

そして、窓極基板6と対極基板10とを、窓極基板6に設けた多孔質酸化物半導体層5と、対極基板10に設けた電極部材9とが向かい合うように配置し、窓極基板6の隔壁部21の頂面に設けられた第一導電層3と対極基板10の第三導電層8(又は電極部材9)との間に導電性接着部材12を配して間接接続して熱プレスにより貼り合せする。
その後、セル内に電解液を注入して封止することにより、図1に示すような、ユニットセル20を直列接続してなる太陽電池モジュール1とする。
Then, the window electrode substrate 6 and the counter electrode substrate 10 are arranged so that the porous oxide semiconductor layer 5 provided on the window electrode substrate 6 and the electrode member 9 provided on the counter electrode substrate 10 face each other. A conductive adhesive member 12 is disposed between the first conductive layer 3 provided on the top surface of the partition wall 21 and the third conductive layer 8 (or electrode member 9) of the counter electrode substrate 10 to indirectly connect the heat. Laminate by press.
Thereafter, an electrolytic solution is injected into the cell and sealed to obtain a solar cell module 1 in which unit cells 20 are connected in series as shown in FIG.

以下では、本発明に係る太陽電池モジュール1の製造方法の一例について説明する。
図2は、太陽電池モジュール1を構成する窓極(作用極)基板6を作製する工程を順に示す概略断面図であり、図3は、太陽電池モジュール1における対極基板10を作製する工程を順に示す概略断面図である。そして、図4は、本発明に係る太陽電池モジュール1の製造例を示す概略断面図である。
Below, an example of the manufacturing method of the solar cell module 1 which concerns on this invention is demonstrated.
FIG. 2 is a schematic cross-sectional view sequentially illustrating the steps of manufacturing the window electrode (working electrode) substrate 6 constituting the solar cell module 1, and FIG. 3 sequentially illustrates the steps of manufacturing the counter electrode substrate 10 in the solar cell module 1. It is a schematic sectional drawing shown. And FIG. 4 is a schematic sectional drawing which shows the manufacture example of the solar cell module 1 which concerns on this invention.

まず、窓極(作用極)の作製方法について図2に基づき説明する。
図2(a)に示すように、凹凸加工を施すことが可能な第一基材2を準備する。第一基材2は、汎用のガラス板でも差し支えないが、凹凸加工が施しやすく、経済的で、軽量なモジュールを得ることができる樹脂板(プラスチック板)が好ましい。
First, a method for producing a window electrode (working electrode) will be described with reference to FIG.
As shown to Fig.2 (a), the 1st base material 2 which can give an uneven | corrugated process is prepared. The first substrate 2 may be a general-purpose glass plate, but is preferably a resin plate (plastic plate) that can be easily processed with unevenness and that can provide an economical and lightweight module.

次に、図2(b)に示すように、この第一基材2の一方の面に凹凸加工を施し、凹部21と凸部(以下、隔壁部21と呼ぶ)を形成する。これにより、この凸部は、第一基材2と一体化されたものとなり、隣接するユニットセル20間を分離する隔壁部21として機能する。凹凸加工の方法としては、例えば、射出成形や切削法、ダイスタンプ法等の簡便な方法が挙げられる。   Next, as shown in FIG. 2 (b), the concave and convex portions 21 and the convex portions (hereinafter referred to as the partition wall portions 21) are formed by subjecting one surface of the first base material 2 to uneven processing. Thereby, this convex part becomes what was integrated with the 1st base material 2, and functions as the partition part 21 which isolate | separates between the adjacent unit cells 20. FIG. Examples of the unevenness processing method include simple methods such as injection molding, cutting, and die stamping.

そして、この凹部21の深さ(すなわち、凸部の高さ)は、板間距離の関係から、100μm以下、多孔質酸化物層の厚さ以上が好ましい。凹部21の深さが100μm以上であると、電解質層11が厚すぎて内部抵抗が大きくなり好ましくなく、一方、多孔質酸化物層の厚さより凹部21の深さが浅いと、対極とぶつかってしまい両極間に多孔質酸化物層が収納されないためである。   The depth of the concave portion 21 (that is, the height of the convex portion) is preferably 100 μm or less and more than the thickness of the porous oxide layer in view of the inter-plate distance. If the depth of the recess 21 is 100 μm or more, the electrolyte layer 11 is too thick and the internal resistance becomes large, which is not preferable. On the other hand, if the depth of the recess 21 is shallower than the thickness of the porous oxide layer, the counter electrode collides with the counter electrode. This is because the porous oxide layer is not accommodated between the two electrodes.

次いで、図2(c)に示すように、凹凸加工が施された第一基材2の表面上に透明な導電膜からなる第一導電層3を設ける。第一導電層3の形成方法としては、第一導電層3を構成する材料に応じて公知の方法を用いて行なえばよく、例えば、スパッタ法やCVD法(気相成長法)、SPD法(スプレー熱分解堆積法)、蒸着法等により、スズ添加酸化インジウム(ITO)等の酸化物半導体からなる薄膜を形成する。この第一導電層3は、厚すぎると光透過性が劣り、一方、薄すぎると導電性が損なわれるので、例えばITO膜の場合、光透過性と導電性の両方を考慮して、0.030μm〜1μm程度の膜厚にするとよい。   Next, as shown in FIG. 2C, the first conductive layer 3 made of a transparent conductive film is provided on the surface of the first base material 2 that has been subjected to the uneven processing. The first conductive layer 3 may be formed using a known method according to the material constituting the first conductive layer 3. For example, a sputtering method, a CVD method (vapor phase growth method), an SPD method ( A thin film made of an oxide semiconductor such as tin-added indium oxide (ITO) is formed by spray pyrolysis deposition method) or vapor deposition method. If the first conductive layer 3 is too thick, the light transmittance is inferior. On the other hand, if it is too thin, the conductivity is impaired. The film thickness is preferably about 030 μm to 1 μm.

引き続き、図2(c)に示すように、この成膜された第一導電層3の上に、レジスト(不図示)をスクリーン印刷法等により形成し、このレジストをマスクとして第一導電層3の一部を除去する。その後、レジストを除去することにより、凹凸加工が施された第一基材2の一面上に、その一端が隔壁部21の一方の側面とこれに連なる頂面を覆うように第一導電層3を作製する。これにより、窓極用の導電性基板が得られる。   Subsequently, as shown in FIG. 2C, a resist (not shown) is formed on the formed first conductive layer 3 by a screen printing method or the like, and the first conductive layer 3 is formed using this resist as a mask. Remove some of the. Thereafter, by removing the resist, the first conductive layer 3 is formed so that one end thereof covers one side surface of the partition wall portion 21 and the top surface continuous therewith on one surface of the first base material 2 that has been subjected to the uneven processing. Is made. Thereby, the electroconductive board | substrate for window electrodes is obtained.

さらに、図2(d)に示すように、窓極用の導電性基板において、前記隔壁部21をなす凹部底面上に形成された第一導電層3上に、酸化スズ膜からなる第二導電層4を重ねて形成する。この第二導電層4は、厚すぎると導電性が損なわれ、一方、薄すぎると逆電流防止の効果が十分に得られないので、例えばSnO膜の場合、5nm〜100nm程度の膜厚にするとよい。 Further, as shown in FIG. 2 (d), in the conductive substrate for the window electrode, the second conductive material made of a tin oxide film is formed on the first conductive layer 3 formed on the bottom surface of the concave portion forming the partition wall portion 21. Layer 4 is formed in an overlapping manner. If the second conductive layer 4 is too thick, the conductivity is impaired. On the other hand, if the second conductive layer 4 is too thin, the effect of preventing reverse current cannot be sufficiently obtained. For example, in the case of a SnO 2 film, the second conductive layer 4 has a thickness of about 5 nm to 100 nm. Good.

ここで本発明では、前記第二導電層4を、スパッタ法など、200℃以下での低温成膜が可能な方法で成膜することを特徴とする。これにより酸化スズ膜4を内部抵抗を増大させずに逆電子移動を抑制できる被膜とすることができる。
200℃以下の比較的低温で成膜された酸化スズ膜からなる第二導電層4は導電性が低いため、酸化チタン電極からの集電程度の電流密度には使用できるが、隣接セルと接続するための隔壁部21のように電流が集中する箇所には使用できない。そのため隔壁部21を避けてパターニングする必要がある。
Here, the present invention is characterized in that the second conductive layer 4 is formed by a method capable of forming a film at a low temperature of 200 ° C. or lower, such as a sputtering method. Thereby, the tin oxide film 4 can be made into a film that can suppress reverse electron transfer without increasing the internal resistance.
Since the second conductive layer 4 made of a tin oxide film formed at a relatively low temperature of 200 ° C. or lower has low conductivity, it can be used for a current density of about the current collection from the titanium oxide electrode, but connected to an adjacent cell. Therefore, it cannot be used in a location where current is concentrated, such as the partition wall portion 21. Therefore, it is necessary to perform patterning while avoiding the partition wall 21.

さらに、図2(e)に示すように、酸化スズ膜からなる第二導電層4上に、多孔質酸化物半導体層5を形成する。多孔質酸化物半導体層5の形成方法としては、例えば、二酸化チタン(TiO)の粉末を分散媒と混ぜてペーストを調製し、これをスクリーン印刷法やインクジェットプリント法、ロールコート法、ドクターブレード法、スピンコート法等により導電層上に塗布し、焼成する。そして、この多孔質酸化物半導体層5は、1μm〜20μm程度に形成する。 Furthermore, as shown in FIG. 2E, a porous oxide semiconductor layer 5 is formed on the second conductive layer 4 made of a tin oxide film. As a method for forming the porous oxide semiconductor layer 5, for example, a paste is prepared by mixing a powder of titanium dioxide (TiO 2 ) with a dispersion medium, and this is prepared by a screen printing method, an ink jet printing method, a roll coating method, a doctor blade, or the like. It is applied onto the conductive layer by the method, spin coating method, etc. and baked. And this porous oxide semiconductor layer 5 is formed in about 1 micrometer-20 micrometers.

そして、図2(e)に示すように、多孔質酸化物半導体層5の粒子間に、増感色素を担持させることで、窓極基板6を構成する。増感色素の担持は、例えば、多孔質酸化物半導体層5が形成された導電性基板を色素液に浸漬することでなし得る。   And as shown in FIG.2 (e), the window electrode board | substrate 6 is comprised by making a sensitizing dye carry | support between the particle | grains of the porous oxide semiconductor layer 5. FIG. The sensitizing dye can be supported, for example, by immersing the conductive substrate on which the porous oxide semiconductor layer 5 is formed in the dye solution.

次に、対極基板10の作製方法について図3に基づき説明する。
図3(a)に示すように、プラスチックよりなる第二基材7を準備し、この第二基材7の一面に第三導電層8を設ける。第三導電層8の形成方法としては、第一基材2の場合と同様に、第三導電層8の材料に応じて公知の方法を用いて行なえばよく、例えば、スパッタ法や蒸着法等により、スズ添加酸化インジウム(ITO)等の酸化物半導体からなる薄膜を形成する。この導電層8は、厚すぎると光透過性が劣り、一方、薄すぎると導電性が損なわれるので、例えばITO膜の場合、光透過性と導電性の両方を考慮して、0.030μm〜2μm程度の膜厚にするとよい。
Next, a method for manufacturing the counter electrode substrate 10 will be described with reference to FIG.
As shown in FIG. 3A, a second base material 7 made of plastic is prepared, and a third conductive layer 8 is provided on one surface of the second base material 7. As a method for forming the third conductive layer 8, similarly to the case of the first substrate 2, a known method may be used according to the material of the third conductive layer 8, for example, a sputtering method, a vapor deposition method, or the like. Thus, a thin film made of an oxide semiconductor such as tin-added indium oxide (ITO) is formed. If the conductive layer 8 is too thick, the light transmittance is inferior. On the other hand, if it is too thin, the conductivity is impaired. For example, in the case of an ITO film, considering both the light transmittance and the conductivity, 0.030 μm to The film thickness is preferably about 2 μm.

引き続き、図3(b)に示すように、この成膜された第三導電層8の上に、レジスト(不図示)をスクリーン印刷法等により形成し、このレジストをマスクとして第三導電層8の一部を除去する。その後、レジストを除去することにより、所望の形状をしたユニットセルパターンをなす第三導電層8を作製する。これにより、対極用の導電性基板が得られる。   Subsequently, as shown in FIG. 3B, a resist (not shown) is formed on the formed third conductive layer 8 by a screen printing method or the like, and the resist is used as a mask to form the third conductive layer 8. Remove some of the. Thereafter, by removing the resist, the third conductive layer 8 having a desired unit cell pattern is produced. Thereby, the electroconductive board | substrate for counter electrodes is obtained.

次いで、図3(c)に示すように、対極用の導電性基板において、パターン化された第三導電層8の上に、予め剥離可能なレジストαをスクリーン印刷法等により形成した後、第三導電層8およびレジストを覆うように電極部材9を形成する。この電極部材9としては、例えば白金やカーボンを用いることができ、スパッタ法や蒸着法といった真空成膜法によって形成できるほか、基板表面に塩化白金溶液等の含白金溶液を塗布後に熱処理を加える湿式成膜法等によって形成してもよい。この電極部材9の厚さは、0.01μm〜5μm程度が好ましい。0.01μmより薄いと電極の実効面積が不足となり、5μmを越えると成膜コストが過大となることから好ましくない。   Next, as shown in FIG. 3C, a resist α that can be stripped in advance is formed on the patterned third conductive layer 8 on the patterned conductive substrate 8 by a screen printing method or the like. An electrode member 9 is formed so as to cover the three conductive layers 8 and the resist. As this electrode member 9, for example, platinum or carbon can be used, which can be formed by a vacuum film-forming method such as a sputtering method or a vapor deposition method, or a wet method in which a platinum-containing solution such as a platinum chloride solution is applied to the substrate surface and then heat treatment is applied. You may form by the film-forming method etc. The thickness of the electrode member 9 is preferably about 0.01 μm to 5 μm. If it is thinner than 0.01 μm, the effective area of the electrode is insufficient, and if it exceeds 5 μm, the film formation cost becomes excessive, which is not preferable.

その後、第二基材7から、レジストαと一緒に、その上に位置する電極部材9の一部を剥離することにより除去する。これにより、図3(d)に示した構成の対極基板10を得る。   Thereafter, a part of the electrode member 9 positioned thereon is removed from the second base material 7 together with the resist α. As a result, the counter electrode substrate 10 having the configuration shown in FIG.

そして図4(a)に示すように、図2(e)に示した窓極基板6と図3(d)に示した対極基板10とを、窓極基板6に設けた多孔質酸化物半導体層5と対極基板10に設けた電極部材9とが向かい合うように配置し、窓極基板6の隔壁部21の頂面に設けられた第一導電層3と対極基板10の第三導電層8(または電極部材9)との間、導電性接着部材12を配して間接接続して熱プレスにより貼り合せする(図4(b)参照)。   Then, as shown in FIG. 4A, a porous oxide semiconductor in which the window electrode substrate 6 shown in FIG. 2E and the counter electrode substrate 10 shown in FIG. The layer 5 and the electrode member 9 provided on the counter electrode substrate 10 are arranged so as to face each other, and the first conductive layer 3 provided on the top surface of the partition wall portion 21 of the window electrode substrate 6 and the third conductive layer 8 of the counter electrode substrate 10. (Or the electrode member 9), the conductive adhesive member 12 is disposed and indirectly connected, and bonded by hot pressing (see FIG. 4B).

その後、セル内に電解液を注入して封止することにより、図1に示すような、ユニットセル20を直列接続してなる太陽電池モジュール1とする。
このようにして得られた太陽電池モジュール1は、窓極基板において、隔壁部間をなす凹部底面上に形成された透明導電膜からなる第一導電層3に、酸化スズ膜からなる第二導電層4を重ねて配することで、内部抵抗を増大させずに逆電子移動を抑制することができる。その結果、発電効率が向上したものとなる。
Thereafter, an electrolytic solution is injected into the cell and sealed to obtain a solar cell module 1 in which unit cells 20 are connected in series as shown in FIG.
The solar cell module 1 thus obtained has a second conductive layer made of a tin oxide film on a first conductive layer 3 made of a transparent conductive film formed on the bottom surface of a recess formed between partition walls in a window electrode substrate. By arranging the layers 4 in an overlapping manner, reverse electron transfer can be suppressed without increasing the internal resistance. As a result, the power generation efficiency is improved.

以上、本発明の太陽電池モジュールについて説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。
たとえば、図1には隔壁部を窓極基板側に配置した太陽電池モジュールの一実施形態を示したが、図示はしないが、隔壁部を対極基板側に配置してもよく、このような配置においても上述した本発明の作用・効果は得られる。ただし、隔壁部を対極基板側に配置する場合、前記第一導電層は、その一端が、前記隔壁部に対向する領域を覆うように延設される点が、図1の配置例とは異なる。
Although the solar cell module of the present invention has been described above, the present invention is not limited to the above example, and can be appropriately changed as necessary.
For example, FIG. 1 shows an embodiment of a solar cell module in which the partition wall portion is disposed on the window electrode substrate side, although not illustrated, the partition wall portion may be disposed on the counter electrode substrate side. The above-described actions and effects of the present invention can be obtained. However, when the partition wall portion is disposed on the counter electrode substrate side, the first conductive layer is different from the arrangement example of FIG. 1 in that one end of the first conductive layer extends so as to cover a region facing the partition wall portion. .

本発明は、色素増感型太陽電池をはじめとする湿式太陽電池のユニットセルを直列接続してなる太陽電池モジュールおよびその製造方法に広く適用可能である。   The present invention is widely applicable to a solar cell module in which unit cells of wet solar cells including a dye-sensitized solar cell are connected in series and a method for manufacturing the same.

本発明の太陽電池モジュールの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell module of this invention. 窓極(作用極)基板を作製する工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of producing a window electrode (working electrode) board | substrate. 対極基板を作製する工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of producing a counter electrode board | substrate. 太陽電池モジュールの製造例を示す概略断面図である。It is a schematic sectional drawing which shows the manufacture example of a solar cell module. 従来のZ型太陽電池モジュールの構造例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the conventional Z-type solar cell module. 従来のW型太陽電池モジュールの構造例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the conventional W type solar cell module. 従来の太陽電池モジュールの構造例を示す概略断面図である。It is a schematic sectional drawing which shows the structural example of the conventional solar cell module.

符号の説明Explanation of symbols

1 太陽電池モジュール、2 第一基材、3 第一導電層(第一電極)、4 第二導電層(酸化スズ膜)、5 多孔質酸化物半導体層、6 窓極(作用極)基板、7 第二基材、8 第三導電層(第二電極)、9 電極部材、10 対極基板、11 電解質層、12 導電性接着部材、20 ユニットセル、21 隔壁部。   DESCRIPTION OF SYMBOLS 1 Solar cell module, 2 1st base material, 1st conductive layer (1st electrode), 4th 2nd conductive layer (tin oxide film), 5 porous oxide semiconductor layer, 6 window electrode (working electrode) board | substrate, 7 Second substrate, 8 Third conductive layer (second electrode), 9 Electrode member, 10 Counter electrode substrate, 11 Electrolyte layer, 12 Conductive adhesive member, 20 Unit cell, 21 Partition part

Claims (3)

増感色素を担持させた多孔質酸化物半導体層を有して構成され、窓極として機能する第一電極と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極とを備え、
前記第一電極を設ける第一基材もしくは前記第二電極を設ける第二基材は、隣接するユニットセル間を分離する隔壁部を有する太陽電池モジュールであって、
前記第一基材は、前記隔壁部間をなす領域において、透明導電膜からなる第一導電層と酸化スズ膜からなる第二導電層が順に重ねて配されていることを特徴とする太陽電池モジュール。
A first electrode that has a porous oxide semiconductor layer carrying a sensitizing dye and functions as a window electrode, and is disposed at least partially opposite to the first electrode via an electrolyte layer A second electrode,
The first base material that provides the first electrode or the second base material that provides the second electrode is a solar cell module having a partition wall that separates adjacent unit cells,
The solar cell, wherein the first base material has a first conductive layer made of a transparent conductive film and a second conductive layer made of a tin oxide film sequentially stacked in a region between the partition walls. module.
前記第一導電層は、その一端が、前記隔壁部の一方の側面とこれに連なる頂面の両方、もしくは前記隔壁部に対向する領域、を覆うように延設されていることを特徴とする請求項1に記載の太陽電池モジュール。   One end of the first conductive layer extends so as to cover both one side surface of the partition wall and the top surface connected to the one side wall, or a region facing the partition wall. The solar cell module according to claim 1. 増感色素を担持させた多孔質酸化物半導体層を有して構成され、窓極として機能する第一電極と、少なくとも一部に電解質層を介して前記第一電極と対向して配される第二電極とを備え、
前記第一電極を設ける第一基材もしくは前記第二電極を設ける第二基材は、隣接するユニットセル間を分離する隔壁部を有する太陽電池モジュールであって、
前記第一基材は、前記隔壁部間をなす領域において、透明導電膜からなる第一導電層と酸化スズ膜からなる第二導電層が順に重ねて配されている太陽電池モジュールの製造方法であって、
前記第二導電層は200℃以下で形成されることを特徴とする太陽電池モジュールの製造方法。
A first electrode that has a porous oxide semiconductor layer carrying a sensitizing dye and functions as a window electrode, and is disposed at least partially opposite to the first electrode via an electrolyte layer A second electrode,
The first base material that provides the first electrode or the second base material that provides the second electrode is a solar cell module having a partition wall that separates adjacent unit cells,
The first base material is a method of manufacturing a solar cell module in which a first conductive layer made of a transparent conductive film and a second conductive layer made of a tin oxide film are sequentially stacked in a region between the partition walls. There,
Said 2nd conductive layer is formed at 200 degrees C or less, The manufacturing method of the solar cell module characterized by the above-mentioned.
JP2006239498A 2006-09-04 2006-09-04 Solar cell module and manufacturing method thereof Active JP5085078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239498A JP5085078B2 (en) 2006-09-04 2006-09-04 Solar cell module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239498A JP5085078B2 (en) 2006-09-04 2006-09-04 Solar cell module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008065999A true JP2008065999A (en) 2008-03-21
JP5085078B2 JP5085078B2 (en) 2012-11-28

Family

ID=39288555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239498A Active JP5085078B2 (en) 2006-09-04 2006-09-04 Solar cell module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5085078B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021647A1 (en) * 2009-08-21 2011-02-24 ソニー株式会社 Photocell module and process for production of photocell module
WO2012057514A2 (en) * 2010-10-27 2012-05-03 주식회사 동진쎄미켐 Monolithic module structure for a dye-sensitized solar cell in which an interconnection portion is separated
JP2016207697A (en) * 2015-04-15 2016-12-08 シャープ株式会社 Solar charger
KR101890583B1 (en) 2012-05-24 2018-08-24 주식회사 동진쎄미켐 Dye-Sensitized Solar Cell and Manufacturing Method, Bonding Device Thereof
CN109994610A (en) * 2018-11-27 2019-07-09 东莞理工学院 A kind of bi-component intermixing formula electron transfer layer and its preparation method and application
CN117135936A (en) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 Solar cell module, preparation method and system thereof, battery and power utilization device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323818A (en) * 2002-02-26 2003-11-14 Fujikura Ltd Base material for transparent electrode
JP2004103374A (en) * 2002-09-09 2004-04-02 Sony Corp Photoelectric conversion element
JP2005142089A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Forming method of porous semiconductor electrode, manufacturing method of electrode board for dye-sensitized solar cell, electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323818A (en) * 2002-02-26 2003-11-14 Fujikura Ltd Base material for transparent electrode
JP2004103374A (en) * 2002-09-09 2004-04-02 Sony Corp Photoelectric conversion element
JP2005142089A (en) * 2003-11-07 2005-06-02 Dainippon Printing Co Ltd Forming method of porous semiconductor electrode, manufacturing method of electrode board for dye-sensitized solar cell, electrode board for dye-sensitized solar cell, and the dye-sensitized solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021647A1 (en) * 2009-08-21 2011-02-24 ソニー株式会社 Photocell module and process for production of photocell module
WO2012057514A2 (en) * 2010-10-27 2012-05-03 주식회사 동진쎄미켐 Monolithic module structure for a dye-sensitized solar cell in which an interconnection portion is separated
WO2012057514A3 (en) * 2010-10-27 2012-06-21 주식회사 동진쎄미켐 Monolithic module structure for a dye-sensitized solar cell in which an interconnection portion is separated
KR101890583B1 (en) 2012-05-24 2018-08-24 주식회사 동진쎄미켐 Dye-Sensitized Solar Cell and Manufacturing Method, Bonding Device Thereof
JP2016207697A (en) * 2015-04-15 2016-12-08 シャープ株式会社 Solar charger
CN109994610A (en) * 2018-11-27 2019-07-09 东莞理工学院 A kind of bi-component intermixing formula electron transfer layer and its preparation method and application
CN117135936A (en) * 2023-10-27 2023-11-28 宁德时代新能源科技股份有限公司 Solar cell module, preparation method and system thereof, battery and power utilization device
CN117135936B (en) * 2023-10-27 2024-03-29 宁德时代新能源科技股份有限公司 Solar cell module, preparation method and system thereof, battery and power utilization device

Also Published As

Publication number Publication date
JP5085078B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5052768B2 (en) Solar cell module and manufacturing method thereof
JP2006236960A (en) Dye-sensitized solar cell and its manufacturing method
US20100132785A1 (en) Dye-sensitized photoelectric conversion element module and a method of manufacturing the same, and photoelectric conversion element module and a method of manufacturing the same, and electronic apparatus
WO2004032274A1 (en) Electrode substrate, photoelectric conversion elememt, conductive glass substrate and production method therefo, and pigment sensitizing solar cell
JP2004146425A (en) Electrode substrate, photoelectric converter, and dye-sensitized solar cell
JP5225577B2 (en) Photoelectric conversion element and method for producing counter electrode for photoelectric conversion element
JP5085078B2 (en) Solar cell module and manufacturing method thereof
WO2011129250A1 (en) Dye-sensitized solar cell module and method for fabricating same
JP4515061B2 (en) Method for producing dye-sensitized solar cell
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP5095226B2 (en) Dye-sensitized solar cell and method for producing the same
JP5095126B2 (en) Photoelectric conversion element
JP2008065998A (en) Solar cell module and its manufacturing method
KR100497335B1 (en) Nano-particle oxide solar cells modules and method for fabrication of the same
JP5284296B2 (en) Dye-sensitized solar cell
WO2010042170A2 (en) Interconnection of adjacent devices
JP2008192441A (en) Dye-sensitized solar cell, generator utilizing the same, and output recovery method for dye-sensitized solar cell
JP4799852B2 (en) Electrode for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP4942919B2 (en) Photoelectric conversion element and manufacturing method thereof
JP5485425B2 (en) Photoelectric conversion element
JP4932196B2 (en) Electrode and photoelectric conversion element
JP4932200B2 (en) Electrode, manufacturing method thereof, and photoelectric conversion element
JP2003123855A (en) Electrode for photoelectric conversion element
JP5460159B2 (en) Dye-sensitized photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R151 Written notification of patent or utility model registration

Ref document number: 5085078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250