JP2001357897A - Photoelectric conversion module - Google Patents

Photoelectric conversion module

Info

Publication number
JP2001357897A
JP2001357897A JP2000178988A JP2000178988A JP2001357897A JP 2001357897 A JP2001357897 A JP 2001357897A JP 2000178988 A JP2000178988 A JP 2000178988A JP 2000178988 A JP2000178988 A JP 2000178988A JP 2001357897 A JP2001357897 A JP 2001357897A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion module
conductive
insulating
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000178988A
Other languages
Japanese (ja)
Inventor
Tomozumi Kamisaka
友純 上坂
Hokuto Takada
北斗 高田
Yoshiyuki Ono
好之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2000178988A priority Critical patent/JP2001357897A/en
Publication of JP2001357897A publication Critical patent/JP2001357897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion module capable of providing a high voltage and manufacturable at a low cost. SOLUTION: This photoelectric conversion module has an insulating transparent backing 1 and an opposed insulating backing 5 with a plurality of photoelectric conversion element 10 and 10' parallel disposed between them, and it is characterized in that the conversion element 10 and 10' comprise transparent conductive members 2 and 2' provided on a surface of the backing 1, photo- semiconductor electrodes 3 and 3' provided on surfaces of the members 2 and 2', counter electrode members 6 and 6' provided on a surface of the insulating backing 5, and oxidizing and reducing media 9 and 9' sealed between the electrode members 6 and 6' and the electrodes 3 and 3', that the peripheries of the conversion element 10 and 10' are sealed and insulated by sealing means 8, and that a conduction means 11a capable of causing the conductive member 2 of the conversion element 10 to conduct to the electrode member 6' of the neighboring conversion element 10' is disposed between the conversion element 10 and 10'.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複数の光電変換素子
を具備した光電変換モジュールであって、特に、出力電
圧が高く、低コストな光電変換モジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion module having a plurality of photoelectric conversion elements, and more particularly to a low-cost photoelectric conversion module having a high output voltage.

【0002】[0002]

【従来の技術】化石燃料の燃焼による地球温暖化や人口
の増加に伴うエネルギー需要の増大は、人類の存亡に関
わる大きな課題となっている。そのような中、無限でか
つ有害物質を発生しないクリーンなエネルギー源として
太陽光を利用することが検討されている。太陽光は、太
古以来現在まで、地球の環境を育み、人類を含む全ての
生物のエネルギー源となってきた。なかでも、光エネル
ギーを電気エネルギーに変換するいわゆる太陽電池は、
有力な技術手段として注目されている。
2. Description of the Related Art Global warming due to the burning of fossil fuels and an increase in energy demand due to an increase in population have become a major problem relating to the survival of humankind. Under such circumstances, utilization of sunlight as an infinite and clean energy source that does not generate harmful substances is being studied. The sun has nurtured the earth's environment since ancient times and has been a source of energy for all living beings, including humans. Above all, so-called solar cells that convert light energy into electrical energy
It is drawing attention as a powerful technical tool.

【0003】太陽電池用の光起電力材料としては、単結
晶、多結晶、アモルファスシリコンやCuInSe、G
aAs、CdS等の化合物半導体が使用されている。こ
れらの無機半導体を用いた太陽電池は、10〜20%と
比較的高いエネルギー変換効率を示すため、遠隔地用の
電源や携帯用小型電子機器の補助的な電源として広く使
用されている。
As photovoltaic materials for solar cells, single crystal, polycrystal, amorphous silicon, CuInSe, G
Compound semiconductors such as aAs and CdS are used. Solar cells using these inorganic semiconductors exhibit relatively high energy conversion efficiencies of 10 to 20%, and are therefore widely used as power supplies for remote locations and as auxiliary power supplies for small portable electronic devices.

【0004】しかしながら、上述したように化石燃料の
消費を抑えて、地球環境の悪化を防止するという目的に
照らすと、現時点では、無機半導体を用いた太陽電池は
十分な効果をあげているとは言い難い。これは、無機半
導体を用いた太陽電池が、プラズマCVD法や高温結晶
成長プロセスにより製造されており、素子の作製に多く
のエネルギーを必要とするためである。また、Cd、A
s、Se等の環境に有害な影響を及ぼしかねない成分を
含んでおり、素子の廃棄による環境破壊の可能性も懸念
される。
[0004] However, in light of the purpose of suppressing the consumption of fossil fuels and preventing the deterioration of the global environment as described above, at present, a solar cell using an inorganic semiconductor is not sufficiently effective. Hard to say. This is because a solar cell using an inorganic semiconductor is manufactured by a plasma CVD method or a high-temperature crystal growth process, and requires a lot of energy to manufacture an element. Also, Cd, A
It contains components that may have a harmful effect on the environment, such as s and Se, and there is a concern about the possibility of environmental destruction due to element disposal.

【0005】一方、大面積化や低価格化を指向して、有
機材料を用いた太陽電池がこれまでに多く提案されてい
る(例えば、特開昭53−131782号公報、特開昭
54−27387号公報、特開昭56−35477号公
報、特開平1−215070号公報、特開平4−105
76号公報、特開平6−85294号公報)。しかし、
いずれも変換効率が低く、耐久性も悪いという問題のた
め実用化に至っていない。
[0005] On the other hand, many solar cells using organic materials have been proposed for the purpose of increasing the area and reducing the cost (for example, JP-A-53-131782, JP-A-54-17882). 27387, JP-A-56-35577, JP-A-1-215070, JP-A-4-105
76, JP-A-6-85294. But,
All of them have not been put into practical use due to the problems of low conversion efficiency and poor durability.

【0006】こうした状況の中で、Nature(第3
53巻、第737〜740頁、1991年)、米国特許
第4927721号、同第4684537号、同第50
84365号、同第5350644号、同第54630
57号、同第5525440号各明細書、特開平1−2
20380号公報、特公平8−15097号公報に、色
素によって増感された半導体微粒子を用いた光電変換素
子(以下、「色素増感型光電変換素子」ということがあ
る)や、これを製造するための材料および製造技術が開
示された。
Under these circumstances, Nature (No. 3)
53, 737-740, 1991), U.S. Patent Nos. 4,927,721, 4,684,537 and 50.
No. 84365, No. 5350644, No. 54630
Nos. 57 and 5525440, JP-A 1-2
JP-A-20380 and JP-B-8-15097 disclose a photoelectric conversion element using semiconductor fine particles sensitized by a dye (hereinafter, may be referred to as a "dye-sensitized photoelectric conversion element") and a method of manufacturing the same. Materials and manufacturing techniques have been disclosed.

【0007】開示された色素増感型光電変換素子は、ル
テニウム錯体によって分光増感された二酸化チタン多孔
質薄膜を作用電極に用いることを特徴としている。この
素子は安価な酸化物半導体を高純度に精製せずに使用で
きるため、低コストで光電変換素子を提供できることが
期待されている。また、使用される色素の吸収波長領域
が広く、約10%(AM1.5)という高いエネルギー
変換効率を達成している。このように、色素増感型光電
変換素子は、高いエネルギー変換効率を低いコストで実
現できる可能性を有し、その原理の解明とより高い変換
効率の実現とを目的として活発な研究がなされている。
The disclosed dye-sensitized photoelectric conversion element is characterized in that a titanium dioxide porous thin film spectrally sensitized with a ruthenium complex is used as a working electrode. Since this element can be used without purification of an inexpensive oxide semiconductor to high purity, it is expected that a photoelectric conversion element can be provided at low cost. Further, the absorption wavelength region of the dye used is wide, and a high energy conversion efficiency of about 10% (AM1.5) is achieved. As described above, the dye-sensitized photoelectric conversion element has a possibility of realizing high energy conversion efficiency at low cost, and active research has been conducted for the purpose of elucidating its principle and realizing higher conversion efficiency. I have.

【0008】色素増感型光電変換素子の出力電圧(開放
電圧)は通常1V未満であるため、一般に必要とされる
1Vを越える電圧を得るためには複数の素子を直列に接
続する必要がある。しかし、例えば開放電圧0.6Vの
素子を直列にして12Vの出力を得るためには、20個
もの素子を直列に接続する必要があり、全体として大き
くなってしまう。1つの素子を小さくすることも可能で
あるが、製造効率が低下し、コスト高となってしまう。
よって、簡単な方法で高い電圧が得られる素子構成およ
びモジュールの製造方法が求められている。
Since the output voltage (open-circuit voltage) of the dye-sensitized photoelectric conversion element is usually less than 1 V, it is necessary to connect a plurality of elements in series in order to obtain a voltage exceeding 1 V which is generally required. . However, for example, in order to obtain an output of 12 V by connecting elements having an open-circuit voltage of 0.6 V in series, it is necessary to connect as many as 20 elements in series, which results in an overall increase. Although it is possible to reduce the size of one element, the manufacturing efficiency is reduced and the cost is increased.
Therefore, there is a need for an element configuration and a module manufacturing method that can obtain a high voltage by a simple method.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、高い電圧が得られ、低コストで製造できる光電変換
モジュールを提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a photoelectric conversion module which can obtain a high voltage and can be manufactured at low cost.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明らは、少なくとも、一の光電変換素子の
透明導電性部材と、その隣の光電変換素子の対向電極部
材とに、両者を導通し得る導通手段を設けると、高い出
力電圧を有する光電変換モジュールを低コストで製造で
きること発見し、本発明に想到した。すなわち、本発明
は、
Means for Solving the Problems As a result of intensive studies in view of the above problems, the present inventors have found that at least the transparent conductive member of one photoelectric conversion element and the counter electrode member of the adjacent photoelectric conversion element The present inventors have found that providing a conducting means capable of conducting both allows a photoelectric conversion module having a high output voltage to be manufactured at low cost, and reached the present invention. That is, the present invention

【0011】<1>絶縁性透明支持体と絶縁性支持体と
が対向し、その間に光電変換素子が複数並列に設けられ
た光電変換モジュールであって、前記光電変換素子が、
前記絶縁性透明支持体の表面に設けられた透明導電性部
材と、該透明導電性部材表面に設けられた光半導体電極
と、前記絶縁性支持体の表面に設けられた対向電極部材
と、該対向電極部材および前記光半導体電極間に封入さ
れた酸化還元媒体と、からなり、前記隣合う光電変換素
子間を含む前記光電変換素子の周囲が封止手段により封
止および絶縁されており、かつ、前記光電変換素子のう
ち一端に位置するものを除く光電変換素子の透明導電性
部材と、その隣の光電変換素子の対向電極部材とを導通
し得る導通手段が、隣合う光電変換素子間に配されてな
ることを特徴とする光電変換モジュールである。
<1> A photoelectric conversion module in which an insulating transparent support and an insulating support are opposed to each other and a plurality of photoelectric conversion elements are provided in parallel therebetween, wherein the photoelectric conversion element is
A transparent conductive member provided on the surface of the insulating transparent support, an optical semiconductor electrode provided on the surface of the transparent conductive member, a counter electrode member provided on the surface of the insulating support, A counter-electrode member and an oxidation-reduction medium sealed between the optical semiconductor electrodes, and the periphery of the photoelectric conversion element including between the adjacent photoelectric conversion elements is sealed and insulated by sealing means, and The transparent conductive member of the photoelectric conversion element except for the one located at one end of the photoelectric conversion element, and a conduction unit capable of conducting between the opposing electrode member of the adjacent photoelectric conversion element is provided between adjacent photoelectric conversion elements. It is a photoelectric conversion module characterized by being arranged.

【0012】<2> 前記導通手段により導通される透
明導電性部材および対向電極部材が、隣合う光電変換素
子間で対向している部分を有することを特徴とする<1
>に記載の光電変換モジュールである。
<2> The transparent conductive member and the counter electrode member which are conducted by the conducting means have portions facing each other between adjacent photoelectric conversion elements. <1>
>

【0013】<3> 前記封止手段がシール部材であ
り、前記導通手段である導電性接続部材が前記シール部
材で覆われており、導電性接続部材の一方が透明導電性
部材に接続され、他方が、隣合う光電変換素子の対向電
極部材に接続されていることを特徴とする<1>または
<2>に記載の光電変換モジュールである。
<3> The sealing means is a sealing member, a conductive connecting member as the conducting means is covered with the sealing member, and one of the conductive connecting members is connected to the transparent conductive member. The other is a photoelectric conversion module described in <1> or <2>, wherein the other is connected to a counter electrode member of an adjacent photoelectric conversion element.

【0014】<4> 前記導通手段が、絶縁性透明支持
体および絶縁性支持体に略垂直な方向にのみ導電性を有
する異方導電性部材からなり、前記隣合う光電変換素子
間の封止手段の少なくとも一部を兼ねていることを特徴
とする<1>〜<3>のいずれか1に記載の光電変換モ
ジュールである。
<4> The conductive means is formed of an insulating transparent support and an anisotropic conductive member having conductivity only in a direction substantially perpendicular to the insulating support, and sealing between the adjacent photoelectric conversion elements. The photoelectric conversion module according to any one of <1> to <3>, which also serves as at least a part of the means.

【0015】<5> 前記異方導電性部材が、絶縁性部
材中に導電性粒子を分散させたものであることを特徴と
する<4>に記載の光電変換モジュールである。
<5> The photoelectric conversion module according to <4>, wherein the anisotropic conductive member is obtained by dispersing conductive particles in an insulating member.

【0016】<6> 前記絶縁性部材が、前記隣合う光
電変換素子間以外の封止手段の部材と同じ材質からなる
ことを特徴とする<5>に記載の光電変換モジュールで
ある。
<6> The photoelectric conversion module according to <5>, wherein the insulating member is made of the same material as that of the sealing member except between the adjacent photoelectric conversion elements.

【0017】[0017]

【発明の実施の形態】本発明の光電変換モジュールは、
絶縁性透明支持体と絶縁性支持体とが対向し、その間に
光電変換素子が複数並列に設けられており、前記光電変
換素子が、前記絶縁性透明支持体の表面に設けられた透
明導電性部材と、該透明導電性部材表面に設けられた光
半導体電極と、前記絶縁性支持体の表面に設けられた対
向電極部材と、該対向電極部材および前記光半導体電極
間に封入された酸化還元媒体と、からなり、前記隣合う
光電変換素子間を含む前記光電変換素子の周囲が封止手
段により封止および絶縁されており、かつ、前記光電変
換素子のうち一端に位置するものを除く光電変換素子の
透明導電性部材と、その隣の光電変換素子の対向電極部
材とを導通し得る導通手段が、隣合う光電変換素子間に
配されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The photoelectric conversion module of the present invention
The insulating transparent support and the insulating support are opposed to each other, and a plurality of photoelectric conversion elements are provided in parallel therebetween, and the photoelectric conversion element is provided on the surface of the insulating transparent support. A member, an optical semiconductor electrode provided on the surface of the transparent conductive member, a counter electrode member provided on the surface of the insulating support, and a redox sealed between the counter electrode member and the optical semiconductor electrode. Medium, and the periphery of the photoelectric conversion element including between the adjacent photoelectric conversion elements is sealed and insulated by sealing means, and the photoelectric conversion element excluding the one located at one end of the photoelectric conversion elements Conducting means for conducting between the transparent conductive member of the conversion element and the counter electrode member of the adjacent photoelectric conversion element is disposed between the adjacent photoelectric conversion elements.

【0018】前記光電変換素子は、上記構成により直列
に接続される。なお、「前記光電変換素子のうち一端に
位置するものを除く」とあるのは、一方から順次直列に
接続した際に、その末端の光電変換素子の透明導電性部
材は、さらに他の光電変換素子の対向電極部材と接続さ
れるのではなく、末端端子となるからである。すなわ
ち、本発明の光電変換モジュールにおいては、その両末
端に位置する光電変換素子の、直列接続に供されない、
透明導電性部材および対向電極部材が末端端子となる。
以下、本発明の光電変換モジュールについて、詳細に説
明する。
The photoelectric conversion elements are connected in series by the above configuration. It should be noted that "excluding the one located at one end of the photoelectric conversion elements" means that when connected in series from one side, the transparent conductive member of the photoelectric conversion element at the end thereof is further converted to another photoelectric conversion element. This is because the terminal is not connected to the opposing electrode member of the element but is a terminal terminal. That is, in the photoelectric conversion module of the present invention, the photoelectric conversion elements located at both ends thereof are not provided for series connection,
The transparent conductive member and the counter electrode member serve as terminal terminals.
Hereinafter, the photoelectric conversion module of the present invention will be described in detail.

【0019】≪1.光電変換モジュールの構成≫本発明
の光電変換モジュールは、上述の通り、絶縁性透明支
持体、透明導電性部材、光半導体電極、絶縁性支
持体、対向電極部材、酸化還元媒体、封止手段、
導通手段、から構成されている。以下、これらについ
て説明する。
{1. Configuration of photoelectric conversion module≫As described above, the photoelectric conversion module of the present invention includes an insulating transparent support, a transparent conductive member, an optical semiconductor electrode, an insulating support, a counter electrode member, an oxidation-reduction medium, a sealing unit,
Conducting means. Hereinafter, these will be described.

【0020】<絶縁性透明支持体>絶縁性透明支持体
は、従来公知のものが使用でき、各種のガラスや有機高
分子フィルム等を使用することができる。具体的には、
ソーダガラス、溶融石英ガラス、結晶石英ガラス等のガ
ラス類;アクリル樹脂、メタクリル樹脂、ポリカーボネ
ート樹脂、ポリエステル樹脂、ポリビニルアセタール樹
脂、ポリスチレン樹脂、スチレン−アクリル樹脂、フェ
ノール−ホルムアルデヒド樹脂、シリコーン樹脂等の樹
脂プレートまたは樹脂フィルム;等が使用される。絶縁
性透明支持体は、必ずしも全ての光に対して透過性を有
することは要求されず、少なくとも後述の光半導体電極
が実効的な感度を有する波長の光を実質的に透過するも
のであればよい。
<Insulating Transparent Support> Conventionally known insulating transparent supports can be used, and various types of glass and organic polymer films can be used. In particular,
Glasses such as soda glass, fused silica glass, and crystal quartz glass; resin plates such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, polyvinyl acetal resin, polystyrene resin, styrene-acrylic resin, phenol-formaldehyde resin, and silicone resin Or a resin film; The insulative transparent support is not necessarily required to have transparency to all light, as long as at least an optical semiconductor electrode described later substantially transmits light having a wavelength having an effective sensitivity. Good.

【0021】<透明導電性部材>絶縁性透明支持体の
表面に設けられる透明導電層には、ITO(インジウム
−スズ複合酸化物)、フッ素がドープされた酸化スズ、
アルミニウムがドープされた酸化亜鉛、ニオブがドープ
された酸化チタン等の透明導電性金属酸化物等が使用さ
れる。透明導電性部材も、必ずしも全ての光に対して透
過性を有することは要求されず、少なくとも後述の光半
導体電極が実効的な感度を有する波長の光を実質的に透
過するものであればよい。
<Transparent Conductive Member> The transparent conductive layer provided on the surface of the insulating transparent support is made of ITO (indium-tin composite oxide), tin oxide doped with fluorine,
Transparent conductive metal oxides such as aluminum-doped zinc oxide and niobium-doped titanium oxide are used. The transparent conductive member is not necessarily required to have transparency to all light, and it is sufficient that at least an optical semiconductor electrode described later substantially transmits light having a wavelength having an effective sensitivity. .

【0022】<光半導体電極>透明導電層の表面に設
けられる光半導体電極には、従来公知のものが使用さ
れ、具体的には、単結晶、多結晶、アモルファスシリコ
ン、無機あるいは有機型半導体層からなる光半導体等が
使用される。
<Optical Semiconductor Electrode> As the optical semiconductor electrode provided on the surface of the transparent conductive layer, a conventionally known one is used. Specifically, a single crystal, polycrystal, amorphous silicon, inorganic or organic semiconductor layer is used. An optical semiconductor made of, for example, is used.

【0023】また、その構成としては、電極の投影面積
に対し光半導体層の表面積が大きく、多孔質形状を有す
るのが好ましい。このような光半導体としては、金属酸
化物、金属硫化物、金属セレン化物等の金属カルコゲナ
イド;ペロブスカイト類;等を使用することができる。
金属カルコゲナイドとしては、チタン、スズ、亜鉛、タ
ングステン、ジルコニウム、ハフニウム、ストロンチウ
ム、インジウム、セリウム、イットリウム、ランタン、
ルテニウム、バナジウム、ニオブ、またはタンタル等の
酸化物;硫化カドミウム、セレン化カドミウム、等が好
ましい。
In addition, it is preferable that the optical semiconductor layer has a large surface area with respect to the projected area of the electrode and has a porous shape. As such an optical semiconductor, metal chalcogenides such as metal oxides, metal sulfides, and metal selenides; perovskites; and the like can be used.
Metal chalcogenides include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum,
Oxides such as ruthenium, vanadium, niobium, and tantalum; cadmium sulfide, cadmium selenide, and the like are preferable.

【0024】一方、ペロブスカイト類としては、チタン
酸ストロンチウム、チタン酸カルシウム、チタン酸バリ
ウム、酸化チタン、酸化亜鉛、酸化錫、および酸化ルテ
ニウムから選ばれる少なくとも1種を含有する金属酸化
物類等が好ましい。これらの中でも、透明性、光電変換
特性等の点で、酸化チタン、酸化亜鉛、酸化錫、および
酸化ルテニウムから選ばれる少なくとも1種を含有する
金属酸化物類がより好ましい。
On the other hand, as the perovskites, metal oxides containing at least one selected from strontium titanate, calcium titanate, barium titanate, titanium oxide, zinc oxide, tin oxide and ruthenium oxide are preferred. . Among these, metal oxides containing at least one selected from titanium oxide, zinc oxide, tin oxide, and ruthenium oxide are more preferable in terms of transparency, photoelectric conversion characteristics, and the like.

【0025】光を効率良く吸収するために、従来公知の
増感色素を光半導体電極に担持させてもよい。増感色素
としては、増感作用をもたらすものであればいかなるも
のでも使用できる。具体的には、ローダミンB、ローズ
ベンガル、エオシン、エリスロシン等のキサンテン系色
素;キノシアニン、クリプトシアニン等のシアニン系色
素;フェノサフラニン、チオシン、メチレンブルー等の
塩基性染料;クロロフィル、亜鉛ポルフィリン、マグネ
シウムポルフィリン等のポルフィリン化合物;アゾ染
料、フタロシアニン化合物、Ruトリスビピリジル、下
記構造式のRu錯体等の錯化合物;アントラキノン系色
素、多環キノン系色素、チオニン系色素、等を使用する
ことができる。
In order to efficiently absorb light, a conventionally known sensitizing dye may be supported on the photosemiconductor electrode. Any sensitizing dye can be used as long as it has a sensitizing effect. Specifically, xanthene dyes such as rhodamine B, rose bengal, eosin, and erythrosine; cyanine dyes such as quinocyanine and cryptocyanine; basic dyes such as phenosafranine, thiosine, and methylene blue; chlorophyll, zinc porphyrin, and magnesium porphyrin Porphyrin compounds; azo dyes, phthalocyanine compounds, Ru trisbipyridyl, complex compounds such as Ru complexes of the following structural formulas; and anthraquinone dyes, polycyclic quinone dyes, and thionin dyes.

【0026】[0026]

【化1】 Embedded image

【0027】増感色素は、公知の方法により、担持させ
ることができる。具体的には、真空蒸着法等のドライプ
ロセス、スピンコート等の塗布法、電界析出法、電界重
合法や担持させる化合物の溶液に浸す自然吸着法等の方
法を挙げることができる。なかでも、自然吸着法は、
多孔性を有する光半導体電極の細孔内に均一に増感色素
分子を担持させることが可能で、特別な装置を必要と
せず、増感色素分子は、単分子層程度に担持され、必
要以上に担持されることがほとんどない、等の多くの利
点を有しているので、好ましい方法である。
The sensitizing dye can be carried by a known method. Specific examples include a dry process such as a vacuum evaporation method, a coating method such as spin coating, an electric field deposition method, an electric field polymerization method, and a method such as a natural adsorption method of dipping in a solution of a compound to be supported. Above all, the natural adsorption method is
The sensitizing dye molecules can be uniformly supported in the pores of the porous photosemiconductor electrode, and no special device is required. This is a preferred method because it has many advantages such as being hardly carried on a substrate.

【0028】また、上記増感色素と化学反応し得る反応
性基を有する化合物(シラン化合物、チオール化合物等
の自己組織化分子)を半導体表面に添加(導入)した
後、増感色素と前記化合物(自己組織化分子)とを反応
させて増感色素を光半導体電極表面に化学的に結合させ
てもよい。
After adding (introducing) a compound having a reactive group capable of chemically reacting with the sensitizing dye (self-assembled molecule such as a silane compound or a thiol compound) to the semiconductor surface, the sensitizing dye and the compound (Self-assembled molecule) to chemically bond the sensitizing dye to the surface of the photosemiconductor electrode.

【0029】<絶縁性支持体>絶縁性支持体として
は、電気的に絶縁性であり、表面に対向電極部材を形成
し得るものであればよく、ソーダガラス、溶融石英ガラ
ス、結晶石英ガラス等のガラス類;アクリル樹脂、メタ
クリル樹脂、ポリカーボネート樹脂、ポリエステル樹
脂、ポリビニルアセタール樹脂、ポリスチレン樹脂、ス
チレン−アクリル樹脂、フェノール−ホルムアルデヒド
樹脂、シリコーン樹脂等の樹脂類;鉄、アルミニウム、
ニッケル、クロム、ステンレス鋼等の金属およびその合
金類あるいは金属酸化物の表面に、上記樹脂をコートし
たもの、並びに上記樹脂のシートをラミネートしたも
の;等を使用することができる。なお、絶縁性支持体
は、上記絶縁性透明支持体と異なり、透明であることを
要しない。
<Insulating Support> As the insulating support, any material may be used as long as it is electrically insulative and can form a counter electrode member on its surface, such as soda glass, fused silica glass, and crystal quartz glass. Glasses; resins such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, polyvinyl acetal resin, polystyrene resin, styrene-acrylic resin, phenol-formaldehyde resin, silicone resin; iron, aluminum,
Metals such as nickel, chromium, stainless steel and the like or alloys thereof or metal oxides coated on the surface of the above-mentioned resin, and those obtained by laminating a sheet of the above-mentioned resin can be used. Note that, unlike the insulating transparent support described above, the insulating support does not need to be transparent.

【0030】<対向電極部材>絶縁性支持体表面に形
成される対向電極部材は、導電性が高く、その界面にお
いて電解液との酸化還元反応が速やかに行われ、かつ、
自身が酸化還元されなければ、いかなるものでも使用す
ることができる。具体的には、酸化還元反応に対する過
電圧が小さい、白金、パラジウム、ロジウム、ルテニウ
ム、炭素等を使用することができる。
<Counter electrode member> The counter electrode member formed on the surface of the insulating support has high conductivity, and the oxidation-reduction reaction with the electrolytic solution is rapidly performed at the interface, and
Anything can be used as long as it is not redox itself. Specifically, platinum, palladium, rhodium, ruthenium, carbon, or the like that has a small overvoltage for the oxidation-reduction reaction can be used.

【0031】また、対向電極部材は十分低い抵抗値を示
すことが好ましい。具体的には、対向電極部材が層状の
場合、表面抵抗は1000Ω/□以下であることが好ま
しく、10Ω/□以下であることがより好ましく、1Ω
/□以下であることがさらに好ましい。さらに、対向電
極部材は、光を反射する性質を有することが好ましい。
かかる性質を有する対向電極部材を用いれば、光半導体
電極を通り抜けてきた照射光を反射して再び光半導体電
極に照射することにより、照射光の利用効率を向上させ
ることができる。
It is preferable that the counter electrode member has a sufficiently low resistance value. Specifically, when the counter electrode member is in the form of a layer, the surface resistance is preferably 1000 Ω / □ or less, more preferably 10 Ω / □ or less, and 1 Ω / □ or less.
/ □ or less is more preferable. Further, it is preferable that the counter electrode member has a property of reflecting light.
If the counter electrode member having such a property is used, it is possible to improve the utilization efficiency of the irradiation light by reflecting the irradiation light passing through the optical semiconductor electrode and irradiating the light to the optical semiconductor electrode again.

【0032】<酸化還元媒体>酸化還元媒体は、溶媒
中に電解質を溶解したものであり、電解液として作用す
るものである。酸化還元媒体は、前記光半導体電極およ
び前記対向電極部材における酸化還元反応を速やかに進
行させるとともに、酸化還元媒体中の電荷を速やかに輸
送させる材料であることが求められる。
<Oxidation-Reduction Medium> The oxidation-reduction medium is obtained by dissolving an electrolyte in a solvent and functions as an electrolyte. The oxidation-reduction medium is required to be a material that allows the oxidation-reduction reaction in the optical semiconductor electrode and the counter electrode member to rapidly progress, and that quickly transports the charges in the oxidation-reduction medium.

【0033】このような酸化還元媒体に使用される電解
質としては、ヨウ化物イオン/ヨウ素、臭化物イオン/
臭素、キノン/ハイドロキノン、鉄(II)イオン/鉄
(III)イオン、銅(I)イオン/銅(II)イオ
ン、等が挙げられる。電解液に使用される溶媒として
は、水、もしくはアセトニトリル、ピリジン、ジメチル
アセトアミド、プロピレンカーボネート、エチレンカー
ボネート等の極性溶媒、またはそれらの混合物が使用で
きる。酸化還元媒体の電気伝導度を上げる目的で、支持
電解質を加えてもよい。支持電解質としては、塩化カル
シウム、硫酸ナトリウム、塩化アンモニウム等を使用す
ることができる。
The electrolyte used for such a redox medium includes iodide ion / iodine, bromide ion /
Bromine, quinone / hydroquinone, iron (II) ion / iron (III) ion, copper (I) ion / copper (II) ion, and the like. As a solvent used for the electrolytic solution, water or a polar solvent such as acetonitrile, pyridine, dimethylacetamide, propylene carbonate, ethylene carbonate, or a mixture thereof can be used. For the purpose of increasing the electrical conductivity of the redox medium, a supporting electrolyte may be added. As the supporting electrolyte, calcium chloride, sodium sulfate, ammonium chloride and the like can be used.

【0034】<封止手段>本発明における封止手段と
は、主としてシール部材であり、個々の光電変換素子の
外側に設けられ、光電変換素子としてのシール性を保持
する役割を果たす。
<Sealing Means> The sealing means in the present invention is mainly a sealing member, which is provided outside each photoelectric conversion element and plays a role of maintaining the sealing property as the photoelectric conversion element.

【0035】シール部材を形成するためのシール剤とし
ては、電解液に対して不溶であり、接着面との密着性の
良好なものが使用される。具体的には、シリコーン樹
脂、エポキシ樹脂、アクリル樹脂およびガラス粉末ペー
スト等が挙げられる。これらのうち樹脂は、熱硬化型あ
るいは紫外線硬化型のいずれでもよいが、作業性の面か
らは紫外線硬化型が好ましい。液晶ディスプレイパネ
ル、プラズマディスプレイパネルの製造等に使用されて
いる公知のシール剤を使用してもよい。なお、後述の導
通手段が封止手段を兼ねる構成であってもよいが、その
詳細については後述する。
As a sealant for forming a seal member, a sealant which is insoluble in an electrolytic solution and has good adhesion to an adhesive surface is used. Specific examples include a silicone resin, an epoxy resin, an acrylic resin, and a glass powder paste. Of these, the resin may be either a thermosetting type or an ultraviolet setting type, but is preferably an ultraviolet setting type from the viewpoint of workability. A well-known sealing agent used for manufacturing a liquid crystal display panel or a plasma display panel may be used. In addition, a configuration may be adopted in which a conduction unit described later also serves as a sealing unit, but details thereof will be described later.

【0036】<導通手段>導通手段は、1の光電変換
素子の透明導電性部材と、その隣の光電変換素子の対向
電極部材とを導通し得る構成であり、隣合う光電変換素
子同士を直列に接続する機能を有するものである。
<Conducting Means> The conducting means is capable of conducting between the transparent conductive member of one photoelectric conversion element and the opposing electrode member of the adjacent photoelectric conversion element, and connects adjacent photoelectric conversion elements in series. It has the function of connecting to

【0037】導通手段の一例として、一方が透明導電性
部材に接続され、他方が隣合う光電変換素子の対向電極
部材に接続される導電性接続部材が挙げられる。この場
合導電性接続部材は、隣合う光電変換素子同士の絶縁性
を確保するために、封止手段としてのシール部材で覆わ
れている必要がある。導電性接続部材の材質としては、
金、銀、銅、鉄、アルミニウム、ニッケル、クロム等の
金属;酸化錫、酸化インジウムなどの導電性金属酸化
物;あるいは、カーボン等の導電性微粒子および/また
は導電性微粉末をペースト状にしたもの;等を好ましく
使用することができる。具体的には例えば、金を分散し
た金ペースト、銀を分散した銀ペースト、およびカーボ
ンを分散したカーボンペースト等を好ましく使用するこ
とができる。また、金、インジウム、グラファイト等の
ように、導電性を有しつつ、機械的に押し付けることで
変形圧着し、電気的に接続し得るものも使用することが
できる。
As an example of the conducting means, there is a conductive connecting member in which one is connected to a transparent conductive member and the other is connected to a counter electrode member of an adjacent photoelectric conversion element. In this case, the conductive connection member needs to be covered with a sealing member as sealing means in order to ensure insulation between adjacent photoelectric conversion elements. As the material of the conductive connecting member,
Metals such as gold, silver, copper, iron, aluminum, nickel, and chromium; conductive metal oxides such as tin oxide and indium oxide; or conductive fine particles and / or conductive fine powder such as carbon were formed into a paste. And the like can be preferably used. Specifically, for example, a gold paste in which gold is dispersed, a silver paste in which silver is dispersed, a carbon paste in which carbon is dispersed, and the like can be preferably used. In addition, a material such as gold, indium, graphite, or the like, which has conductivity and can be deformed and pressed by mechanical pressing to be electrically connected can be used.

【0038】また、導通手段として、1の方向にのみ導
電性を有し、他の方向には絶縁性を有する異方導電性部
材を使用する構成とすることもできる。異方導電性部材
を使用すれば、導通手段としての機能とともに既述の封
止手段の機能をも併せ持つものとなる。従って、隣合う
光電変換素子間の当該異方導電性部材に配される部分に
ついては、前記シール部材を改めて設ける必要がない。
Further, an anisotropic conductive member having conductivity only in one direction and insulating property in the other direction may be used as the conduction means. If an anisotropic conductive member is used, it has not only the function of the conducting means but also the function of the sealing means described above. Therefore, it is not necessary to newly provide the seal member for a portion disposed between the adjacent photoelectric conversion elements on the anisotropic conductive member.

【0039】そのような異方導電性部材としては、極薄
い導電性樹脂、導電性樹脂ファイバー、金属シート、あ
るいは金属ファイバーと、絶縁性樹脂シートとを交互に
何枚も貼り合わせて圧着した後、断面方向に薄くスライ
スして製造される異方導電性シート、あるいは、金属フ
ァイバーのような細い線状の導電性ファイバーを絶縁性
樹脂で被覆するとともに複数本束ねて圧着した後、断面
方向に薄くスライスして製造される異方導電性シート
等、従来公知のものを用いることができる。
As such an anisotropic conductive member, an ultra-thin conductive resin, a conductive resin fiber, a metal sheet, or a metal fiber and an insulating resin sheet are alternately bonded to each other and pressed. Anisotropic conductive sheet manufactured by slicing thinly in the cross-sectional direction, or a thin linear conductive fiber such as metal fiber is coated with insulating resin and bundled into multiple pieces and crimped. A conventionally known sheet such as an anisotropic conductive sheet manufactured by slicing thinly can be used.

【0040】また異方導電性部材として、絶縁性部材中
に導電性粒子を分散させたものも用いることができる。
この場合、絶縁性部材としては、隣合う光電変換素子間
以外の封止手段の部材(シール部材)と同様の材質のも
のを使用することができ、それらは同一材質のものであ
っても異なる材質のものであっても構わない。例えば、
隣合う光電変換素子間以外のシール部材にアクリル系熱
硬化性樹脂を用い、異方導電性部材の絶縁性樹脂として
エポキシ系熱硬化性樹脂を用いてもよいし、両者に同じ
ガラス粉末ペーストやシリコン系紫外線硬化性樹脂を用
いてもよい。導電性粒子としては、金属粒子、金属酸化
物粒子、表面あるいは全体に導電処理を施した樹脂粒子
やガラス粒子、導電性ゴム粒子等を好ましいものとして
挙げることができる。
Further, as the anisotropic conductive member, a member in which conductive particles are dispersed in an insulating member can be used.
In this case, as the insulating member, the same material as the sealing member (seal member) other than between the adjacent photoelectric conversion elements can be used. It may be made of a material. For example,
An acrylic thermosetting resin may be used for a sealing member other than between adjacent photoelectric conversion elements, and an epoxy thermosetting resin may be used as an insulating resin for the anisotropic conductive member. A silicon-based ultraviolet curable resin may be used. Preferred examples of the conductive particles include metal particles, metal oxide particles, resin particles, glass particles, and conductive rubber particles that have been subjected to a conductive treatment on the surface or the whole.

【0041】導電性粒子は、前記光半導体電極と前記対
向電極部材との間隔を保持するスペーサーとして、外周
のシール部材に別途スペーサー粒子を添加する場合に
は、該スペーサー粒子と同程度の大きさであることが望
ましい。該スペーサー粒子のほうが導電性粒子よりも大
きくなり過ぎると、透明導電性部材と、その隣の光電変
換素子の対向電極部材とを導通が不充分となる場合があ
るため、注意が必要である。
When the spacer particles are added to the outer peripheral sealing member as spacers for maintaining the distance between the optical semiconductor electrode and the counter electrode member, the conductive particles have the same size as the spacer particles. It is desirable that If the spacer particles are too large compared to the conductive particles, care must be taken because conduction between the transparent conductive member and the opposing electrode member of the adjacent photoelectric conversion element may be insufficient.

【0042】また導電性粒子は、前記スペーサー粒子と
しての機能を併せ持たせることもでき、その場合には、
前記スペーサーとして機能するに適した大きさであるこ
とが望まれる。いずれの場合にも、具体的には、0.1
〜500μmの範囲から選択されることが好ましく、
0.1〜50μmの範囲から選択されることがより好ま
しい。
The conductive particles can also have the function of the spacer particles. In this case,
It is desired that the spacer has a size suitable for functioning as the spacer. In each case, specifically, 0.1
Is preferably selected from the range of
More preferably, it is selected from the range of 0.1 to 50 μm.

【0043】≪2.光電変換モジュールの具体例≫ <光電変換モジュールの第1の例>図1は本発明の光
電変換モジュールの第1の例を示す模式断面図である。
これは、同一基板(絶縁性支持体および絶縁性透明支持
体)間に設けられた2つの光電変換素子10,10’
を、直列に内部接続するように形成した場合の例であ
る。
{2. Specific Example of Photoelectric Conversion Module 1 <First Example of Photoelectric Conversion Module> FIG. 1 is a schematic sectional view showing a first example of a photoelectric conversion module of the present invention.
This is because the two photoelectric conversion elements 10, 10 'provided between the same substrate (insulating support and insulating transparent support) are provided.
Are formed so as to be internally connected in series.

【0044】光電変換モジュールの第1の例としては、
絶縁性透明支持体1と絶縁性支持体5とが対向し、その
間に、絶縁性透明支持体1の表面に設けられた透明導電
性部材2,2’と、透明導電性部材2,2’の表面に設
けられ光半導体電極3,3’と、絶縁性支持体5の表面
に設けられた対向電極部材6,6’と、対向電極部材
6,6’および光半導体電極3,3’間に封入された酸
化還元媒体9,9’と、からなる光電変換素子10,1
0’が並列に設けられており、2つの光電変換素子1
0,10’間を含む光電変換素子10,10’の周囲が
封止手段であるシール部材8により封止されている。
As a first example of the photoelectric conversion module,
The insulating transparent support 1 and the insulating support 5 face each other, and the transparent conductive members 2 and 2 ′ provided on the surface of the insulating transparent support 1 and the transparent conductive members 2 and 2 ′ therebetween. Between the opto-electrode members 6, 6 'and the opto-electrode members 6, 6' and the opto-semiconductor electrodes 3, 3 'provided on the surface of the insulating support 5. Photoelectric conversion elements 10, 1 comprising oxidation-reduction media 9, 9 'sealed in
0 ′ are provided in parallel, and two photoelectric conversion elements 1
The periphery of the photoelectric conversion elements 10 and 10 ′ including between 0 and 10 ′ is sealed by a seal member 8 as sealing means.

【0045】また、光電変換素子10の透明導電性部材
2と、その隣の光電変換素子10’の対向電極部材6’
とを導通し得る導通手段としての導電性接続部材11a
がその周囲をシール部材8で覆われて、2つの光電変換
素子10,10’間に設けられている。導電性接続部材
11aにより透明導電性部材2と対向電極部材6’とが
接続されるためには、光電変換素子10内にある透明導
電性部材2の一部と、光電変換素子10’内にある対向
電極部材6’の一部とが、図1に示すように、対向して
いる部分(以下「重なり部分」ということがある)を有
する構成とするのが好ましい。このように重なり部分を
有する構成とすることで、後述の光電変換モジュールの
製造方法時において、上下の基板を重ね合わせるだけで
簡単に透明導電性部材2と対向電極部材6’とを内部接
続することができ、両者の位置合わせに高い精度を要求
しない。
Further, the transparent conductive member 2 of the photoelectric conversion element 10 and the counter electrode member 6 'of the adjacent photoelectric conversion element 10'.
Conductive connecting member 11a as a conduction means capable of conducting
Is provided between the two photoelectric conversion elements 10 and 10 ′ with the periphery thereof covered with a seal member 8. In order for the transparent conductive member 2 and the counter electrode member 6 ′ to be connected by the conductive connection member 11 a, a portion of the transparent conductive member 2 in the photoelectric conversion element 10 and a portion in the photoelectric conversion element 10 ′ As shown in FIG. 1, it is preferable that a part of a certain counter electrode member 6 ′ has a facing portion (hereinafter, sometimes referred to as “overlapping portion”). With such a configuration having the overlapping portion, the transparent conductive member 2 and the counter electrode member 6 ′ can be easily connected to each other simply by overlapping the upper and lower substrates in a method of manufacturing a photoelectric conversion module described later. And high accuracy is not required for the alignment between the two.

【0046】導電性接続部材11aの一端は、透明導電
性部材2のみと接続するようになっているが、透明導電
性部材2および光半導体電極3の両方に接続されていて
もよい。光半導体電極3のみに接続されても原理的には
問題ないが、内部抵抗を低く抑えるためには、少なくと
も透明電極部材2に接続されていることが好ましい。
Although one end of the conductive connecting member 11a is connected to only the transparent conductive member 2, it may be connected to both the transparent conductive member 2 and the optical semiconductor electrode 3. Although there is no problem in principle if it is connected only to the optical semiconductor electrode 3, it is preferable that it is connected to at least the transparent electrode member 2 in order to keep the internal resistance low.

【0047】図1の光電変換モジュールのA−A方向か
ら見た模式断面図を図2(a)に示す。また、図2
(a)から導電性接続部材11aおよびシール部材(封
止部材)8を除した状態を図2(b)に示す。即ち、図
2(b)は、絶縁性透明支持体1表面に透明導電性部材
2,2’、および光半導体電極3,3’を順次形成した
ものを表し、図2(a)はその上にさらに導電性接続部
材11aと、シール部材(封止部材)8と、を設けたも
のを表す。
FIG. 2A is a schematic cross-sectional view of the photoelectric conversion module of FIG. 1 as viewed from the AA direction. FIG.
FIG. 2B shows a state in which the conductive connecting member 11a and the sealing member (sealing member) 8 are removed from FIG. That is, FIG. 2B shows a structure in which transparent conductive members 2 and 2 ′ and optical semiconductor electrodes 3 and 3 ′ are sequentially formed on the surface of the insulating transparent support 1, and FIG. And a conductive connecting member 11a and a sealing member (sealing member) 8 are further provided.

【0048】図2(b)では、光半導体電極3を、透明
導電性部材2の表面の一部に形成する場合を図示してい
るが、透明導電性部材2の表面の全範囲あるいは該表面
とその周辺に一部はみ出すように形成してもよく、少な
くとも隣合う光半導体電極3’と接触しないように形成
すればよい。また、光半導体電極3,3’は上述したよ
うに多孔質である場合が多いため、図2(a)に示すシ
ール部材8が設けられる範囲を突き抜けて外部(大気)
に接触しないように構成することが好ましい。
FIG. 2B shows the case where the optical semiconductor electrode 3 is formed on a part of the surface of the transparent conductive member 2. May be formed so as to partially protrude from the periphery thereof, or may be formed so as not to contact at least the adjacent optical semiconductor electrode 3 ′. In addition, since the optical semiconductor electrodes 3 and 3 ′ are often porous as described above, the optical semiconductor electrodes 3 and 3 ′ penetrate the area where the sealing member 8 shown in FIG.
It is preferable to be configured so as not to contact with.

【0049】光電変換素子10,10’間に設けられる
導電性接続部材11aは、少なくとも重なり部分4の一
部に設けられ、対向電極部材6、透明導電性部材2’お
よび光半導体電極3’と、導電性接続部材11aとの間
の絶縁性がシール部材8で確保されていれば、重なり部
分4からはみ出すように設けてもよい。また、導電性接
続部材11aは重なり部分全体に設ける必要はなく、少
なくとも一箇所に設ければよく、さらに数カ所に分離分
散させて設けてもよい。
The conductive connecting member 11a provided between the photoelectric conversion elements 10 and 10 'is provided at least in a part of the overlapping portion 4, and is connected to the opposing electrode member 6, the transparent conductive member 2' and the optical semiconductor electrode 3 '. If the insulation between the conductive connection member 11 a and the conductive member 11 a is ensured by the seal member 8, it may be provided so as to protrude from the overlapping portion 4. Further, the conductive connecting member 11a does not need to be provided in the entire overlapping portion, but may be provided in at least one place, and may be provided separately in several places.

【0050】図1の光電変換モジュールのB−B方向か
ら見た模式断面図を図3(a)に示す。また、図3
(a)から導電性接続部材11aおよびシール部材(封
止部材)8を除した状態を図3(b)に示す。即ち、図
3(b)は絶縁性支持体5表面に対向電極部材6,6’
を形成したものを表し、図3(a)はその上にさらに導
電性接続部材11aとシール部材8とを設けたものを表
す。対向電極部材6,6’は、光半導体電極3,3’を
設ける場合と同様に、少なくとも互いに接触しないよう
に形成すればよく、シール部材8と接触するような大き
さであっても問題ない。
FIG. 3A is a schematic cross-sectional view of the photoelectric conversion module of FIG. 1 as viewed from the BB direction. FIG.
FIG. 3B shows a state in which the conductive connecting member 11a and the sealing member (sealing member) 8 are removed from FIG. That is, FIG. 3B shows that the counter electrode members 6 and 6 ′ are provided on the surface of the insulating support 5.
FIG. 3A shows a case where a conductive connecting member 11a and a seal member 8 are further provided thereon. Similar to the case where the optical semiconductor electrodes 3 and 3 ′ are provided, the counter electrode members 6 and 6 ′ may be formed so as not to be in contact with each other at least. .

【0051】なお、図2および図3においては、光電変
換素子10,10’に酸化還元媒体9を導入するための
注入口13,13’が設けられた状態を示したが、これ
は後述の製造方法における説明のために便宜的に描かれ
たものであり。これら断面図において、注入口13,1
3’はすべてシール部材8で塞がれている。
FIGS. 2 and 3 show a state in which the injection ports 13, 13 'for introducing the oxidation-reduction medium 9 are provided in the photoelectric conversion elements 10, 10', which will be described later. It is drawn for convenience in the description of the manufacturing method. In these sectional views, the injection ports 13, 1
3 'are all closed by the sealing member 8.

【0052】以上のような本発明の光電変換モジュール
の第1の例によれば、透明導電性部材2および対向電極
部材6’が、導電性接続部材11aにより電気的に導通
し、光電変換変換素子10,10’が直列に接合される
ため、対向電極部材6および透明導電性部材2’のそれ
ぞれ張り出した端子(各図面において、左右に張り出し
ている部分)から取り出される電圧は、1つの光電変換
素子のみから得られる電圧の2倍となり、高い出力電圧
を容易に得ることができる。
According to the first example of the photoelectric conversion module of the present invention as described above, the transparent conductive member 2 and the counter electrode member 6 'are electrically connected by the conductive connecting member 11a, and Since the elements 10 and 10 ′ are joined in series, the voltage taken out from the protruding terminals of the counter electrode member 6 and the transparent conductive member 2 ′ (portions protruding left and right in each drawing) is one photoelectric. This is twice the voltage obtained from only the conversion element, and a high output voltage can be easily obtained.

【0053】なお、本発明の光電変換モジュールの第1
の例の変形例を、図4および図5に示す。当該変形例
は、図4(a)および(b)が上記第1の例における図
2(a)および(b)に、図5(a)および(b)が上
記第1の例における図3(a)および(b)に、それぞ
れ対応するものであり、図4および図5において、図2
および図3と同一の機能を有する部材は、これら図面と
同一の符号を付し、その詳細な説明は省略する。
The first embodiment of the photoelectric conversion module according to the present invention is described below.
Modifications of the example shown in FIGS. 4 and 5 are shown in FIGS. FIGS. 4A and 4B show the modified example in FIGS. 2A and 2B in the first example, and FIGS. 5A and 5B show FIGS. 3A and 3B in the first example. FIGS. 4A and 4B correspond to FIGS. 2A and 2B, respectively.
Members having the same functions as those in FIG. 3 are denoted by the same reference numerals as those in the drawings, and detailed description thereof will be omitted.

【0054】図4および図5に示すように、透明導電性
部材2と対向電極部材6’との重なり部分4を小さくし
てもよい。このようにすることで、光半導体電極3,
3’の面積をより大きくすることが可能となり、照射光
量をより有効に活用することができる。図4および図5
に示す例では、重なり部分4が中央一カ所に形成してあ
るが、両端の2カ所や両端と中央の3カ所でもよいし、
基板(絶縁性透明支持体1および絶縁性支持体5)サイ
ズに応じてさらに多く形成してもよい。
As shown in FIGS. 4 and 5, the overlapping portion 4 between the transparent conductive member 2 and the counter electrode member 6 'may be reduced. By doing so, the optical semiconductor electrodes 3 and
The area of 3 ′ can be made larger, and the amount of irradiation light can be more effectively utilized. 4 and 5
In the example shown in FIG. 2, the overlapping portion 4 is formed at one center, but may be at two places at both ends or three places at both ends and the center.
More may be formed according to the size of the substrate (insulating transparent support 1 and insulating support 5).

【0055】<光電変換モジュールの第2の例>図6
は本発明の光電変換モジュールの第2の例を示す模式断
面図である。第2の例は、導電性接続部材として異方導
電性部材11bを使用する以外は、基本的な構成は第1
の例と同じである。したがって、第1の例の図1と同一
の機能を有する部材は、図1と同一の符号を付し、その
詳細な説明は省略する(後述の図6および図7において
も同様)。
<Second Example of Photoelectric Conversion Module> FIG.
FIG. 4 is a schematic sectional view showing a second example of the photoelectric conversion module of the present invention. The second example is similar to the first example except that the anisotropic conductive member 11b is used as the conductive connection member.
Is the same as the example. Therefore, members having the same functions as in FIG. 1 of the first example are denoted by the same reference numerals as in FIG. 1, and detailed description thereof is omitted (the same applies to FIGS. 6 and 7 described later).

【0056】異方導電性部材11bを使用すると、光電
変換素子間に設けられる絶縁および封止のためのシール
部材8が不要となる。異方導電性部材11bは、絶縁性
透明支持体1および絶縁支持体5に対し垂直になるよう
に、少なくとも重なり部分の端面とを覆うように設けら
れる。そうしないと透明導電性部材2あるいは対向電極
部材6’が隣の酸化還元媒体9,9’と電気的に接触し
てしまう可能性がある。
When the anisotropic conductive member 11b is used, the seal member 8 provided between the photoelectric conversion elements for insulation and sealing becomes unnecessary. The anisotropic conductive member 11b is provided so as to be perpendicular to the insulating transparent support 1 and the insulating support 5 and to cover at least the end face of the overlapping portion. Otherwise, there is a possibility that the transparent conductive member 2 or the counter electrode member 6 ′ may be in electrical contact with the adjacent redox media 9, 9 ′.

【0057】異方導電性接続部材11bは、絶縁性透明
支持体1および絶縁支持体5と垂直方向には導電性を有
し、透明導電性部材2と対向電極部材6’とを電気的に
接続するが、絶縁性透明支持体1および絶縁支持体5に
水平な方向には絶縁性を有するものである。従って、隣
合う酸化還元媒体9,9’同士は電気的に絶縁されてい
る。そのため、第1の例において、導電性接続部材11
aを取り囲むように配置されたシール部材8は、不要と
なる。
The anisotropic conductive connection member 11b has conductivity in a direction perpendicular to the insulating transparent support 1 and the insulating support 5, and electrically connects the transparent conductive member 2 and the counter electrode member 6 '. Although they are connected, they have insulating properties in a direction horizontal to the insulating transparent support 1 and the insulating support 5. Therefore, the adjacent oxidation-reduction media 9, 9 'are electrically insulated from each other. Therefore, in the first example, the conductive connection member 11
The seal member 8 arranged so as to surround “a” becomes unnecessary.

【0058】このような異方導電性接続部材11bとし
ては、接着面に垂直な方向にのみ導電性を有するもので
あれば公知のものがそのまま使用できる。具体的には、
各種回路基板等の接着に使用されている異方導電性接着
フィルム、異方導電性接着剤等を使用することができ
る。
As such an anisotropic conductive connection member 11b, a known one can be used as long as it has conductivity only in a direction perpendicular to the bonding surface. In particular,
An anisotropic conductive adhesive film, an anisotropic conductive adhesive, and the like used for bonding various circuit boards and the like can be used.

【0059】図6の光電変換モジュールのA−A方向か
ら見た模式断面図を図7(a)に示す。また、図7
(a)から異方導電性部材11bおよびシール部材(封
止部材)8を除した状態を図7(b)に示す。即ち、図
7(b)は絶縁性透明支持体1表面に透明導電性部材
2,2’および光半導体電極3,3’を順次形成したも
のを表し、図7(a)はその上にさらに異方導電性部材
11bと、シール部材(封止部材)8とを設けたものを
表す。
FIG. 7A is a schematic cross-sectional view of the photoelectric conversion module of FIG. 6 as viewed from the AA direction. FIG.
FIG. 7B shows a state in which the anisotropic conductive member 11b and the sealing member (sealing member) 8 are removed from FIG. That is, FIG. 7B shows a structure in which transparent conductive members 2 and 2 ′ and optical semiconductor electrodes 3 and 3 ′ are sequentially formed on the surface of the insulating transparent support 1, and FIG. It shows a member provided with an anisotropic conductive member 11b and a sealing member (sealing member) 8.

【0060】一方、図6の光電変換モジュールのB−B
方向から見た模式断面図を図8(a)に示す。また、図
8(a)から異方導電性部材11bおよびシール部材
(封止部材)8を除した状態を図8(b)に示す。即
ち、図8(b)は絶縁性支持体5表面に対向電極部材
6,6’を形成したものを表し、図3(a)はその上に
さらに異方導電性部材11bとシール部材8を設けたも
のを表す。対向電極部材6,6’は、光半導体電極3,
3’を設ける場合と同様に、少なくとも隣合う光電変換
素子と接触しないように形成すればよく、シール部材8
と接触するような大きさであっても問題ない。
On the other hand, BB of the photoelectric conversion module of FIG.
FIG. 8A is a schematic sectional view viewed from the direction. FIG. 8B shows a state in which the anisotropic conductive member 11b and the sealing member (sealing member) 8 are removed from FIG. 8A. That is, FIG. 8B shows a structure in which opposing electrode members 6 and 6 ′ are formed on the surface of the insulating support member 5, and FIG. Represents what is provided. The opposing electrode members 6, 6 '
Similarly to the case where 3 ′ is provided, the seal member 8 may be formed so as not to contact at least the adjacent photoelectric conversion element.
There is no problem even if the size is such that it comes into contact with.

【0061】異方導電性部材11bとして、硬化性媒体
(絶縁性部材)の中に導電性粒子を分離分散させたもの
も使用できる。例えばエポキシ系接着剤(エポキシ樹
脂)の中に導電性粒子を分離分散させたものは、スクリ
ーン印刷等、シール剤と同様の方法で印刷できるため使
用方法も簡単である。硬化性媒体としてはシール剤と同
じ材質のものをそのまま使用できるので、基板(絶縁性
透明支持体1または絶縁性支持体5に、前記各種電極を
必要に応じて所望のパターンに形成したもの)表面にシ
ール剤を印刷した後に、異方導電性を付与したい部分の
みに導電性粒子を印刷する、等の方法でも製造できる。
導電性粒子を後から印刷するには、導電性粒子を直接吹
きつけてもよいし、シール剤に導電性粒子を分散したも
のを重ねて印刷してもよい。
As the anisotropic conductive member 11b, a material obtained by separating and dispersing conductive particles in a curable medium (insulating member) can be used. For example, a material obtained by separating and dispersing conductive particles in an epoxy adhesive (epoxy resin) can be printed by the same method as a sealant such as screen printing, so that the method of use is simple. As the curable medium, the same material as the sealant can be used as it is, so that the substrate (the above-mentioned various electrodes are formed in a desired pattern on the insulating transparent support 1 or the insulating support 5 as necessary) After printing the sealant on the surface, the conductive particles can be printed only on the portion where the anisotropic conductivity is desired to be imparted.
In order to print the conductive particles later, the conductive particles may be directly sprayed, or a sealant in which the conductive particles are dispersed may be printed.

【0062】図9は、異方導電性部材として、硬化性媒
体(絶縁性部材)の中に導電性粒子を分離分散させたも
のも使用した例を示す模式断面図である。図9において
も、導電性接続部材として硬化性媒体15および導電性
粒子14からなる異方導電性部材を使用する以外は、基
本的な構成は第1の例と同じである。したがって、第1
の例の図1と同一の機能を有する部材は、図1と同一の
符号を付し、その詳細な説明は省略する。なお、図9に
おいては、重なり部分周辺(硬化性媒体15および導電
性粒子14からなる導電性接続部材の部分)を、図面上
横方向に誇張して示している。
FIG. 9 is a schematic cross-sectional view showing an example in which conductive particles separated and dispersed in a curable medium (insulating member) are also used as anisotropic conductive members. In FIG. 9 as well, the basic configuration is the same as that of the first example except that an anisotropic conductive member composed of a curable medium 15 and conductive particles 14 is used as the conductive connection member. Therefore, the first
Members having the same functions as in FIG. 1 of the example of FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description thereof will be omitted. In FIG. 9, the periphery of the overlapping portion (the portion of the conductive connection member including the curable medium 15 and the conductive particles 14) is exaggerated in the horizontal direction in the drawing.

【0063】硬化性媒体15の材質としては、シール部
材8と同一の部材を用いることが、製造容易性の観点か
ら好ましい(本例では、同一材料として説明する)。図
中、導電性粒子14は硬化性媒体15の中に分離分散さ
れており、透明導電性部材2と対向電極部材6’とを電
気的に接続するとともに、隣合う酸化還元媒体9,9’
の絶縁性を保っている。
As the material of the curable medium 15, it is preferable to use the same member as the seal member 8 from the viewpoint of manufacturing easiness (in this example, the same material will be described). In the figure, conductive particles 14 are separated and dispersed in a curable medium 15 to electrically connect the transparent conductive member 2 and the counter electrode member 6 ', and to adjacent redox media 9, 9'.
Keeps the insulation.

【0064】硬化性媒体15および導電性粒子14から
なる導電性接続部材は、シール部材8とともに、絶縁性
透明支持体1表面に透明導電性部材2,2’および光半
導体電極3,3’を形成した基板、あるいは、絶縁性支
持体5表面に対向電極部材6,6’を形成した基板に塗
布(導電性粒子14を後から印刷した場合を含む)した
上で、これら基板を貼り合わせて押し付けるだけで、透
明導電性部材2および対向電極部材6’が電気的に導通
された状態となり、図面上横方向には、シール部材8と
同一材料である硬化性媒体15が存在するため、絶縁性
が保たれる。
The conductive connecting member composed of the curable medium 15 and the conductive particles 14 includes a transparent conductive member 2, 2 'and an optical semiconductor electrode 3, 3' on the surface of the insulating transparent support 1 together with the sealing member 8. After coating (including the case where the conductive particles 14 are printed later) on the formed substrate or the substrate on which the opposing electrode members 6 and 6 ′ are formed on the surface of the insulating support 5, these substrates are bonded together. By simply pressing, the transparent conductive member 2 and the counter electrode member 6 ′ are in an electrically conductive state, and the curable medium 15 made of the same material as the seal member 8 exists in the horizontal direction in the drawing. Sex is maintained.

【0065】以上のような本発明の光電変換モジュール
の第2の例によれば、透明導電性部材2および対向電極
部材6’が、異方導電性部材11b(あるいは導電性粒
子14)により電気的に導通し、光電変換変換素子1
0,10’が直列に接合されるため、対向電極部材6お
よび透明導電性部材2’のそれぞれ張り出した端子(各
図面において、左右に張り出している部分)から取り出
される電圧は、1つの光電変換変換素子のみから得られ
る電圧の2倍となり、高い出力電圧を容易に得ることが
できる。また、異方導電性部材11b(あるいは硬化性
媒体15)が、封止手段を兼ねており、改めてシール部
材を設ける必要が無く、製造が容易であるとともに、単
位面積あたりの光電変換変換素子面積を大きくすること
ができる。
According to the above-described second embodiment of the photoelectric conversion module of the present invention, the transparent conductive member 2 and the counter electrode member 6 ′ are electrically connected by the anisotropic conductive member 11 b (or the conductive particles 14). Electrically conductive, the photoelectric conversion element 1
Since 0 and 10 'are joined in series, the voltage taken out from the protruding terminal (the portion protruding left and right in each drawing) of the counter electrode member 6 and the transparent conductive member 2' is one photoelectric conversion. This is twice the voltage obtained from only the conversion element, and a high output voltage can be easily obtained. Further, the anisotropic conductive member 11b (or the curable medium 15) also serves as a sealing means, so that there is no need to newly provide a sealing member, the manufacture is easy, and the area of the photoelectric conversion element per unit area is increased. Can be increased.

【0066】以上、2つの例を挙げて本発明の光電変換
モジュールを説明したが、本発明は、これらの例の構成
に限定されるものではない。例えば、上記3つの例で
は、全て光電変換素子が2つ並列配置され、これらが直
列に接続されている例を挙げたが、本発明においては、
光電変換素子が3つ以上並列配置され、これらが直列に
接続されていてもよい。この場合、1つ目と2つ目の光
電変換素子相互間の接続は、上記3つの例と同様であ
り、2つ目と3つ目以降の光電変換素子相互間の接続
も、これに準じて繰り返される。したがって、本発明に
よれば、光電変換素子を容易にいくつでも直列に接続す
ることができ、高い出力電圧を有する光電変換モジュー
ルを低コストで製造することができる。
Although the photoelectric conversion module of the present invention has been described with reference to two examples, the present invention is not limited to the configurations of these examples. For example, in the above three examples, two photoelectric conversion elements are all arranged in parallel, and an example in which these are connected in series has been described. However, in the present invention,
Three or more photoelectric conversion elements may be arranged in parallel, and these may be connected in series. In this case, the connection between the first and second photoelectric conversion elements is the same as in the above three examples, and the connection between the second and third and subsequent photoelectric conversion elements is in accordance with this. Is repeated. Therefore, according to the present invention, any number of photoelectric conversion elements can be easily connected in series, and a photoelectric conversion module having a high output voltage can be manufactured at low cost.

【0067】≪3.光電変換モジュールの製造方法≫次
に、前記本発明の第2の例の光電変換モジュールを例に
挙げて、図1〜図3に則して、本発明の光電変換モジュ
ールの製造方法を説明する。絶縁性透明支持体1表面に
形成される透明導電性接続部材2,2’および光半導体
電極3,3’と、絶縁性支持体5表面に形成される対向
電極部材6,6’は、従来公知の方法で、図2(b)お
よび図3(b)に示すパターンに形成される。例えば、
これら支持体の全面に形成された膜を、各種のリソグラ
フィー法により任意の形状に形成する方法や、あらかじ
め設けたマスクを介して蒸着・スパッタリング・印刷等
により前記支持体の表面に所望のパターンで層を形成す
る方法を挙げることができる。
{3. Method of Manufacturing Photoelectric Conversion Module Next, a method of manufacturing the photoelectric conversion module of the present invention will be described with reference to FIGS. 1 to 3 by taking the photoelectric conversion module of the second example of the present invention as an example. . Conventionally, the transparent conductive connecting members 2 and 2 ′ and the optical semiconductor electrodes 3 and 3 ′ formed on the surface of the insulating transparent support 1 and the counter electrode members 6 and 6 ′ formed on the surface of the insulating support 5 are conventional. By a known method, it is formed in a pattern shown in FIGS. 2B and 3B. For example,
A film formed on the entire surface of these supports, a method of forming an arbitrary shape by various lithography methods, or a desired pattern on the surface of the support by vapor deposition, sputtering, printing, or the like through a mask provided in advance. A method for forming a layer can be given.

【0068】上記の光半導体電極3,3’が表面に形成
された絶縁性透明基板1と、対向電極部材6が表面に形
成された基板との、いずれか一方の基板の表面にシール
部材8としてのシール剤を塗布する。該シール剤は、例
えばスクリーン印刷やマニピュレータ等の従来公知の方
法により塗布される。さらに同様にして、導電性接続部
材11aとなり得るペースト状の銀等の導電性接続部材
前駆体を塗布する。このようにして、図2(a)または
図3(a)の状態の基板が作製される。ここでは、図3
(a)の状態の基板を作製したこととして、説明を進め
る。
A sealing member 8 is provided on the surface of one of the insulating transparent substrate 1 on which the optical semiconductor electrodes 3 and 3 'are formed and the substrate on which the opposing electrode member 6 is formed. Is applied. The sealant is applied by a conventionally known method such as screen printing or a manipulator. Further, similarly, a conductive connecting member precursor such as paste-like silver which can be used as the conductive connecting member 11a is applied. Thus, the substrate in the state of FIG. 2A or FIG. 3A is manufactured. Here, FIG.
The description proceeds assuming that the substrate in the state of FIG.

【0069】次に、光半導体電極3と対向電極部材6と
が対向するように、図2(b)の状態の基板と図3
(a)の状態の基板とを貼り合わせる。この状態で、シ
ール部材8および前記導電性接続部材前駆体を硬化させ
ることにより、光半導体電極3,3’と対向電極部材
6,6’との間に周囲をシール部材8で囲まれた中空の
空隙部が形成される。
Next, the substrate shown in FIG. 2B and the substrate shown in FIG.
The substrate in the state of FIG. In this state, the sealing member 8 and the conductive connecting member precursor are cured to form a hollow space surrounded by the sealing member 8 between the optical semiconductor electrodes 3, 3 ′ and the counter electrode members 6, 6 ′. Is formed.

【0070】紫外線硬化型のシール剤を用いた場合は、
紫外線照射により硬化させた後、以下に述べる酸化還元
媒体9を注入する前に、さらに加熱処理を行うことが、
硬化反応をより一層完全に進行させ、光電変換モジュー
ルとしての性能向上や寿命向上の観点から好ましい。か
かる加熱処理の温度としては、光電変換モジュールとし
ての使用温度より若干高めに設定するのが望ましく、例
えば屋根の上に取り付けるタイプの太陽電池に使用する
のであれば、80〜120℃に設定することが望まし
い。
When an ultraviolet-curable sealant is used,
After curing by ultraviolet irradiation, before injecting the oxidation-reduction medium 9 described below, a further heat treatment may be performed.
It is preferable from the viewpoint of promoting the curing reaction more completely and improving the performance and the life as a photoelectric conversion module. The temperature of the heat treatment is desirably set slightly higher than the use temperature of the photoelectric conversion module. For example, if the temperature is to be used for a solar cell that is mounted on a roof, the temperature should be set to 80 to 120 ° C. Is desirable.

【0071】このとき、1つの光電変換素子あたり少な
くとも1ヶ所シール部材8を設けないようにするか、ま
たは絶縁性透明支持体1および絶縁性支持体5のいずれ
か片方の電極側の基板に1つの光電変換素子あたり少な
くとも1つの貫通穴を設けることにより、前記空隙部は
外部の空間と連結される。当該貫通穴を設ける手段とし
ては、ドリル加工、超音波加工、レーザー加工等の従来
公知の手段を用いることができる。なお、図3(a)に
おいては、1つの光電変換素子あたり、2カ所シール部
材8を設けないようにし、注入口13,13’を設けて
いる。
At this time, at least one sealing member 8 is not provided for one photoelectric conversion element, or one of the insulating transparent support 1 and the insulating support 5 is attached to the substrate on one of the electrodes. By providing at least one through hole per one photoelectric conversion element, the gap is connected to an external space. As means for providing the through holes, conventionally known means such as drilling, ultrasonic processing, laser processing and the like can be used. In FIG. 3A, two sealing members 8 are not provided for one photoelectric conversion element, and injection ports 13 and 13 'are provided.

【0072】光電変換電極3と対向電極部材6との間を
一定間隔に保持するため、いずれか一方の基板上にスペ
ーサー粒子を散布するか、および/またはシール部材8
にスペーサー粒子を添加してもよい。スペーサー粒子と
しては液晶ディスプレイパネルの作製等で使用されてい
る従来公知のものをそのまま使用するのが好ましく、樹
脂粒子、樹脂ファイバー、ガラス粒子、ガラスファイバ
ー状の各種スペーサー粒子が使用される。光電変換電極
3と対向電極部材6との間隔(スペーサー粒子のサイ
ズ)は、一般に500μm以下であり、スペーサーとし
ての機能を損なわない限り小さいほど好ましい。具体的
には、0.1〜500μmの範囲から選択されることが
好ましく、0.1〜50μmの範囲から選択されること
がより好ましい。
In order to maintain a constant distance between the photoelectric conversion electrode 3 and the counter electrode member 6, spacer particles are sprayed on one of the substrates and / or the sealing member 8
May be added with spacer particles. As the spacer particles, conventionally known ones used in the production of liquid crystal display panels and the like are preferably used as they are, and resin particles, resin fibers, glass particles, and various kinds of glass fiber-like spacer particles are used. The distance (size of spacer particles) between the photoelectric conversion electrode 3 and the counter electrode member 6 is generally 500 μm or less, and is preferably as small as possible as long as the function as a spacer is not impaired. Specifically, it is preferably selected from the range of 0.1 to 500 μm, and more preferably selected from the range of 0.1 to 50 μm.

【0073】以上の工程により、注入口13,13’の
部分を除いて周囲を封止された空隙部を持つ素子前駆体
群が形成される。続いて注入口13,13’から酸化還
元媒体9を注入する。注入する方法としては、毛細管現
象を利用してもよいし、注入口13,13’から一旦空
隙部を減圧した後に内外の圧力差を利用して酸化還元媒
体9を注入してもよい。
Through the above steps, a group of element precursors having voids whose periphery is sealed except for the injection ports 13 and 13 'are formed. Subsequently, the oxidation-reduction medium 9 is injected from the injection ports 13, 13 '. As a method of injecting, the redox medium 9 may be injected by utilizing the pressure difference between the inside and the outside after once depressurizing the void from the inlets 13 and 13 '.

【0074】空隙部の隅々まで酸化還元媒体9を注入す
るためには、一旦減圧した後に酸化還元媒体9を注入す
る方法が好ましい。その一例としては、上記の工程によ
り作製された素子前駆体群に設けられた各空隙部を、注
入口13,13’から真空装置により排気する。その
後、空隙部内が減圧された状態で、注入口13,13’
を酸化還元媒体9と接触させると、酸化還元媒体9は空
隙部内と外部大気圧との圧力差により、空隙部内に注入
される。空隙部の減圧状態における真空度は1×104
Pa以下であり、1×103Pa以下であることがより
好ましく、1×10 2Pa以下であることがさらに好ま
しい。減圧して酸化還元媒体9と接触した後、内外の圧
力差で酸化還元媒体9を注入する際、全圧力差をかけて
一気に注入すると注入むらを引き起こす可能性があるの
で、可変バルブ等を用いて徐々に注入されるように注入
速度を調整してもよい。
The oxidation-reduction medium 9 is injected into every corner of the void.
For this purpose, the pressure is once reduced, and then the oxidation-reduction medium 9 is injected.
Is preferred. One example is the above process.
Insert each void provided in the device precursor group
Air is exhausted from the inlets 13 and 13 'by a vacuum device. That
Thereafter, with the pressure in the gap portion reduced, the injection ports 13 and 13 ′ are formed.
Is brought into contact with the redox medium 9, the redox medium 9 becomes empty.
Injected into the gap due to the pressure difference between the inside of the gap and the outside atmospheric pressure
Is done. The degree of vacuum in the depressurized state of the gap is 1 × 10Four
Pa or less and 1 × 10ThreeLess than Pa
Preferably 1 × 10 TwoMore preferably, it is Pa or less.
New After contacting with the oxidation-reduction medium 9 by reducing the pressure,
When injecting the redox medium 9 with a force difference, apply a total pressure difference
Immediate injection may cause uneven injection
Inject so that it is gradually injected using a variable valve, etc.
The speed may be adjusted.

【0075】空隙部が酸化還元媒体9に満たされた後、
注入口13,13’を封止する。封止は、注入口13,
13’とその周囲に前記と同様のシール剤を塗布・硬化
させて行うことができる。この場合も加熱等が必要な
く、簡単な装置で短時間に硬化できる紫外線硬化型のシ
ール剤を用いることが望ましい。紫外線照射によりシー
ル剤を硬化させることで注入口13,13’を封止する
場合には、先と同様に、さらに加熱処理を行うことが望
ましい。
After the voids are filled with the redox medium 9,
The inlets 13, 13 'are sealed. Sealing is performed for the injection port 13,
13 'and its surroundings may be applied and cured by applying the same sealing agent as described above. Also in this case, it is desirable to use an ultraviolet-curable sealant that does not require heating or the like and can be cured in a short time with a simple device. When the injection ports 13, 13 'are sealed by curing the sealant by irradiating ultraviolet rays, it is preferable to further perform a heat treatment as described above.

【0076】以上の方法によれば、あらかじめ透明導電
性部材2および対向電極部材6’が重なりを有するよう
な形状にパターンニングしておけば、適当な位置にシー
ル剤、両者の重なり部分に導電性接続部材前駆体を塗布
して貼り合わせるだけで、2つの光電変換素子10,1
0’が直列に内部接続された1つの光電変換モジュール
を容易、かつ、再現性よく製造することができる。
According to the above-described method, if the transparent conductive member 2 and the counter electrode member 6 'are patterned in advance so as to have an overlap, the sealant is provided at an appropriate position, and the conductive material is provided at the overlapped portion. The two photoelectric conversion elements 10 and 1 can be formed simply by applying and bonding the precursor of the conductive connection member.
One photoelectric conversion module in which 0's are internally connected in series can be manufactured easily and with good reproducibility.

【0077】なお、導通手段として図6〜8に示すよう
な異方導電性部材11bを用いることとすれば、隣合う
光電変換素子10,10’の酸化還元媒体9,9’間を
絶縁分離することが容易になり、異方導電性部材11b
を覆うシール部材を改めて設ける必要がない。
If the anisotropic conductive member 11b as shown in FIGS. 6 to 8 is used as the conducting means, the insulation between the oxidation-reduction media 9, 9 'of the adjacent photoelectric conversion elements 10, 10' is separated. And the anisotropic conductive member 11b
It is not necessary to newly provide a sealing member for covering.

【0078】透明導電性部材2および対向電極部材6’
とが重なり合うような形状は、公知のエッチングやマス
キングにより容易に形成することができる。シール部材
8や導電性接続部材前駆体(あるいは、異方導電性部
材)の形成も公知のスクリーン印刷やマニピュレーター
塗布法等により容易に形成できるため、モジュール化に
よるコスト増大はほとんどない。
Transparent conductive member 2 and counter electrode member 6 '
Can be easily formed by known etching or masking. The formation of the seal member 8 and the conductive connecting member precursor (or the anisotropic conductive member) can be easily performed by a known screen printing or manipulator coating method, so that there is almost no increase in cost due to modularization.

【0079】[0079]

【実施例】以下、本発明の光電変換モジュールについて
具体的に説明するが、本発明はこれらに限定されるもの
ではない。
EXAMPLES Hereinafter, the photoelectric conversion module of the present invention will be specifically described, but the present invention is not limited thereto.

【0080】(実施例1)20×40×1.1(mm)
のソーダガラスを絶縁性透明支持体として、その表面に
図2(b)に示すようなITOエッチングパターンを形
成し、それぞれ18×13(mm)の透明導電性部材
2,2’を設けた。ITOのシート抵抗値は10Ω/□
であった。
Example 1 20 × 40 × 1.1 (mm)
Was used as an insulating transparent support, an ITO etching pattern as shown in FIG. 2B was formed on the surface thereof, and transparent conductive members 2 and 2 ′ of 18 × 13 (mm) were provided. The sheet resistance of ITO is 10Ω / □
Met.

【0081】チタニウムテトライソプロポキシド6.4
1gをエタノール20mlで希釈し、攪拌しながら比重
1.38の硝酸を0.514g、水を0.2ml加え
た。以上の混合操作は乾燥窒素雰囲気下で行った。この
混合液を80℃に昇温し、乾燥窒素気流下で2時間還元
して、無色透明のゾル液を得た。このゾル液を室温まで
冷却した後、攪拌しながらゾル液2gに対してポリアク
リル酸0.1gを溶解した。得られたゾル液に更に水2
mlを加えて無色透明で均一なゾル液を得た。このゾル
液をガラス容器に密閉して80℃に昇温した。ゾル液は
5分ほどでゲル化し、ほぼ透明で均一なゲルとなった。
80℃でさらに15時間保持するとゲルは再び溶解して
白っぽい半透明のゾル液となった。
Titanium tetraisopropoxide 6.4
1 g was diluted with 20 ml of ethanol, and 0.514 g of nitric acid having a specific gravity of 1.38 and 0.2 ml of water were added with stirring. The above mixing operation was performed in a dry nitrogen atmosphere. This mixture was heated to 80 ° C. and reduced under a stream of dry nitrogen for 2 hours to obtain a colorless and transparent sol. After the sol was cooled to room temperature, 0.1 g of polyacrylic acid was dissolved in 2 g of the sol while stirring. Water 2 is added to the obtained sol solution.
The resulting solution was added to obtain a colorless, transparent and uniform sol solution. The sol was sealed in a glass container and heated to 80 ° C. The sol liquid gelled in about 5 minutes and became a nearly transparent and uniform gel.
When the gel was kept at 80 ° C. for further 15 hours, the gel was dissolved again to form a whitish translucent sol solution.

【0082】このゾル液を、絶縁性透明支持体1の上記
透明導電性部材2,2’が形成されている表面に塗布し
た。ゾル液は、スクリーン印刷法により図2(b)に示
すようなパターンで透明導電性部材2,2’上に塗布
し、450℃に昇温して20分保持して焼成した。この
塗布および焼成の工程を20回繰り返し、膜厚3.5μ
mの多孔質TiO2膜からなる光半導体電極3,3’を
形成した。
This sol solution was applied to the surface of the insulating transparent support 1 on which the transparent conductive members 2 and 2 ′ were formed. The sol solution was applied on the transparent conductive members 2 and 2 ′ in a pattern as shown in FIG. 2B by a screen printing method, heated to 450 ° C., held for 20 minutes, and fired. This coating and baking process was repeated 20 times to obtain a film thickness of 3.5 μm.
The optical semiconductor electrodes 3 and 3 ′ made of a porous TiO 2 film having a thickness of m were formed.

【0083】この図2(b)に示す状態の基板を、下記
構造式のRu錯体のエタノール溶液(濃度10-3mol
/l)に浸漬して、光半導体電極3,3’の表面に増感
色素としてRu錯体を吸着させた。このようにして図2
(b)に示す状態の光電変換基板を得た。
A substrate in the state shown in FIG. 2B was placed in an ethanol solution of Ru complex having the following structural formula (concentration: 10 −3 mol)
/ L) to adsorb a Ru complex as a sensitizing dye on the surfaces of the photosemiconductor electrodes 3 and 3 '. Thus, FIG.
A photoelectric conversion substrate in the state shown in (b) was obtained.

【0084】[0084]

【化2】 Embedded image

【0085】光電変換基板上に、シール部材8としての
シール剤および導電性接続部材11aを、図2(a)に
示すパターンにしたがってスクリーン印刷で形成した。
なお、シール剤の塗布幅は2mmとし、ITOの面積
(最終的に製造される光電変換モジュールの光電変換素
子1つ当たりの有効面積)が18(mm)×13(m
m)=234(mm2)となるようにしている。シール
剤としては熱硬化型エポキシ樹脂、導電性接続部材11
aとしては銀ペーストを使用した。また、1の光電変換
素子あたり2つで、合計4つの注入口13,13’を設
けた。
On the photoelectric conversion substrate, a sealant as the seal member 8 and a conductive connection member 11a were formed by screen printing according to the pattern shown in FIG.
Note that the application width of the sealant was 2 mm, and the area of ITO (effective area per photoelectric conversion element of the finally manufactured photoelectric conversion module) was 18 (mm) × 13 (m).
m) = 234 (mm 2 ). Thermosetting epoxy resin, conductive connection member 11 as a sealant
Silver paste was used as a. In addition, a total of four injection ports 13, 13 'are provided, two for one photoelectric conversion element.

【0086】20×40×1.1(mm)のソーダガラ
スを絶縁性支持体として、図3(b)に示すようなPt
薄膜からなる対向電極部材をスパッタリング法で形成
し、対向基板とした。対向電極部材6,6’のシート抵
抗値は約2Ω/□であった。対向基板表面に、スペーサ
ー粒子としての直径10μmの樹脂スペーサーをアセト
ニトリル中に分散させたものをスピンキャストし、間隔
保持用のスペーサーを設けた。
A 20 × 40 × 1.1 (mm) soda glass was used as an insulating support, and Pt as shown in FIG.
A counter electrode member made of a thin film was formed by a sputtering method to obtain a counter substrate. The sheet resistance values of the counter electrode members 6 and 6 ′ were about 2Ω / □. A resin spacer having a diameter of 10 μm as spacer particles dispersed in acetonitrile was spin-cast on the surface of the opposing substrate to provide a spacer for maintaining a distance.

【0087】光電変換基板と対向基板とを、図2(b)
および図3(b)に示す重なり部分4がきちんと重なる
ように貼り合わせ、100℃で2時間加熱してシール剤
を硬化させた。
The photoelectric conversion substrate and the opposite substrate are connected to each other as shown in FIG.
Then, the overlapping portions 4 shown in FIG. 3B were adhered so as to be properly overlapped, and heated at 100 ° C. for 2 hours to cure the sealant.

【0088】エチレンカーボネートとアセトニトリルと
の混合液(体積混合比=4/1)に、テトラプロピルア
ンモニウムアイオダイド(0.46mol/l)とヨウ
素(0.06mol/l)を溶解させ、酸化還元媒体を
調製した。この酸化還元媒体を、各光電変換素子に設け
らた注入口の1つから毛細管現象を利用して、空隙部に
注入した。紫外線硬化型アクリルシール剤で全ての注入
口13,13’をシールした。以上のようにして本発明
の光電変換モジュールを作製した。
In a mixed solution of ethylene carbonate and acetonitrile (volume mixing ratio = 4/1), tetrapropylammonium iodide (0.46 mol / l) and iodine (0.06 mol / l) were dissolved. Was prepared. This oxidation-reduction medium was injected into the gap from one of the injection ports provided in each photoelectric conversion element by utilizing the capillary phenomenon. All the injection ports 13, 13 'were sealed with an ultraviolet curing acrylic sealant. As described above, the photoelectric conversion module of the present invention was manufactured.

【0089】このようにして作製した光電変換モジュー
ルに、ソーラーシミュレーターでAM1.5、100m
W/cm2の光を照射したところ、開放電圧1.2Vが
得られた。これは、通常用いられているニッケル水素型
乾電池(充電池)と同じ電圧である。
The thus obtained photoelectric conversion module was applied to a solar simulator with AM 1.5, 100 m
Irradiation with W / cm 2 light resulted in an open-circuit voltage of 1.2 V. This is the same voltage as a commonly used nickel-metal hydride dry battery (rechargeable battery).

【0090】(比較例1)光半導体電極および対向電極
部材を複数パターンに分割せず、導電性接続部材による
内部接続も行わず、1つの光電変換素子のみ有する(即
ち、図1において導電性接続部材11a、および、その
両側に配されるシール部材がなく、光電変換素子10と
光電変換素子10’との区別がない、全体として1つの
素子を形成している形態)光電変換モジュールを、実施
例1と同様にして作製した。
Comparative Example 1 The optical semiconductor electrode and the counter electrode member were not divided into a plurality of patterns, the internal connection was not performed by the conductive connection member, and only one photoelectric conversion element was provided (ie, the conductive connection in FIG. 1). No member 11a and no sealing member disposed on both sides thereof, and there is no distinction between the photoelectric conversion element 10 and the photoelectric conversion element 10 '. One form as a whole is formed. It was produced in the same manner as in Example 1.

【0091】この光電変換モジュールに、ソーラーシミ
ュレーターでAM1.5、100mW/cm2の光を照
射したところ、開放電圧は0.6Vであった。
When this photoelectric conversion module was irradiated with light of AM 1.5 and 100 mW / cm 2 by a solar simulator, the open-circuit voltage was 0.6 V.

【0092】(実施例2)導通手段として、異方導電性
部材11bを使用し、図7(b)に示すパターンに形成
した光電変換基板および図8(a)に示すパターンに形
成された対向基板を実施例1と同様にしてそれぞれを作
製し、光電変換モジュールを作製した。なお、異方導電
性部材11bは、重なり部分4に異方導電性両面テープ
を貼り付けた後、実施例1と同じ熱硬化型シール剤をマ
ニピュレータを使用して形成した。
(Example 2) The anisotropic conductive member 11b was used as the conducting means, and the photoelectric conversion substrate formed in the pattern shown in FIG. 7B and the opposing photoelectric conversion substrate formed in the pattern shown in FIG. Substrates were manufactured in the same manner as in Example 1, and a photoelectric conversion module was manufactured. The anisotropic conductive member 11b was formed by attaching the anisotropic conductive double-sided tape to the overlapping portion 4 and then using the same thermosetting sealant as in Example 1 using a manipulator.

【0093】このようにして作製した本発明の光電変換
モジュールに、ソーラーシミュレーターでAM1.5、
100mW/cm2の光を照射したところ、開放電圧
1.2Vが得られた。
The thus produced photoelectric conversion module of the present invention was added to a solar simulator with AM1.5,
Irradiation with light of 100 mW / cm 2 resulted in an open-circuit voltage of 1.2 V.

【0094】(実施例3)図7(b)に示す重なり部分
4を含む光電変換素子の周りに、実施例1で使用したシ
ール剤をスクリーン印刷で印刷した後、カーボンにより
導電処理された粒径約10μmの樹脂粒子を重なり部分
4に吹き付け、異方導電性を付与した以外は、実施例2
と同様にして光電変換モジュールを作製した。
(Example 3) The sealant used in Example 1 was printed by screen printing around the photoelectric conversion element including the overlapping portion 4 shown in FIG. Example 2 except that resin particles having a diameter of about 10 μm were sprayed on the overlapping portion 4 to impart anisotropic conductivity.
In the same manner as in the above, a photoelectric conversion module was produced.

【0095】このようにして作製した本発明の光電変換
モジュールに、ソーラーシミュレーターでAM1.5、
100mW/cm2の光を照射したところ、開放電圧
1.2Vが得られた。
The thus prepared photoelectric conversion module of the present invention was added to a solar simulator with AM1.5,
Irradiation with light of 100 mW / cm 2 resulted in an open-circuit voltage of 1.2 V.

【0096】[0096]

【発明の効果】以上詳述したように、本発明の光電変換
モジュールは、直列に内部接続した複数の光電変換素子
を有するので、高い出力電圧(例えば、1V以上)が容
易に得られる。また公知の材料から製造できるため、コ
ストの低減を図ることができる。
As described in detail above, since the photoelectric conversion module of the present invention has a plurality of photoelectric conversion elements internally connected in series, a high output voltage (for example, 1 V or more) can be easily obtained. Further, since it can be manufactured from a known material, the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の光電変換モジュールの第1の例を示
す模式断面図である。
FIG. 1 is a schematic sectional view showing a first example of a photoelectric conversion module according to the present invention.

【図2】 (a)は、図1の光電変換モジュールのA−
A方向から見た模式断面図を示し、(b)は、(a)か
ら導電性接続部材11aおよびシール部材(封止部材)
8を除した状態を示す模式図である。
FIG. 2 (a) is a diagram illustrating the photoelectric conversion module of FIG.
FIG. 2B is a schematic cross-sectional view as viewed from the direction A, and FIG.
It is a schematic diagram which shows the state which removed 8.

【図3】 (a)は、図1の光電変換モジュールのB−
B方向から見た模式断面図を示し、(b)は、(a)か
ら導電性接続部材11aおよびシール部材(封止部材)
8を除した状態を示す模式図である。
FIG. 3 (a) is a diagram illustrating the photoelectric conversion module of FIG.
FIG. 3B is a schematic cross-sectional view as viewed from the direction B, and FIG.
It is a schematic diagram which shows the state which removed 8.

【図4】 本発明の光電変換モジュールの第1の例の変
形例を示すものであり、(a)は、図1の光電変換モジ
ュールのA−A方向から見た模式断面図に対応し、
(b)は、(a)から導電性接続部材11aおよびシー
ル部材(封止部材)8を除した状態を示す模式図に対応
する。
4A and 4B show a modification of the first example of the photoelectric conversion module of the present invention, and FIG. 4A corresponds to a schematic cross-sectional view of the photoelectric conversion module of FIG.
(B) corresponds to a schematic diagram illustrating a state in which the conductive connection member 11a and the sealing member (sealing member) 8 are removed from (a).

【図5】 本発明の光電変換モジュールの第1の例の変
形例を示すものであり、(a)は、図1の光電変換モジ
ュールのB−B方向から見た模式断面図に対応し、
(b)は、(a)から導電性接続部材11aおよびシー
ル部材(封止部材)8を除した状態を示す模式図に対応
する。
5A and 5B show a modification of the first example of the photoelectric conversion module of the present invention. FIG. 5A corresponds to a schematic cross-sectional view of the photoelectric conversion module of FIG.
(B) corresponds to a schematic diagram illustrating a state in which the conductive connection member 11a and the sealing member (sealing member) 8 are removed from (a).

【図6】 本発明の光電変換モジュールの第2の例を示
す模式断面図である。
FIG. 6 is a schematic sectional view showing a second example of the photoelectric conversion module of the present invention.

【図7】 (a)は、図6の光電変換モジュールのA−
A方向から見た模式断面図を示し、(b)は、(a)か
ら導電性接続部材11bおよびシール部材(封止部材)
8を除した状態を示す模式図である。
FIG. 7A is a diagram illustrating A- of the photoelectric conversion module of FIG. 6;
FIG. 2B is a schematic cross-sectional view as viewed from the direction A, and FIG.
It is a schematic diagram which shows the state which removed 8.

【図8】 (a)は、図6の光電変換モジュールのB−
B方向から見た模式断面図を示し、(b)は、(a)か
ら導電性接続部材11bおよびシール部材(封止部材)
8を除した状態を示す模式図である。
FIG. 8A is a diagram illustrating the photoelectric conversion module of FIG.
FIG. 2B is a schematic cross-sectional view as viewed from the direction B, and FIG. 2B shows the conductive connecting member 11b and the sealing member (sealing member) from FIG.
It is a schematic diagram which shows the state which removed 8.

【図9】 本発明の光電変換モジュールの第2の例の他
の態様を示す模式断面図である。
FIG. 9 is a schematic sectional view showing another embodiment of the second example of the photoelectric conversion module of the present invention.

【符号の説明】[Explanation of symbols]

1・・・絶縁性透明支持体 2,2’・・・透明導電性支持体 3,3’・・・光半導体電極 5・・・絶縁性支持体 6,6’・・・対向電極部材 8・・・シール部材 9・・・酸化還元媒体 10,10’・・・光電変換素子 11a・・・導電性接続部材 11b・・・異方導電性部材 13,13’・・・注入口 14・・・導電性粒子 15・・・硬化性媒体 DESCRIPTION OF SYMBOLS 1 ... Insulating transparent support 2, 2 '... Transparent conductive support 3, 3' ... Optosemiconductor electrode 5 ... Insulating support 6,6 '... Counter electrode member 8 ... Seal member 9 ... Redox medium 10,10 '... Photoelectric conversion element 11a ... Conductive connection member 11b ... Anisotropic conductive member 13,13' ... Injection port 14. ..Conductive particles 15 ... Curable medium

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 好之 神奈川県南足柄市竹松1600番地 富士ゼロ ックス株式会社内 Fターム(参考) 5F051 BA11 DA20 EA02 FA02 FA06 FA10 FA11 FA16 FA30 GA03 5H032 AA06 AS16 EE16  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoshiyuki Ono 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture F-Xerox Co., Ltd. F-term (reference) 5F051 BA11 DA20 EA02 FA02 FA06 FA10 FA11 FA16 FA30 GA03 5H032 AA06 AS16 EE16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性透明支持体と絶縁性支持体とが対
向し、その間に光電変換素子が複数並列に設けられた光
電変換モジュールであって、 前記光電変換素子が、前記絶縁性透明支持体の表面に設
けられた透明導電性部材と、該透明導電性部材表面に設
けられた光半導体電極と、前記絶縁性支持体の表面に設
けられた対向電極部材と、該対向電極部材および前記光
半導体電極間に封入された酸化還元媒体と、からなり、
前記隣合う光電変換素子間を含む前記光電変換素子の周
囲が封止手段により封止および絶縁されており、 かつ、前記光電変換素子のうち一端に位置するものを除
く光電変換素子の透明導電性部材と、その隣の光電変換
素子の対向電極部材とを導通し得る導通手段が、隣合う
光電変換素子間に配されてなることを特徴とする光電変
換モジュール。
1. A photoelectric conversion module in which an insulative transparent support and an insulative support are opposed to each other and a plurality of photoelectric conversion elements are provided in parallel between the insulative transparent support and the insulative transparent support. A transparent conductive member provided on the surface of the body, an optical semiconductor electrode provided on the surface of the transparent conductive member, a counter electrode member provided on the surface of the insulating support, the counter electrode member and the An oxidation-reduction medium sealed between the optical semiconductor electrodes,
The periphery of the photoelectric conversion element including between the adjacent photoelectric conversion elements is sealed and insulated by sealing means, and the transparent conductivity of the photoelectric conversion element excluding the one located at one end of the photoelectric conversion elements A photoelectric conversion module, characterized in that conducting means capable of conducting between a member and a counter electrode member of an adjacent photoelectric conversion element is disposed between adjacent photoelectric conversion elements.
【請求項2】 前記導通手段により導通される透明導電
性部材および対向電極部材が、隣合う光電変換素子間で
対向している部分を有することを特徴とする請求項1に
記載の光電変換モジュール。
2. The photoelectric conversion module according to claim 1, wherein the transparent conductive member and the counter electrode member which are conducted by the conducting means have portions facing each other between adjacent photoelectric conversion elements. .
【請求項3】 前記封止手段がシール部材であり、前記
導通手段である導電性接続部材が前記シール部材で覆わ
れており、導電性接続部材の一方が透明導電性部材に接
続され、他方が、隣合う光電変換素子の対向電極部材に
接続されていることを特徴とする請求項1または2に記
載の光電変換モジュール。
3. The sealing means is a sealing member, a conductive connecting member as the conducting means is covered with the sealing member, one of the conductive connecting members is connected to a transparent conductive member, and the other is. 3. The photoelectric conversion module according to claim 1, wherein the photoelectric conversion module is connected to a counter electrode member of an adjacent photoelectric conversion element.
【請求項4】 前記導通手段が、絶縁性透明支持体およ
び絶縁性支持体に略垂直な方向にのみ導電性を有する異
方導電性部材からなり、前記隣合う光電変換素子間の封
止手段の少なくとも一部を兼ねていることを特徴とする
請求項1〜3のいずれか1に記載の光電変換モジュー
ル。
4. The conductive means comprises an insulating transparent support and an anisotropic conductive member having conductivity only in a direction substantially perpendicular to the insulating support, and sealing means between the adjacent photoelectric conversion elements. The photoelectric conversion module according to any one of claims 1 to 3, wherein the photoelectric conversion module also serves as at least a part of:
【請求項5】 前記異方導電性部材が、絶縁性部材中に
導電性粒子を分散させたものであることを特徴とする請
求項4に記載の光電変換モジュール。
5. The photoelectric conversion module according to claim 4, wherein the anisotropic conductive member is formed by dispersing conductive particles in an insulating member.
【請求項6】 前記絶縁性部材が、前記隣合う光電変換
素子間以外の封止手段の部材と同じ材質からなることを
特徴とする請求項5に記載の光電変換モジュール。
6. The photoelectric conversion module according to claim 5, wherein the insulating member is made of the same material as a member of the sealing unit except between the adjacent photoelectric conversion elements.
JP2000178988A 2000-06-14 2000-06-14 Photoelectric conversion module Pending JP2001357897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000178988A JP2001357897A (en) 2000-06-14 2000-06-14 Photoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000178988A JP2001357897A (en) 2000-06-14 2000-06-14 Photoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2001357897A true JP2001357897A (en) 2001-12-26

Family

ID=18680324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000178988A Pending JP2001357897A (en) 2000-06-14 2000-06-14 Photoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2001357897A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324590A (en) * 2001-04-09 2002-11-08 Korea Electronics Telecommun Nano-particle oxide solar cell, manufacturing method therefor, solar cell module using it, and transparent cell window
WO2004036683A1 (en) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Sensitized dye solar cell and sensitized dye solar cell module
JP2004200515A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
JP2004319872A (en) * 2003-04-18 2004-11-11 Tdk Corp Dye-sensitized photoelectric conversion device
JP2005100875A (en) * 2003-09-26 2005-04-14 Hitachi Maxell Ltd Photoelectric conversion element module
JP2005516364A (en) * 2002-01-25 2005-06-02 コナルカ テクノロジーズ インコーポレイテッド Solar cell interconnection
JP2005516371A (en) * 2002-01-25 2005-06-02 コナルカ テクノロジーズ インコーポレイテッド Structure and material of dye-sensitized solar cell
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
JP2006012731A (en) * 2004-06-29 2006-01-12 Hitachi Maxell Ltd Photoelectric conversion module and its manufacturing method
JP2006032110A (en) * 2004-07-15 2006-02-02 Hitachi Maxell Ltd Photoelectric conversion element module
JP2006049268A (en) * 2004-08-04 2006-02-16 Korea Electronics Telecommun Dye-sensitized solar cell module
JP2006185646A (en) * 2004-12-27 2006-07-13 Three Bond Co Ltd Dye-sensitized solar cell
JP2006210316A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
WO2007125903A1 (en) 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
WO2008004553A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
WO2008004556A1 (en) 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
WO2008026356A1 (en) 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
JP2008509533A (en) * 2004-08-11 2008-03-27 ダイソル・リミテッド Photoelectrochemical solar cell panel and method for producing the same
WO2008044357A1 (en) 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
WO2008044696A1 (en) 2006-10-13 2008-04-17 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
JP2008176948A (en) * 2007-01-16 2008-07-31 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2008192603A (en) * 2006-12-22 2008-08-21 Sony Deutsche Gmbh Photovoltaic cell
JP2008204880A (en) * 2007-02-22 2008-09-04 Kyocera Corp Photoelectric conversion module, and its manufacturing method
JP2008210748A (en) * 2007-02-28 2008-09-11 Ngk Spark Plug Co Ltd Dye sensitized solar cell and its manufacturing method
WO2008114825A1 (en) 2007-03-20 2008-09-25 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for manufacturing the same
WO2009011209A1 (en) * 2007-07-13 2009-01-22 Sanyo Electric Co., Ltd. Solar cell module manufacturing method
JP2009110797A (en) * 2007-10-30 2009-05-21 Sony Corp Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
WO2009075229A1 (en) 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
JP2009193863A (en) * 2008-02-15 2009-08-27 Aisin Seiki Co Ltd Dye-sensitized solar cell and dye-sensitized solar cell module
JP2009211967A (en) * 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
WO2010005213A2 (en) * 2008-07-07 2010-01-14 주식회사 동진쎄미켐 Dye sensitive solar battery or sub-module, method for manufacturing same, electrolyte injection apparatus thereof, and method for same
WO2010119775A1 (en) 2009-04-15 2010-10-21 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010125929A1 (en) 2009-04-30 2010-11-04 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2011052731A1 (en) 2009-11-02 2011-05-05 シャープ株式会社 Wet solar cell and wet solar cell module
JP2011521449A (en) * 2008-05-13 2011-07-21 東進セミケム株式会社 Dye-sensitive solar cell module
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
JP2011171294A (en) 2003-02-20 2011-09-01 Nippon Kayaku Co Ltd Sealing agent for photoelectric conversion element and photoelectric conversion element using the same
JP2011175940A (en) * 2010-02-25 2011-09-08 Nisshin Steel Co Ltd Dye-sensitized solar cell module and method of manufacturing the same
DE102011081551A1 (en) 2010-08-26 2012-03-01 Hitachi Chemical Co., Ltd. Adhesive film for solar cell electrode and method of manufacturing a solar cell module with its use
WO2012070562A1 (en) 2010-11-24 2012-05-31 シャープ株式会社 Photoelectric transducer and production method therefor
JP2013201078A (en) * 2012-03-26 2013-10-03 Sekisui Chem Co Ltd Electric module and manufacturing method of the same
US8581095B2 (en) 2004-08-04 2013-11-12 Sharp Kabushiki Kaisha Photoelectrode, and dye-sensitized solar cell and dye-sensitized solar cell module using the same
JP2014011151A (en) * 2012-07-03 2014-01-20 Fujikura Ltd Dye-sensitized solar cell module
WO2014061291A1 (en) * 2012-10-19 2014-04-24 積水化学工業株式会社 Electric module
JP2014130807A (en) * 2012-11-27 2014-07-10 Fujikura Ltd Dye-sensitized solar cell module
WO2015083738A1 (en) * 2013-12-03 2015-06-11 積水化学工業株式会社 Conductive member with sealing function, electric module, and manufacturing method for electric module
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method
WO2017142086A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Electrical module and method for producing electrical module
WO2017154493A1 (en) * 2016-03-10 2017-09-14 日本ゼオン株式会社 Dye-sensitized solar cell module
WO2018003930A1 (en) * 2016-06-30 2018-01-04 シャープ株式会社 Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
US10014122B2 (en) 2011-06-08 2018-07-03 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
CN108431982A (en) * 2016-02-18 2018-08-21 积水化学工业株式会社 Solid maqting type photoelectric conversion device module and its manufacturing method
JP2020043198A (en) * 2018-09-10 2020-03-19 積水化学工業株式会社 Conductive adhesive material and dye-sensitized solar cell
JP2020043199A (en) * 2018-09-10 2020-03-19 積水化学工業株式会社 Dye-sensitized solar cell
US10916382B2 (en) 2011-06-08 2021-02-09 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
JP7415383B2 (en) 2019-09-05 2024-01-17 日本ゼオン株式会社 Solar cell module, electrode substrate for solar cell, and method for manufacturing solar cell module

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324590A (en) * 2001-04-09 2002-11-08 Korea Electronics Telecommun Nano-particle oxide solar cell, manufacturing method therefor, solar cell module using it, and transparent cell window
JP2005516364A (en) * 2002-01-25 2005-06-02 コナルカ テクノロジーズ インコーポレイテッド Solar cell interconnection
JP2005516371A (en) * 2002-01-25 2005-06-02 コナルカ テクノロジーズ インコーポレイテッド Structure and material of dye-sensitized solar cell
JPWO2004036683A1 (en) * 2002-10-15 2006-02-16 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
WO2004036683A1 (en) * 2002-10-15 2004-04-29 Sharp Kabushiki Kaisha Sensitized dye solar cell and sensitized dye solar cell module
US7851699B2 (en) 2002-10-15 2010-12-14 Sharp Kabushiki Kaisha Dye-sensitized solar cell and dye-sensitized solar cell module
JP2004200515A (en) * 2002-12-19 2004-07-15 Kyocera Corp Solar cell module
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2011171294A (en) 2003-02-20 2011-09-01 Nippon Kayaku Co Ltd Sealing agent for photoelectric conversion element and photoelectric conversion element using the same
JP2004288985A (en) * 2003-03-24 2004-10-14 Japan Science & Technology Agency Solar cell
JP2004319872A (en) * 2003-04-18 2004-11-11 Tdk Corp Dye-sensitized photoelectric conversion device
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2005100875A (en) * 2003-09-26 2005-04-14 Hitachi Maxell Ltd Photoelectric conversion element module
JP2006012794A (en) * 2004-05-26 2006-01-12 Kansai Paint Co Ltd Photocell and manufacturing method therefor
JP4696485B2 (en) * 2004-06-29 2011-06-08 パナソニック電工株式会社 Photoelectric conversion module and manufacturing method thereof
JP2006012731A (en) * 2004-06-29 2006-01-12 Hitachi Maxell Ltd Photoelectric conversion module and its manufacturing method
JP2006032110A (en) * 2004-07-15 2006-02-02 Hitachi Maxell Ltd Photoelectric conversion element module
JP2006049268A (en) * 2004-08-04 2006-02-16 Korea Electronics Telecommun Dye-sensitized solar cell module
US8581095B2 (en) 2004-08-04 2013-11-12 Sharp Kabushiki Kaisha Photoelectrode, and dye-sensitized solar cell and dye-sensitized solar cell module using the same
JP2008509533A (en) * 2004-08-11 2008-03-27 ダイソル・リミテッド Photoelectrochemical solar cell panel and method for producing the same
JP2006185646A (en) * 2004-12-27 2006-07-13 Three Bond Co Ltd Dye-sensitized solar cell
JP2006210316A (en) * 2004-12-28 2006-08-10 Nippon Oil Corp Manufacturing method of dye-sensitized solar cell element
WO2007125903A1 (en) 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
EP2421054A1 (en) 2006-04-26 2012-02-22 Hitachi Chemical Co., Ltd. Adhesive tape and solar cell module using the same
US8969707B2 (en) 2006-04-26 2015-03-03 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
US8969706B2 (en) 2006-04-26 2015-03-03 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
EP2251910A2 (en) 2006-04-26 2010-11-17 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
US8933328B2 (en) 2006-07-06 2015-01-13 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method of producing the same
JP5002595B2 (en) * 2006-07-06 2012-08-15 シャープ株式会社 Dye-sensitized solar cell module and manufacturing method thereof
WO2008004553A1 (en) * 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
US8314329B2 (en) 2006-07-06 2012-11-20 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for manufacturing the same
WO2008004556A1 (en) 2006-07-06 2008-01-10 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for fabricating same
CN101485037B (en) * 2006-07-06 2011-06-15 夏普株式会社 Dye-sensitized solar cell module and method for fabricating same
US9173302B2 (en) 2006-08-29 2015-10-27 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2008026356A1 (en) 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2008044357A1 (en) 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
US9123835B2 (en) 2006-10-10 2015-09-01 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
WO2008044696A1 (en) 2006-10-13 2008-04-17 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
US8809102B2 (en) 2006-10-13 2014-08-19 Hitachi Chemical Company, Ltd. Solar battery cell connection method and solar battery module
JP2008192603A (en) * 2006-12-22 2008-08-21 Sony Deutsche Gmbh Photovoltaic cell
JP2008176948A (en) * 2007-01-16 2008-07-31 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2008204880A (en) * 2007-02-22 2008-09-04 Kyocera Corp Photoelectric conversion module, and its manufacturing method
JP2008210748A (en) * 2007-02-28 2008-09-11 Ngk Spark Plug Co Ltd Dye sensitized solar cell and its manufacturing method
WO2008114825A1 (en) 2007-03-20 2008-09-25 Sharp Kabushiki Kaisha Dye-sensitized solar cell module and method for manufacturing the same
WO2009011209A1 (en) * 2007-07-13 2009-01-22 Sanyo Electric Co., Ltd. Solar cell module manufacturing method
JP5367569B2 (en) * 2007-07-13 2013-12-11 三洋電機株式会社 Manufacturing method of solar cell module
US8298363B2 (en) 2007-07-13 2012-10-30 Sanyo Electric Co., Ltd. Method of manufacturing solar cell module
JP2009110797A (en) * 2007-10-30 2009-05-21 Sony Corp Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
EP2897144A1 (en) 2007-12-12 2015-07-22 Sharp Kabushiki Kaisha Photosensitized solar cell module and production method thereof
WO2009075229A1 (en) 2007-12-12 2009-06-18 Sharp Kabushiki Kaisha Photosensitized solar cell, method for manufacturing the same, and photosensitized solar cell module
JP2009193863A (en) * 2008-02-15 2009-08-27 Aisin Seiki Co Ltd Dye-sensitized solar cell and dye-sensitized solar cell module
JP2009211967A (en) * 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2011521449A (en) * 2008-05-13 2011-07-21 東進セミケム株式会社 Dye-sensitive solar cell module
WO2010005213A2 (en) * 2008-07-07 2010-01-14 주식회사 동진쎄미켐 Dye sensitive solar battery or sub-module, method for manufacturing same, electrolyte injection apparatus thereof, and method for same
WO2010005213A3 (en) * 2008-07-07 2010-06-17 주식회사 동진쎄미켐 Dye sensitive solar battery or sub-module, method for manufacturing same, electrolyte injection apparatus thereof, and method for same
WO2010119775A1 (en) 2009-04-15 2010-10-21 シャープ株式会社 Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010125929A1 (en) 2009-04-30 2010-11-04 シャープ株式会社 Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
US9607772B2 (en) 2009-04-30 2017-03-28 Sharp Kabushiki Kaisha Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
WO2011052731A1 (en) 2009-11-02 2011-05-05 シャープ株式会社 Wet solar cell and wet solar cell module
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
CN102163504A (en) * 2010-01-19 2011-08-24 三星Sdi株式会社 Photoelectric conversion module
JP2011151001A (en) * 2010-01-19 2011-08-04 Samsung Sdi Co Ltd Photoelectric conversion module
JP2011175940A (en) * 2010-02-25 2011-09-08 Nisshin Steel Co Ltd Dye-sensitized solar cell module and method of manufacturing the same
DE202011110111U1 (en) 2010-08-26 2013-01-10 Hitachi Chemical Company, Ltd. Adhesive film for solar cell electrode
DE102011081551A1 (en) 2010-08-26 2012-03-01 Hitachi Chemical Co., Ltd. Adhesive film for solar cell electrode and method of manufacturing a solar cell module with its use
WO2012070562A1 (en) 2010-11-24 2012-05-31 シャープ株式会社 Photoelectric transducer and production method therefor
US10916382B2 (en) 2011-06-08 2021-02-09 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
US10014122B2 (en) 2011-06-08 2018-07-03 Sharp Kabushiki Kaisha Photoelectric conversion element and photoelectric conversion element module
JP2013201078A (en) * 2012-03-26 2013-10-03 Sekisui Chem Co Ltd Electric module and manufacturing method of the same
JP2014011151A (en) * 2012-07-03 2014-01-20 Fujikura Ltd Dye-sensitized solar cell module
CN107256802A (en) * 2012-10-19 2017-10-17 积水化学工业株式会社 Electrical module
JP5759634B2 (en) * 2012-10-19 2015-08-05 積水化学工業株式会社 Electrical module
JPWO2014061291A1 (en) * 2012-10-19 2016-09-05 積水化学工業株式会社 Electrical module
WO2014061291A1 (en) * 2012-10-19 2014-04-24 積水化学工業株式会社 Electric module
JP2014130807A (en) * 2012-11-27 2014-07-10 Fujikura Ltd Dye-sensitized solar cell module
WO2015083738A1 (en) * 2013-12-03 2015-06-11 積水化学工業株式会社 Conductive member with sealing function, electric module, and manufacturing method for electric module
JPWO2015083738A1 (en) * 2013-12-03 2017-03-16 積水化学工業株式会社 Conductive material with sealing function, electric module, and method of manufacturing electric module
WO2016140196A1 (en) * 2015-03-04 2016-09-09 積水化学工業株式会社 Conducting paste, electric module and electric module production method
JPWO2016140196A1 (en) * 2015-03-04 2018-01-25 積水化学工業株式会社 Conductive paste, electric module, and method of manufacturing electric module
CN107210082A (en) * 2015-03-04 2017-09-26 积水化学工业株式会社 The manufacture method of conductive paste, electrical module and electrical module
WO2017142086A1 (en) * 2016-02-18 2017-08-24 積水化学工業株式会社 Electrical module and method for producing electrical module
CN108431982B (en) * 2016-02-18 2021-12-21 积水化学工业株式会社 Solid-state junction photoelectric conversion element module and method for manufacturing same
CN108431982A (en) * 2016-02-18 2018-08-21 积水化学工业株式会社 Solid maqting type photoelectric conversion device module and its manufacturing method
JPWO2017142086A1 (en) * 2016-02-18 2018-12-06 積水化学工業株式会社 Electric module and method of manufacturing electric module
JPWO2017142064A1 (en) * 2016-02-18 2018-12-20 積水化学工業株式会社 Solid-junction photoelectric conversion element module and manufacturing method thereof
EP3419067A4 (en) * 2016-02-18 2019-10-02 Sekisui Chemical Co., Ltd. Solid-junction photoelectric conversion element module and method for manufacturing same
WO2017154493A1 (en) * 2016-03-10 2017-09-14 日本ゼオン株式会社 Dye-sensitized solar cell module
WO2018003930A1 (en) * 2016-06-30 2018-01-04 シャープ株式会社 Method for producing dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2020043199A (en) * 2018-09-10 2020-03-19 積水化学工業株式会社 Dye-sensitized solar cell
JP2020043198A (en) * 2018-09-10 2020-03-19 積水化学工業株式会社 Conductive adhesive material and dye-sensitized solar cell
JP7415383B2 (en) 2019-09-05 2024-01-17 日本ゼオン株式会社 Solar cell module, electrode substrate for solar cell, and method for manufacturing solar cell module

Similar Documents

Publication Publication Date Title
JP2001357897A (en) Photoelectric conversion module
JP4414036B2 (en) Method for producing dye-sensitized solar cell
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
EP2224533A1 (en) Pigment sensitizing photoelectric conversion element, and its manufacturing method
EP2211418A1 (en) Dye-sensitized solar cell module
WO2010053105A1 (en) Dye-sensitized solar cell and process for producing same
US20110155223A1 (en) Dye-sensitized solar cell and a method of manufacturing the same
EP2221909A1 (en) Dye-sensitized photoelectric conversion device module and method for manufacturing the same, photoelectric conversion device module and method for manufacturing the same, and electronic device
JP4278615B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP4881600B2 (en) Dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell module
JP2004119306A (en) Photoelectric conversion element and its manufacturing method
JP4606777B2 (en) Wet solar cell
JP5128118B2 (en) Wet solar cell and manufacturing method thereof
JP2005216663A (en) Dye-sensitized solar cell
JP4843899B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2012064485A (en) Dye-sensitized photoelectric conversion device
JP2000348784A (en) Photoelectric transfer element and its manufacture
JP2002324590A (en) Nano-particle oxide solar cell, manufacturing method therefor, solar cell module using it, and transparent cell window
JP5134867B2 (en) Photoelectric conversion element
JP2009110797A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2001307786A (en) Photoelectric transfer element, its production method and photoelectric transfer module
JP2002314108A (en) Solar cell
WO2010042170A2 (en) Interconnection of adjacent devices