WO2017154493A1 - Dye-sensitized solar cell module - Google Patents

Dye-sensitized solar cell module Download PDF

Info

Publication number
WO2017154493A1
WO2017154493A1 PCT/JP2017/005554 JP2017005554W WO2017154493A1 WO 2017154493 A1 WO2017154493 A1 WO 2017154493A1 JP 2017005554 W JP2017005554 W JP 2017005554W WO 2017154493 A1 WO2017154493 A1 WO 2017154493A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectrode
dye
conductive
solar cell
sensitized solar
Prior art date
Application number
PCT/JP2017/005554
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 吉原
清茂 児島
和志 池上
孝介 青山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2017154493A1 publication Critical patent/WO2017154493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye-sensitized solar cell module.
  • solar cells have attracted attention as photoelectric conversion elements that convert light energy into electric power.
  • dye-sensitized solar cells can be expected to be lighter than silicon solar cells, etc., can generate power stably over a wide illuminance range, and do not require large-scale equipment. It attracts attention because it can be manufactured using inexpensive materials.
  • the dye-sensitized solar cell usually has a structure in which a photoelectrode including a porous semiconductor fine particle layer on which a sensitizing dye is adsorbed, an electrolyte layer, and a counter electrode including a catalyst layer are arranged in this order. It is used in the form of a solar cell module formed by connecting a plurality of cells, or a solar cell array formed by connecting a plurality of solar cell modules in series or in parallel.
  • a dye-sensitized solar cell module formed by connecting cells of a dye-sensitized solar cell in series, for example, a photoelectrode substrate in which a plurality of photoelectrodes are arranged in parallel on a base material, and a base material
  • a counter electrode substrate having a plurality of counter electrodes arranged side by side so that the photoelectrodes forming each cell and the counter electrode face each other, and between the adjacent cells, the photoelectrode of one cell and the other
  • a module formed by bonding so that the counter electrode of each cell is electrically connected see, for example, Patent Document 1).
  • the cell connection portion that electrically connects the photoelectrode of one cell and the counter electrode of the other cell between adjacent cells may be, for example, metal or conductive
  • the wiring etc. which were formed using the resin composition are used.
  • the dye-sensitized solar cell module as the conductive resin composition used for connection between adjacent cells, for example, a composition containing a resin and conductive particles is used.
  • the dye-sensitized solar cell module having a cell connection portion formed using a conductive resin composition containing a resin and conductive particles is improved in terms of further improving photoelectric conversion efficiency and reliability. There was room.
  • the present invention provides a dye-sensitized solar cell module having a cell connection portion formed using a conductive resin composition, which is excellent in reliability and has high photoelectric conversion efficiency.
  • the purpose is to provide.
  • An object of the present invention is to advantageously solve the above problems, and a dye-sensitized solar cell module of the present invention includes a photoelectrode, a counter electrode facing the photoelectrode, and the photoelectrode.
  • a dye-sensitized solar cell module comprising a plurality of cells connected in series with an electrolyte layer provided between the counter electrodes, wherein a plurality of photoelectrodes are spaced apart from each other on a substrate.
  • Each of the cell connection portions includes a conductive resin composition containing a resin and conductive particles, and the conductive resin composition has an average particle diameter of 0 for the conductive particles. 0.5 to 30 ⁇ m, and the content ratio of the conductive particles is 0.1 to 10% by volume.
  • the “average particle diameter of conductive particles” refers to the median diameter of conductive particles.
  • the photoelectrode includes a conductive layer, and a porous semiconductor fine particle layer formed on the conductive layer and carrying a sensitizing dye, and the cell connection
  • the unit electrically connects the conductive layer of the photoelectrode of one cell and the counter electrode of the other cell, and is connected to each other via the cell connection unit, the photoelectrodes of adjacent cells
  • the conductive resin composition is preferably present between the conductive layers.
  • the long-term reliability of the dye-sensitized solar cell module can be obtained if the conductive resin composition is present between the conductive layers of the photoelectrodes of adjacent cells. Can increase the sex.
  • the distance between the conductive layers of the photoelectrodes of the cells adjacent to each other is 3 to 30 times the average particle diameter of the conductive particles.
  • the reliability can be further improved while increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module.
  • the counter electrode includes a conductive layer and a catalyst layer formed on the conductive layer, and the cell connection portion includes the counter electrode of one cell.
  • the conductive resin composition is electrically connected to the photoelectrode of the other cell, and is connected to each other via the cell connection portion, and the conductive resin composition is disposed between the conductive layers of the counter electrodes of adjacent cells. Is preferably present.
  • the distance between the conductive layers of the counter electrodes of the cells adjacent to each other is 3 to 30 times the average particle diameter of the conductive particles.
  • the reliability can be further improved while increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module.
  • the cell connection portion further includes a metal wiring. If the cell connection part is formed using the metal wiring and the conductive resin composition, the electric resistance of the cell connection part is reduced as compared with the case where the cell connection part is formed using only the conductive resin composition, The photoelectric conversion efficiency of the dye-sensitized solar cell module can be further increased.
  • the dye-sensitized solar cell module according to the present invention includes the electrolyte layer from a surface including a shortest distance A from the metal wiring to the partition and a position where the distance from the metal wiring is the shortest from the metal wiring. It is preferable that the shortest distance B to the surface including the position where the distance from the shortest distance satisfies the following relational expression: 4.0 ⁇ (A + B) / A> 1.0. If the shortest distance A and the shortest distance B satisfy the above relational expression, the long-term reliability can be further enhanced while increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module.
  • a dye-sensitized solar cell module with high photoelectric conversion efficiency and high reliability can be provided.
  • FIG. 1 It is sectional drawing which shows schematic structure of an example of a dye-sensitized solar cell module.
  • A)-(d) is a perspective view which shows the first half part of an example of the manufacturing process of a dye-sensitized solar cell module.
  • A)-(d) is an end view showing the latter half of an example of the manufacturing process of the dye-sensitized solar cell module.
  • A)-(d) is an end view which shows the first half part of the other example of the manufacturing process of a dye-sensitized solar cell module.
  • A)-(d) is an end view showing the latter half of another example of the manufacturing process of the dye-sensitized solar cell module.
  • the dye-sensitized solar cell module of the present invention is a dye-sensitized solar cell module formed by connecting a plurality of cells in series, particularly a dye-sensitized solar cell module having a Z-type integrated structure. .
  • the dye-sensitized solar cell module having a Z-type integrated structure is not particularly limited.
  • FIG. 1 is a sectional view in the thickness direction.
  • the dye-sensitized solar cell module 10 shown in FIG. 1 is a so-called dye-sensitized solar cell module in which a plurality of (four in the illustrated example) cells partitioned by the partition walls 8 are connected in series. It has a Z-type integrated structure.
  • the dye-sensitized solar cell module 10 includes a photoelectrode substrate including a photoelectrode substrate 1 and a plurality of (four in the illustrated example) photoelectrodes 2 provided on the photoelectrode substrate 1 so as to be separated from each other.
  • Each cell of the dye-sensitized solar cell module 10 includes a photoelectrode 2, a counter electrode 6 facing the photoelectrode 2, and an electrolyte layer 4 provided between the photoelectrode 2 and the counter electrode 6. I have.
  • the structure of the dye-sensitized solar cell module of the present invention is not limited to the structure shown in FIG. Specifically, the dye-sensitized solar cell module 10 shown in FIG. 1 is provided on the photoelectrode conductive layer 21 provided on the photoelectrode substrate 1 and on a part of the photoelectrode conductive layer 21.
  • the photoelectrode 2 is provided with the porous semiconductor fine particle layer 22 carrying (adsorbing) the sensitizing dye.
  • the photoelectrode of the dye-sensitized solar cell module of the present invention is dye-sensitized. It can be set as the arbitrary photoelectrode which can form a type solar cell.
  • the dye-sensitized solar cell module 10 includes a counter electrode conductive layer 61 provided on the counter electrode substrate 5 and a catalyst layer 62 provided on a part of the counter electrode conductive layer 61.
  • the counter electrode 6 is provided, the counter electrode of the dye-sensitized solar cell module of the present invention can be any counter electrode that can form a dye-sensitized solar cell.
  • a part of the electrode conductive layer 21 is electrically connected via the cell connection portion 9, the structure and position where the cells are connected in series are not limited to the structure and position shown in FIG. .
  • the photoelectrode substrate 3 of the dye-sensitized solar cell module 10 shown in FIG. 1 includes a photoelectrode substrate 1 and a plurality of photoelectrodes 2 provided on the photoelectrode substrate 1 so as to be separated from each other.
  • the photoelectrode 2 includes a photoelectrode conductive layer 21 provided on the photoelectrode substrate 1 and a porous semiconductor fine particle layer 22 provided on a part of the photoelectrode conductive layer 21. Yes.
  • the photoelectrode conductive layer 21 is provided with a gap 23 therebetween.
  • the adjacent photoelectrodes 2 are provided so as to be electrically insulated from each other. This insulation is not particularly limited, for example, by forming the cell connection portion 9 present in the gap 23 between the adjacent photoelectrode conductive layers 21 using a specific conductive resin composition described later, Can be achieved.
  • the base material 1 for photoelectrodes there is no particular limitation, and a known base material having transparency in the visible region such as a glass plate or a plastic film can be used. Among them, from the viewpoint of obtaining a dye-sensitized solar cell module that is thin and excellent in flexibility, it is preferable to use a flexible plastic film as the substrate 1 for photoelectrodes.
  • polyester resins such as a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN), an acrylic resin, an epoxy resin, a fluororesin, a silicone resin
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylic resin acrylic resin
  • epoxy resin epoxy resin
  • fluororesin a silicone resin
  • the photoelectrode conductive layer 21 is not particularly limited, and a known conductive layer such as a conductive layer made of a conductive material such as metal, metal oxide, or conductive carbon material is used. Can do.
  • a transparent conductive layer is preferably used as the photoelectrode conductive layer 21, and a transparent conductive layer made of a metal oxide such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO), or carbon. It is more preferable to use a transparent conductive layer composed of a fibrous carbon nanomaterial having conductivity such as a nanotube.
  • the transparent conductive layer comprised from the fibrous carbon nanomaterial which has electroconductivity, such as a carbon nanotube, may further contain the binder for binding this material.
  • a known forming method such as a method combining sputtering and etching or screen printing can be used.
  • the porous semiconductor fine particle layer 22 carrying (adsorbing) a sensitizing dye is not particularly limited, and an organic dye or a porous semiconductor fine particle layer containing particles of an oxide semiconductor such as titanium oxide can be used.
  • a porous semiconductor fine particle layer formed by adsorbing a sensitizing dye such as a metal complex dye can be used.
  • a known forming method such as screen printing or coating can be used.
  • a method for adsorbing the sensitizing dye to the porous semiconductor fine particle layer a known method such as immersion of the porous semiconductor fine particle layer in a solution containing the sensitizing dye can be used.
  • the counter electrode substrate 7 of the dye-sensitized solar cell module 10 includes a counter electrode substrate 5 and a plurality of counter electrodes 6 provided on the counter electrode substrate 5 so as to be separated from each other.
  • the counter electrode 6 includes a counter electrode conductive layer 61 provided on the counter electrode substrate 5 and a catalyst layer 62 provided on a part of the counter electrode conductive layer 61.
  • the catalyst layer 62 faces the porous semiconductor fine particle layer 22 of the photoelectrode 2.
  • the counter electrodes 6 adjacent to each other are provided so as to be electrically insulated from each other. This insulation is not particularly limited, and can be achieved, for example, by interposing the partition wall 8 in the gap between the opposing electrodes 6 adjacent to each other.
  • the same substrate as the photoelectrode substrate 1 can be used as the counter electrode substrate 5
  • a conductive layer similar to the photoelectrode conductive layer 21 can be used as the counter electrode conductive layer 61.
  • any catalyst layer containing a component that can function as a catalyst such as platinum or a carbon material can be used.
  • the partition wall 8 of the dye-sensitized solar cell module 10 is provided between the photoelectrode substrate 3 and the counter electrode substrate 7 and surrounds each of the electrolyte layer 4 and the cell connection portion 9.
  • the space in which the electrolyte layer 4 is provided and the space in which the cell connection portion 9 is provided are partitioned by the photoelectrode substrate 3, the counter electrode substrate 7, and the partition walls 8.
  • the partition wall 8 is a photoelectrode conductive layer 21 (porous semiconductor fine particle layer 22 of the photoelectrode 2 of the photoelectrode substrate 3 on one side in the width direction of each cell (left side in FIG. 1). 1 is provided between the counter electrode substrate 7 and the counter electrode substrate 5, and the other side in the width direction of each cell (in FIG. 1).
  • the photoelectrode conductive layer 21 of the photoelectrode 2 of the photoelectrode substrate 3 (the portion located on the other side in the width direction from the portion where the porous semiconductor fine particle layer 22 is formed) or the light of the photoelectrode substrate 3 Provided between the electrode substrate 1 and the counter electrode conductive layer 61 of the counter electrode 6 of the counter electrode substrate 7 (the portion located on the other side in the width direction from the portion where the catalyst layer 62 is formed). Yes.
  • the electrolyte layers 4 and the cell connection portions 9 are alternately provided between the partition walls 8.
  • the partition wall 8 is not particularly limited, and the electrolyte layer hole formed at a position corresponding to the position where the electrolyte layer 4 is provided and the connection part hole formed at a position corresponding to the cell connection part 9. Or a partition formed by applying a thermosetting or photocurable resin and curing the applied resin, or the like.
  • the partition wall 8 is preferably formed using an adhesive sheet. From the viewpoint of improving the bonding strength and bonding accuracy between the photoelectrode substrate 3 and the counter electrode substrate 7. It is preferable to use an adhesive sheet having thermoplasticity.
  • the adhesive sheet is not particularly limited, and examples thereof include resins such as acrylic resins, epoxy resins, fluorine resins, olefin resins, silicone resins, polyisobutylene resins, polyamide resins, and ionomer resins.
  • seat for example, Surlyn film etc. formed using can be used.
  • the electrolyte layer 4 of the dye-sensitized solar cell module 10 is provided in a space surrounded by the porous semiconductor fine particle layer 22 of the photoelectrode 2, the catalyst layer 62 of the counter electrode 6, and the partition walls 8.
  • the electrolyte layer 4 is not particularly limited, and can be formed using any electrolytic solution, gel electrolyte, or solid electrolyte that can be used in the dye-sensitized solar cell.
  • the cell connection portion 9 of the dye-sensitized solar cell module 10 electrically connects cells adjacent to each other in series.
  • the cell connection portion 9 includes the photoelectrode conductive layer 21 of the photoelectrode 2 of the cell located on the right side in FIG. 1 and the counterelectrode conductive layer of the counter electrode 6 of the cell located on the left side in FIG. 61 is electrically connected.
  • the cell connection portion 9 of the dye-sensitized solar cell module 10 includes a wiring 91 formed on the photoelectrode conductive layer 21 of the photoelectrode 2 so as to be separated from the porous semiconductor fine particle layer 22, and the photoelectrode substrate 3.
  • the conductive resin composition 93 is filled in a space surrounded by the counter electrode substrate 7 and the partition walls 8.
  • the cell connection part 9 is formed using the wiring 91 and the conductive resin composition 93
  • the cell connection portion may be formed using only the conductive resin composition.
  • the wiring may be formed on the counter electrode conductive layer 61 of the counter electrode 6.
  • the wiring 91 is not particularly limited, and wiring made of a conductive material such as metal and metal oxide can be used. Among these, from the viewpoint of increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module by reducing the resistance of the cell connection portion 9, the wiring 91 is a metal wiring such as a copper wiring, a gold wiring, a silver wiring, or an aluminum wiring. It is preferable to use it.
  • a method for forming the wiring 91 on the photoelectrode conductive layer 21 a known forming method such as sputtering or screen printing can be used.
  • the conductive resin composition 93 contains a resin and conductive particles, the average particle diameter of the conductive particles is 0.5 ⁇ m or more and 30 ⁇ m or less, and the content ratio of the conductive particles is 0.1. It is necessary to use a composition that is at least 10% by volume. This is because when the average particle size and / or content ratio of the conductive particles is outside the above range, the photoelectric conversion efficiency of the dye-sensitized solar cell module is lowered. In the dye-sensitized solar cell module 10, the conductive resin composition 93 is also filled in the gaps 23 between the adjacent photoelectrode conductive layers 21, but the conductive resin composition 93 is conductive.
  • the average particle diameter of the particles is 0.5 ⁇ m or more and 30 ⁇ m or less and the content ratio of the conductive particles is 0.1% by volume or more and 10% by volume or less, a conductive network is formed by the conductive particles in the gap 23. This can prevent the conductive layers 21 for photoelectrodes adjacent to each other from conducting (that is, insulation between the photoelectrodes 2 adjacent to each other can be ensured).
  • the median diameter of the conductive particles contained in the solar cell module is, for example, the conductive particles contained in the resulting melt by dissolving the conductive resin contained in the solar cell module using an appropriate solvent. Can be obtained by measuring using a laser diffraction method based on JIS Z8825.
  • the resin of the conductive resin composition 93 is not particularly limited, and examples thereof include a resin cured by irradiation with actinic radiation or ultraviolet rays, or a resin cured by heating.
  • Specific examples of the resin of the conductive resin composition 93 include (meth) acrylic resins; bisphenol type epoxy resins, novolac type epoxy resins, cyclic epoxy resins, alicyclic epoxy resins, and other epoxy resins; silicone resins; It is done.
  • Arbitrary hardening agents such as a radical initiator, a cationic hardening agent, and an anionic hardening agent, can be used for the said resin, and a polymerization form is not specifically limited, such as addition polymerization and ring-opening polymerization.
  • the conductive particles of the conductive resin composition 93 are not particularly limited, and for example, metal particles, metal oxide particles, conductive carbon particles, and the like can be used.
  • the average particle diameter of electroconductive particle needs to be 0.5 micrometer or more, it is preferable that it is 5 micrometers or more, it is necessary to be 30 micrometers or less, and it is preferable that it is 10 micrometers or less.
  • the average particle diameter of the conductive particles is equal to or larger than the lower limit, it is possible to reliably prevent the conductive layers 21 for photoelectrodes adjacent to each other from conducting.
  • the resistance of the cell connection part 9 can be reduced and the photoelectric conversion efficiency of a dye-sensitized solar cell module can be improved.
  • the content ratio of the conductive particles needs to be 0.1% by volume or more, preferably 1% by volume or more, needs to be 10% by volume or less, and is 6% by volume or less. More preferred. If the content rate of electroconductive particle is more than the said lower limit, the resistance of the cell connection part 9 can be reduced and the photoelectric conversion efficiency of a dye-sensitized solar cell module can further be improved.
  • the viscosity of the composition forming the conductive resin composition 93 can be appropriately lowered, and the composition can be easily filled. It is possible to more reliably prevent the conductive layers 21 for photoelectrodes adjacent to each other from conducting.
  • the cell connection part 9 using the conductive resin composition 93 described above is not particularly limited.
  • the cell connection part 9 includes an uncured resin and conductive particles in a position where the cell connection part 9 is formed. It can be formed by filling a cured conductive resin composition and curing the filled uncured conductive resin composition.
  • the cell connection portion 9 is formed using the conductive resin composition 93 containing conductive particles having a predetermined average particle diameter in a predetermined ratio. Since it forms, the resistance of the cell connection part 9 can be reduced and the photoelectric conversion efficiency and reliability can be improved, preventing the adjacent photoelectrodes 2 from conducting.
  • the conductive resin composition 93 is also disposed in the gap 23 between the adjacent photoelectrode conductive layers 21, for example, a metal wiring as the wiring 91. Even when the electrolyte is used, components such as the electrolyte solution and the gel electrolyte constituting the electrolyte layer 4 leak to the cell connection portion 9 side, and the leaked components come into contact with the wiring 91 to corrode the wiring 91. It can be prevented well. Therefore, a dye-sensitized solar cell module excellent in long-term reliability can be obtained.
  • the width of the gap 23 (that is, the distance between the photoelectrode conductive layers 21) is set to be conductive.
  • the average particle diameter of the conductive particles contained in the resin composition is preferably 3 times or more, more preferably 5 times or more, more preferably 30 times or less, and preferably 10 times or less. Is more preferable. If the distance between the photoelectrode conductive layers 21 is equal to or greater than the lower limit, insulation between the photoelectrodes 2 adjacent to each other can be more reliably ensured, and the reliability of the dye-sensitized solar cell module 10 can be further increased.
  • the distance between the conductive layers 21 is set to the upper limit value or less, the increase in the resin amount suppresses the resistance of the cell connection portion 9 from increasing, and the photoelectric conversion efficiency of the dye-sensitized solar cell module 10 is sufficient. This is because it can be improved.
  • the distance between the photoelectrode conductive layers 21 is set to the specific numerical range described above. By making it inside, the insulation between the photoelectrodes 2 adjacent to each other can be more reliably ensured.
  • the gaps 23 between the photoelectrode conductive layers 21 can be formed by laser processing such as CO 2 laser, excimer laser, YAG laser, etching processing, or the like.
  • the gap 23 of the photoelectrode conductive layer 21 is usually 1 ⁇ m or more and 1000 ⁇ m or less, preferably 30 ⁇ m or more and 500 ⁇ m or less, more preferably 40 ⁇ m or more and 300 ⁇ m or less, and particularly preferably 50 ⁇ m or more and 250 ⁇ m or less.
  • FIG. 1 illustrates a structure in which the photoelectrode conductive layer 21 is disposed with a gap 23 as an example of the structure of the dye-sensitized solar cell module 10 of the present invention.
  • the gap 23 between the photoelectrode conductive layers 21 has been described as an example. However, as described above, the structure shown in FIG.
  • a gap between adjacent counter electrode conductive layers 61 may correspond to the gap 23. Also in this case, it is preferable to be within a specific numerical range similar to the gap 23 between the photoelectrode conductive layers 21.
  • the wiring 91 such as a metal wiring is provided in the dye-sensitized solar cell module 10 as shown in FIG. 1 in an enlarged manner, the region surrounded by the two-dot chain line in the dye-sensitized solar cell module 10 is shown.
  • (A + B) / A is equal to or greater than the above lower limit value, it is more reliable that components such as the electrolyte and gel electrolyte constituting the electrolyte layer 4 leak to the cell connection portion 9 side and come into contact with the wiring 91. This is because the long-term reliability of the dye-sensitized solar cell module 10 can be further improved. If (A + B) / A is equal to or less than the above upper limit, the partition wall 8 is thinned to sufficiently secure an area such as the porous semiconductor fine particle layer 22 and the photoelectric conversion efficiency of the dye-sensitized solar cell module 10. It is because it can fully improve. In the enlarged view of FIG.
  • the partition wall 8 and the electrolyte layer 4 are illustrated as being adjacent to each other, but a gap may exist between the partition wall 8 and the electrolyte layer 4. Further, the shortest distance B described above is the partition wall 8 (that is, the figure) separating the electrolyte layer 4 disposed on the porous semiconductor fine particle layer 22 provided on the same photoelectrode conductive layer 21 as the wiring 91. 1 substantially corresponds to the thickness of the partition wall 8) located on the right side of the wiring 91.
  • the width of the cell connection portion 9 is preferably more than 1.1 times the width of the wiring 91, and 1.3 times. More preferably, it is 1.7 times or more, further preferably 3.0 times or less, and more preferably 2.5 times or less. If the width of the cell connection portion 9 is more than 1.1 times the width of the wiring 91, a gap is provided between the wiring 91 and the wall surface of the partition wall 8, and a conductive resin is provided between the wiring 91 and the wall surface of the partition wall 8. Composition 93 can be entrained.
  • the width of the cell connection portion 9 is 3.0 times or less the width of the wiring 91, the amount of the conductive resin composition 93 used for forming the cell connection portion 9 increases and the resistance of the cell connection portion 9 is increased. It is because it can suppress that this increases. Therefore, when the width of the cell connection portion 9 is within the above range, a dye-sensitized solar cell module having excellent long-term reliability and photoelectric conversion efficiency can be obtained.
  • the dye-sensitized solar cell module 10 having the above-described configuration is not particularly limited and can be manufactured, for example, as shown in FIGS. Specifically, first, as shown in the first half of the manufacturing process in FIG. 2, after producing the photoelectrode substrate 3 including the photoelectrode 2 (photoelectrode substrate production process), on the produced photoelectrode substrate 3, An adhesive sheet having an electrolyte layer hole 81 formed at a position corresponding to the position where the electrolyte layer 4 is provided, and a connection portion hole 82 formed at a position corresponding to the cell connection portion 9 for connecting cells in series. (Partition wall) 8 is arranged (sheet arrangement process). Next, as shown in FIG.
  • an uncured conductive resin composition 92 is filled in the connection portion hole 82 of the adhesive sheet 8 disposed on the photoelectrode substrate 3 (resin composition filling step). Furthermore, the components constituting the electrolyte layer 4 such as an electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 (electrolyte layer filling step). Thereafter, as shown in FIG. 3, the counter electrode substrate 7 including the counter electrode 6 is bonded to the photoelectrode substrate 3 via the adhesive sheet 8 (bonding step), and further, an uncured conductive resin composition.
  • the cell connection portion 9 is formed by curing 92, and the photoelectrode substrate 3 and the counter electrode substrate 7 are firmly bonded (bonding step).
  • a plurality of (four in the illustrated example) photoelectrode conductive layers 21 corresponding to the number of cells to be formed are separated from each other. It forms on the base material 1 for photoelectrodes.
  • the wiring 91 is formed on the photoelectrode conductive layer 21 formed on the photoelectrode substrate 1.
  • a porous semiconductor fine particle layer 22 having adsorbed a sensitizing dye is formed on a part of each photoelectrode conductive layer 21 to obtain a photoelectrode substrate 3.
  • the wiring 91 and the porous semiconductor fine particle layer 22 are formed on the photoelectrode conductive layer 21 while being separated from each other.
  • the wiring 91 is formed after the photoelectrode conductive layer 21 is formed and before the porous semiconductor fine particle layer 22 is formed. You may form on the conductive layer 21 for photoelectrodes before forming. Further, the formation of the wiring 91 may be performed after the sheet placement process is performed.
  • the adhesive sheet 8 having the formed connection part hole 82 is positioned so that the electrolyte layer hole 81 is located on the place where the electrolyte layer 4 is provided, and the connection part hole 82 is provided with the cell connection part 9. It arrange
  • substrate 3 More specifically, as shown in FIG.
  • the adhesive sheet 8 includes a porous semiconductor fine particle layer 22 having adsorbed a sensitizing dye accommodated in an electrolyte layer hole 81 and a wiring 91. Is accommodated in the connection portion hole 82, and the photoelectrode 2 and the counter electrode 6 can be electrically connected via the cell connection portion 9 provided in the connection portion hole 82. 3 is arranged.
  • the uncured conductive resin composition 92 is filled in the connection portion holes 82 of the adhesive sheet 8 disposed on the photoelectrode substrate 3. .
  • the filling of the uncured conductive resin composition 92 into the connection portion hole 82 is not particularly limited, and can be performed using a screen printing apparatus, a dispenser, or the like.
  • the uncured conductive resin composition 92 is also filled in the gaps between the photoelectrode conductive layers 21.
  • thermoplastic sheet when used as the adhesive sheet 8 described above, it is preferable to use a composition containing a thermosetting resin that is cured by heating as the uncured conductive resin composition 92.
  • the adhesive sheet 8 has thermoplasticity, if a composition containing a thermosetting resin is used as the conductive resin composition 92, the conductive resin composition 92 can be cured and lighted by heating once in the bonding step described later. This is because adhesion between the electrode substrate 3 and the counter electrode substrate 7 can be achieved.
  • the components constituting the electrolyte layer 4 such as the electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 disposed on the photoelectrode substrate 3.
  • the electrolyte layer 4 is formed.
  • the components constituting the electrolyte layer 4 such as the electrolytic solution are filled up to the upper end of the electrolyte layer hole 81, but the filling amount of the electrolytic solution or the like is the air in the formed cell. Any adjustment can be made as long as it is within the range not mixed.
  • the filling of the components constituting the electrolyte layer 4 such as the electrolytic solution into the electrolyte layer holes 81 is not particularly limited, and can be performed using a screen printing apparatus or a dispenser.
  • the counter electrode substrate 7 including the counter electrodes 6 (four in the illustrated example) corresponding to the number of cells is attached to the photoelectrode via the adhesive sheet 8.
  • the substrate 3 is bonded.
  • the counter electrode substrate 7 and the photoelectrode substrate 3 are opposed to each other with at least a part of the counter electrode 6 and at least a part of the photoelectrode 2 sandwiching the electrolyte layer 4 (that is, To form a cell).
  • the bonding is preferably performed in a reduced pressure environment.
  • the counter electrode substrate 7 and the photoelectrode substrate 3 are bonded so that the catalyst layer 62 of the counter electrode 6 and the porous semiconductor fine particle layer 22 of the photoelectrode 2 face each other with the electrolyte layer 4 interposed therebetween. ing. After bonding, the adhesive sheet 8 becomes a partition wall that surrounds the electrolyte layer 4 and the cell connection portion 9.
  • the uncured conductive resin composition 92 is cured to form a conductive resin composition 93 to form the cell connection portion 9, and the photoelectrode substrate 3 And the counter electrode substrate 7 are firmly bonded.
  • the method for curing the conductive resin composition 92 may be appropriately selected according to the type of the curable resin contained in the conductive resin composition 92.
  • the conductive resin composition can be obtained by a single heating. Since the curing of 92 and the adhesion of the photoelectrode substrate 3 and the counter electrode substrate 7 can be achieved, the dye-sensitized solar cell module can be efficiently manufactured.
  • the adhesive sheet 8 can be made to follow the shapes of the photoelectrode substrate 3 and the counter electrode substrate 7 by heating.
  • the partition wall 8 can be formed satisfactorily.
  • the temperature at which the adhesive sheet 8 and the uncured conductive resin composition 92 are heated is the curing contained in the uncured conductive resin composition 92. It is preferable that the temperature is not less than the curing temperature of the adhesive resin and not more than 10 ° C. higher than the softening point of the adhesive sheet 8. In other words, the curing temperature of the curable resin used in combination with the thermoplastic adhesive sheet 8 is preferably 10 ° C. or lower than the softening point of the adhesive sheet 8.
  • the adhesive sheet 8 When the adhesive sheet 8 is heated at an excessively high temperature, the adhesive sheet 8 may be excessively softened and the adhesiveness may be lowered, or a component constituting the electrolyte layer 4 such as an electrolytic solution may be leaked. Because.
  • the softening point and curing temperature can be measured by differential scanning calorimetry and viscoelasticity measurement.
  • the temperature at which the adhesive sheet 8 and the uncured conductive resin composition 92 are heated is determined from the viewpoint of suppressing the generation of bubbles in the electrolyte layer 4 of components such as an electrolyte solution that forms the electrolyte layer 4. It is preferably less than the boiling point.
  • the dye-sensitized solar cell module mentioned above after filling the component which comprises electrolyte layer 4, such as electrolyte solution, in the hole 81 for electrolyte layers of the adhesive sheet 8, a photoelectrode substrate 3 and the counter electrode substrate 7 are bonded together, so that a step of forming a hole in the substrate after the bonding and filling with an electrolytic solution or the like is unnecessary, and the dye-sensitized solar cell module can be efficiently manufactured. it can.
  • the adhesive sheet 8 is used instead of the liquid sealing material that is easily deformed when an external force is applied, the positional accuracy and height when the photoelectrode substrate 3 and the counter electrode substrate 7 are bonded together. The accuracy can be sufficiently increased. Further, the strength of the laminate obtained by bonding the photoelectrode substrate 3 and the counter electrode substrate 7 and the dye-sensitized solar cell module is moderately increased, and the handling properties of the laminate and the dye-sensitized solar cell module are improved. Can be improved.
  • the electrolyte layer hole 81 of the adhesive sheet 8 is filled with a component constituting the electrolyte layer 4 such as an electrolytic solution, an electrolyte such as an electrolytic solution is used compared to the case where a liquid sealing material is used. It is possible to suppress the dissolution and deformation of the adhesive sheet 8 at the contact surface with the component constituting the layer 4 and increase the bonding strength between the photoelectrode substrate 3 and the counter electrode substrate 7.
  • the conductive resin composition 93 is present in the gap 23 between the adjacent photoelectrode conductive layers 21, and the wiring 91 is provided on the photoelectrode conductive layer 21.
  • the conductive resin composition may be present in the gap between the opposing electrode conductive layers adjacent to each other, and the wiring is provided on the opposing electrode conductive layer. It may be formed.
  • the dye-sensitized solar cell module in which the conductive resin composition is present in the gap between the conductive layers for the counter electrode and the wiring is formed on the conductive layer for the counter electrode is electrically conductive in the gap between the conductive layers for the counter electrode.
  • a configuration similar to that of the dye-sensitized solar cell module 10 of the above example can be adopted except that the resin composition is present and wiring is formed on the conductive layer for the counter electrode.
  • the dye-sensitized solar cell module in which a gap is provided between the counter electrode conductive layers and the wiring is formed on the counter electrode conductive layer is not particularly limited.
  • FIGS. Can be manufactured. Specifically, first, as shown in FIG. 4 showing the first half of the manufacturing process, after manufacturing the counter electrode substrate 7 including the counter electrode 6 (counter electrode substrate manufacturing process), on the counter electrode substrate 7 thus manufactured. Adhesiveness having an electrolyte layer hole 81 formed at a position corresponding to the position where the electrolyte layer 4 is provided, and a connection portion hole 82 formed at a position corresponding to the cell connection portion 9 connecting the cells in series. A sheet (partition wall) 8 is arranged (sheet arrangement process). Next, as shown in FIG.
  • the components constituting the electrolyte layer 4 such as the electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 (electrolyte layer filling step), and further on the counter electrode substrate 7.
  • the uncured conductive resin composition 92 is filled in the connection portion hole 82 of the adhesive sheet 8 disposed in the resin sheet (resin composition filling step).
  • the counter electrode substrate 7 including the counter electrode 6 is bonded to the photoelectrode substrate 3 via the adhesive sheet 8 (bonding step), and further, an uncured conductive resin composition.
  • the cell connection portion 9 is formed by curing 92, and the photoelectrode substrate 3 and the counter electrode substrate 7 are firmly bonded (bonding step).
  • a plurality of (four in the illustrated example) counter electrode conductive layers 61 corresponding to the number of cells to be formed are separated from each other. It forms on the base material 5 for counter electrodes.
  • the catalyst layer 62 is formed on a part of each counter electrode conductive layer 61.
  • a wiring 91 is formed on the counter electrode conductive layer 61 formed on the counter electrode substrate 5 to obtain the counter electrode substrate 7.
  • the wiring 91 and the catalyst layer 62 are formed on the counter electrode conductive layer 61 so as to be separated from each other.
  • the wiring 91 is formed after the catalyst layer 62 is formed.
  • the wiring 91 may be formed on the counter electrode conductive layer 61 before the catalyst layer 62 is formed. Good. Further, the formation of the wiring 91 may be performed after the sheet placement process is performed.
  • the electrolyte layer hole 81 is formed at a position corresponding to the position where the electrolyte layer 4 is provided, and the position corresponding to the position where the cell connection portion 9 is provided.
  • the adhesive sheet 8 having the connection portion hole 82 is positioned on the place where the electrolyte layer hole 81 is provided on the electrolyte layer 4 and the connection portion hole 82 is provided on the place where the cell connection portion 9 is provided. It arrange
  • the catalyst layer 62 is accommodated in the electrolyte layer hole 81 and the wiring 91 is accommodated in the connection portion hole 82. Furthermore, the counter electrode 6 and the photoelectrode 2 are arranged on the counter electrode substrate 7 so that they can be electrically connected via the cell connection portion 9 provided in the connection hole 82.
  • the components constituting the electrolyte layer 4 such as the electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 disposed on the counter electrode substrate 7.
  • the electrolyte layer 4 is formed.
  • filling with electrolyte solution etc. can be performed like the electrolyte layer filling process of the dye-sensitized solar cell module of the previous example.
  • an uncured conductive resin composition 92 is placed in the connection portion hole 82 of the adhesive sheet 8 disposed on the counter electrode substrate 7. Fill.
  • the conductive resin composition can be filled in the same manner as in the resin composition filling step of the dye-sensitized solar cell module of the previous example.
  • the uncured conductive resin composition 92 is also filled in the gaps between the counter electrode conductive layers 61.
  • the bonding step and the bonding step are other than bonding the photoelectrode substrate 3 including the photoelectrode 2 to the counter electrode substrate 7 on which the adhesive sheet 8 is disposed. Can be carried out in the same manner as in the pasting step and bonding step of the dye-sensitized solar cell module of the previous example.
  • the dye-sensitized solar cell module of the present invention and the manufacturing method thereof have been described above using an example. However, the dye-sensitized solar cell module of the present invention and the manufacturing method thereof are limited to the above-described examples. However, the dye-sensitized solar cell module of the present invention and the manufacturing method thereof can be modified as appropriate.
  • the partition may be formed by applying and curing a curable resin instead of the adhesive sheet.
  • the dye-sensitized solar cell module of this invention may further surround the outer peripheral side of a partition with a sealing material.
  • the partition walls on the photoelectrode substrate or the counter electrode substrate are arranged before the photoelectrode substrate and the counter electrode substrate are bonded together. You may arrange
  • a sealing material is arrange
  • a sealing material although the known sealing material which can be used for manufacture of a dye-sensitized solar cell module can be used, it is preferable to use the sealing material which has thermoplasticity especially.
  • a pseudo-sunlight irradiation device (PEC-L11 type, manufactured by Pexel Technologies, Inc.) in which an AM1.5G filter is attached to a 150 W xenon lamp light source was used. The amount of light was adjusted to 1 sun (AM1.5G, 100 mW / cm 2 (JIS C8912 class A)).
  • the produced dye-sensitized solar cell module was connected to a source meter (type 2400 source meter, manufactured by Keithley), and the following current-voltage characteristics were measured. The output current was measured while changing the bias voltage from 0 V to 0.8 V in units of 0.01 V under 1 sun light irradiation.
  • the output current was measured by integrating the values from 0.05 seconds to 0.15 seconds after changing the voltage in each voltage step. Measurement was also performed by changing the bias voltage from 0.8 V to 0 V in the reverse direction, and the average value of the measurements in the forward direction and the reverse direction was taken as the photocurrent.
  • the photoelectric conversion efficiency (%) was calculated from the measurement results of the current-voltage characteristics and evaluated according to the following criteria.
  • C Photoelectric conversion efficiency is less than 2.5% ⁇ Reliability>
  • the produced dye-sensitized solar cell module was left in a constant temperature and humidity chamber (60 ° C., 60 RH%) for 2 days.
  • the photoelectric conversion efficiency (%) was calculated for the dye-sensitized solar cell module after being left in the same manner as described above, and evaluated according to the following criteria.
  • Example 1 A dye-sensitized solar cell module in which five cells of a dye-sensitized solar cell were connected in series was produced as follows. And the bonding state, photoelectric conversion efficiency, and long-term reliability of a dye-sensitized solar cell module were evaluated. The results are shown in Table 1. ⁇ Preparation of dye-sensitized solar cell module> [Photoelectrode substrate manufacturing process] An ITO-PEN film (size: 10 cm ⁇ 10 cm) having a thickness of 125 ⁇ m having a conductive layer made of indium tin oxide (ITO) on a photoelectrode substrate made of polyethylene naphthalate (PEN) film was prepared.
  • ITO-PEN film size: 10 cm ⁇ 10 cm
  • ITO indium tin oxide
  • PEN polyethylene naphthalate
  • an ITO etching paste is screen printed at a width of 0.13 mm and a length of 6 cm on the 6 cm ⁇ 6 cm area in the center of the ITO-PEN film from the left side so that the intervals are 16 mm, 11 mm, 11 mm, and 11 mm. did. Then, a part of the ITO layer on the PEN film was etched by removing the dried etching paste, and five photoelectrode conductive layers made of ITO were formed on the photoelectrode substrate made of the PEN film.
  • an isopropyl alcohol solution of titanium isopropoxide having a concentration of 5 mM is applied onto the photoelectrode conductive layer by a bar coating method and dried. It was. Thereafter, the buffer layer was formed by drying for 15 minutes on a hot plate at 150 degrees. Next, a silver wiring having a width of 5 mm and a length of 60 mm is screen-printed on a 5 mm portion from the left side in a 6 cm ⁇ 6 cm region in the center of the PEN film provided with the photoelectrode conductive layer, and further etched in each region.
  • Silver wiring (current collection wiring) having a width of 0.7 mm and a length of 6 cm was screen-printed on a portion 0.2 mm from the left side.
  • Pernox K3105 was used as the silver paste for screen printing. After printing the silver, the silver was fixed by heat treatment at 150 degrees for 30 minutes. The thickness of the silver wiring after drying was 8 ⁇ m. Thereafter, the surface of the PEN film provided with the photoelectrode conductive layer and the silver wiring was irradiated with light from a high-pressure mercury lamp, and the surface was subjected to a hydrophilic treatment.
  • a titanium oxide layer (width 7 mm ⁇ length 55 mm) as a porous semiconductor fine particle layer was screen-printed at the center of the region where ITO was etched and the region where silver wiring was formed.
  • a screen printing paste a water-based titanium oxide paste (PECC-AW1-01, manufactured by Pexel Technologies, Inc.) was used. The thickness of the titanium oxide layer was 8 ⁇ m. Thereafter, heat treatment was performed at 150 degrees for 30 minutes. A 6 cm ⁇ 6 cm region in the center of the PEN film provided with the photoelectrode conductive layer, silver wiring and titanium oxide layer was cut out with a cutter knife to obtain a 6 cm ⁇ 6 cm substrate.
  • the substrate was immersed in an ethanol solution of N719 dye (manufactured by Tateyama Kasei Co., Ltd.) having a concentration of 0.3 mM, and allowed to stand in a constant temperature bath at 40 degrees for 2 hours, and then the substrate was taken out. Next, it was washed with ethanol and dried under a nitrogen atmosphere, thereby adsorbing N719 dye as a sensitizing dye on the titanium oxide layer to obtain a photoelectrode substrate.
  • N719 dye manufactured by Tateyama Kasei Co., Ltd.
  • a 125 ⁇ m thick ITO-PEN film (size: 10 cm ⁇ 10 cm) having a conductive layer made of indium tin oxide (ITO) on a counter electrode substrate made of polyethylene naphthalate (PEN) film was prepared. Then, an ITO etching paste is screen printed at a width of 0.13 mm and a length of 6 cm on the 6 cm ⁇ 6 cm area in the center of the ITO-PEN film from the left side so that the intervals are 16 mm, 11 mm, 11 mm, and 11 mm. did.
  • a part of the ITO layer on the PEN film was etched by removing the dried etching paste, and five counter electrode conductive layers made of ITO were formed on the counter electrode substrate made of the PEN film.
  • a 5 mm portion from the left side, a 5 mm portion from the upper side, a 5 mm portion from the lower side, and a 10 mm portion from the right side of the PEN film provided with the conductive layer for the counter electrode were masked with a scotch tape.
  • a platinum nano colloid solution manufactured by Tanaka Kikinzoku
  • the scotch tape was peeled off and treated with heated steam to fix the platinum catalyst and form a catalyst layer.
  • a 6 cm ⁇ 6 cm region in the center of the PEN film provided with the conductive layer for the counter electrode, the catalyst layer, and the silver wiring was cut out with a cutter knife to obtain a 6 cm ⁇ 6 cm counter electrode substrate.
  • a Surlyn film (thickness 25 ⁇ m, softening point 120 ° C.) having an outer shape of 55 mm ⁇ 60 mm was prepared as a thermoplastic sheet. Then, the Surlyn film is cut out by a commercially available cutting machine, and the hole for the electrolyte is made so that the titanium oxide layer and the Surlyn film are not in direct contact with each titanium oxide layer provided on the conductive layer for each photoelectrode. Formed.
  • holes for connecting portions having a width S2 shown in Table 1 were formed at positions corresponding to the respective silver wirings provided on the respective conductive layers for photoelectrodes to obtain an adhesive sheet. Then, an adhesive sheet was pressure-bonded (120 ° C., 15 seconds) on the photoelectrode substrate.
  • An electrolyte solution (PECE-G3, manufactured by Pexel Technologies Co., Ltd.) was filled in the electrolyte holes with a dispenser.
  • the resin composition obtained by adding and uniformly mixing with the rotation and revolution mixer was filled in the hole for the connection part with a dispenser.
  • the photoelectrode substrate was placed on the lower substrate of the aluminum bonding jig, and the counter electrode substrate was stacked thereon.
  • Example 2 In the sheet placement step, the width S2 of the connection hole formed in the Surlyn film is changed as shown in Table 1, and the screen printing position of the silver wiring is changed to maintain the shortest distance A as in Example 1.
  • the resin composition filling step the same procedure as in Example 1 was conducted except that the addition amount of micropearl AU (made by Sekisui Resin, average particle diameter of 8 ⁇ m) as conductive particles was changed to 6% by volume. A sensitized solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In the sheet placement step, the width S2 of the connection hole formed in the Surlyn film is changed as shown in Table 1, and the screen printing position of the silver wiring is changed so that the shortest distance A is the same distance as in Example 1.
  • a dye-sensitized solar cell module was produced in the same manner as in Example 1 except that this was maintained. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 In the sheet arranging step, the width S2 of the connection hole formed in the Surlyn film and the shortest distance B are changed as shown in Table 1, and an epoxy resin (manufactured by 3M) which is a thermosetting resin in the resin composition filling step.
  • Type solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 In the resin composition filling step, the dye increase was carried out in the same manner as in Example 1 except that the addition amount of micropearl AU (made by Sekisui Plastics, average particle diameter (median diameter) 8 ⁇ m) as conductive particles was changed to 30% by volume. A sensitive solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • micropearl AU made by Sekisui Plastics, average particle diameter (median diameter) 8 ⁇ m
  • Example 4 In the resin composition filling step, the example is except that micropearl AU (manufactured by Sekisui Resin) having an average particle diameter (median diameter) of 50 ⁇ m is added as conductive particles instead of micropearl AU (manufactured by Sekisui Resin) having an average particle diameter of 8 ⁇ m.
  • micropearl AU manufactured by Sekisui Resin
  • a dye-sensitized solar cell module was produced.
  • evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 In the resin composition filling step, the coloring matter was the same as in Example 1 except that the content of micropearl AU (made by Sekisui Resin, average particle diameter (median diameter) 8 ⁇ m) was changed to 0.05 vol% as the conductive particles.
  • a sensitized solar cell module was produced. About the pasted state after the adhesion process of the created module, it was evaluated in the same manner as in Example 1. As a result, there was no portion that was swollen, dissolved or penetrated by the electrolyte solution around the electrolyte layer, and the pasted state after the adhesion process Was excellent. However, the created module did not exhibit photoelectric conversion ability at all, and the photoelectric conversion efficiency and reliability could not be evaluated. This is presumably because there were few conductive particles, the connection between the photoelectrode and the counter electrode was insufficient, and sufficient conductivity was not obtained for measuring the photoelectric conversion efficiency. The results are shown in Table 1.
  • a dye-sensitized solar cell module with high photoelectric conversion efficiency and high reliability can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

This dye-sensitized solar cell module is provided with a photoelectrode substrate 3, a counterelectrode substrate 7 forming multiple cells together with the photoelectrode substrate 3, electrolyte layers 4, cell connecting units 9 connecting mutually adjacent cells in series, and separating walls 8 arranged between the photoelectrode substrate 3 and the counterelectrode substrate 7 and surrounding the electrolyte layers 4 and cell connecting units 9. Further, the cell connecting units 9 contain a conductive resin composition in which the average particle diameter of the conductive particles is 0.5-30 μm, and the content ratio of the conductive particles is 0.1-10 vol%.

Description

色素増感型太陽電池モジュールDye-sensitized solar cell module
 本発明は、色素増感型太陽電池モジュールに関するものである。 The present invention relates to a dye-sensitized solar cell module.
 近年、光エネルギーを電力に変換する光電変換素子として、太陽電池が注目されている。なかでも、色素増感型太陽電池は、シリコン型太陽電池等に比べて軽量化が期待でき、また、広い照度範囲で安定して発電できることや、大掛かりな設備を必要とすることなく、比較的安価な材料を用いて製造し得ることなどから、注目されている。 In recent years, solar cells have attracted attention as photoelectric conversion elements that convert light energy into electric power. In particular, dye-sensitized solar cells can be expected to be lighter than silicon solar cells, etc., can generate power stably over a wide illuminance range, and do not require large-scale equipment. It attracts attention because it can be manufactured using inexpensive materials.
 ここで、色素増感型太陽電池は、通常、増感色素を吸着させた多孔質半導体微粒子層を備える光電極と、電解質層と、触媒層を備える対向電極とがこの順に並んでなる構造を有するセルを複数接続してなる太陽電池モジュール、或いは、複数の太陽電池モジュールを直列または並列に接続してなる太陽電池アレイの形態で用いられている。 Here, the dye-sensitized solar cell usually has a structure in which a photoelectrode including a porous semiconductor fine particle layer on which a sensitizing dye is adsorbed, an electrolyte layer, and a counter electrode including a catalyst layer are arranged in this order. It is used in the form of a solar cell module formed by connecting a plurality of cells, or a solar cell array formed by connecting a plurality of solar cell modules in series or in parallel.
 そして、色素増感型太陽電池のセルを直列接続してなる色素増感型太陽電池モジュールとしては、例えば、基材上に複数の光電極を並設してなる光電極基板と、基材上に複数の対向電極を並設してなる対向電極基板とを、各セルを形成する光電極と対向電極とが互いに対向するように、且つ、隣接するセル間で一方のセルの光電極と他方のセルの対向電極とが電気的に接続されるように貼り合わせて形成したモジュールが提案されている(例えば、特許文献1参照)。 And as a dye-sensitized solar cell module formed by connecting cells of a dye-sensitized solar cell in series, for example, a photoelectrode substrate in which a plurality of photoelectrodes are arranged in parallel on a base material, and a base material A counter electrode substrate having a plurality of counter electrodes arranged side by side so that the photoelectrodes forming each cell and the counter electrode face each other, and between the adjacent cells, the photoelectrode of one cell and the other There has been proposed a module formed by bonding so that the counter electrode of each cell is electrically connected (see, for example, Patent Document 1).
 また、上記従来の色素増感型太陽電池モジュールにおいて、隣接するセル間で一方のセルの光電極と他方のセルの対向電極とを電気的に接続するセル接続部には、例えば金属または導電性樹脂組成物を用いて形成した配線等が用いられている。 In the conventional dye-sensitized solar cell module, the cell connection portion that electrically connects the photoelectrode of one cell and the counter electrode of the other cell between adjacent cells may be, for example, metal or conductive The wiring etc. which were formed using the resin composition are used.
特開2007-220608号公報JP 2007-220608 A
 ここで、色素増感型太陽電池モジュールにおいて、隣接するセル同士の接続に用いられる導電性樹脂組成物としては、例えば、樹脂と、導電性粒子とを含む組成物が用いられている。しかし、樹脂と、導電性粒子とを含む導電性樹脂組成物を用いて形成したセル接続部を備える色素増感型太陽電池モジュールには、光電変換効率及び信頼性を更に高めるという点において改善の余地があった。 Here, in the dye-sensitized solar cell module, as the conductive resin composition used for connection between adjacent cells, for example, a composition containing a resin and conductive particles is used. However, the dye-sensitized solar cell module having a cell connection portion formed using a conductive resin composition containing a resin and conductive particles is improved in terms of further improving photoelectric conversion efficiency and reliability. There was room.
 そこで、本発明は、導電性樹脂組成物を用いて形成したセル接続部を備える色素増感型太陽電池モジュールであって、信頼性に優れ、光電変換効率の高い色素増感型太陽電池モジュールを提供することを目的とする。 Therefore, the present invention provides a dye-sensitized solar cell module having a cell connection portion formed using a conductive resin composition, which is excellent in reliability and has high photoelectric conversion efficiency. The purpose is to provide.
 この発明は、上記課題を有利に解決することを目的とするものであり、本発明の色素増感型太陽電池モジュールは、光電極と、前記光電極に対向する対向電極と、前記光電極と前記対向電極との間に設けられた電解質層とを備えるセルを複数直列接続してなる色素増感型太陽電池モジュールであって、基材上に複数の光電極を互いに離隔させて配設してなる光電極基板と、前記セルを形成するように前記光電極基板に対向して配置された、基材上に複数の対向電極を互いに離隔させて配設してなる対向電極基板と、互いに対向する前記光電極と前記対向電極との間に配設された電解質層と、互いに隣接するセル同士を直列接続するセル接続部と、前記光電極基板と前記対向電極基板との間に配置され、前記電解質層および前記セル接続部をそれぞれ囲繞する隔壁とを備え、前記セル接続部が、樹脂と導電性粒子とを含有する導電性樹脂組成物を含み、前記導電性樹脂組成物は、前記導電性粒子の平均粒子径が0.5μm以上30μm以下であり、且つ、前記導電性粒子の含有割合が0.1体積%以上10体積%以下であることを特徴とする。このように、平均粒子径が0.5μm以上30μm以下である導電性粒子を0.1体積%以上10体積%以下の割合で含有する導電性樹脂組成物を用いてセル接続部を形成すれば、光電変換効率及び信頼性の高い色素増感型太陽電池モジュールが得られる。
 なお、本発明において、「導電性粒子の平均粒子径」とは、導電性粒子のメディアン径を指す。
An object of the present invention is to advantageously solve the above problems, and a dye-sensitized solar cell module of the present invention includes a photoelectrode, a counter electrode facing the photoelectrode, and the photoelectrode. A dye-sensitized solar cell module comprising a plurality of cells connected in series with an electrolyte layer provided between the counter electrodes, wherein a plurality of photoelectrodes are spaced apart from each other on a substrate. A plurality of counter electrodes spaced apart from each other on a base material, which are arranged to face the photoelectrode substrate so as to form the cells, and to each other An electrolyte layer disposed between the opposing photoelectrode and the opposing electrode, a cell connecting portion for connecting cells adjacent to each other in series, and the photoelectrode substrate and the opposing electrode substrate. The electrolyte layer and the cell connection part Each of the cell connection portions includes a conductive resin composition containing a resin and conductive particles, and the conductive resin composition has an average particle diameter of 0 for the conductive particles. 0.5 to 30 μm, and the content ratio of the conductive particles is 0.1 to 10% by volume. Thus, if a cell connection part is formed using the conductive resin composition which contains the electroconductive particle whose average particle diameter is 0.5 micrometer or more and 30 micrometers or less in the ratio of 0.1 volume% or more and 10 volume% or less. Thus, a dye-sensitized solar cell module with high photoelectric conversion efficiency and reliability can be obtained.
In the present invention, the “average particle diameter of conductive particles” refers to the median diameter of conductive particles.
 ここで、本発明の色素増感型太陽電池モジュールは、前記光電極が、導電層と、前記導電層上に形成され、増感色素を担持した多孔質半導体微粒子層とを備え、前記セル接続部は、一方のセルの前記光電極の前記導電層と、他方のセルの前記対向電極とを電気的に接続し、前記セル接続部を介して互いに接続される、互いに隣接するセルの光電極の導電層間に前記導電性樹脂組成物が存在することが好ましい。互いに離隔させて配設された光電極が導電層を備える場合に、互いに隣接するセルの光電極の導電層間に導電性樹脂組成物を存在させれば、色素増感型太陽電池モジュールの長期信頼性を高めることができる。 Here, in the dye-sensitized solar cell module of the present invention, the photoelectrode includes a conductive layer, and a porous semiconductor fine particle layer formed on the conductive layer and carrying a sensitizing dye, and the cell connection The unit electrically connects the conductive layer of the photoelectrode of one cell and the counter electrode of the other cell, and is connected to each other via the cell connection unit, the photoelectrodes of adjacent cells The conductive resin composition is preferably present between the conductive layers. When the photoelectrodes arranged apart from each other have a conductive layer, the long-term reliability of the dye-sensitized solar cell module can be obtained if the conductive resin composition is present between the conductive layers of the photoelectrodes of adjacent cells. Can increase the sex.
 また、本発明の色素増感型太陽電池モジュールは、前記互いに隣接するセルの光電極の導電層間の距離が、前記導電性粒子の平均粒子径の3倍以上30倍以下であることが好ましい。導電層間の距離を導電性粒子の平均粒子径の3倍以上30倍以下にすれば、色素増感型太陽電池モジュールの光電変換効率を高めつつ、信頼性を更に高めることができる。 In the dye-sensitized solar cell module of the present invention, it is preferable that the distance between the conductive layers of the photoelectrodes of the cells adjacent to each other is 3 to 30 times the average particle diameter of the conductive particles. When the distance between the conductive layers is 3 to 30 times the average particle size of the conductive particles, the reliability can be further improved while increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module.
 更に、本発明の色素増感型太陽電池モジュールは、前記対向電極が、導電層と、前記導電層上に形成された触媒層とを備え、前記セル接続部は、一方のセルの前記対向電極の前記導電層と、他方のセルの前記光電極とを電気的に接続し、前記セル接続部を介して互いに接続される、互いに隣接するセルの対向電極の導電層間に前記導電性樹脂組成物が存在することが好ましい。互いに離隔させて配設された対向電極が導電層を備える場合に、互いに隣接するセルの対向電極の導電層間に導電性樹脂組成物を存在させれば、色素増感型太陽電池モジュールの長期信頼性を高めることができる。 Furthermore, in the dye-sensitized solar cell module of the present invention, the counter electrode includes a conductive layer and a catalyst layer formed on the conductive layer, and the cell connection portion includes the counter electrode of one cell. The conductive resin composition is electrically connected to the photoelectrode of the other cell, and is connected to each other via the cell connection portion, and the conductive resin composition is disposed between the conductive layers of the counter electrodes of adjacent cells. Is preferably present. When the counter electrodes arranged apart from each other have a conductive layer, the long-term reliability of the dye-sensitized solar cell module can be obtained if a conductive resin composition exists between the conductive layers of the counter electrodes of adjacent cells. Can increase the sex.
 また、本発明の色素増感型太陽電池モジュールは、前記互いに隣接するセルの対向電極の導電層間の距離が、前記導電性粒子の平均粒子径の3倍以上30倍以下であることが好ましい。導電層間の距離を導電性粒子の平均粒子径の3倍以上30倍以下にすれば、色素増感型太陽電池モジュールの光電変換効率を高めつつ、信頼性を更に高めることができる。 In the dye-sensitized solar cell module of the present invention, it is preferable that the distance between the conductive layers of the counter electrodes of the cells adjacent to each other is 3 to 30 times the average particle diameter of the conductive particles. When the distance between the conductive layers is 3 to 30 times the average particle size of the conductive particles, the reliability can be further improved while increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module.
 更に、本発明の色素増感型太陽電池モジュールは、前記セル接続部が金属配線を更に含むことが好ましい。金属配線と導電性樹脂組成物とを用いてセル接続部を形成すれば、導電性樹脂組成物のみを用いてセル接続部を形成した場合と比較してセル接続部の電気抵抗を低減し、色素増感型太陽電池モジュールの光電変換効率を更に高めることができる。 Furthermore, in the dye-sensitized solar cell module of the present invention, it is preferable that the cell connection portion further includes a metal wiring. If the cell connection part is formed using the metal wiring and the conductive resin composition, the electric resistance of the cell connection part is reduced as compared with the case where the cell connection part is formed using only the conductive resin composition, The photoelectric conversion efficiency of the dye-sensitized solar cell module can be further increased.
 そして、本発明の色素増感型太陽電池モジュールは、前記金属配線から前記隔壁までの最短距離Aと、前記隔壁の、前記金属配線からの距離が最短となる位置を含む面から、前記電解質層からの距離が最短となる位置を含む面までの最短距離Bとが、下記の関係式:4.0≧(A+B)/A>1.0を満たすことが好ましい。最短距離Aと最短距離Bとが上記関係式を満たせば、色素増感型太陽電池モジュールの光電変換効率を高めつつ、長期信頼性を更に高めることができる。 The dye-sensitized solar cell module according to the present invention includes the electrolyte layer from a surface including a shortest distance A from the metal wiring to the partition and a position where the distance from the metal wiring is the shortest from the metal wiring. It is preferable that the shortest distance B to the surface including the position where the distance from the shortest distance satisfies the following relational expression: 4.0 ≧ (A + B) / A> 1.0. If the shortest distance A and the shortest distance B satisfy the above relational expression, the long-term reliability can be further enhanced while increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module.
 本発明によれば、光電変換効率及び信頼性の高い色素増感型太陽電池モジュールを提供することができる。 According to the present invention, a dye-sensitized solar cell module with high photoelectric conversion efficiency and high reliability can be provided.
色素増感型太陽電池モジュールの一例の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of an example of a dye-sensitized solar cell module. (a)~(d)は色素増感型太陽電池モジュールの製造工程の一例の前半部分を示す斜視図である。(A)-(d) is a perspective view which shows the first half part of an example of the manufacturing process of a dye-sensitized solar cell module. (a)~(d)は色素増感型太陽電池モジュールの製造工程の一例の後半部分を示す端面図である。(A)-(d) is an end view showing the latter half of an example of the manufacturing process of the dye-sensitized solar cell module. (a)~(d)は色素増感型太陽電池モジュールの製造工程の他の例の前半部分を示す端面図である。(A)-(d) is an end view which shows the first half part of the other example of the manufacturing process of a dye-sensitized solar cell module. (a)~(d)は色素増感型太陽電池モジュールの製造工程の他の例の後半部分を示す端面図である。(A)-(d) is an end view showing the latter half of another example of the manufacturing process of the dye-sensitized solar cell module.
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, what attached | subjected the same code | symbol shall show the same component.
 ここで、本発明の色素増感型太陽電池モジュールは、複数のセルを直列接続してなる色素増感型太陽電池モジュール、特にはZ型の集積構造を有する色素増感型太陽電池モジュールである。 Here, the dye-sensitized solar cell module of the present invention is a dye-sensitized solar cell module formed by connecting a plurality of cells in series, particularly a dye-sensitized solar cell module having a Z-type integrated structure. .
 そして、本発明の色素増感型太陽電池モジュールの一例としての、Z型の集積構造を有する色素増感型太陽電池モジュールとしては、特に限定されることなく、例えば図1に厚み方向の断面図を示すような色素増感型太陽電池モジュール10が挙げられる。 And as an example of the dye-sensitized solar cell module of the present invention, the dye-sensitized solar cell module having a Z-type integrated structure is not particularly limited. For example, FIG. 1 is a sectional view in the thickness direction. And a dye-sensitized solar cell module 10 as shown in FIG.
 ここで、図1に示す色素増感型太陽電池モジュール10は、隔壁8により区画された複数の(図示例では4つの)セルを直列接続してなる色素増感型太陽電池モジュールであり、所謂Z型の集積構造を有している。この色素増感型太陽電池モジュール10は、光電極用基材1および光電極用基材1上に互いに離隔させて設けられた複数の(図示例では4つの)光電極2を備える光電極基板3と、対向電極用基材5および対向電極用基材5上に互いに離隔させて設けられた複数の(図示例では4つの)対向電極6を備える対向電極基板7とが、光電極基板3および対向電極基板7の間に隔壁8を介在させた状態で、各セルを形成する光電極2と対向電極6とが電解質層4を介して互いに対向するように(即ち、セルを形成するように)、且つ、隣接するセル間で一方のセルの光電極2と他方のセルの対向電極6とがセル接続部9を介して電気的に接続されるように貼り合わされた構造を有している。そして、色素増感型太陽電池モジュール10の各セルは、光電極2と、光電極2に対向する対向電極6と、光電極2と対向電極6との間に設けられた電解質層4とを備えている。 Here, the dye-sensitized solar cell module 10 shown in FIG. 1 is a so-called dye-sensitized solar cell module in which a plurality of (four in the illustrated example) cells partitioned by the partition walls 8 are connected in series. It has a Z-type integrated structure. The dye-sensitized solar cell module 10 includes a photoelectrode substrate including a photoelectrode substrate 1 and a plurality of (four in the illustrated example) photoelectrodes 2 provided on the photoelectrode substrate 1 so as to be separated from each other. 3 and a counter electrode substrate 7 including a counter electrode substrate 5 and a plurality of (four in the illustrated example) counter electrodes 6 provided on the counter electrode substrate 5 so as to be spaced apart from each other. With the partition wall 8 interposed between the counter electrode substrate 7 and the counter electrode substrate 7, the photoelectrode 2 and the counter electrode 6 forming each cell face each other with the electrolyte layer 4 interposed therebetween (that is, so as to form a cell). And a structure in which the photoelectrode 2 of one cell and the counter electrode 6 of the other cell are bonded so as to be electrically connected via the cell connection portion 9 between adjacent cells. Yes. Each cell of the dye-sensitized solar cell module 10 includes a photoelectrode 2, a counter electrode 6 facing the photoelectrode 2, and an electrolyte layer 4 provided between the photoelectrode 2 and the counter electrode 6. I have.
 なお、本発明の色素増感型太陽電池モジュールの構造は、図1に示される構造に限定されるものではない。具体的には、図1に示す色素増感型太陽電池モジュール10は、光電極用基材1上に設けられた光電極用導電層21と、光電極用導電層21上の一部に設けられた、増感色素を担持(吸着)させた多孔質半導体微粒子層22とを備える光電極2を有しているが、本発明の色素増感型太陽電池モジュールの光電極は、色素増感型太陽電池を形成し得る任意の光電極とすることができる。また、色素増感型太陽電池モジュール10は、対向電極用基材5上に設けられた対向電極用導電層61と、対向電極用導電層61上の一部に設けられた触媒層62とを備える対向電極6を有しているが、本発明の色素増感型太陽電池モジュールの対向電極は、色素増感型太陽電池を形成し得る任意の対向電極とすることができる。更に、色素増感型太陽電池モジュール10では、触媒層62よりも幅広の対向電極用導電層61の表面の一部と、増感色素を吸着させた多孔質半導体微粒子層22よりも幅広の光電極用導電層21の一部とをセル接続部9を介して電気的に接続しているが、セル同士を直列接続する構造および位置は図1に示す構造および位置に限定されるものではない。 In addition, the structure of the dye-sensitized solar cell module of the present invention is not limited to the structure shown in FIG. Specifically, the dye-sensitized solar cell module 10 shown in FIG. 1 is provided on the photoelectrode conductive layer 21 provided on the photoelectrode substrate 1 and on a part of the photoelectrode conductive layer 21. The photoelectrode 2 is provided with the porous semiconductor fine particle layer 22 carrying (adsorbing) the sensitizing dye. The photoelectrode of the dye-sensitized solar cell module of the present invention is dye-sensitized. It can be set as the arbitrary photoelectrode which can form a type solar cell. The dye-sensitized solar cell module 10 includes a counter electrode conductive layer 61 provided on the counter electrode substrate 5 and a catalyst layer 62 provided on a part of the counter electrode conductive layer 61. Although the counter electrode 6 is provided, the counter electrode of the dye-sensitized solar cell module of the present invention can be any counter electrode that can form a dye-sensitized solar cell. Further, in the dye-sensitized solar cell module 10, a part of the surface of the counter electrode conductive layer 61 wider than the catalyst layer 62 and light wider than the porous semiconductor fine particle layer 22 on which the sensitizing dye is adsorbed. Although a part of the electrode conductive layer 21 is electrically connected via the cell connection portion 9, the structure and position where the cells are connected in series are not limited to the structure and position shown in FIG. .
 ここで、図1に示す色素増感型太陽電池モジュール10の光電極基板3は、光電極用基材1と、光電極用基材1上に互いに離隔させて設けられた複数の光電極2とを備えている。また、光電極2は、光電極用基材1上に設けられた光電極用導電層21と、光電極用導電層21上の一部に設けられた多孔質半導体微粒子層22とを備えている。なお、光電極用導電層21は、隙間23をあけて設けられている。そして、互いに隣接する光電極2同士は、互いに電気的に絶縁されるように設けられている。この絶縁は、特に限定されることなく、例えば互いに隣接する光電極用導電層21間の隙間23に存在するセル接続部9を後述する特定の導電性樹脂組成物を用いて形成することにより、達成することができる。 Here, the photoelectrode substrate 3 of the dye-sensitized solar cell module 10 shown in FIG. 1 includes a photoelectrode substrate 1 and a plurality of photoelectrodes 2 provided on the photoelectrode substrate 1 so as to be separated from each other. And. The photoelectrode 2 includes a photoelectrode conductive layer 21 provided on the photoelectrode substrate 1 and a porous semiconductor fine particle layer 22 provided on a part of the photoelectrode conductive layer 21. Yes. The photoelectrode conductive layer 21 is provided with a gap 23 therebetween. The adjacent photoelectrodes 2 are provided so as to be electrically insulated from each other. This insulation is not particularly limited, for example, by forming the cell connection portion 9 present in the gap 23 between the adjacent photoelectrode conductive layers 21 using a specific conductive resin composition described later, Can be achieved.
 そして、光電極用基材1としては、特に限定されることなく、ガラス板やプラスチックフィルム等の可視領域で透明性を有する既知の基材を用いることができる。中でも、薄厚で可撓性に優れる色素増感型太陽電池モジュールを得る観点からは、光電極用基材1としては、可撓性を有するプラスチックフィルムを用いることが好ましい。なお、可撓性を有するプラスチックフィルムとしては、特に限定されることなく、例えば、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリカーボネート樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート樹脂、ポリ塩化ビニル、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、環状ポリオレフィン樹脂等からなるフィルムが挙げられる。 And as the base material 1 for photoelectrodes, there is no particular limitation, and a known base material having transparency in the visible region such as a glass plate or a plastic film can be used. Among them, from the viewpoint of obtaining a dye-sensitized solar cell module that is thin and excellent in flexibility, it is preferable to use a flexible plastic film as the substrate 1 for photoelectrodes. In addition, as a plastic film which has flexibility, it is not specifically limited, For example, polyester resins, such as a polyethylene terephthalate (PET) and a polyethylene naphthalate (PEN), an acrylic resin, an epoxy resin, a fluororesin, a silicone resin, Examples include films made of polycarbonate resin, diacetate resin, triacetate resin, polyarylate resin, polyvinyl chloride, polysulfone resin, polyether sulfone resin, polyimide resin, polyamide resin, polyolefin resin, cyclic polyolefin resin, and the like.
 また、光電極用導電層21としては、特に限定されることなく、金属、金属酸化物、導電性炭素材料などの導電性を有する材料から構成される導電層などの既知の導電層を用いることができる。中でも、光電極用導電層21としては、透明導電層を用いることが好ましく、フッ素ドープ酸化スズ(FTO)や酸化インジウムスズ(ITO)等の金属酸化物から構成される透明導電層、或いは、カーボンナノチューブ等の導電性を有する繊維状炭素ナノ材料から構成される透明導電層を用いることがより好ましい。なお、カーボンナノチューブ等の導電性を有する繊維状炭素ナノ材料から構成される透明導電層は、さらに該材料を結着するための結着材を含んでいてもよい。また、光電極用基材1上に光電極用導電層21を形成する方法としては、スパッタリングとエッチングとを組み合わせた方法や、スクリーン印刷など、既知の形成方法を用いることができる。 The photoelectrode conductive layer 21 is not particularly limited, and a known conductive layer such as a conductive layer made of a conductive material such as metal, metal oxide, or conductive carbon material is used. Can do. Among these, a transparent conductive layer is preferably used as the photoelectrode conductive layer 21, and a transparent conductive layer made of a metal oxide such as fluorine-doped tin oxide (FTO) or indium tin oxide (ITO), or carbon. It is more preferable to use a transparent conductive layer composed of a fibrous carbon nanomaterial having conductivity such as a nanotube. In addition, the transparent conductive layer comprised from the fibrous carbon nanomaterial which has electroconductivity, such as a carbon nanotube, may further contain the binder for binding this material. Moreover, as a method of forming the photoelectrode conductive layer 21 on the photoelectrode substrate 1, a known forming method such as a method combining sputtering and etching or screen printing can be used.
 更に、増感色素を担持(吸着)させた多孔質半導体微粒子層22としては、特に限定されることなく、酸化チタンなどの酸化物半導体の粒子を含む多孔質半導体微粒子層に対して有機色素や金属錯体色素などの増感色素を吸着させてなる多孔質半導体微粒子層を用いることができる。なお、光電極用導電層21上に多孔質半導体微粒子層を形成する方法としては、スクリーン印刷やコーティングなどの既知の形成方法を用いることができる。また、多孔質半導体微粒子層に増感色素を吸着させる方法としては、増感色素を含む溶液中への多孔質半導体微粒子層の浸漬などの既知の方法を用いることができる。 Further, the porous semiconductor fine particle layer 22 carrying (adsorbing) a sensitizing dye is not particularly limited, and an organic dye or a porous semiconductor fine particle layer containing particles of an oxide semiconductor such as titanium oxide can be used. A porous semiconductor fine particle layer formed by adsorbing a sensitizing dye such as a metal complex dye can be used. In addition, as a method for forming the porous semiconductor fine particle layer on the photoelectrode conductive layer 21, a known forming method such as screen printing or coating can be used. Further, as a method for adsorbing the sensitizing dye to the porous semiconductor fine particle layer, a known method such as immersion of the porous semiconductor fine particle layer in a solution containing the sensitizing dye can be used.
 また、色素増感型太陽電池モジュール10の対向電極基板7は、対向電極用基材5と、対向電極用基材5上に互いに離隔させて設けられた複数の対向電極6とを備えている。また、対向電極6は、対向電極用基材5上に設けられた対向電極用導電層61と、対向電極用導電層61上の一部に設けられた触媒層62とを備えている。そして、触媒層62は、光電極2の多孔質半導体微粒子層22に対向している。
 なお、互いに隣接する対向電極6同士は、互いに電気的に絶縁されるように設けられている。この絶縁は、特に限定されることなく、例えば互いに隣接する対向電極6間の隙間に隔壁8を介在させることにより、達成することができる。
The counter electrode substrate 7 of the dye-sensitized solar cell module 10 includes a counter electrode substrate 5 and a plurality of counter electrodes 6 provided on the counter electrode substrate 5 so as to be separated from each other. . The counter electrode 6 includes a counter electrode conductive layer 61 provided on the counter electrode substrate 5 and a catalyst layer 62 provided on a part of the counter electrode conductive layer 61. The catalyst layer 62 faces the porous semiconductor fine particle layer 22 of the photoelectrode 2.
The counter electrodes 6 adjacent to each other are provided so as to be electrically insulated from each other. This insulation is not particularly limited, and can be achieved, for example, by interposing the partition wall 8 in the gap between the opposing electrodes 6 adjacent to each other.
 そして、対向電極用基材5としては、光電極用基材1と同様の基材を用いることができる。 Further, as the counter electrode substrate 5, the same substrate as the photoelectrode substrate 1 can be used.
 また、対向電極用導電層61としては、光電極用導電層21と同様の導電層を用いることができる。 As the counter electrode conductive layer 61, a conductive layer similar to the photoelectrode conductive layer 21 can be used.
 更に、触媒層62としては、白金や炭素材料などの触媒として機能し得る成分を含む任意の触媒層を用いることができる。 Furthermore, as the catalyst layer 62, any catalyst layer containing a component that can function as a catalyst such as platinum or a carbon material can be used.
 また、色素増感型太陽電池モジュール10の隔壁8は、光電極基板3と対向電極基板7との間に設けられており、電解質層4およびセル接続部9のそれぞれを囲繞している。換言すれば、電解質層4を設ける空間と、セル接続部9を設ける空間とは、光電極基板3と、対向電極基板7と、隔壁8とによって区画形成されている。 Moreover, the partition wall 8 of the dye-sensitized solar cell module 10 is provided between the photoelectrode substrate 3 and the counter electrode substrate 7 and surrounds each of the electrolyte layer 4 and the cell connection portion 9. In other words, the space in which the electrolyte layer 4 is provided and the space in which the cell connection portion 9 is provided are partitioned by the photoelectrode substrate 3, the counter electrode substrate 7, and the partition walls 8.
 具体的には、図1では、隔壁8は、各セルの幅方向一方側(図1では左側)において、光電極基板3の光電極2の光電極用導電層21(多孔質半導体微粒子層22が形成されている部分よりも幅方向一方側に位置する部分)と、対向電極基板7の対向電極用基材5との間に設けられており、各セルの幅方向他方側(図1では右側)において、光電極基板3の光電極2の光電極用導電層21(多孔質半導体微粒子層22が形成されている部分よりも幅方向他方側に位置する部分)または光電極基板3の光電極用基材1と、対向電極基板7の対向電極6の対向電極用導電層61(触媒層62が形成されている部分よりも幅方向他方側に位置する部分)との間に設けられている。そして、隔壁8の間には、電解質層4とセル接続部9とが交互に設けられている。 Specifically, in FIG. 1, the partition wall 8 is a photoelectrode conductive layer 21 (porous semiconductor fine particle layer 22 of the photoelectrode 2 of the photoelectrode substrate 3 on one side in the width direction of each cell (left side in FIG. 1). 1 is provided between the counter electrode substrate 7 and the counter electrode substrate 5, and the other side in the width direction of each cell (in FIG. 1). (Right side), the photoelectrode conductive layer 21 of the photoelectrode 2 of the photoelectrode substrate 3 (the portion located on the other side in the width direction from the portion where the porous semiconductor fine particle layer 22 is formed) or the light of the photoelectrode substrate 3 Provided between the electrode substrate 1 and the counter electrode conductive layer 61 of the counter electrode 6 of the counter electrode substrate 7 (the portion located on the other side in the width direction from the portion where the catalyst layer 62 is formed). Yes. The electrolyte layers 4 and the cell connection portions 9 are alternately provided between the partition walls 8.
 そして、隔壁8としては、特に限定されることなく、電解質層4を設ける位置に対応する位置に形成された電解質層用孔と、セル接続部9に対応する位置に形成された接続部用孔とを有する接着性シートを用いて形成した隔壁、或いは、熱硬化性または光硬化性の樹脂を塗布し、塗布した樹脂を硬化させて形成した隔壁などを用いることができる。中でも、製造容易性の観点からは、隔壁8は、接着性シートを用いて形成することが好ましく、光電極基板3と対向電極基板7との貼り合わせ強度および貼り合わせ精度を向上させる観点からは、熱可塑性を有する接着性シートを用いて形成することが好ましい。
 なお、接着性シートとしては、特に限定されることなく、例えば、アクリル系樹脂、エポキシ系樹脂、フッ素系樹脂、オレフィン系樹脂、シリコーン系樹脂、ポリイソブチレン樹脂、ポリアミド樹脂、アイオノマー樹脂などの樹脂を用いて形成したシート(例えば、サーリンフィルムなど)を用いることができる。
The partition wall 8 is not particularly limited, and the electrolyte layer hole formed at a position corresponding to the position where the electrolyte layer 4 is provided and the connection part hole formed at a position corresponding to the cell connection part 9. Or a partition formed by applying a thermosetting or photocurable resin and curing the applied resin, or the like. Among these, from the viewpoint of manufacturability, the partition wall 8 is preferably formed using an adhesive sheet. From the viewpoint of improving the bonding strength and bonding accuracy between the photoelectrode substrate 3 and the counter electrode substrate 7. It is preferable to use an adhesive sheet having thermoplasticity.
The adhesive sheet is not particularly limited, and examples thereof include resins such as acrylic resins, epoxy resins, fluorine resins, olefin resins, silicone resins, polyisobutylene resins, polyamide resins, and ionomer resins. The sheet | seat (for example, Surlyn film etc.) formed using can be used.
 また、色素増感型太陽電池モジュール10の電解質層4は、光電極2の多孔質半導体微粒子層22と、対向電極6の触媒層62と、隔壁8とで囲まれる空間に設けられている。そして、電解質層4は、特に限定されることなく、色素増感型太陽電池において使用し得る任意の電解液、ゲル状電解質または固体電解質を用いて形成することができる。 Also, the electrolyte layer 4 of the dye-sensitized solar cell module 10 is provided in a space surrounded by the porous semiconductor fine particle layer 22 of the photoelectrode 2, the catalyst layer 62 of the counter electrode 6, and the partition walls 8. The electrolyte layer 4 is not particularly limited, and can be formed using any electrolytic solution, gel electrolyte, or solid electrolyte that can be used in the dye-sensitized solar cell.
 更に、色素増感型太陽電池モジュール10のセル接続部9は、互いに隣接するセルを電気的に直列接続している。具体的には、セル接続部9は、図1では右側に位置するセルの光電極2の光電極用導電層21と、図1では左側に位置するセルの対向電極6の対向電極用導電層61とを電気的に接続している。 Furthermore, the cell connection portion 9 of the dye-sensitized solar cell module 10 electrically connects cells adjacent to each other in series. Specifically, the cell connection portion 9 includes the photoelectrode conductive layer 21 of the photoelectrode 2 of the cell located on the right side in FIG. 1 and the counterelectrode conductive layer of the counter electrode 6 of the cell located on the left side in FIG. 61 is electrically connected.
 そして、色素増感型太陽電池モジュール10のセル接続部9は、光電極2の光電極用導電層21上に多孔質半導体微粒子層22と離隔させて形成された配線91と、光電極基板3、対向電極基板7および隔壁8で囲まれた空間内に充填された導電性樹脂組成物93とで構成されている。なお、図1に示す色素増感型太陽電池モジュール10では配線91と導電性樹脂組成物93とを用いてセル接続部9を形成しているが、本発明の色素増感型太陽電池モジュールでは、セル接続部は導電性樹脂組成物のみを用いて形成してもよい。また、配線は、対向電極6の対向電極用導電層61上に形成してもよい。 The cell connection portion 9 of the dye-sensitized solar cell module 10 includes a wiring 91 formed on the photoelectrode conductive layer 21 of the photoelectrode 2 so as to be separated from the porous semiconductor fine particle layer 22, and the photoelectrode substrate 3. The conductive resin composition 93 is filled in a space surrounded by the counter electrode substrate 7 and the partition walls 8. In addition, in the dye-sensitized solar cell module 10 shown in FIG. 1, although the cell connection part 9 is formed using the wiring 91 and the conductive resin composition 93, in the dye-sensitized solar cell module of this invention, The cell connection portion may be formed using only the conductive resin composition. The wiring may be formed on the counter electrode conductive layer 61 of the counter electrode 6.
 ここで、配線91としては、特に限定されることなく、金属および金属酸化物などの導電性を有する材料からなる配線を用いることができる。中でも、セル接続部9の抵抗を低減して色素増感型太陽電池モジュールの光電変換効率を高める観点からは、配線91としては、銅配線、金配線、銀配線、アルミニウム配線などの金属配線を用いることが好ましい。なお、光電極用導電層21上に配線91を形成する方法としては、スパッタリングやスクリーン印刷などの既知の形成方法を用いることができる。 Here, the wiring 91 is not particularly limited, and wiring made of a conductive material such as metal and metal oxide can be used. Among these, from the viewpoint of increasing the photoelectric conversion efficiency of the dye-sensitized solar cell module by reducing the resistance of the cell connection portion 9, the wiring 91 is a metal wiring such as a copper wiring, a gold wiring, a silver wiring, or an aluminum wiring. It is preferable to use it. As a method for forming the wiring 91 on the photoelectrode conductive layer 21, a known forming method such as sputtering or screen printing can be used.
 また、導電性樹脂組成物93としては、樹脂と導電性粒子とを含有し、導電性粒子の平均粒子径が0.5μm以上30μm以下であり、且つ、導電性粒子の含有割合が0.1体積%以上10体積%以下である組成物を使用する必要がある。導電性粒子の平均粒子径および/または含有割合が上記範囲外の場合には、色素増感型太陽電池モジュールの光電変換効率が低下してしまうからである。
 なお、色素増感型太陽電池モジュール10では、互いに隣接する光電極用導電層21の間の隙間23にも導電性樹脂組成物93が充填されているが、導電性樹脂組成物93は導電性粒子の平均粒子径が0.5μm以上30μm以下であり、且つ、導電性粒子の含有割合が0.1体積%以上10体積%以下であるので、隙間23において導電性粒子により導電ネットワークが形成されることを予防して、互いに隣接する光電極用導電層21同士が導通するのを防止することができる(即ち、互いに隣接する光電極2間の絶縁を確保することができる)。
 なお、太陽電池モジュールに含まれる導電性粒子のメディアン径は、例えば、太陽電池モジュールに含まれる導電性樹脂を適切な溶媒を用いて溶解して、得られた溶解物中に含まれる導電性粒子を、JIS Z8825に準拠したレーザー回折法を用いて測定することで得ることができる。
The conductive resin composition 93 contains a resin and conductive particles, the average particle diameter of the conductive particles is 0.5 μm or more and 30 μm or less, and the content ratio of the conductive particles is 0.1. It is necessary to use a composition that is at least 10% by volume. This is because when the average particle size and / or content ratio of the conductive particles is outside the above range, the photoelectric conversion efficiency of the dye-sensitized solar cell module is lowered.
In the dye-sensitized solar cell module 10, the conductive resin composition 93 is also filled in the gaps 23 between the adjacent photoelectrode conductive layers 21, but the conductive resin composition 93 is conductive. Since the average particle diameter of the particles is 0.5 μm or more and 30 μm or less and the content ratio of the conductive particles is 0.1% by volume or more and 10% by volume or less, a conductive network is formed by the conductive particles in the gap 23. This can prevent the conductive layers 21 for photoelectrodes adjacent to each other from conducting (that is, insulation between the photoelectrodes 2 adjacent to each other can be ensured).
The median diameter of the conductive particles contained in the solar cell module is, for example, the conductive particles contained in the resulting melt by dissolving the conductive resin contained in the solar cell module using an appropriate solvent. Can be obtained by measuring using a laser diffraction method based on JIS Z8825.
 ここで、導電性樹脂組成物93の樹脂としては、特に限定されることなく、活性放射線もしくは紫外線の照射により硬化させた樹脂、または、加熱により硬化させた樹脂が挙げられる。導電性樹脂組成物93の樹脂の具体例としては、(メタ)アクリル樹脂;ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、環状エポキシ樹脂、脂環式エポキシ樹脂などのエポキシ樹脂;シリコーン樹脂;などが挙げられる。当該樹脂には、ラジカル開始剤、カチオン硬化剤、アニオン硬化剤などの任意の硬化剤を用いることができ、重合形式も、付加重合、開環重合など、特に限定されない。 Here, the resin of the conductive resin composition 93 is not particularly limited, and examples thereof include a resin cured by irradiation with actinic radiation or ultraviolet rays, or a resin cured by heating. Specific examples of the resin of the conductive resin composition 93 include (meth) acrylic resins; bisphenol type epoxy resins, novolac type epoxy resins, cyclic epoxy resins, alicyclic epoxy resins, and other epoxy resins; silicone resins; It is done. Arbitrary hardening agents, such as a radical initiator, a cationic hardening agent, and an anionic hardening agent, can be used for the said resin, and a polymerization form is not specifically limited, such as addition polymerization and ring-opening polymerization.
 また、導電性樹脂組成物93の導電性粒子としては、特に限定されることなく、例えば、金属粒子、金属酸化物粒子、導電性炭素粒子などを用いることができる。
 そして、導電性粒子の平均粒子径は、0.5μm以上である必要があり、5μm以上であることが好ましく、30μm以下である必要があり、10μm以下であることが好ましい。導電性粒子の平均粒子径が上記下限値以上であれば、互いに隣接する光電極用導電層21同士が導通するのを確実に防止することができる。また、導電性粒子の平均粒子径が上記上限値以下であれば、セル接続部9の抵抗を低減して色素増感型太陽電池モジュールの光電変換効率を高めることができる。
 更に、導電性粒子の含有割合は、0.1体積%以上である必要があり、1体積%以上であることが好ましく、10体積%以下である必要があり、6体積%以下であることがより好ましい。導電性粒子の含有割合が上記下限値以上であれば、セル接続部9の抵抗を低減して色素増感型太陽電池モジュールの光電変換効率を更に高めることができる。また、導電性粒子の含有割合が上記上限値以下であれば、導電性樹脂組成物93を形成する組成物の粘度を適度に低くすることができ、組成物の充填が容易になる上に、互いに隣接する光電極用導電層21同士が導通するのをより確実に防止することができる。
In addition, the conductive particles of the conductive resin composition 93 are not particularly limited, and for example, metal particles, metal oxide particles, conductive carbon particles, and the like can be used.
And the average particle diameter of electroconductive particle needs to be 0.5 micrometer or more, it is preferable that it is 5 micrometers or more, it is necessary to be 30 micrometers or less, and it is preferable that it is 10 micrometers or less. When the average particle diameter of the conductive particles is equal to or larger than the lower limit, it is possible to reliably prevent the conductive layers 21 for photoelectrodes adjacent to each other from conducting. Moreover, if the average particle diameter of electroconductive particle is below the said upper limit, the resistance of the cell connection part 9 can be reduced and the photoelectric conversion efficiency of a dye-sensitized solar cell module can be improved.
Furthermore, the content ratio of the conductive particles needs to be 0.1% by volume or more, preferably 1% by volume or more, needs to be 10% by volume or less, and is 6% by volume or less. More preferred. If the content rate of electroconductive particle is more than the said lower limit, the resistance of the cell connection part 9 can be reduced and the photoelectric conversion efficiency of a dye-sensitized solar cell module can further be improved. Further, if the content ratio of the conductive particles is not more than the above upper limit value, the viscosity of the composition forming the conductive resin composition 93 can be appropriately lowered, and the composition can be easily filled. It is possible to more reliably prevent the conductive layers 21 for photoelectrodes adjacent to each other from conducting.
 なお、上述した導電性樹脂組成物93を用いたセル接続部9は、特に限定されることなく、例えば、セル接続部9を形成する位置に未硬化の樹脂と導電性粒子とを含有する未硬化の導電性樹脂組成物を充填し、充填した未硬化の導電性樹脂組成物を硬化させることにより形成することができる。 In addition, the cell connection part 9 using the conductive resin composition 93 described above is not particularly limited. For example, the cell connection part 9 includes an uncured resin and conductive particles in a position where the cell connection part 9 is formed. It can be formed by filling a cured conductive resin composition and curing the filled uncured conductive resin composition.
 そして、上述した構成を有する色素増感型太陽電池モジュール10によれば、所定の平均粒子径を有する導電性粒子を所定の割合で含有する導電性樹脂組成物93を用いてセル接続部9を形成しているので、互いに隣接する光電極2同士が導通するのを防止しつつセル接続部9の抵抗を低減して、光電変換効率及び信頼性を向上させることができる。 And according to the dye-sensitized solar cell module 10 having the above-described configuration, the cell connection portion 9 is formed using the conductive resin composition 93 containing conductive particles having a predetermined average particle diameter in a predetermined ratio. Since it forms, the resistance of the cell connection part 9 can be reduced and the photoelectric conversion efficiency and reliability can be improved, preventing the adjacent photoelectrodes 2 from conducting.
 また、色素増感型太陽電池モジュール10によれば、互いに隣接する光電極用導電層21の間の隙間23にも導電性樹脂組成物93を配設しているので、例えば配線91として金属配線を用いた場合であっても、電解質層4を構成する電解液やゲル状電解質などの成分がセル接続部9側へと漏出し、漏出した成分と配線91とが接触して配線91が腐食するのを良好に防止することができる。従って、長期信頼性に優れる色素増感型太陽電池モジュールが得られる。 Further, according to the dye-sensitized solar cell module 10, since the conductive resin composition 93 is also disposed in the gap 23 between the adjacent photoelectrode conductive layers 21, for example, a metal wiring as the wiring 91. Even when the electrolyte is used, components such as the electrolyte solution and the gel electrolyte constituting the electrolyte layer 4 leak to the cell connection portion 9 side, and the leaked components come into contact with the wiring 91 to corrode the wiring 91. It can be prevented well. Therefore, a dye-sensitized solar cell module excellent in long-term reliability can be obtained.
 なお、色素増感型太陽電池モジュール10において、互いに隣接する光電極用導電層21間に隙間23を設ける場合、隙間23の幅(即ち、光電極用導電層21間の距離)は、導電性樹脂組成物に含まれている導電性粒子の平均粒子径の3倍以上であることが好ましく、5倍以上であることがより好ましく、30倍以下であることが好ましく、10倍以下であることがより好ましい。光電極用導電層21間の距離を上記下限値以上とすれば、互いに隣接する光電極2間の絶縁を一層確実に確保することができ、色素増感型太陽電池モジュール10の信頼性を更に向上させることができるからである。また、導電層21間の距離を上記上限値以下とすれば、樹脂量の増加によってセル接続部9の抵抗が上昇するのを抑制し、色素増感型太陽電池モジュール10の光電変換効率を十分に向上させることができるからである。なお、導電性樹脂組成物93の導電性粒子の平均粒子径及びその含有割合を上述した特定の数値範囲内とすることに併せて、光電極用導電層21間の距離を上記特定の数値範囲内とすることにより、互いに隣接する光電極2間の絶縁性を一層確実に確保することができる。 In the dye-sensitized solar cell module 10, when the gap 23 is provided between the photoelectrode conductive layers 21 adjacent to each other, the width of the gap 23 (that is, the distance between the photoelectrode conductive layers 21) is set to be conductive. The average particle diameter of the conductive particles contained in the resin composition is preferably 3 times or more, more preferably 5 times or more, more preferably 30 times or less, and preferably 10 times or less. Is more preferable. If the distance between the photoelectrode conductive layers 21 is equal to or greater than the lower limit, insulation between the photoelectrodes 2 adjacent to each other can be more reliably ensured, and the reliability of the dye-sensitized solar cell module 10 can be further increased. This is because it can be improved. Moreover, if the distance between the conductive layers 21 is set to the upper limit value or less, the increase in the resin amount suppresses the resistance of the cell connection portion 9 from increasing, and the photoelectric conversion efficiency of the dye-sensitized solar cell module 10 is sufficient. This is because it can be improved. In addition, in addition to making the average particle diameter and the content ratio of the conductive particles of the conductive resin composition 93 within the specific numerical range described above, the distance between the photoelectrode conductive layers 21 is set to the specific numerical range described above. By making it inside, the insulation between the photoelectrodes 2 adjacent to each other can be more reliably ensured.
 なお、光電極用導電層21間の隙間23は、CO2レーザー、エキシマレーザー、YAGレーザーなどのレーザー加工や、エッチング加工などにより形成することができる。そして、光電極用導電層21の隙間23は、通常1μm以上1000μm以下であり、好ましくは30μm以上500μm以下であり、より好ましくは40μm以上300μm以下であり、特に好ましくは50μm以上250μm以下である。光電極用導電層21の隙間23の幅がかかる範囲内であれば、互いに隣接する光電極2間の絶縁性を一層確実に確保して、色素増感型太陽電池モジュール10の信頼性を一層と向上させるとともに、色素増感型太陽電池モジュール10の光電変換効率を一層向上させることができる。
 また、図1には、本発明の色素増感型太陽電池モジュール10の構造の一例として、光電極用導電層21が隙間23をあけて配置される構造を図示しているため、ここでは、光電極用導電層21の間の隙間23を例にとって説明した。しかし、上述したとおり、図1に示す構造は一例に過ぎず、例えば、隣接する対向電極用導電層61の間の隙間が、上記隙間23に相当する構造となっていても良い。この場合にも、光電極用導電層21間の隙間23と同様の特定の数値範囲内とすることが好ましい。
The gaps 23 between the photoelectrode conductive layers 21 can be formed by laser processing such as CO 2 laser, excimer laser, YAG laser, etching processing, or the like. The gap 23 of the photoelectrode conductive layer 21 is usually 1 μm or more and 1000 μm or less, preferably 30 μm or more and 500 μm or less, more preferably 40 μm or more and 300 μm or less, and particularly preferably 50 μm or more and 250 μm or less. If the width of the gap 23 of the photoelectrode conductive layer 21 is within such a range, the insulation between the photoelectrodes 2 adjacent to each other is more reliably ensured, and the reliability of the dye-sensitized solar cell module 10 is further increased. And the photoelectric conversion efficiency of the dye-sensitized solar cell module 10 can be further improved.
FIG. 1 illustrates a structure in which the photoelectrode conductive layer 21 is disposed with a gap 23 as an example of the structure of the dye-sensitized solar cell module 10 of the present invention. The gap 23 between the photoelectrode conductive layers 21 has been described as an example. However, as described above, the structure shown in FIG. 1 is merely an example, and for example, a gap between adjacent counter electrode conductive layers 61 may correspond to the gap 23. Also in this case, it is preferable to be within a specific numerical range similar to the gap 23 between the photoelectrode conductive layers 21.
 また、図1に色素増感型太陽電池モジュール10中の二点鎖線で囲んだ領域を拡大して示すように、色素増感型太陽電池モジュール10において、金属配線などの配線91を設ける場合、配線91から隔壁8までの最短距離Aと、配線91からの距離が最短となる隔壁8上の位置を含む面から、電解質層4からの距離が最短となる位置を含む面までの最短距離Bとは、下記の関係式:4.0≧(A+B)/A>1.0を満たすことが好ましく、(A+B)/Aは、1.5以上であることがより好ましく、2.0以上であることがさらに好ましく、3.0以下であることがより好ましい。(A+B)/Aが上記下限値以上であれば、電解質層4を構成する電解液やゲル状電解質などの成分がセル接続部9側へと漏出して配線91と接触するのをより確実に防止し、色素増感型太陽電池モジュール10の長期信頼性を更に向上させることができるからである。また、(A+B)/Aが上記上限値以下であれば、隔壁8を薄厚化し、多孔質半導体微粒子層22などの面積を十分に確保して、色素増感型太陽電池モジュール10の光電変換効率を十分に向上させることができるからである。なお、図1の拡大図には、隔壁8と電解質層4とは、相互に隣接するものとして図示するが、隔壁8と電解質層4との間には隙間が存在していても良い。また、上述した最短距離Bは、配線91と同一の光電極用導電層21上に設けられた多孔質半導体微粒子層22上に配置された電解質層4との間を隔てる隔壁8(すなわち、図1では配線91の右側に位置する隔壁8)の厚みに略相当する。 In addition, when the wiring 91 such as a metal wiring is provided in the dye-sensitized solar cell module 10 as shown in FIG. 1 in an enlarged manner, the region surrounded by the two-dot chain line in the dye-sensitized solar cell module 10 is shown. The shortest distance A from the wiring 91 to the partition wall 8 and the shortest distance B from the surface including the position on the partition wall 8 where the distance from the wiring 91 is shortest to the surface including the position where the distance from the electrolyte layer 4 is shortest. Preferably satisfies the following relational expression: 4.0 ≧ (A + B) / A> 1.0, (A + B) / A is more preferably 1.5 or more, and 2.0 or more. More preferably, it is more preferably 3.0 or less. If (A + B) / A is equal to or greater than the above lower limit value, it is more reliable that components such as the electrolyte and gel electrolyte constituting the electrolyte layer 4 leak to the cell connection portion 9 side and come into contact with the wiring 91. This is because the long-term reliability of the dye-sensitized solar cell module 10 can be further improved. If (A + B) / A is equal to or less than the above upper limit, the partition wall 8 is thinned to sufficiently secure an area such as the porous semiconductor fine particle layer 22 and the photoelectric conversion efficiency of the dye-sensitized solar cell module 10. It is because it can fully improve. In the enlarged view of FIG. 1, the partition wall 8 and the electrolyte layer 4 are illustrated as being adjacent to each other, but a gap may exist between the partition wall 8 and the electrolyte layer 4. Further, the shortest distance B described above is the partition wall 8 (that is, the figure) separating the electrolyte layer 4 disposed on the porous semiconductor fine particle layer 22 provided on the same photoelectrode conductive layer 21 as the wiring 91. 1 substantially corresponds to the thickness of the partition wall 8) located on the right side of the wiring 91.
 更に、色素増感型太陽電池モジュール10において、金属配線などの配線91を設ける場合、セル接続部9の幅は、配線91の幅の1.1倍超であることが好ましく、1.3倍以上であることがより好ましく、1.7倍以上であることが更に好ましく、3.0倍以下であることが好ましく、2.5倍以下であることがより好ましい。セル接続部9の幅が配線91の幅の1.1倍超であれば、配線91と隔壁8の壁面との間に隙間を設け、配線91と隔壁8の壁面との間に導電性樹脂組成物93を入り込ませることができる。従って、色素増感型太陽電池モジュール10の使用中に電解質層4を形成する電解液などの成分が隔壁8と光電極基板3との間から滲み出した場合であっても、電解液などの成分によって配線91が腐食するのを抑制することができるからである。一方、セル接続部9の幅が配線91の幅の3.0倍以下であれば、セル接続部9の形成に用いられる導電性樹脂組成物93の量が増大してセル接続部9の抵抗が増大するのを抑制することができるからである。従って、セル接続部9の幅を上記範囲内にすれば、長期信頼性および光電変換効率に優れる色素増感型太陽電池モジュールが得られる。 Furthermore, in the dye-sensitized solar cell module 10, when the wiring 91 such as a metal wiring is provided, the width of the cell connection portion 9 is preferably more than 1.1 times the width of the wiring 91, and 1.3 times. More preferably, it is 1.7 times or more, further preferably 3.0 times or less, and more preferably 2.5 times or less. If the width of the cell connection portion 9 is more than 1.1 times the width of the wiring 91, a gap is provided between the wiring 91 and the wall surface of the partition wall 8, and a conductive resin is provided between the wiring 91 and the wall surface of the partition wall 8. Composition 93 can be entrained. Therefore, even when a component such as an electrolytic solution that forms the electrolyte layer 4 oozes out between the partition wall 8 and the photoelectrode substrate 3 during use of the dye-sensitized solar cell module 10, It is because it can suppress that the wiring 91 corrodes with a component. On the other hand, if the width of the cell connection portion 9 is 3.0 times or less the width of the wiring 91, the amount of the conductive resin composition 93 used for forming the cell connection portion 9 increases and the resistance of the cell connection portion 9 is increased. It is because it can suppress that this increases. Therefore, when the width of the cell connection portion 9 is within the above range, a dye-sensitized solar cell module having excellent long-term reliability and photoelectric conversion efficiency can be obtained.
 なお、上述した構成を有する色素増感型太陽電池モジュール10は、特に限定されることなく、例えば図2および図3に示すようにして製造することができる。具体的にはまず、図2に製造工程の前半部分を示すように、光電極2を備える光電極基板3を作製した後(光電極基板作製工程)、作製した光電極基板3の上に、電解質層4を設ける位置に対応する位置に形成された電解質層用孔81と、セル同士を直列接続するセル接続部9に対応する位置に形成された接続部用孔82とを有する接着性シート(隔壁)8を配置する(シート配置工程)。次に、図3に示すように、光電極基板3上に配置された接着性シート8の接続部用孔82内に未硬化の導電性樹脂組成物92を充填し(樹脂組成物充填工程)、更に、接着性シート8の電解質層用孔81内に電解液などの電解質層4を構成する成分を充填する(電解質層充填工程)。その後、図3に示すように、対向電極6を備える対向電極基板7を、接着性シート8を介して光電極基板3と貼り合わせ(貼り合わせ工程)、更に、未硬化の導電性樹脂組成物92を硬化させてセル接続部9を形成すると共に光電極基板3と対向電極基板7とを強固に接着させる(接着工程)。 The dye-sensitized solar cell module 10 having the above-described configuration is not particularly limited and can be manufactured, for example, as shown in FIGS. Specifically, first, as shown in the first half of the manufacturing process in FIG. 2, after producing the photoelectrode substrate 3 including the photoelectrode 2 (photoelectrode substrate production process), on the produced photoelectrode substrate 3, An adhesive sheet having an electrolyte layer hole 81 formed at a position corresponding to the position where the electrolyte layer 4 is provided, and a connection portion hole 82 formed at a position corresponding to the cell connection portion 9 for connecting cells in series. (Partition wall) 8 is arranged (sheet arrangement process). Next, as shown in FIG. 3, an uncured conductive resin composition 92 is filled in the connection portion hole 82 of the adhesive sheet 8 disposed on the photoelectrode substrate 3 (resin composition filling step). Furthermore, the components constituting the electrolyte layer 4 such as an electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 (electrolyte layer filling step). Thereafter, as shown in FIG. 3, the counter electrode substrate 7 including the counter electrode 6 is bonded to the photoelectrode substrate 3 via the adhesive sheet 8 (bonding step), and further, an uncured conductive resin composition. The cell connection portion 9 is formed by curing 92, and the photoelectrode substrate 3 and the counter electrode substrate 7 are firmly bonded (bonding step).
 ここで、光電極基板作製工程では、まず、図2(a)に示すように、形成するセルの数に応じた複数の(図示例では4つの)光電極用導電層21を互いに離隔させて光電極用基材1上に形成する。次に、図2(b)に示すように、光電極用基材1上に形成した光電極用導電層21の上に、配線91を形成する。その後、図2(c)に示すように、増感色素を吸着させた多孔質半導体微粒子層22を各光電極用導電層21の上の一部に形成して、光電極基板3を得る。ここで、配線91と、多孔質半導体微粒子層22とは、互いに離隔させて光電極用導電層21上に形成する。
 なお、図2に示す例では、光電極用導電層21を形成した後、多孔質半導体微粒子層22を形成する前に配線91を形成しているが、多孔質半導体微粒子層22は配線91を形成する前に光電極用導電層21上に形成してもよい。更に、配線91の形成は、シート配置工程を実施した後に行ってもよい。
Here, in the photoelectrode substrate manufacturing step, first, as shown in FIG. 2A, a plurality of (four in the illustrated example) photoelectrode conductive layers 21 corresponding to the number of cells to be formed are separated from each other. It forms on the base material 1 for photoelectrodes. Next, as shown in FIG. 2B, the wiring 91 is formed on the photoelectrode conductive layer 21 formed on the photoelectrode substrate 1. Thereafter, as shown in FIG. 2C, a porous semiconductor fine particle layer 22 having adsorbed a sensitizing dye is formed on a part of each photoelectrode conductive layer 21 to obtain a photoelectrode substrate 3. Here, the wiring 91 and the porous semiconductor fine particle layer 22 are formed on the photoelectrode conductive layer 21 while being separated from each other.
In the example shown in FIG. 2, the wiring 91 is formed after the photoelectrode conductive layer 21 is formed and before the porous semiconductor fine particle layer 22 is formed. You may form on the conductive layer 21 for photoelectrodes before forming. Further, the formation of the wiring 91 may be performed after the sheet placement process is performed.
 次に、シート配置工程では、図2(d)に示すように、電解質層4を設ける位置に対応する位置に形成された電解質層用孔81とセル接続部9を設ける位置に対応する位置に形成された接続部用孔82とを有する接着性シート8を、電解質層用孔81が電解質層4を設ける場所上に位置するように、且つ、接続部用孔82がセル接続部9を設ける場所上に位置するように、光電極基板3上に配置する。より具体的には、接着性シート8は、例えば図3(a)に示すように、増感色素を吸着させた多孔質半導体微粒子層22が電解質層用孔81内に収容されると共に配線91が接続部用孔82内に収容され、更に、接続部用孔82内に設けられるセル接続部9を介して光電極2と対向電極6とが電気的に接続可能なように、光電極基板3上に配置される。 Next, in the sheet arranging step, as shown in FIG. 2D, the electrolyte layer hole 81 formed at the position corresponding to the position where the electrolyte layer 4 is provided and the position corresponding to the position where the cell connecting portion 9 is provided. The adhesive sheet 8 having the formed connection part hole 82 is positioned so that the electrolyte layer hole 81 is located on the place where the electrolyte layer 4 is provided, and the connection part hole 82 is provided with the cell connection part 9. It arrange | positions on the photoelectrode board | substrate 3 so that it may be located on a place. More specifically, as shown in FIG. 3A, for example, the adhesive sheet 8 includes a porous semiconductor fine particle layer 22 having adsorbed a sensitizing dye accommodated in an electrolyte layer hole 81 and a wiring 91. Is accommodated in the connection portion hole 82, and the photoelectrode 2 and the counter electrode 6 can be electrically connected via the cell connection portion 9 provided in the connection portion hole 82. 3 is arranged.
 樹脂組成物充填工程では、図3(a)に示すように、光電極基板3上に配置された接着性シート8の接続部用孔82内に未硬化の導電性樹脂組成物92を充填する。ここで、接続部用孔82内への未硬化の導電性樹脂組成物92の充填は、特に限定されることなく、スクリーン印刷装置やディスペンサーなどを用いて行うことができる。そして、この一例では、未硬化の導電性樹脂組成物92は光電極用導電層21間の隙間にも充填される。
 なお、樹脂組成物充填工程は、後述する電解質層充填工程の後に実施してもよい。
In the resin composition filling step, as shown in FIG. 3A, the uncured conductive resin composition 92 is filled in the connection portion holes 82 of the adhesive sheet 8 disposed on the photoelectrode substrate 3. . Here, the filling of the uncured conductive resin composition 92 into the connection portion hole 82 is not particularly limited, and can be performed using a screen printing apparatus, a dispenser, or the like. In this example, the uncured conductive resin composition 92 is also filled in the gaps between the photoelectrode conductive layers 21.
In addition, you may implement a resin composition filling process after the electrolyte layer filling process mentioned later.
 ここで、上述した接着性シート8として熱可塑性シートを用いる場合には、未硬化の導電性樹脂組成物92としては、加熱により硬化する熱硬化性樹脂を含む組成物を使用することが好ましい。接着性シート8が熱可塑性を有する場合、導電性樹脂組成物92として熱硬化性樹脂を含む組成物を使用すれば、後述する接着工程において一度の加熱で導電性樹脂組成物92の硬化と光電極基板3および対向電極基板7の接着とを達成することができるからである。 Here, when a thermoplastic sheet is used as the adhesive sheet 8 described above, it is preferable to use a composition containing a thermosetting resin that is cured by heating as the uncured conductive resin composition 92. When the adhesive sheet 8 has thermoplasticity, if a composition containing a thermosetting resin is used as the conductive resin composition 92, the conductive resin composition 92 can be cured and lighted by heating once in the bonding step described later. This is because adhesion between the electrode substrate 3 and the counter electrode substrate 7 can be achieved.
 電解質層充填工程では、図3(b)に示すように、光電極基板3上に配置された接着性シート8の電解質層用孔81内に電解液などの電解質層4を構成する成分を充填して電解質層4を形成する。なお、図3(b)では、電解質層用孔81の上端まで電解液などの電解質層4を構成する成分を充填しているが、電解液などの充填量は、形成されるセル内に空気が混入しない範囲内であれば任意に調整することができる。
 また、電解質層用孔81内への電解液などの電解質層4を構成する成分の充填は、特に限定されることなく、スクリーン印刷装置やディスペンサーなどを用いて行うことができる。
In the electrolyte layer filling step, as shown in FIG. 3B, the components constituting the electrolyte layer 4 such as the electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 disposed on the photoelectrode substrate 3. Thus, the electrolyte layer 4 is formed. In FIG. 3B, the components constituting the electrolyte layer 4 such as the electrolytic solution are filled up to the upper end of the electrolyte layer hole 81, but the filling amount of the electrolytic solution or the like is the air in the formed cell. Any adjustment can be made as long as it is within the range not mixed.
Moreover, the filling of the components constituting the electrolyte layer 4 such as the electrolytic solution into the electrolyte layer holes 81 is not particularly limited, and can be performed using a screen printing apparatus or a dispenser.
 貼り合わせ工程では、図3(c)に示すように、セルの数に応じた数の(図示例では4つの)対向電極6を備える対向電極基板7を、接着性シート8を介して光電極基板3と貼り合わせる。具体的には、貼り合わせ工程では、対向電極基板7と光電極基板3とを、対向電極6の少なくとも一部と光電極2の少なくとも一部とが電解質層4を挟んで対向する(即ち、セルを形成する)ように貼り合わせる。なお、セル内に空気が混入するのを防止する観点からは、貼り合わせは、減圧環境下で実施することが好ましい。 In the bonding step, as shown in FIG. 3C, the counter electrode substrate 7 including the counter electrodes 6 (four in the illustrated example) corresponding to the number of cells is attached to the photoelectrode via the adhesive sheet 8. The substrate 3 is bonded. Specifically, in the bonding step, the counter electrode substrate 7 and the photoelectrode substrate 3 are opposed to each other with at least a part of the counter electrode 6 and at least a part of the photoelectrode 2 sandwiching the electrolyte layer 4 (that is, To form a cell). Note that, from the viewpoint of preventing air from being mixed into the cell, the bonding is preferably performed in a reduced pressure environment.
 なお、図示例では、対向電極基板7と光電極基板3とは、対向電極6の触媒層62と光電極2の多孔質半導体微粒子層22とが電解質層4を挟んで対向するように貼り合わされている。そして、貼り合わせ後には、接着性シート8は電解質層4およびセル接続部9を囲繞する隔壁となる。 In the illustrated example, the counter electrode substrate 7 and the photoelectrode substrate 3 are bonded so that the catalyst layer 62 of the counter electrode 6 and the porous semiconductor fine particle layer 22 of the photoelectrode 2 face each other with the electrolyte layer 4 interposed therebetween. ing. After bonding, the adhesive sheet 8 becomes a partition wall that surrounds the electrolyte layer 4 and the cell connection portion 9.
 そして、接着工程では、図3(d)に示すように、未硬化の導電性樹脂組成物92を硬化させて導電性樹脂組成物93とし、セル接続部9を形成すると共に、光電極基板3と対向電極基板7とを強固に接着させる。 In the bonding step, as shown in FIG. 3 (d), the uncured conductive resin composition 92 is cured to form a conductive resin composition 93 to form the cell connection portion 9, and the photoelectrode substrate 3 And the counter electrode substrate 7 are firmly bonded.
 ここで、導電性樹脂組成物92を硬化させる方法は、導電性樹脂組成物92に含まれている硬化性樹脂の種類に応じて適宜選択すればよい。なお、前述したように、接着性シート8として熱可塑性シートを使用し、導電性樹脂組成物92として熱硬化性樹脂を含む組成物を使用した場合には、一度の加熱で導電性樹脂組成物92の硬化と光電極基板3および対向電極基板7の接着とを達成することができるので、色素増感型太陽電池モジュールを効率的に製造することができる。更に、接着性シート8として熱可塑性シートを使用すれば、加熱により接着性シート8を光電極基板3および対向電極基板7の形状に良好に追従させることができる。従って、隔壁8を良好に形成することができる。但し、接着性シート8として熱可塑性シートを使用する場合、接着性シート8および未硬化の導電性樹脂組成物92を加熱する温度は、未硬化の導電性樹脂組成物92に含まれている硬化性樹脂の硬化温度以上であって、接着性シート8の軟化点よりも10℃高い温度以下であることが好ましい。換言すれば、熱可塑性を有する接着性シート8と組み合わせて使用する硬化性樹脂の硬化温度は、接着性シート8の軟化点よりも10℃高い温度以下であることが好ましい。過度に高い温度で接着性シート8を加熱した場合、接着性シート8が過度に軟化して接着性が低下したり、電解液などの電解質層4を構成する成分が漏洩したりする虞があるからである。なお、軟化点および硬化温度は、示差走査熱量測定および粘弾性測定にて測定することができる。また、接着性シート8および未硬化の導電性樹脂組成物92を加熱する温度は、電解質層4内での気泡の発生を抑制する観点からは、電解質層4を形成する電解液などの成分の沸点未満であることが好ましい。 Here, the method for curing the conductive resin composition 92 may be appropriately selected according to the type of the curable resin contained in the conductive resin composition 92. As described above, when a thermoplastic sheet is used as the adhesive sheet 8 and a composition containing a thermosetting resin is used as the conductive resin composition 92, the conductive resin composition can be obtained by a single heating. Since the curing of 92 and the adhesion of the photoelectrode substrate 3 and the counter electrode substrate 7 can be achieved, the dye-sensitized solar cell module can be efficiently manufactured. Furthermore, if a thermoplastic sheet is used as the adhesive sheet 8, the adhesive sheet 8 can be made to follow the shapes of the photoelectrode substrate 3 and the counter electrode substrate 7 by heating. Therefore, the partition wall 8 can be formed satisfactorily. However, when a thermoplastic sheet is used as the adhesive sheet 8, the temperature at which the adhesive sheet 8 and the uncured conductive resin composition 92 are heated is the curing contained in the uncured conductive resin composition 92. It is preferable that the temperature is not less than the curing temperature of the adhesive resin and not more than 10 ° C. higher than the softening point of the adhesive sheet 8. In other words, the curing temperature of the curable resin used in combination with the thermoplastic adhesive sheet 8 is preferably 10 ° C. or lower than the softening point of the adhesive sheet 8. When the adhesive sheet 8 is heated at an excessively high temperature, the adhesive sheet 8 may be excessively softened and the adhesiveness may be lowered, or a component constituting the electrolyte layer 4 such as an electrolytic solution may be leaked. Because. The softening point and curing temperature can be measured by differential scanning calorimetry and viscoelasticity measurement. In addition, the temperature at which the adhesive sheet 8 and the uncured conductive resin composition 92 are heated is determined from the viewpoint of suppressing the generation of bubbles in the electrolyte layer 4 of components such as an electrolyte solution that forms the electrolyte layer 4. It is preferably less than the boiling point.
 そして、上述した色素増感型太陽電池モジュールの製造方法の一例によれば、接着性シート8の電解質層用孔81内に電解液などの電解質層4を構成する成分を充填した後に光電極基板3と対向電極基板7とを貼り合わせているので、貼り合わせ後に基板に孔を形成して電解液などを充填する工程を不要とし、色素増感型太陽電池モジュールを効率的に製造することができる。 And according to an example of the manufacturing method of the dye-sensitized solar cell module mentioned above, after filling the component which comprises electrolyte layer 4, such as electrolyte solution, in the hole 81 for electrolyte layers of the adhesive sheet 8, a photoelectrode substrate 3 and the counter electrode substrate 7 are bonded together, so that a step of forming a hole in the substrate after the bonding and filling with an electrolytic solution or the like is unnecessary, and the dye-sensitized solar cell module can be efficiently manufactured. it can.
 また、外力が加えられた際に変形し易い液体状のシール材ではなく接着性シート8を使用しているので、光電極基板3と対向電極基板7とを貼り合わせる際の位置精度および高さ精度を十分に高めることができる。更に、光電極基板3と対向電極基板7とを貼り合わせて得た積層体および色素増感型太陽電池モジュールの強度を適度に高めて、積層体および色素増感型太陽電池モジュールのハンドリング性を向上させることができる。また、接着性シート8の電解質層用孔81内に電解液などの電解質層4を構成する成分を充填しているので、液体状のシール材を使用した場合と比較して電解液などの電解質層4を構成する成分との接触面での接着性シート8の溶解や変形を抑制し、光電極基板3と対向電極基板7との貼り合わせ強度を高めることができる。 Further, since the adhesive sheet 8 is used instead of the liquid sealing material that is easily deformed when an external force is applied, the positional accuracy and height when the photoelectrode substrate 3 and the counter electrode substrate 7 are bonded together. The accuracy can be sufficiently increased. Further, the strength of the laminate obtained by bonding the photoelectrode substrate 3 and the counter electrode substrate 7 and the dye-sensitized solar cell module is moderately increased, and the handling properties of the laminate and the dye-sensitized solar cell module are improved. Can be improved. In addition, since the electrolyte layer hole 81 of the adhesive sheet 8 is filled with a component constituting the electrolyte layer 4 such as an electrolytic solution, an electrolyte such as an electrolytic solution is used compared to the case where a liquid sealing material is used. It is possible to suppress the dissolution and deformation of the adhesive sheet 8 at the contact surface with the component constituting the layer 4 and increase the bonding strength between the photoelectrode substrate 3 and the counter electrode substrate 7.
 なお、上記一例の色素増感型太陽電池モジュール10では、互いに隣接する光電極用導電層21間の隙間23に導電性樹脂組成物93を存在させ、光電極用導電層21上に配線91を形成したが、本発明の色素増感型太陽電池モジュールは、互いに隣接する対向電極用導電層間の隙間に導電性樹脂組成物を存在させてもよく、また、対向電極用導電層上に配線を形成してもよい。ここで、対向電極用導電層間の隙間に導電性樹脂組成物を存在させ、対向電極用導電層上に配線を形成した色素増感型太陽電池モジュールは、対向電極用導電層間の隙間に導電性樹脂組成物を存在させ、対向電極用導電層上に配線を形成する以外は上記一例の色素増感型太陽電池モジュール10と同様の構成を採用することができる。 In the dye-sensitized solar cell module 10 of the above example, the conductive resin composition 93 is present in the gap 23 between the adjacent photoelectrode conductive layers 21, and the wiring 91 is provided on the photoelectrode conductive layer 21. In the dye-sensitized solar cell module of the present invention, the conductive resin composition may be present in the gap between the opposing electrode conductive layers adjacent to each other, and the wiring is provided on the opposing electrode conductive layer. It may be formed. Here, the dye-sensitized solar cell module in which the conductive resin composition is present in the gap between the conductive layers for the counter electrode and the wiring is formed on the conductive layer for the counter electrode is electrically conductive in the gap between the conductive layers for the counter electrode. A configuration similar to that of the dye-sensitized solar cell module 10 of the above example can be adopted except that the resin composition is present and wiring is formed on the conductive layer for the counter electrode.
 そして、対向電極用導電層間に隙間を設け、対向電極用導電層上に配線を形成した色素増感型太陽電池モジュールは、特に限定されることなく、例えば図4および図5に示すようにして製造することができる。具体的には、まず、図4に製造工程の前半部分を示すように、対向電極6を備える対向電極基板7を作製した後(対向電極基板作製工程)、作製した対向電極基板7の上に、電解質層4を設ける位置に対応する位置に形成された電解質層用孔81と、セル同士を直列接続するセル接続部9に対応する位置に形成された接続部用孔82とを有する接着性シート(隔壁)8を配置する(シート配置工程)。次に、図5に示すように、接着性シート8の電解質層用孔81内に電解液などの電解質層4を構成する成分を充填し(電解質層充填工程)、更に、対向電極基板7上に配置された接着性シート8の接続部用孔82内に未硬化の導電性樹脂組成物92を充填する(樹脂組成物充填工程)。その後、図5に示すように、対向電極6を備える対向電極基板7を、接着性シート8を介して光電極基板3と貼り合わせ(貼り合わせ工程)、更に、未硬化の導電性樹脂組成物92を硬化させてセル接続部9を形成すると共に光電極基板3と対向電極基板7とを強固に接着させる(接着工程)。 The dye-sensitized solar cell module in which a gap is provided between the counter electrode conductive layers and the wiring is formed on the counter electrode conductive layer is not particularly limited. For example, as shown in FIGS. Can be manufactured. Specifically, first, as shown in FIG. 4 showing the first half of the manufacturing process, after manufacturing the counter electrode substrate 7 including the counter electrode 6 (counter electrode substrate manufacturing process), on the counter electrode substrate 7 thus manufactured. Adhesiveness having an electrolyte layer hole 81 formed at a position corresponding to the position where the electrolyte layer 4 is provided, and a connection portion hole 82 formed at a position corresponding to the cell connection portion 9 connecting the cells in series. A sheet (partition wall) 8 is arranged (sheet arrangement process). Next, as shown in FIG. 5, the components constituting the electrolyte layer 4 such as the electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 (electrolyte layer filling step), and further on the counter electrode substrate 7. The uncured conductive resin composition 92 is filled in the connection portion hole 82 of the adhesive sheet 8 disposed in the resin sheet (resin composition filling step). Thereafter, as shown in FIG. 5, the counter electrode substrate 7 including the counter electrode 6 is bonded to the photoelectrode substrate 3 via the adhesive sheet 8 (bonding step), and further, an uncured conductive resin composition. The cell connection portion 9 is formed by curing 92, and the photoelectrode substrate 3 and the counter electrode substrate 7 are firmly bonded (bonding step).
 ここで、対向電極基板作製工程では、まず、図4(a)に示すように、形成するセルの数に応じた複数の(図示例では4つの)対向電極用導電層61を互いに離隔させて対向電極用基材5上に形成する。次に、図4(b)に示すように、触媒層62を各対向電極用導電層61の上の一部に形成する。その後、図4(c)に示すように、対向電極用基材5上に形成した対向電極用導電層61の上に配線91を形成して、対向電極基板7を得る。なお、配線91と触媒層62とは、互いに離隔させて対向電極用導電層61上に形成する。
 ここで、図4に示す例では、触媒層62を形成した後に配線91を形成しているが、配線91は、触媒層62を形成する前に対向電極用導電層61上に形成してもよい。更に、配線91の形成は、シート配置工程を実施した後に行ってもよい。
Here, in the counter electrode substrate manufacturing step, first, as shown in FIG. 4A, a plurality of (four in the illustrated example) counter electrode conductive layers 61 corresponding to the number of cells to be formed are separated from each other. It forms on the base material 5 for counter electrodes. Next, as shown in FIG. 4B, the catalyst layer 62 is formed on a part of each counter electrode conductive layer 61. Thereafter, as shown in FIG. 4C, a wiring 91 is formed on the counter electrode conductive layer 61 formed on the counter electrode substrate 5 to obtain the counter electrode substrate 7. The wiring 91 and the catalyst layer 62 are formed on the counter electrode conductive layer 61 so as to be separated from each other.
In the example shown in FIG. 4, the wiring 91 is formed after the catalyst layer 62 is formed. However, the wiring 91 may be formed on the counter electrode conductive layer 61 before the catalyst layer 62 is formed. Good. Further, the formation of the wiring 91 may be performed after the sheet placement process is performed.
 シート配置工程では、図4(d)に示すように、電解質層4を設ける位置に対応する位置に形成された電解質層用孔81と、セル接続部9を設ける位置に対応する位置に形成された接続部用孔82とを有する接着性シート8を、電解質層用孔81が電解質層4を設ける場所上に位置するように、且つ、接続部用孔82がセル接続部9を設ける場所上に位置するように、対向電極基板7上に配置する。より具体的には、接着性シート8は、例えば図4(d)に示すように、触媒層62が電解質層用孔81内に収容されると共に配線91が接続部用孔82内に収容され、更に、接続部用孔82内に設けられるセル接続部9を介して対向電極6と光電極2とが電気的に接続可能なように、対向電極基板7上に配置される。 In the sheet arranging step, as shown in FIG. 4D, the electrolyte layer hole 81 is formed at a position corresponding to the position where the electrolyte layer 4 is provided, and the position corresponding to the position where the cell connection portion 9 is provided. The adhesive sheet 8 having the connection portion hole 82 is positioned on the place where the electrolyte layer hole 81 is provided on the electrolyte layer 4 and the connection portion hole 82 is provided on the place where the cell connection portion 9 is provided. It arrange | positions on the counter electrode board | substrate 7 so that it may be located in FIG. More specifically, in the adhesive sheet 8, for example, as shown in FIG. 4 (d), the catalyst layer 62 is accommodated in the electrolyte layer hole 81 and the wiring 91 is accommodated in the connection portion hole 82. Furthermore, the counter electrode 6 and the photoelectrode 2 are arranged on the counter electrode substrate 7 so that they can be electrically connected via the cell connection portion 9 provided in the connection hole 82.
 電解質層充填工程では、図5(a)に示すように、対向電極基板7上に配置された接着性シート8の電解質層用孔81内に電解液などの電解質層4を構成する成分を充填して電解質層4を形成する。なお、電解液などの充填は先の一例の色素増感型太陽電池モジュールの電解質層充填工程と同様にして行うことができる。また、電解質層充填工程は、後述する樹脂組成物充填工程の後に実施してもよい。 In the electrolyte layer filling step, as shown in FIG. 5A, the components constituting the electrolyte layer 4 such as the electrolyte solution are filled in the electrolyte layer holes 81 of the adhesive sheet 8 disposed on the counter electrode substrate 7. Thus, the electrolyte layer 4 is formed. In addition, filling with electrolyte solution etc. can be performed like the electrolyte layer filling process of the dye-sensitized solar cell module of the previous example. Moreover, you may implement an electrolyte layer filling process after the resin composition filling process mentioned later.
 また、樹脂組成物充填工程では、図5(b)に示すように、対向電極基板7上に配置された接着性シート8の接続部用孔82内に未硬化の導電性樹脂組成物92を充填する。なお、導電性樹脂組成物の充填は先の一例の色素増感型太陽電池モジュールの樹脂組成物充填工程と同様にして行うことができる。また、樹脂組成物充填工程では、未硬化の導電性樹脂組成物92が対向電極用導電層61間の隙間にも充填される。 Further, in the resin composition filling step, as shown in FIG. 5B, an uncured conductive resin composition 92 is placed in the connection portion hole 82 of the adhesive sheet 8 disposed on the counter electrode substrate 7. Fill. The conductive resin composition can be filled in the same manner as in the resin composition filling step of the dye-sensitized solar cell module of the previous example. In the resin composition filling step, the uncured conductive resin composition 92 is also filled in the gaps between the counter electrode conductive layers 61.
 貼り合わせ工程および接着工程は、図5(c)および図5(d)に示すように、接着性シート8を配置した対向電極基板7に光電極2を備える光電極基板3を貼り合わせること以外は先の一例の色素増感型太陽電池モジュールの貼り合わせ工程および接着工程と同様にして実施することができる。 As shown in FIGS. 5C and 5D, the bonding step and the bonding step are other than bonding the photoelectrode substrate 3 including the photoelectrode 2 to the counter electrode substrate 7 on which the adhesive sheet 8 is disposed. Can be carried out in the same manner as in the pasting step and bonding step of the dye-sensitized solar cell module of the previous example.
 以上、一例を用いて本発明の色素増感型太陽電池モジュールおよびその製造方法について説明したが、本発明の色素増感型太陽電池モジュールおよびその製造方法は、上述した例に限定されることはなく、本発明の色素増感型太陽電池モジュールおよびその製造方法には、適宜変更を加えることができる。 The dye-sensitized solar cell module of the present invention and the manufacturing method thereof have been described above using an example. However, the dye-sensitized solar cell module of the present invention and the manufacturing method thereof are limited to the above-described examples. However, the dye-sensitized solar cell module of the present invention and the manufacturing method thereof can be modified as appropriate.
 具体的には、上述した例の構成の一部は、他の構成と置き換えてもよいし、省略してもよい。例えば、接着性シートに替えて硬化性の樹脂を塗布および硬化させて隔壁を形成してもよい。
 また、本発明の色素増感型太陽電池モジュールは、隔壁の外周側をシール材で更に囲繞してもよい。具体的には、本発明の色素増感型太陽電池モジュールは、光電極基板と対向電極基板との貼り合わせを実施する前に、光電極基板上または対向電極基板上の、隔壁が配置される位置の外周側にシール材を配置してもよい。シール材を配置すれば、得られる色素増感型太陽電池モジュールの長期信頼性を更に向上させることができる。なお、シール材としては、色素増感型太陽電池モジュールの製造に使用し得る既知のシール材を使用することができるが、中でも、熱可塑性を有するシール材を用いることが好ましい。
Specifically, a part of the configuration of the example described above may be replaced with another configuration or may be omitted. For example, the partition may be formed by applying and curing a curable resin instead of the adhesive sheet.
Moreover, the dye-sensitized solar cell module of this invention may further surround the outer peripheral side of a partition with a sealing material. Specifically, in the dye-sensitized solar cell module of the present invention, the partition walls on the photoelectrode substrate or the counter electrode substrate are arranged before the photoelectrode substrate and the counter electrode substrate are bonded together. You may arrange | position a sealing material in the outer peripheral side of a position. If a sealing material is arrange | positioned, the long-term reliability of the dye-sensitized solar cell module obtained can be improved further. In addition, as a sealing material, although the known sealing material which can be used for manufacture of a dye-sensitized solar cell module can be used, it is preferable to use the sealing material which has thermoplasticity especially.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、色素増感型太陽電池モジュールの貼り合わせ状態、光電変換効率および信頼性は、それぞれ以下の方法を使用して評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In the examples and comparative examples, the bonding state, photoelectric conversion efficiency, and reliability of the dye-sensitized solar cell module were evaluated using the following methods, respectively.
<接着工程後の貼り合わせ状態>
 接着工程後の電解液のシール状態を目視およびデジタルマイクロスコープ(倍率:50倍)で観察し、以下の基準で判断した。電解液で膨潤、溶解または貫通している部分がなければ、シール性に優れていると言える。
 A:電解質層の周囲に電解液で膨潤、溶解または貫通している部分がない。
 B:電解質層の周囲に電解液で膨潤、溶解または貫通している部分がある。
<光電変換効率>
 光源として、150Wキセノンランプ光源にAM1.5Gフィルタを装着した擬似太陽光照射装置(PEC-L11型、ペクセル・テクノロジーズ社製)を用いた。光量は、1sun(AM1.5G、100mW/cm(JIS C8912のクラスA))に調整した。作製した色素増感型太陽電池モジュールをソースメータ(2400型ソースメータ、Keithley社製)に接続し、以下の電流電圧特性の測定を行なった。
 1sunの光照射下、バイアス電圧を0Vから0.8Vまで0.01V単位で変化させながら出力電流を測定した。出力電流の測定は、各電圧ステップにおいて、電圧を変化させた後、0.05秒後から0.15秒後までの値を積算することで行った。バイアス電圧を、逆方向に0.8Vから0Vまで変化させる測定も行い、順方向と逆方向の測定の平均値を光電流とした。
 上記の電流電圧特性の測定結果より、光電変換効率(%)を算出し、以下の基準で評価した。
 A:光電変換効率が3.0%以上
 B:光電変換効率が2.5%以上3.0%未満
 C:光電変換効率が2.5%未満
<信頼性>
 作製した色素増感型太陽電池モジュールを恒温恒湿槽(60℃、60RH%)に2日間放置した。そして、放置後の色素増感型太陽電池モジュールについて、上記と同様にして、光電変換効率(%)を算出し、以下の基準で評価した。
 A:光電変換効率が3.0%以上
 B:光電変換効率が2.5%以上3.0%未満
 C:光電変換効率が2.5%未満
<導電性粒子の平均粒子径(メディアン径)>
 色素増感型太陽電池モジュールの作製に用いる導電性粒子のメディアン径は、JIS Z8825に従って測定した。
<Lamination state after bonding process>
The sealing state of the electrolyte solution after the bonding step was observed visually and with a digital microscope (magnification: 50 times), and judged according to the following criteria. If there is no portion that is swollen, dissolved or penetrated by the electrolytic solution, it can be said that the sealing property is excellent.
A: There is no portion that is swollen, dissolved or penetrated by the electrolyte solution around the electrolyte layer.
B: There is a portion that swells, dissolves, or penetrates with the electrolytic solution around the electrolyte layer.
<Photoelectric conversion efficiency>
As a light source, a pseudo-sunlight irradiation device (PEC-L11 type, manufactured by Pexel Technologies, Inc.) in which an AM1.5G filter is attached to a 150 W xenon lamp light source was used. The amount of light was adjusted to 1 sun (AM1.5G, 100 mW / cm 2 (JIS C8912 class A)). The produced dye-sensitized solar cell module was connected to a source meter (type 2400 source meter, manufactured by Keithley), and the following current-voltage characteristics were measured.
The output current was measured while changing the bias voltage from 0 V to 0.8 V in units of 0.01 V under 1 sun light irradiation. The output current was measured by integrating the values from 0.05 seconds to 0.15 seconds after changing the voltage in each voltage step. Measurement was also performed by changing the bias voltage from 0.8 V to 0 V in the reverse direction, and the average value of the measurements in the forward direction and the reverse direction was taken as the photocurrent.
The photoelectric conversion efficiency (%) was calculated from the measurement results of the current-voltage characteristics and evaluated according to the following criteria.
A: Photoelectric conversion efficiency is 3.0% or more B: Photoelectric conversion efficiency is 2.5% or more and less than 3.0% C: Photoelectric conversion efficiency is less than 2.5% <Reliability>
The produced dye-sensitized solar cell module was left in a constant temperature and humidity chamber (60 ° C., 60 RH%) for 2 days. Then, the photoelectric conversion efficiency (%) was calculated for the dye-sensitized solar cell module after being left in the same manner as described above, and evaluated according to the following criteria.
A: Photoelectric conversion efficiency is 3.0% or more B: Photoelectric conversion efficiency is 2.5% or more and less than 3.0% C: Photoelectric conversion efficiency is less than 2.5% <average particle diameter (median diameter) of conductive particles >
The median diameter of the conductive particles used for producing the dye-sensitized solar cell module was measured according to JIS Z8825.
(実施例1)
 以下のようにして色素増感型太陽電池のセルが5つ直列接続された色素増感型太陽電池モジュールを作製した。そして、色素増感型太陽電池モジュールの貼り合わせ状態、光電変換効率および長期信頼性を評価した。結果を表1に示す。
<色素増感型太陽電池モジュールの作製>
[光電極基板作製工程]
 ポリエチレンナフタレート(PEN)フィルムからなる光電極用基材上に酸化インジウムスズ(ITO)からなる導電層を有する厚さ125μmのITO-PENフィルム(サイズ:10cm×10cm)を準備した。そして、ITO-PENフィルムの中央の6cm×6cmの領域に、左側から、16mm、11mm、11mm、11mmの間隔となるように、ITO用のエッチングペーストを幅0.13mm×長さ6cmでスクリーン印刷した。その後、乾燥させたエッチングペーストを剥がすことで、PENフィルム上のITO層の一部をエッチングし、PENフィルムからなる光電極用基材上にITOからなる光電極用導電層を5つ形成した。更に、光電極用導電層を設けたPENフィルムを高圧水銀灯で表面処理した後、光電極用導電層上に、濃度5mMのチタンイソプロポキシドのイソプロピルアルコール溶液をバーコート法により塗布し、乾燥させた。その後、150度のホットプレート上で15分間乾燥させることで、バッファ層を製膜した。
 次に、光電極用導電層を設けたPENフィルムの中央の6cm×6cmの領域に、左側から5mmの部分に幅5mm×長さ60mmの銀配線をスクリーン印刷し、更に、エッチングした各領域の左側から0.2mmの部分に、幅0.7mm×長さ6cmの銀配線(集電配線)をスクリーン印刷した。スクリーン印刷用の銀ペーストは、ペルノックスK3105を用いた。銀を印刷後、150度で30分間加熱処理することで、銀を定着させた。乾燥後の銀配線の厚みは、8μmであった。
 その後、光電極用導電層および銀配線を設けたPENフィルムの表面に高圧水銀灯の光を照射し、表面を親水処理した。そして、各光電極用導電層上に、ITOをエッチングした領域と銀配線を形成した領域との中央に、多孔質半導体微粒子層としての酸化チタン層(幅7mm×長さ55mm)をスクリーン印刷した。スクリーン印刷用のペーストは、水系の酸化チタンペースト(ペクセル・テクノロジーズ(株)社製、PECC-AW1-01)を使用した。酸化チタン層の厚みは、8μmであった。その後、150度で30分間熱処理した。
 光電極用導電層、銀配線および酸化チタン層を設けたPENフィルムの中央の6cm×6cmの領域を、カッターナイフで切り取り、6cm×6cmの基板を得た。そして、濃度0.3mMのN719色素(立山化成製)のエタノール溶液に基板を浸漬し、40度の恒温槽内で2時間静置したのち、基板を取り出した。次に、エタノールで洗浄し、窒素雰囲気下で乾燥することで、酸化チタン層に増感色素としてのN719色素を吸着させ、光電極基板を得た。
[対向電極基板作製工程]
 ポリエチレンナフタレート(PEN)フィルムからなる対向電極用基材上に酸化インジウムスズ(ITO)からなる導電層を有する厚さ125μmのITO-PENフィルム(サイズ:10cm×10cm)を準備した。そして、ITO-PENフィルムの中央の6cm×6cmの領域に、左側から、16mm、11mm、11mm、11mmの間隔となるように、ITO用のエッチングペーストを幅0.13mm×長さ6cmでスクリーン印刷した。その後、乾燥させたエッチングペーストを剥がすことで、PENフィルム上のITO層の一部をエッチングし、PENフィルムからなる対向電極用基材上にITOからなる対向電極用導電層を5つ形成した。
 次に、対向電極用導電層を設けたPENフィルムの左側から5mmの部分、上側から5mmの部分、下側から5mmの部分、右側から10mmの部分を、スコッチテープでマスクした。ここに、白金ナノコロイド溶液(田中貴金属製)を、バーコートにより塗布し、乾燥した。その後、スコッチテープをはがし、加熱水蒸気で処理することにより、白金触媒を定着させて触媒層を形成した。
 対向電極用導電層、触媒層および銀配線を設けたPENフィルムの中央の6cm×6cmの領域を、カッターナイフで切り取り、6cm×6cmの対向電極基板を得た。
[シート配置工程]
 隔壁の形成用に、熱可塑性を有するシートとして外形が55mm×60mmのサーリンフィルム(厚み25μm、軟化点120℃)を準備した。そして、サーリンフィルムを市販のカッティングマシンにより切り欠き、各光電極用導電層上に設けた各酸化チタン層に対応する位置に、酸化チタン層とサーリンフィルムとが直接、接しないように電解質用孔を形成した。また、同様にして、各光電極用導電層上に設けた各銀配線に対応する位置に表1に示す幅S2の接続部用孔を形成して、接着性シートを得た。
 そして、光電極基板上に接着性シートを圧着(120℃、15秒間)した。
[電解液充填工程]
 電解液(ペクセル・テクノロジーズ(株)社製、PECE-G3)をディスペンサーで電解質用孔に充填した。
[樹脂組成物充填工程]
 熱硬化性樹脂であるエポキシ系樹脂(スリーエム製、スコッチウェルドEW2050、硬化温度120℃)に、導電性粒子であるミクロパールAU(積水樹脂製、平均粒子径(メディアン径)8μm)を3体積%添加し、自転公転ミキサーにより均一に混合して得た樹脂組成物を、ディスペンサーで接続部用孔に充填した。
[貼り合わせ工程]
 アルミニウム製の貼り合せ用の治具の下基板に光電極基板を置き、その上に、対向電極基板を重ねた。
[接着工程]
 その後、治具の上部を組み合わせてから、120℃に加熱したホットプレートに置き、500gの重りをのせて、15分間熱圧着した。その後、ホットプレートから治具をおろし、圧力をかけたまま放冷した。その後、得られた色素増感型太陽電池モジュールを治具から取り出した。
Example 1
A dye-sensitized solar cell module in which five cells of a dye-sensitized solar cell were connected in series was produced as follows. And the bonding state, photoelectric conversion efficiency, and long-term reliability of a dye-sensitized solar cell module were evaluated. The results are shown in Table 1.
<Preparation of dye-sensitized solar cell module>
[Photoelectrode substrate manufacturing process]
An ITO-PEN film (size: 10 cm × 10 cm) having a thickness of 125 μm having a conductive layer made of indium tin oxide (ITO) on a photoelectrode substrate made of polyethylene naphthalate (PEN) film was prepared. Then, an ITO etching paste is screen printed at a width of 0.13 mm and a length of 6 cm on the 6 cm × 6 cm area in the center of the ITO-PEN film from the left side so that the intervals are 16 mm, 11 mm, 11 mm, and 11 mm. did. Then, a part of the ITO layer on the PEN film was etched by removing the dried etching paste, and five photoelectrode conductive layers made of ITO were formed on the photoelectrode substrate made of the PEN film. Further, after surface-treating the PEN film provided with the photoelectrode conductive layer with a high-pressure mercury lamp, an isopropyl alcohol solution of titanium isopropoxide having a concentration of 5 mM is applied onto the photoelectrode conductive layer by a bar coating method and dried. It was. Thereafter, the buffer layer was formed by drying for 15 minutes on a hot plate at 150 degrees.
Next, a silver wiring having a width of 5 mm and a length of 60 mm is screen-printed on a 5 mm portion from the left side in a 6 cm × 6 cm region in the center of the PEN film provided with the photoelectrode conductive layer, and further etched in each region. Silver wiring (current collection wiring) having a width of 0.7 mm and a length of 6 cm was screen-printed on a portion 0.2 mm from the left side. Pernox K3105 was used as the silver paste for screen printing. After printing the silver, the silver was fixed by heat treatment at 150 degrees for 30 minutes. The thickness of the silver wiring after drying was 8 μm.
Thereafter, the surface of the PEN film provided with the photoelectrode conductive layer and the silver wiring was irradiated with light from a high-pressure mercury lamp, and the surface was subjected to a hydrophilic treatment. Then, on each photoelectrode conductive layer, a titanium oxide layer (width 7 mm × length 55 mm) as a porous semiconductor fine particle layer was screen-printed at the center of the region where ITO was etched and the region where silver wiring was formed. . As the screen printing paste, a water-based titanium oxide paste (PECC-AW1-01, manufactured by Pexel Technologies, Inc.) was used. The thickness of the titanium oxide layer was 8 μm. Thereafter, heat treatment was performed at 150 degrees for 30 minutes.
A 6 cm × 6 cm region in the center of the PEN film provided with the photoelectrode conductive layer, silver wiring and titanium oxide layer was cut out with a cutter knife to obtain a 6 cm × 6 cm substrate. Then, the substrate was immersed in an ethanol solution of N719 dye (manufactured by Tateyama Kasei Co., Ltd.) having a concentration of 0.3 mM, and allowed to stand in a constant temperature bath at 40 degrees for 2 hours, and then the substrate was taken out. Next, it was washed with ethanol and dried under a nitrogen atmosphere, thereby adsorbing N719 dye as a sensitizing dye on the titanium oxide layer to obtain a photoelectrode substrate.
[Counter electrode substrate manufacturing process]
A 125 μm thick ITO-PEN film (size: 10 cm × 10 cm) having a conductive layer made of indium tin oxide (ITO) on a counter electrode substrate made of polyethylene naphthalate (PEN) film was prepared. Then, an ITO etching paste is screen printed at a width of 0.13 mm and a length of 6 cm on the 6 cm × 6 cm area in the center of the ITO-PEN film from the left side so that the intervals are 16 mm, 11 mm, 11 mm, and 11 mm. did. Thereafter, a part of the ITO layer on the PEN film was etched by removing the dried etching paste, and five counter electrode conductive layers made of ITO were formed on the counter electrode substrate made of the PEN film.
Next, a 5 mm portion from the left side, a 5 mm portion from the upper side, a 5 mm portion from the lower side, and a 10 mm portion from the right side of the PEN film provided with the conductive layer for the counter electrode were masked with a scotch tape. A platinum nano colloid solution (manufactured by Tanaka Kikinzoku) was applied thereto by bar coating and dried. Thereafter, the scotch tape was peeled off and treated with heated steam to fix the platinum catalyst and form a catalyst layer.
A 6 cm × 6 cm region in the center of the PEN film provided with the conductive layer for the counter electrode, the catalyst layer, and the silver wiring was cut out with a cutter knife to obtain a 6 cm × 6 cm counter electrode substrate.
[Sheet placement process]
For the formation of the partition wall, a Surlyn film (thickness 25 μm, softening point 120 ° C.) having an outer shape of 55 mm × 60 mm was prepared as a thermoplastic sheet. Then, the Surlyn film is cut out by a commercially available cutting machine, and the hole for the electrolyte is made so that the titanium oxide layer and the Surlyn film are not in direct contact with each titanium oxide layer provided on the conductive layer for each photoelectrode. Formed. Similarly, holes for connecting portions having a width S2 shown in Table 1 were formed at positions corresponding to the respective silver wirings provided on the respective conductive layers for photoelectrodes to obtain an adhesive sheet.
Then, an adhesive sheet was pressure-bonded (120 ° C., 15 seconds) on the photoelectrode substrate.
[Electrolyte filling process]
An electrolyte solution (PECE-G3, manufactured by Pexel Technologies Co., Ltd.) was filled in the electrolyte holes with a dispenser.
[Resin composition filling step]
3% by volume of epoxy resin (manufactured by 3M, Scotchweld EW2050, curing temperature 120 ° C.), thermosetting resin, and micropearl AU (manufactured by Sekisui Jushi, average particle diameter (median diameter) 8 μm) as conductive particles The resin composition obtained by adding and uniformly mixing with the rotation and revolution mixer was filled in the hole for the connection part with a dispenser.
[Lamination process]
The photoelectrode substrate was placed on the lower substrate of the aluminum bonding jig, and the counter electrode substrate was stacked thereon.
[Adhesion process]
Then, after combining the upper part of a jig | tool, it put on the hotplate heated at 120 degreeC, put a 500-g weight, and thermocompression bonded for 15 minutes. Thereafter, the jig was removed from the hot plate and allowed to cool with pressure applied. Thereafter, the obtained dye-sensitized solar cell module was taken out from the jig.
(実施例2)
 シート配置工程において、サーリンフィルムに形成する接続部用孔の幅S2を表1に示すように変更し、さらに、銀配線のスクリーン印刷位置を変更して最短距離Aが実施例1と同様に維持されるようにし、樹脂組成物充填工程において、導電性粒子であるミクロパールAU(積水樹脂製、平均粒子径8μm)の添加量を6体積%に変更した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 2)
In the sheet placement step, the width S2 of the connection hole formed in the Surlyn film is changed as shown in Table 1, and the screen printing position of the silver wiring is changed to maintain the shortest distance A as in Example 1. In the resin composition filling step, the same procedure as in Example 1 was conducted except that the addition amount of micropearl AU (made by Sekisui Resin, average particle diameter of 8 μm) as conductive particles was changed to 6% by volume. A sensitized solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例3)
 シート配置工程において、サーリンフィルムに形成する接続部用孔の幅S2を表1に示すように変更し、さらに、銀配線のスクリーン印刷位置を変更して最短距離Aが実施例1と同じ距離となるように維持した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Example 3)
In the sheet placement step, the width S2 of the connection hole formed in the Surlyn film is changed as shown in Table 1, and the screen printing position of the silver wiring is changed so that the shortest distance A is the same distance as in Example 1. A dye-sensitized solar cell module was produced in the same manner as in Example 1 except that this was maintained. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(実施例4~5)
 シート配置工程において、サーリンフィルムに形成する接続部用孔の幅S2、および最短距離Bを表1に示すように変更し、樹脂組成物充填工程において熱硬化性樹脂であるエポキシ系樹脂(スリーエム製、スコッチウェルドEW2050)に替えてポリイソブチレン系の光硬化性樹脂を使用し、貼り合わせ工程において加熱後にUVランプで4000mJ/cmの紫外線を照射した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Examples 4 to 5)
In the sheet arranging step, the width S2 of the connection hole formed in the Surlyn film and the shortest distance B are changed as shown in Table 1, and an epoxy resin (manufactured by 3M) which is a thermosetting resin in the resin composition filling step. Dye sensitization in the same manner as in Example 1 except that a polyisobutylene-based photocurable resin was used instead of Scotchweld EW2050) and ultraviolet rays of 4000 mJ / cm 2 were irradiated with a UV lamp after heating in the bonding step. Type solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
 樹脂組成物充填工程において、導電性粒子であるミクロパールAU(積水樹脂製、平均粒子径(メディアン径)8μm)の添加量を30体積%に変更した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 1)
In the resin composition filling step, the dye increase was carried out in the same manner as in Example 1 except that the addition amount of micropearl AU (made by Sekisui Plastics, average particle diameter (median diameter) 8 μm) as conductive particles was changed to 30% by volume. A sensitive solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例2,3)
 樹脂組成物充填工程において、導電性粒子としてミクロパールAUに替えて金ナノ粒子NP-AU-05(田中貴金属製、平均粒子径(メディアン径)0.1μm)をそれぞれ3体積%(比較例2)および20体積%(比較例3)添加した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Examples 2 and 3)
In the resin composition filling step, gold nanoparticles NP-AU-05 (manufactured by Tanaka Kikinzoku, average particle diameter (median diameter) 0.1 μm) instead of Micropearl AU as conductive particles were each 3% by volume (Comparative Example 2). ) And 20% by volume (Comparative Example 3) A dye-sensitized solar cell module was produced in the same manner as in Example 1 except that it was added. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例4)
 樹脂組成物充填工程において、導電性粒子として平均粒子径8μmのミクロパールAU(積水樹脂製)に替えて平均粒子径(メディアン径)50μmのミクロパールAU(積水樹脂製)添加した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(Comparative Example 4)
In the resin composition filling step, the example is except that micropearl AU (manufactured by Sekisui Resin) having an average particle diameter (median diameter) of 50 μm is added as conductive particles instead of micropearl AU (manufactured by Sekisui Resin) having an average particle diameter of 8 μm. In the same manner as in Example 1, a dye-sensitized solar cell module was produced. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
(比較例5)
 樹脂組成物充填工程において、導電性粒子としてミクロパールAU(積水樹脂製、平均粒子径(メディアン径)8μm)の含有割合を0.05体積%に変更した以外は実施例1と同様にして色素増感型太陽電池モジュールを作製した。作成されたモジュールの接着工程後の張り合わせ状態について、実施例1と同様に評価したところ、電解質層の周囲に電解液で膨潤、溶解または貫通している部分がなく、接着工程後の張り合わせ状態には優れていた。しかし、作成されたモジュールは、光電変換能を全く奏さず、光電変換効率及び信頼性を評価することができなかった。これは、導電性粒子が少なく、光電極と対向電極の接続が不充分で、光電変換効率を測定するために充分な導電性が得られなかったためであると推察される。結果を表1に示す。
(Comparative Example 5)
In the resin composition filling step, the coloring matter was the same as in Example 1 except that the content of micropearl AU (made by Sekisui Resin, average particle diameter (median diameter) 8 μm) was changed to 0.05 vol% as the conductive particles. A sensitized solar cell module was produced. About the pasted state after the adhesion process of the created module, it was evaluated in the same manner as in Example 1. As a result, there was no portion that was swollen, dissolved or penetrated by the electrolyte solution around the electrolyte layer, and the pasted state after the adhesion process Was excellent. However, the created module did not exhibit photoelectric conversion ability at all, and the photoelectric conversion efficiency and reliability could not be evaluated. This is presumably because there were few conductive particles, the connection between the photoelectrode and the counter electrode was insufficient, and sufficient conductivity was not obtained for measuring the photoelectric conversion efficiency. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、光電変換効率及び信頼性の高い色素増感型太陽電池モジュールを提供することができる。 According to the present invention, a dye-sensitized solar cell module with high photoelectric conversion efficiency and high reliability can be provided.
1 光電極用基材
2 光電極
3 光電極基板
4 電解質層
5 対向電極用基材
6 対向電極
7 対向電極基板
8 隔壁(接着性シート)
9 セル接続部
10 色素増感型太陽電池モジュール
21 光電極用導電層
22 増感色素を担持させた多孔質半導体微粒子層
23 隙間
61 対向電極用導電層
62 触媒層
81 電解質層用孔
82 接続部用孔
91 配線
92 未硬化の導電性樹脂組成物
93 導電性樹脂組成物
DESCRIPTION OF SYMBOLS 1 Base material for photoelectrodes 2 Photoelectrode 3 Photoelectrode substrate 4 Electrolyte layer 5 Base material for counter electrodes 6 Counter electrode 7 Counter electrode substrate 8 Partition (adhesive sheet)
9 Cell connection 10 Dye-sensitized solar cell module 21 Photoelectrode conductive layer 22 Porous semiconductor fine particle layer 23 carrying sensitizing dye 23 Gap 61 Counter electrode conductive layer 62 Catalyst layer 81 Electrolyte layer hole 82 Connection Hole 91 Wiring 92 Uncured conductive resin composition 93 Conductive resin composition

Claims (7)

  1.  光電極と、前記光電極に対向する対向電極と、前記光電極と前記対向電極との間に設けられた電解質層とを備えるセルを複数直列接続してなる色素増感型太陽電池モジュールであって、
     基材上に複数の光電極を互いに離隔させて配設してなる光電極基板と、
     前記セルを形成するように前記光電極基板に対向して配置された、基材上に複数の対向電極を互いに離隔させて配設してなる対向電極基板と、
     互いに対向する前記光電極と前記対向電極との間に配設された電解質層と、
     互いに隣接するセル同士を直列接続するセル接続部と、
     前記光電極基板と前記対向電極基板との間に配置され、前記電解質層および前記セル接続部をそれぞれ囲繞する隔壁とを備え、
     前記セル接続部が、樹脂と導電性粒子とを含有する導電性樹脂組成物を含み、
     前記導電性樹脂組成物は、前記導電性粒子の平均粒子径が0.5μm以上30μm以下であり、且つ、前記導電性粒子の含有割合が0.1体積%以上10体積%以下である、色素増感型太陽電池モジュール。
    A dye-sensitized solar cell module in which a plurality of cells each including a photoelectrode, a counter electrode facing the photoelectrode, and an electrolyte layer provided between the photoelectrode and the counter electrode are connected in series. And
    A photoelectrode substrate in which a plurality of photoelectrodes are spaced apart from each other on a substrate;
    A counter electrode substrate that is disposed to face the photoelectrode substrate so as to form the cell, and is formed by disposing a plurality of counter electrodes on a base material apart from each other;
    An electrolyte layer disposed between the photoelectrode and the counter electrode facing each other;
    A cell connection part for connecting cells adjacent to each other in series;
    A partition wall disposed between the photoelectrode substrate and the counter electrode substrate, and surrounding each of the electrolyte layer and the cell connection portion,
    The cell connection portion includes a conductive resin composition containing a resin and conductive particles,
    In the conductive resin composition, the conductive particles have an average particle diameter of 0.5 μm or more and 30 μm or less, and a content ratio of the conductive particles is 0.1 volume% or more and 10 volume% or less. Sensitized solar cell module.
  2.  前記光電極が、導電層と、前記導電層上に形成され、増感色素を担持した多孔質半導体微粒子層とを備え、
     前記セル接続部は、一方のセルの前記光電極の前記導電層と、他方のセルの前記対向電極とを電気的に接続し、
     前記セル接続部を介して互いに接続される、互いに隣接するセルの光電極の導電層間に前記導電性樹脂組成物が存在する、請求項1に記載の色素増感型太陽電池モジュール。
    The photoelectrode comprises a conductive layer, and a porous semiconductor fine particle layer formed on the conductive layer and carrying a sensitizing dye,
    The cell connection portion electrically connects the conductive layer of the photoelectrode of one cell and the counter electrode of the other cell,
    The dye-sensitized solar cell module according to claim 1, wherein the conductive resin composition is present between conductive layers of photoelectrodes of adjacent cells connected to each other via the cell connection portion.
  3.  前記互いに隣接するセルの光電極の導電層間の距離が、前記導電性粒子の平均粒子径の3倍以上30倍以下である、請求項2に記載の色素増感型太陽電池モジュール。 The dye-sensitized solar cell module according to claim 2, wherein the distance between the conductive layers of the photoelectrodes of the cells adjacent to each other is 3 to 30 times the average particle diameter of the conductive particles.
  4.  前記対向電極が、導電層と、前記導電層上に形成された触媒層とを備え、
     前記セル接続部は、一方のセルの前記対向電極の前記導電層と、他方のセルの前記光電極とを電気的に接続し、
     前記セル接続部を介して互いに接続される、互いに隣接するセルの対向電極の導電層間に前記導電性樹脂組成物が存在する、請求項1~3の何れかに記載の色素増感型太陽電池モジュール。
    The counter electrode includes a conductive layer and a catalyst layer formed on the conductive layer,
    The cell connection portion electrically connects the conductive layer of the counter electrode of one cell and the photoelectrode of the other cell,
    The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the conductive resin composition is present between conductive layers of counter electrodes of adjacent cells connected to each other via the cell connection portion. module.
  5.  前記互いに隣接するセルの対向電極の導電層間の距離が、前記導電性粒子の平均粒子径の3倍以上30倍以下である、請求項4に記載の色素増感型太陽電池モジュール。 The dye-sensitized solar cell module according to claim 4, wherein the distance between the conductive layers of the counter electrodes of the cells adjacent to each other is 3 to 30 times the average particle diameter of the conductive particles.
  6.  前記セル接続部が金属配線を更に含む、請求項1~5の何れかに記載の色素増感型太陽電池モジュール。 The dye-sensitized solar cell module according to any one of claims 1 to 5, wherein the cell connection portion further includes a metal wiring.
  7.  前記金属配線から前記隔壁までの最短距離Aと、前記隔壁の、前記金属配線からの距離が最短となる位置を含む面から、前記電解質層からの距離が最短となる位置を含む面までの最短距離Bとが、下記の関係式:
     4.0≧(A+B)/A>1.0
    を満たす、請求項6に記載の色素増感型太陽電池モジュール。
    The shortest distance A from the metal wiring to the partition, and the shortest distance from the surface including the position where the distance from the metal wiring is the shortest to the surface including the position where the distance from the electrolyte layer is the shortest. The distance B is the following relational expression:
    4.0 ≧ (A + B) / A> 1.0
    The dye-sensitized solar cell module according to claim 6, wherein
PCT/JP2017/005554 2016-03-10 2017-02-15 Dye-sensitized solar cell module WO2017154493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-047037 2016-03-10
JP2016047037 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154493A1 true WO2017154493A1 (en) 2017-09-14

Family

ID=59790522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005554 WO2017154493A1 (en) 2016-03-10 2017-02-15 Dye-sensitized solar cell module

Country Status (2)

Country Link
TW (1) TW201735379A (en)
WO (1) WO2017154493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126875A (en) * 2019-02-01 2020-08-20 積水化学工業株式会社 Electric module and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208178A (en) * 1999-01-20 2000-07-28 Mitsubishi Electric Corp Semiconductor application device and its production
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP2003243052A (en) * 2002-02-13 2003-08-29 Canon Inc Photoelectric transducing module
JP2006066163A (en) * 2004-08-26 2006-03-09 Sumitomo Electric Ind Ltd Conductive particles for anisotropic conductive film and anisotropic conductive film using them
JP2008204880A (en) * 2007-02-22 2008-09-04 Kyocera Corp Photoelectric conversion module, and its manufacturing method
JP2015191986A (en) * 2014-03-28 2015-11-02 日立造船株式会社 Dye-sensitized solar cell and method for manufacturing the same
JP2015191987A (en) * 2014-03-28 2015-11-02 日立造船株式会社 Dye-sensitized solar cell and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208178A (en) * 1999-01-20 2000-07-28 Mitsubishi Electric Corp Semiconductor application device and its production
JP2001357897A (en) * 2000-06-14 2001-12-26 Fuji Xerox Co Ltd Photoelectric conversion module
JP2003243052A (en) * 2002-02-13 2003-08-29 Canon Inc Photoelectric transducing module
JP2006066163A (en) * 2004-08-26 2006-03-09 Sumitomo Electric Ind Ltd Conductive particles for anisotropic conductive film and anisotropic conductive film using them
JP2008204880A (en) * 2007-02-22 2008-09-04 Kyocera Corp Photoelectric conversion module, and its manufacturing method
JP2015191986A (en) * 2014-03-28 2015-11-02 日立造船株式会社 Dye-sensitized solar cell and method for manufacturing the same
JP2015191987A (en) * 2014-03-28 2015-11-02 日立造船株式会社 Dye-sensitized solar cell and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126875A (en) * 2019-02-01 2020-08-20 積水化学工業株式会社 Electric module and method of manufacturing the same

Also Published As

Publication number Publication date
TW201735379A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
CN109478469B (en) Solar cell module
CN109478470B (en) Solar cell module
CN109478468B (en) Solar cell module and method for manufacturing solar cell module
WO2016140196A1 (en) Conducting paste, electric module and electric module production method
JP6958559B2 (en) Solar cell module
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
WO2017154493A1 (en) Dye-sensitized solar cell module
JP6561880B2 (en) Method for producing dye-sensitized solar cell module
JP2009199782A (en) Dye-sensitized solar cell and manufacturing method therefor
JP6035491B2 (en) Integrated dye-sensitized solar cell module and manufacturing method thereof
JP7415383B2 (en) Solar cell module, electrode substrate for solar cell, and method for manufacturing solar cell module
KR20130023920A (en) Method for forming grid electrode in dye-sensitized solar cell and dye-sensitized solar cell using thereof
US20220328709A1 (en) Solar cell module
JP6521644B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell system
JP5160854B2 (en) Method for producing dye-sensitized solar cell element
CN108231421A (en) Dye-sensitized photovoltaic type battery, module and its manufacturing method
TW201705514A (en) A method of manufacturing a dye-sensitized solar cells

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762836

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP