JP2006066163A - Conductive particles for anisotropic conductive film and anisotropic conductive film using them - Google Patents

Conductive particles for anisotropic conductive film and anisotropic conductive film using them Download PDF

Info

Publication number
JP2006066163A
JP2006066163A JP2004246087A JP2004246087A JP2006066163A JP 2006066163 A JP2006066163 A JP 2006066163A JP 2004246087 A JP2004246087 A JP 2004246087A JP 2004246087 A JP2004246087 A JP 2004246087A JP 2006066163 A JP2006066163 A JP 2006066163A
Authority
JP
Japan
Prior art keywords
particles
conductive film
anisotropic conductive
particle
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246087A
Other languages
Japanese (ja)
Inventor
Toshihiro Sakamoto
敏宏 坂本
Hideki Kashiwabara
秀樹 柏原
Keiji Koyama
惠司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004246087A priority Critical patent/JP2006066163A/en
Publication of JP2006066163A publication Critical patent/JP2006066163A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive particles distributedly used in an anisotropic conductive film. <P>SOLUTION: The conductive particles for the anisotropic conductive film are secondary particles wherein a plurality of primary particles gathered and at least surfaces have conductivity. Furthermore, in the anisotropic conductive film, the conductive the particles for the anisotropic conductive films are dispersed in an insulated resin. The anisotropic conductive film using the conductive particles are easily compressively deformed so that connection resistance fully decreases even in a connection condition at low pressure when connecting electrodes etc. and exhibits excellent connection reliability over a long period without faulty connection. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な構造を有する異方導電膜用導電性粒子と、それを用いた異方導電膜に関する。   The present invention relates to a conductive particle for an anisotropic conductive film having a novel structure and an anisotropic conductive film using the same.

近年の電子機器の小型化、高機能化の流れの中で、接続すべき端子の面積と端子ピッチとが非常に小さくなっている。このため、エレクトロニクスの実装分野においてはそのような端子間の接続が可能な異方導電膜が広く使用されるようになっている。例えばICチップとフレキブルプリント配線板(FPC)上に形成された電極との接合や、電極同士の接合等に異方導電膜が使用されている。   In recent years, the area of terminals to be connected and the terminal pitch have become very small in the trend of downsizing and high functionality of electronic devices. For this reason, anisotropic conductive films capable of connecting such terminals are widely used in the electronics mounting field. For example, anisotropic conductive films are used for joining an IC chip and electrodes formed on a flexible printed wiring board (FPC), joining electrodes, and the like.

異方導電膜はフィルム状の絶縁性接着剤中に導電性粒子を分散させたシート状の接着剤であり、接続対象の間に挟まれ、加熱、加圧されて接続対象を接着する。すなわち、加熱、加圧によりシート状の樹脂が流動し、それぞれの接合対象上の相対峙する電極間の間隙を封止すると同時に、導電性粒子の一部が対峙する電極間に噛み込まれて電気的接続が達成される。   An anisotropic conductive film is a sheet-like adhesive in which conductive particles are dispersed in a film-like insulating adhesive. The anisotropic conductive film is sandwiched between connection objects and is heated and pressurized to adhere the connection objects. That is, the sheet-like resin flows by heating and pressurizing, sealing the gaps between the electrodes facing each other, and at the same time, some of the conductive particles are caught between the facing electrodes. An electrical connection is achieved.

従来の異方導電膜中の導電性粒子としては、平均粒径が10μm程度のニッケル、金、半田等の金属単体粒子、或いはスチレン樹脂等よりなる粒子の表面をニッケル−金等の導電層により被覆した金属めっき樹脂粒子が使用されている(特許文献1)。しかし金属単体粒子は一般に硬い材料であり、実装の際の加圧による変形が少ないため、配線基板上の複数の電極間の高さばらつきを吸収しきれずに、導通不良が発生するという問題があった。   As the conductive particles in the conventional anisotropic conductive film, the surface of a single metal particle such as nickel, gold or solder having an average particle diameter of about 10 μm or a particle made of styrene resin or the like is formed by a conductive layer such as nickel-gold. Coated metal plating resin particles are used (Patent Document 1). However, single metal particles are generally hard materials, and deformation due to pressurization during mounting is small. Therefore, there is a problem that height variations between multiple electrodes on the wiring board cannot be absorbed and poor conduction occurs. It was.

また、異方導電膜には高い信頼性が要求されている。そこで導通/絶縁性能に加え、耐環境性が求められており、たとえば高温高湿試験やヒートサイクル試験等によりその性能を評価している。ここで金属単体粒子を導電性粒子として用いた異方導電膜では、実装後、樹脂接着剤の熱膨張等による変形に追随することができず、接続が不安定になりがちである。   Moreover, high reliability is required for the anisotropic conductive film. Therefore, environmental resistance is required in addition to conduction / insulation performance, and the performance is evaluated by, for example, a high-temperature and high-humidity test or a heat cycle test. Here, the anisotropic conductive film using single metal particles as conductive particles cannot follow deformation due to thermal expansion or the like of the resin adhesive after mounting and tends to be unstable in connection.

金属めっき樹脂粒子を導電性粒子として使用した場合は、樹脂粒子は軟質であるため、実装の際の加圧により粒子が変形することにより電極間の高さばらつきを吸収することが金属単体粒子に比べて容易である。しかしながら、このような樹脂粒子を導電性粒子に用いた異方導電膜では、電極間の距離が小さい部分において、導電性粒子が過度につぶれることによって、その外表面の金属被膜が導電性粒子の変形に追従しきれずに金属被膜にクラックやワレが発生し、その結果、金属被膜による導通を確保できなくなり、導通不良が発生すると言う問題点があった。   When metal-plated resin particles are used as conductive particles, the resin particles are soft, so the metal single particles can absorb the height variation between the electrodes when the particles are deformed by the pressure applied during mounting. It is easy compared. However, in an anisotropic conductive film using such resin particles as conductive particles, the conductive particles collapse excessively in a portion where the distance between the electrodes is small, so that the metal coating on the outer surface of the conductive particles There was a problem that cracks and cracks occurred in the metal film without following the deformation, and as a result, conduction by the metal film could not be ensured, resulting in poor conduction.

そこで、電極間距離が小さい部分において導電性粒子が過度につぶれることにより導電性粒子外表面の金属被膜にクラックやワレが発生することを防止して、導電性粒子外表面の金属被膜による導通を確保させるために、導電性粒子が内核とそれを被覆する外層とから構成され、かつ外層が内層より柔らかいことを特徴とする異方導電膜が提案されている(特許文献2)。
しかしながら、特許文献2のような導電性粒子の構造では、導電性粒子はその内核よりも小さくつぶれることができないため、上下の電極間の距離は内核の大きさ以下になることができない。ここで電極間距離にばらつきがあると、上下の電極間距離が大きい部分においては導電性粒子よりも電極間距離が大きくなり、接続不良が発生するという問題点があった。
Therefore, it is possible to prevent the metal particles on the outer surface of the conductive particles from cracking and cracking due to excessive crushing of the conductive particles in the portion where the distance between the electrodes is small, and the conduction by the metal film on the outer surface of the conductive particles is prevented. In order to ensure, an anisotropic conductive film is proposed in which conductive particles are composed of an inner core and an outer layer covering the inner core, and the outer layer is softer than the inner layer (Patent Document 2).
However, in the structure of the conductive particles as in Patent Document 2, since the conductive particles cannot collapse smaller than the inner core, the distance between the upper and lower electrodes cannot be less than the size of the inner core. If there is a variation in the distance between the electrodes, the distance between the electrodes becomes larger than that of the conductive particles in a portion where the distance between the upper and lower electrodes is large, and there is a problem in that connection failure occurs.

さらに、異方導電膜を使用した実装においては低押圧力での接続が要求されている。たとえばICチップを実装する際には1MPa以下の押圧力が好ましいとされている。しかしこのような低押圧力での実装では樹脂粒子が十分に圧縮変形することができず、導電性粒子表面と電極との接触面積が大きくならず、接続不良が発生する。そこで、低温低圧下で短時間の接続条件でも容易に圧縮変形して接続抵抗を十分に低減することができる導電性微粒子として、粒子直径を20%圧縮変形させたときの圧縮弾性率(20%K値)および30%圧縮変形させたときの圧縮弾性率(30%K値)がともに1.96×10N/mm以下であり、かつ破壊ひずみが20〜50%である樹脂微粒子の表面に導電層を形成した導電性微粒子が提案されている(特許文献3)。 Further, in mounting using an anisotropic conductive film, connection with a low pressing force is required. For example, when an IC chip is mounted, a pressing force of 1 MPa or less is preferable. However, in mounting with such a low pressing force, the resin particles cannot be sufficiently compressed and deformed, the contact area between the surface of the conductive particles and the electrode does not increase, and connection failure occurs. Therefore, the compressive elastic modulus (20% when the particle diameter is 20% compressively deformed as conductive fine particles that can be easily compressively deformed even under short-time connection conditions at low temperature and low pressure to sufficiently reduce the connection resistance. K value) and the surface of a resin fine particle having a compressive elastic modulus (30% K value) of 30% K / 30% or less both of which is 1.96 × 10 9 N / mm or less and a fracture strain of 20 to 50% Conductive fine particles having a conductive layer formed thereon have been proposed (Patent Document 3).

しかしこのような樹脂微粒子の表面に導電層を形成した導電性微粒子は、樹脂粒子との十分な密着力を確保して金属層を形成することが難しく、その品質管理に多くのコストを要するため非常に高価である。   However, such conductive fine particles in which a conductive layer is formed on the surface of the resin fine particles are difficult to form a metal layer by securing sufficient adhesion with the resin particles, and require a lot of cost for quality control. It is very expensive.

特開平8−115617号公報(0003、図1)JP-A-8-115617 (0003, FIG. 1) 特開平8−193186号公報(0010)JP-A-8-193186 (0010) 特開2004−165123号公報(0009)JP 2004-165123 A (0009)

本発明の目的は、上述の背景技術における問題点を解決した、異方導電膜中に分散して用いられる導電性粒子を提供することである。すなわち、この導電性粒子を用いた異方導電膜は、電極間の接続等を行う際に、低圧での接続条件でも容易に圧縮変形して接続抵抗が十分に低減するとともに、接続不良を起こすことなく、長期にわたって優れた接続信頼性を発現する。またこの導電性粒子は低コストで製造可能である。更に上記導電性粒子を用いた異方導電膜を提供することを目的とする。   An object of the present invention is to provide conductive particles that are used by being dispersed in an anisotropic conductive film, which solves the problems in the background art described above. That is, the anisotropic conductive film using the conductive particles easily compresses and deforms even under low-pressure connection conditions when the electrodes are connected and the like, and the connection resistance is sufficiently reduced and connection failure occurs. Without any problem, it exhibits excellent connection reliability over a long period of time. The conductive particles can be manufactured at a low cost. Furthermore, it aims at providing the anisotropic electrically conductive film using the said electroconductive particle.

本発明者は、鋭意検討の結果、複数の針状の1次粒子が集合した2次粒子であって、少なくとも表面が導電性を有することを特徴とする導電性粒子を用いることで前記の課題が達成されることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor has obtained the above problem by using conductive particles characterized in that they are secondary particles in which a plurality of needle-like primary particles are aggregated, and at least the surface has conductivity. Was achieved and the present invention was completed.

本発明の導電性粒子は、複数の針状の1次粒子が集合した2次粒子であって、少なくとも表面が導電性を有する異方導電膜用導電性粒子である(請求項1)。   The conductive particles of the present invention are secondary particles in which a plurality of needle-like primary particles are aggregated, and are conductive particles for an anisotropic conductive film having at least a surface of conductivity (Claim 1).

その一の態様として、少なくとも表面が導電性を有する針状の1次粒子を複数集合させて2次粒子とした導電性粒子が挙げられる(請求項2)。さらに、この2次粒子の表面に導電層を被覆しても良い(請求項3)。また別の態様は、針状の1次粒子を複数集合させて2次粒子とし、2次粒子の表面に導電層を被覆した導電性粒子である(請求項4)。   As one aspect thereof, there may be mentioned conductive particles in which a plurality of needle-like primary particles having at least a surface of conductivity are aggregated to form secondary particles (Claim 2). Further, a conductive layer may be coated on the surface of the secondary particles. Another embodiment is conductive particles in which a plurality of needle-like primary particles are aggregated to form secondary particles, and the surface of the secondary particles is covered with a conductive layer (Claim 4).

また、本発明に係る異方導電膜は、これらの導電性粒子を絶縁性樹脂中に分散させた異方導電膜である(請求項9)。   The anisotropic conductive film according to the present invention is an anisotropic conductive film in which these conductive particles are dispersed in an insulating resin.

図1は本発明の好ましい態様の異方導電膜用導電性粒子の概念図である。この導電性粒子2は、針状の1次粒子1が複数、弱い結合で結びつけられており、弾性を持った嵩高い構造となっている。図2は本発明の異方導電膜用導電性粒子に押圧力をかけたときの変形の様子である。(2a)は押圧力を加えない状態の導電性粒子、(2b)は押圧力が加わった状態の導電性粒子である。導電性粒子に押圧力を加えると容易に変形し、可逆的に図2(2a)の構造から(2b)のような構造となる。よって電極間の接続等を行う際、低い押圧力でも容易に変形して、接続電極間の高さばらつきを吸収しつつ導電性を確保することができる。   FIG. 1 is a conceptual diagram of conductive particles for an anisotropic conductive film according to a preferred embodiment of the present invention. The conductive particles 2 have a plurality of needle-like primary particles 1 connected by weak bonds, and have a bulky structure with elasticity. FIG. 2 shows a state of deformation when a pressing force is applied to the anisotropic conductive film conductive particles of the present invention. (2a) is a conductive particle in a state where no pressing force is applied, and (2b) is a conductive particle in a state where a pressing force is applied. When a pressing force is applied to the conductive particles, it easily deforms and reversibly changes from the structure of FIG. 2 (2a) to the structure of (2b). Therefore, when connecting between electrodes, etc., it can be easily deformed even with a low pressing force, and conductivity can be ensured while absorbing variations in height between connecting electrodes.

また高温高湿試験、ヒートサイクル試験のような耐環境試験においても、導電性粒子の弾性により、樹脂の熱膨張等による変形に十分追随可能であり、高い信頼性を有する。   Further, even in an environmental resistance test such as a high-temperature and high-humidity test and a heat cycle test, the elasticity of the conductive particles can sufficiently follow deformation due to thermal expansion of the resin and has high reliability.

少なくとも表面が導電性を有する針状の1次粒子としては、金、銀、銅、ニッケル及びそれらの合金などの金属粒子、針状フェライト、カーボン繊維、カーボンナノチューブ、酸化スズ系導電層を被覆した酸化チタン、酸化スズ系導電層を被覆したホウ酸アルミニウム、酸化スズ系導電層を被覆したチタン酸カリウム繊維等が挙げられる。またこれらの1次粒子の表面にめっきなどの方法で更に金属層を被覆しても良い。更に酸化チタン、酸化鉄、ホウ酸アルミニウム、チタン酸カリウム繊維等の導電性の無い針状粒子の表面にめっき等の方法により導電層を形成したものを1次粒子として使用することもできる。   At least the surface of the needle-shaped primary particles having conductivity is coated with metal particles such as gold, silver, copper, nickel and their alloys, needle-shaped ferrite, carbon fiber, carbon nanotube, and tin oxide-based conductive layer. Examples thereof include titanium oxide, aluminum borate coated with a tin oxide based conductive layer, and potassium titanate fiber coated with a tin oxide based conductive layer. Moreover, you may coat | cover a metal layer further by methods, such as plating, on the surface of these primary particles. Furthermore, what formed the electroconductive layer by methods, such as plating, on the surface of non-conductive acicular particle | grains, such as a titanium oxide, an iron oxide, an aluminum borate, a potassium titanate fiber, can also be used as a primary particle.

さらに1次粒子として、導電性の無い針状の粒子を使用することもできる。酸化チタン、酸化鉄、ホウ酸アルミニウム、チタン酸カリウム繊維等が挙げられる。この場合はこれらの1次粒子を複数集合させて2次粒子を形成した後に、表面に導電層を被覆して導電性粒子とする。   Furthermore, acicular particles having no electrical conductivity can also be used as the primary particles. Examples include titanium oxide, iron oxide, aluminum borate, and potassium titanate fiber. In this case, a plurality of these primary particles are aggregated to form secondary particles, and then a conductive layer is coated on the surface to form conductive particles.

少なくとも表面が導電性を有する針状の1次粒子を複数集合させて2次粒子を形成した後に、表面に導電層を被覆すると、導電性及び信頼性が向上してより好ましい。さらに、導電層を被覆することで1次粒子同士の結合が強固となり、その後の工程において導電性粒子を接着剤樹脂溶液と攪拌混合する際に解粒されにくくなる(元の1次粒子に戻りにくくなる)という効果もある。   It is more preferable that the surface is covered with a conductive layer after a plurality of needle-like primary particles having at least the surface conductivity are aggregated to form secondary particles, thereby improving the conductivity and reliability. Furthermore, by covering the conductive layer, the bonds between the primary particles are strengthened, and in subsequent processes, the conductive particles are less likely to be pulverized when stirring and mixing with the adhesive resin solution (return to the original primary particles). It also has the effect of becoming difficult).

2次粒子や1次粒子の表面に被覆する導電層としては、金、銀、銅、ニッケル、及びそれらの合金などの金属や酸化スズ系の材料が使用できる。
これらの材料は単独で用いても良いし、複数を組み合わせても良い。導電性と信頼性の観点から最外層に被覆する材料は金がより好ましく、めっきなどの方法により導電層を形成することができる。
As the conductive layer covering the surfaces of the secondary particles and the primary particles, metals such as gold, silver, copper, nickel, and alloys thereof, and tin oxide-based materials can be used.
These materials may be used alone or in combination. From the viewpoints of conductivity and reliability, the material that covers the outermost layer is more preferably gold, and the conductive layer can be formed by a method such as plating.

1次粒子を複数集合させて2次粒子とする方法は、噴霧乾燥(スプレードライ)や凍結乾燥(フリーズドライ)といった一般的な造粒手法を用いることができる。また1次粒子を液相中でめっきし乾燥回収する場合、反応液に加える表面処理剤の種類や量を選択することによって適度なサイズの2次粒子を形成することができる。この場合は2次粒子の形成と導電層の形成を同時に行えるので工程が簡略化でき、より好ましい。   As a method of collecting a plurality of primary particles into secondary particles, a general granulation technique such as spray drying (spray drying) or freeze drying (freeze drying) can be used. When the primary particles are plated in the liquid phase and dried and recovered, secondary particles having an appropriate size can be formed by selecting the type and amount of the surface treatment agent added to the reaction solution. In this case, since the formation of secondary particles and the formation of the conductive layer can be performed simultaneously, the process can be simplified, which is more preferable.

反応液に加える表面処理剤としては、脂肪酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル系、ポリカルボン酸等のアニオン系材料、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジル塩等のカチオン系材料、ポリオキシエチレンアルキルエーテル、脂肪酸エステル、ポリエチレングリコール、脂肪酸アルかノールアミド等のノニオン系材料が使用できる。アニオン系、カチオン系材料を使用する場合、対イオンにNa、Cl等の不純物イオンが含まれると、エレクトロマイグレーションを起こしやすくなる。よって、2次粒子を回収した後に対イオンを洗浄除去する工程を加えると好ましい。 Surface treatment agents added to the reaction solution include fatty acid salts, alkyl sulfate esters, polyoxyethylene alkyl ethers, anionic materials such as polycarboxylic acids, cationic materials such as alkyltrimethylammonium salts and alkyldimethylbenzyl salts, poly Nonionic materials such as oxyethylene alkyl ether, fatty acid ester, polyethylene glycol, fatty acid alkanol or amide can be used. When an anionic or cationic material is used, if the counter ion contains impurity ions such as Na + and Cl , electromigration tends to occur. Therefore, it is preferable to add a step of washing and removing the counter ions after collecting the secondary particles.

1次粒子の形状は針状とする。これは針状の粒子を複数集合させると、空隙部の多い嵩高い2次粒子が形成でき、低い押圧力でも容易に変形することができるからである。ここで針状とは、粒子の径と長さの比(アスペクト比)が3以上のものと定義する。断面が円でない粒子の場合は、断面の最大長さを径としてアスペクト比を求める。ただし必ずしもまっすぐな形状を有する必要はなく、多少の曲がりや枝分かれがあっても問題なく使用できる。また微細な粒子を多数つなげて針状に形成したものも好ましく使用できる。
粒子の径と長さの比(アスペクト比)が高いほど嵩高い2次粒子を形成することができるため、アスペクト比は5以上が好ましい(請求項5)。更に好ましくは10以上である。
The primary particles have a needle shape. This is because when a plurality of acicular particles are aggregated, bulky secondary particles with many voids can be formed, and they can be easily deformed even with a low pressing force. Here, the needle shape is defined as a particle having a ratio of particle diameter to length (aspect ratio) of 3 or more. In the case of particles having a non-circular cross section, the aspect ratio is obtained using the maximum length of the cross section as a diameter. However, it is not always necessary to have a straight shape, and even if there are some bends or branches, it can be used without any problem. Moreover, what formed many needle | hooks by connecting many fine particles can be used preferably.
The higher the particle diameter / length ratio (aspect ratio), the more bulky secondary particles can be formed. Therefore, the aspect ratio is preferably 5 or more. More preferably, it is 10 or more.

また導電性粒子を絶縁性樹脂中に分散させて異方導電膜として使用する場合、電極間距離が小さい、いわゆるファインピッチの接続においては、導電性粒子の大きさが隣り合う電極間の距離よりも大きいと横方向の電極同士を接続してしまい、絶縁不良が生じる。そのため2次粒子としての導電性粒子のサイズを小さくする必要がある。このような2次粒子を得るためには1次粒子のサイズを小さくする必要があるが、1次粒子の長さのみを小さくするとアスペクト比が小さくなるため、径が小さい方が好ましい。具体的には、1次粒子の径は1μm以下であることが好ましい(請求項6)。   In addition, when conductive particles are dispersed in an insulating resin and used as an anisotropic conductive film, the distance between the electrodes is small, in the so-called fine pitch connection, the size of the conductive particles is larger than the distance between adjacent electrodes. If it is too large, the electrodes in the horizontal direction are connected to each other, resulting in poor insulation. Therefore, it is necessary to reduce the size of the conductive particles as secondary particles. In order to obtain such secondary particles, it is necessary to reduce the size of the primary particles. However, since the aspect ratio is reduced when only the length of the primary particles is reduced, the smaller one is preferable. Specifically, the diameter of the primary particles is preferably 1 μm or less (Claim 6).

導電性粒子の粒径は隣り合う電極間スペース幅以下である必要がある。更に隣り合う電極間スペース幅の1/2以下であると絶縁性が向上して好ましい。一般に異方導電膜が用いられる用途においては、電極間スペース幅は10〜1000μmの範囲である。また導電性粒子の粒径は異方導電膜の厚み以下とする必要がある。異方導電膜の膜厚より粒径が大きいと膜表面から粒子が飛び出て、うまくリール状に巻けない等の生産工程での問題や、粒子の酸化という問題が生じる。これより導電性粒子の粒径は、異方導電膜の膜厚以下であり、かつ電極間スペース幅の1/2以下とすることが好ましい。さらに、導電性粒子の粒径が小さすぎると実装加圧時の変形量が小さくなるので、電極の高さばらつきを吸収しづらくなり、粒径の下限は2μmである。これらのことより、導電性粒子の粒径は2μm〜50μmが好ましい(請求項7)。   The particle size of the conductive particles needs to be not more than the space width between adjacent electrodes. Furthermore, it is preferable that it is 1/2 or less of the space width between adjacent electrodes since the insulation is improved. In applications where an anisotropic conductive film is generally used, the inter-electrode space width is in the range of 10 to 1000 μm. Moreover, the particle size of electroconductive particle needs to be below the thickness of an anisotropic conductive film. If the particle size is larger than the thickness of the anisotropic conductive film, there will be a problem in the production process such that the particles jump out of the film surface and cannot be wound well in a reel form, and there is a problem of particle oxidation. Accordingly, the particle diameter of the conductive particles is preferably not more than the thickness of the anisotropic conductive film and not more than ½ of the inter-electrode space width. Furthermore, if the particle size of the conductive particles is too small, the amount of deformation at the time of mounting pressurization becomes small, so it becomes difficult to absorb the height variation of the electrodes, and the lower limit of the particle size is 2 μm. Accordingly, the particle diameter of the conductive particles is preferably 2 μm to 50 μm.

導電性粒子の粒径は、CCD顕微鏡観察等の方法により直接測定する。粒子の最大径をその粒子の粒径とし、以下の方法によって測定する。すなわち、粒子をX−Y軸上に投影し、その投影長を測定する。X−Y軸を回転させた時、ある角度で投影された粒子の長さが最大となり、この時の投影長が最大径である。   The particle size of the conductive particles is directly measured by a method such as CCD microscope observation. The maximum diameter of the particles is defined as the particle diameter of the particles, and the measurement is performed by the following method. That is, the particle is projected on the XY axis, and the projection length is measured. When the XY axis is rotated, the length of the particle projected at a certain angle becomes maximum, and the projection length at this time is the maximum diameter.

本発明の導電性粒子は、嵩高い、すなわち空隙部が多いほど低い押圧力でも容易に変形して好ましい。この嵩高さの評価指標として見かけ粒子密度を使用する。ここで、見かけ粒子密度とは、表面に凹凸がある粒子の外周を体積とした場合の密度である。すなわち、粒子表面の割れ目、入口の狭い凹み、開いた空洞を粒子の体積に算入して求めるものであり、粒子の表面を濡らさない液体を用いて測定する。疎液粒子密度ともいう。本発明の目的を達成するためには、2次粒子の見かけ粒子密度が1次粒子の真密度の80%以下であると、実装時に低い押圧力でも容易に変形して好ましい(請求項8)。更に好ましくは50%以下、より好ましくは30%以下である。   The conductive particles of the present invention are preferably bulky, that is, the more voids, the easier the deformation even with a low pressing force. Apparent particle density is used as an evaluation index of the bulkiness. Here, the apparent particle density is a density when the volume of the outer periphery of the particle having irregularities on the surface. That is, a crack on the particle surface, a narrow dent at the entrance, and an open cavity are calculated by adding to the volume of the particle, and measurement is performed using a liquid that does not wet the particle surface. Also called lyophobic particle density. In order to achieve the object of the present invention, it is preferable that the apparent particle density of the secondary particles is 80% or less of the true density of the primary particles, since it is easily deformed even at a low pressing force during mounting. . More preferably, it is 50% or less, More preferably, it is 30% or less.

このようにして作成した導電性粒子を絶縁性樹脂中に分散させて異方導電膜を作製する。絶縁性樹脂としては、成膜性及び接着性を有する種々の化合物がいずれも使用可能であり、例えば熱可塑性樹脂や硬化性樹脂、液状硬化性樹脂などがあり、特に好ましくはアクリル系樹脂、エポキシ系樹脂、フッ素系樹脂、フェノール系樹脂などを挙げることができる。これらの絶縁性樹脂を溶媒に溶解した溶液中に導電性粒子を分散させ、分散溶液を得た後、この分散溶液をロールコーター等で塗工して薄い膜を形成し、その後溶媒を乾燥等により除去することによりフィルム状の異方導電膜が得られる。膜の厚みは特に限定されないが、通常10〜50μmである。   The anisotropic conductive film is manufactured by dispersing the conductive particles thus prepared in an insulating resin. As the insulating resin, any of various compounds having film-forming properties and adhesiveness can be used, and examples thereof include thermoplastic resins, curable resins, and liquid curable resins, and particularly preferable are acrylic resins and epoxy resins. Resin, fluorine resin, phenol resin and the like. Conductive particles are dispersed in a solution obtained by dissolving these insulating resins in a solvent to obtain a dispersion solution. Then, the dispersion solution is applied with a roll coater to form a thin film, and then the solvent is dried. A film-like anisotropic conductive film is obtained by removing by the above. Although the thickness of a film | membrane is not specifically limited, Usually, it is 10-50 micrometers.

導電性粒子の配合量は、異方導電接着剤の全体積に対して0.01〜30体積%の範囲から選ばれ、用途により使い分ける。過剰な導電性粒子による隣接回路の短絡等を防止するためには、0.01〜10体積%とするのがより好ましい。   The compounding quantity of electroconductive particle is selected from the range of 0.01-30 volume% with respect to the total volume of an anisotropic conductive adhesive, and uses properly by use. In order to prevent a short circuit of an adjacent circuit due to excessive conductive particles, the content is more preferably 0.01 to 10% by volume.

本発明は異方導電膜中に分散して用いられる導電性粒子及びそれを用いた異方導電膜を提供する。本発明の導電性粒子を用いた異方導電膜は、電極間の接続等を行う際に、低圧での接続条件でも容易に圧縮変形して接続抵抗が十分に低減するとともに、接続不良を起こすことなく、長期にわたって優れた接続信頼性を発現する。 The present invention provides conductive particles dispersed in an anisotropic conductive film and an anisotropic conductive film using the same. The anisotropic conductive film using the conductive particles of the present invention easily compresses and deforms even under low-pressure connection conditions when the electrodes are connected, and the connection resistance is sufficiently reduced and connection failure occurs. Without any problem, it exhibits excellent connection reliability over a long period of time.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。   Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.

(導電性粒子の作製)
酸化スズ系導電層を被覆した針状酸化チタン粒子(径:0.27μm、長さ:5.2μm、アスペクト比:19、真比重4.4g/ml、石原産業製FT−3000)を1次粒子として使用した。この粒子に無電界ニッケル/コバルト合金めっきを施す際に、めっき液中にポリエチレングリコールを0.5g/lの濃度で溶解させ、この溶液中で1次粒子を10分処理することで、1次粒子の表面にニッケルコバルト合金をめっきすると同時に2次粒子化した。得られた2次粒子を孔径37μmのステンレスメッシュカートリッジフィルターで濾過して過大粒子を除去し、洗浄回収して導電性粒子を得た。得られた導電性粒子の見かけ粒子密度は1.1g/mlであり、2次粒子の見かけ粒子密度/1次粒子の真密度=25%であった。
(Preparation of conductive particles)
Acicular titanium oxide particles (diameter: 0.27 μm, length: 5.2 μm, aspect ratio: 19, true specific gravity 4.4 g / ml, FT-3000 manufactured by Ishihara Sangyo) coated with a tin oxide-based conductive layer are primary. Used as particles. When electroless nickel / cobalt alloy plating is performed on these particles, polyethylene glycol is dissolved at a concentration of 0.5 g / l in the plating solution, and the primary particles are treated in this solution for 10 minutes to produce primary particles. The surface of the particles was plated with a nickel-cobalt alloy and simultaneously formed into secondary particles. The obtained secondary particles were filtered through a stainless mesh cartridge filter having a pore diameter of 37 μm to remove excessive particles, and washed and recovered to obtain conductive particles. The apparent particle density of the obtained conductive particles was 1.1 g / ml, and the apparent particle density of secondary particles / true density of primary particles = 25%.

(形状評価試験)
得られた導電性粒子0.01gあたり10.0gのアクリシラップSY−105〔(株)カナエの商品名〕と、0.4gの2,2′−アゾビス(イソブチロニトリル)を混合した後、10分間の遠心かく拌と10分間の脱泡とを経て均一に分散させることで形状評価用の液状の複合材料を調製した。次に、この複合材料を、ガラス板上に、ドクターナイフ(ギャップ25μm)を用いて塗布した後、100℃で30分間、加熱して乾燥させると共に、樹脂を硬化させて、導電性粒子が均一に分散した形状評価用の膜を作製した。
そして、上記膜の表面の顕微鏡映像を、顕微鏡に接続したCCDカメラを用いてコンピュータに取り込み、コンピュータで画像解析を行って、2次粒子の粒径を測定した。得られた2次粒子の粒径は10μmであった。
(Shape evaluation test)
After mixing 10.0 g of Acrysilap SY-105 (trade name of Kanae Co., Ltd.) and 0.01 g of 2,2′-azobis (isobutyronitrile) per 0.01 g of the obtained conductive particles A liquid composite material for shape evaluation was prepared by uniformly dispersing through 10 minutes of centrifugal stirring and 10 minutes of defoaming. Next, after applying this composite material on a glass plate using a doctor knife (gap 25 μm), heating and drying at 100 ° C. for 30 minutes and curing the resin, the conductive particles are uniform. A film for shape evaluation dispersed in was prepared.
And the microscope image of the surface of the said film | membrane was taken in into the computer using the CCD camera connected to the microscope, the image analysis was performed with the computer, and the particle size of the secondary particle was measured. The obtained secondary particles had a particle size of 10 μm.

(塗工溶液の作製)
絶縁性樹脂として、ビフェニル骨格を導入した平均分子量39000のエポキシ樹脂(JER(株)製、エピコートYL6954)と、平均分子量320のナフタレン型エポキシ樹脂(大日本インキ化学工業(株)製、HP4032)、マイクロカプセル型イミダゾール系硬化剤(旭化成エポキシ(株)製、ノバキュアHX3941)とを、重量比で50/40/10の割合で用い、これらをシクロヘキサノンに溶解し固形分50%の溶液を作製した。この溶液に固形分の総量(導電性粒子+樹脂)に占める割合で表される充填率が1体積%となるように前記導電性粒子を添加した後、遠心ミキサーを用いて攪拌することで均一分散し、異方導電膜用の塗工溶液を調整した。
(Preparation of coating solution)
As an insulating resin, an epoxy resin having an average molecular weight of 39000 (Epicoat YL6954 manufactured by JER Co., Ltd.) and a naphthalene type epoxy resin having an average molecular weight of 320 (manufactured by Dainippon Ink & Chemicals, Inc., HP4032) introduced with a biphenyl skeleton, A microcapsule type imidazole curing agent (manufactured by Asahi Kasei Epoxy Co., Ltd., Novacure HX3941) was used at a weight ratio of 50/40/10, and these were dissolved in cyclohexanone to prepare a solution having a solid content of 50%. The conductive particles are uniformly added to the solution so that the filling rate represented by the ratio of the total solid content (conductive particles + resin) is 1% by volume, and then stirred using a centrifugal mixer. Dispersion was performed to prepare a coating solution for the anisotropic conductive film.

(異方導電膜の作製)
前記で調整した塗工溶液を、離型処理したPETフィルム上にロールコーターを用いて塗布した後、60℃10分間乾燥し、固化することで、厚み35ミクロンのフィルム状の異方導電膜を得た。
(Production of anisotropic conductive film)
The coating solution prepared above was applied onto a release-treated PET film using a roll coater, dried at 60 ° C. for 10 minutes, and solidified to form a 35-micron-thick anisotropic conductive film. Obtained.

(接続抵抗評価)
幅50μm、長さ18μmの電極が100μm間隔で配列された電極領域を有するフレキシブルプリント配線板(FPC)を用意し、このFPCの上記電極領域の上に、製造した異方導電膜を重ねた状態で、60℃に加熱しながら、1MPaの押圧力で10秒間加圧することによって、FPCと異方導電膜とを仮接着させた。次に、片面にITO膜を蒸着したガラス基板を、ITO膜が異方導電膜と接するように重ねた状態で、200℃に加熱しながら表1に示す3種類の押圧力で10秒間加圧して熱接着させた。異方導電膜とITO膜とを介して導電接続された隣り合う2つの電極間の抵抗値をデジタルマルチメーターを用いて測定し、この測定値の1/2を異方導電膜の厚み方向の接続抵抗とした。
(Connection resistance evaluation)
A flexible printed wiring board (FPC) having an electrode region in which electrodes having a width of 50 μm and a length of 18 μm are arranged at intervals of 100 μm is prepared, and the manufactured anisotropic conductive film is overlaid on the electrode region of the FPC Then, while heating to 60 ° C., the FPC and the anisotropic conductive film were temporarily bonded by pressing with a pressing force of 1 MPa for 10 seconds. Next, a glass substrate with an ITO film deposited on one side is stacked with the ITO film in contact with the anisotropic conductive film and heated for 10 seconds with the three types of pressing forces shown in Table 1 while heating to 200 ° C. And thermally bonded. The resistance value between two adjacent electrodes that are conductively connected via the anisotropic conductive film and the ITO film is measured using a digital multimeter, and ½ of this measured value is measured in the thickness direction of the anisotropic conductive film. Connection resistance was used.

(絶縁抵抗評価)
幅50μm、厚み18μmの電極が100μm間隔で配列された電極領域を有するフレキシブルプリント配線板(FPC)を用意し、このFPCの上記電極領域の上に、製造した異方導電膜を重ねた状態で、60℃に加熱しながら、1MPaの押圧力で10秒間加圧することによって、FPCと異方導電膜とを仮接着させた。次に、ITO膜を蒸着していないガラス基板を、ガラス基板が異方導電膜と接するように重ね、接続抵抗評価時と同じ条件で加熱、加圧して熱接着させた。隣り合う2つの電極間の抵抗値を絶縁抵抗計を用いて印加電圧25Vで測定して、異方導電膜の面方向の絶縁抵抗とした。絶縁抵抗1GΩ以上を○、1GΩ以下を×として評価した。
(Insulation resistance evaluation)
A flexible printed wiring board (FPC) having an electrode region in which electrodes having a width of 50 μm and a thickness of 18 μm are arranged at intervals of 100 μm is prepared, and the manufactured anisotropic conductive film is overlaid on the electrode region of the FPC. The FPC and the anisotropic conductive film were temporarily bonded by pressing for 10 seconds with a pressing force of 1 MPa while heating to 60 ° C. Next, the glass substrate on which the ITO film was not deposited was overlapped so that the glass substrate was in contact with the anisotropic conductive film, and was heated and pressed under the same conditions as in the connection resistance evaluation to be thermally bonded. The resistance value between two adjacent electrodes was measured at an applied voltage of 25 V using an insulation resistance meter to obtain the insulation resistance in the surface direction of the anisotropic conductive film. The insulation resistance of 1 GΩ or more was evaluated as ◯, and 1 GΩ or less as x.

(耐熱・耐湿試験)
前記のFPC−ガラス基板接合体を80℃−95%に設定した高温高湿槽内に投入し、500時間経過後に取り出し、再び前記と同様にして接続抵抗及び絶縁抵抗を測定した。その結果を表1に示す。なお、接続抵抗は10Ω以下を○、10〜100Ωを△、100Ω以上を×と表し、絶縁抵抗は1GΩ以上を○、1GΩ以下を×と表す。
(Heat and humidity resistance test)
The FPC-glass substrate assembly was put into a high-temperature and high-humidity tank set at 80 ° C. to 95%, taken out after 500 hours, and connection resistance and insulation resistance were measured again in the same manner as described above. The results are shown in Table 1. In addition, connection resistance represents 10Ω or less as ◯, 10 to 100Ω as Δ, and 100Ω or more as ×, and insulation resistance as 1GΩ or more as ○, and 1GΩ or less as ×.

1次粒子として、鎖状ニッケル微粒子(平均粒径200nmのニッケル微粒子が直鎖状に連結したもの。径:0.2μm、長さ3μm〜15μm、真密度8.8g/ml)を使用した。この粒子に金めっきを施す際に、めっき液中にポリエチレングリコールを0.5g/lの濃度で溶解させ、この80℃に加温した溶液中で1次粒子を10分処理することで、1次粒子の表面に金をめっきすると同時に2次粒子化した。得られた2次粒子を孔径37μmのステンレスメッシュカートリッジフィルターで濾過して過大粒子を除去し、洗浄回収して導電性粒子を得た。得られた導電性粒子の見かけ粒子密度は 1.5g/mlであり、2次粒子の見かけ粒子密度/1次粒子の真密度=17%であった。実施例1と同様に形状評価試験を行ったところ、得られた導電性粒子の粒径は10μmであった。
以下、実施例1と同様にして異方導電膜を作製し、接続抵抗評価、絶縁抵抗評価、耐熱・耐湿試験を行った。その結果を表1に示す。
As primary particles, linear nickel fine particles (nickel fine particles having an average particle diameter of 200 nm connected in a linear form. Diameter: 0.2 μm, length: 3 μm to 15 μm, true density: 8.8 g / ml) were used. When gold plating is performed on the particles, polyethylene glycol is dissolved at a concentration of 0.5 g / l in the plating solution, and the primary particles are treated in the solution heated to 80 ° C. for 10 minutes. Secondary particles were formed at the same time when gold was plated on the surface of the secondary particles. The obtained secondary particles were filtered through a stainless mesh cartridge filter having a pore diameter of 37 μm to remove excessive particles, and washed and recovered to obtain conductive particles. The apparent particle density of the obtained conductive particles was 1.5 g / ml, and the apparent particle density of secondary particles / true density of primary particles = 17%. When the shape evaluation test was performed in the same manner as in Example 1, the particle size of the obtained conductive particles was 10 μm.
Thereafter, an anisotropic conductive film was prepared in the same manner as in Example 1, and a connection resistance evaluation, an insulation resistance evaluation, and a heat and moisture resistance test were performed. The results are shown in Table 1.

[比較例1]
導電性粒子として、2次粒子化工程を特に加えていない粒径5μmのニッケル/金被覆樹脂粒子(積水化学工業製 ミクロパールAU−205)を使用したこと以外は実施例1と同様にして接続抵抗評価、絶縁抵抗評価、耐熱・耐湿試験を行った。その結果を表1に示す。
[Comparative Example 1]
Connection was made in the same manner as in Example 1 except that nickel / gold coated resin particles (Sekisui Chemical Co., Ltd., Micropearl AU-205) having a particle size of 5 μm, in which no secondary particle forming step was added, were used as conductive particles. Resistance evaluation, insulation resistance evaluation, and heat / moisture resistance tests were performed. The results are shown in Table 1.

[比較例2]
導電性粒子として、2次粒子化工程を特に加えていない粒径3μm〜7μmのニッケル粒子(インコ東京ニッケル製 Inco Type123)を使用したこと以外は実施例1と同様にして接続抵抗評価、絶縁抵抗評価、耐熱・耐湿試験を行った。その結果を表1に示す。
[Comparative Example 2]
Evaluation of connection resistance and insulation resistance in the same manner as in Example 1 except that nickel particles (Inco Type 123 manufactured by Inco Tokyo Nickel Co., Ltd.) having a particle size of 3 μm to 7 μm with no secondary particle forming step added were used as the conductive particles. Evaluation, heat and humidity resistance tests were conducted. The results are shown in Table 1.

Figure 2006066163
Figure 2006066163

表1の結果は、本発明例(実施例1、2)の導電性粒子を用いた異方導電膜で実装された場合は、0.35MPaと低い押圧力で実装した場合も接続抵抗、絶縁抵抗に優れ、かつ耐湿・耐熱試験後もその性能を維持することを示している。一方、本発明の範囲外の比較例1,2では3.5MPaと高い押圧力で実装した場合は良好な接続抵抗を示すが、0.7MPa以下の押圧力で実装すると耐熱・耐湿試験において接続抵抗が増加する。この結果から明らかなように、本発明例の導電性粒子を用いることで、低い押圧力においても良好な接続抵抗と高い信頼性を有する異方導電膜を得ることができる。   The results in Table 1 show that when mounted with anisotropic conductive films using conductive particles of Examples of the present invention (Examples 1 and 2), connection resistance and insulation even when mounted with a low pressing force of 0.35 MPa. It shows excellent resistance and maintains its performance after humidity and heat resistance tests. On the other hand, Comparative Examples 1 and 2 outside the scope of the present invention show good connection resistance when mounted at a high pressure of 3.5 MPa, but when mounted at a pressure of 0.7 MPa or less, they are connected in a heat / humidity test. Resistance increases. As is apparent from this result, by using the conductive particles of the present invention example, an anisotropic conductive film having good connection resistance and high reliability can be obtained even at a low pressing force.

本発明の導電性粒子の形態を示す概念図である。It is a conceptual diagram which shows the form of the electroconductive particle of this invention. 本発明の導電性粒子の加圧時の形態を示す概念図である。It is a conceptual diagram which shows the form at the time of pressurization of the electroconductive particle of this invention. 本発明の導電性粒子を用いた異方導電膜の形態を示す図である。It is a figure which shows the form of the anisotropic electrically conductive film using the electroconductive particle of this invention.

符号の説明Explanation of symbols

1 ・・・1次粒子
2 ・・・導電性粒子(2次粒子)
3 ・・・絶縁性樹脂
DESCRIPTION OF SYMBOLS 1 ... Primary particle 2 ... Conductive particle (secondary particle)
3 ... Insulating resin

Claims (9)

複数の針状の1次粒子が集合した2次粒子であって、少なくとも表面が導電性を有することを特徴とする異方導電膜用導電性粒子。   A conductive particle for an anisotropic conductive film, which is a secondary particle in which a plurality of needle-shaped primary particles are aggregated, and at least the surface has conductivity. 少なくとも表面が導電性を有する針状の1次粒子を複数集合させ、2次粒子としたことを特徴とする異方導電膜用導電性粒子。   Conductive particles for an anisotropic conductive film, characterized in that a plurality of needle-like primary particles having at least a surface of conductivity are aggregated to form secondary particles. 前記2次粒子の表面に導電層を被覆したことを特徴とする請求項2に記載の異方導電膜用導電性粒子。   The conductive particle for anisotropic conductive film according to claim 2, wherein a surface of the secondary particle is coated with a conductive layer. 針状の1次粒子を複数集合させて2次粒子とし、2次粒子の表面に導電層を被覆したことを特徴とする異方導電膜用導電性粒子。   A conductive particle for an anisotropic conductive film, wherein a plurality of needle-like primary particles are aggregated to form secondary particles, and the surface of the secondary particles is coated with a conductive layer. 1次粒子の径と長さの比(アスペクト比)が5以上であることを特徴とする請求項1〜4のいずれかに記載の異方導電膜用導電性粒子。   5. The conductive particle for anisotropic conductive film according to claim 1, wherein the ratio (aspect ratio) of the diameter and length of the primary particles is 5 or more. 1次粒子の径が1μm以下であることを特徴とする請求項1〜5のいずれかに記載の異方導電膜用導電性粒子。   The conductive particle for anisotropic conductive film according to any one of claims 1 to 5, wherein the diameter of the primary particle is 1 µm or less. 2次粒子の粒径が2μmから50μmであることを特徴とする請求項1〜5のいずれかに記載の異方導電膜用導電性粒子。   The conductive particles for anisotropic conductive film according to any one of claims 1 to 5, wherein the secondary particles have a particle size of 2 µm to 50 µm. 2次粒子の見かけ粒子密度が1次粒子の真密度の80%以下であることを特徴とする請求項1〜7のいずれかに記載の異方導電膜用導電性粒子。   The conductive particle for anisotropic conductive film according to any one of claims 1 to 7, wherein the apparent particle density of the secondary particles is 80% or less of the true density of the primary particles. 請求項1〜8のいずれかに記載の異方導電膜用導電性粒子を絶縁性樹脂中に分散させたことを特徴とする異方導電膜。   An anisotropic conductive film, wherein the conductive particles for the anisotropic conductive film according to claim 1 are dispersed in an insulating resin.
JP2004246087A 2004-08-26 2004-08-26 Conductive particles for anisotropic conductive film and anisotropic conductive film using them Pending JP2006066163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246087A JP2006066163A (en) 2004-08-26 2004-08-26 Conductive particles for anisotropic conductive film and anisotropic conductive film using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246087A JP2006066163A (en) 2004-08-26 2004-08-26 Conductive particles for anisotropic conductive film and anisotropic conductive film using them

Publications (1)

Publication Number Publication Date
JP2006066163A true JP2006066163A (en) 2006-03-09

Family

ID=36112479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246087A Pending JP2006066163A (en) 2004-08-26 2004-08-26 Conductive particles for anisotropic conductive film and anisotropic conductive film using them

Country Status (1)

Country Link
JP (1) JP2006066163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125965A1 (en) * 2009-04-28 2010-11-04 日立化成工業株式会社 Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
WO2010125966A1 (en) * 2009-04-28 2010-11-04 日立化成工業株式会社 Anisotropic conductive particles
JPWO2014017658A1 (en) * 2012-07-24 2016-07-11 株式会社ダイセル Conductive fiber-coated particles, and curable composition and cured product thereof
WO2017154493A1 (en) * 2016-03-10 2017-09-14 日本ゼオン株式会社 Dye-sensitized solar cell module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346556A (en) * 2002-05-24 2003-12-05 Sumitomo Electric Ind Ltd Anisotropic conductive material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346556A (en) * 2002-05-24 2003-12-05 Sumitomo Electric Ind Ltd Anisotropic conductive material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125965A1 (en) * 2009-04-28 2010-11-04 日立化成工業株式会社 Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
WO2010125966A1 (en) * 2009-04-28 2010-11-04 日立化成工業株式会社 Anisotropic conductive particles
JP2010277996A (en) * 2009-04-28 2010-12-09 Hitachi Chem Co Ltd Anisotropic conductive particles
EP2426672A1 (en) * 2009-04-28 2012-03-07 Hitachi Chemical Company, Ltd. Anisotropic conductive particles
CN102396113A (en) * 2009-04-28 2012-03-28 日立化成工业株式会社 Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
CN102396038A (en) * 2009-04-28 2012-03-28 日立化成工业株式会社 Anisotropic conductive particles
EP2426672A4 (en) * 2009-04-28 2012-12-12 Hitachi Chemical Co Ltd Anisotropic conductive particles
CN102396038B (en) * 2009-04-28 2014-03-12 日立化成株式会社 Anisotropic conductive particles
JPWO2014017658A1 (en) * 2012-07-24 2016-07-11 株式会社ダイセル Conductive fiber-coated particles, and curable composition and cured product thereof
WO2017154493A1 (en) * 2016-03-10 2017-09-14 日本ゼオン株式会社 Dye-sensitized solar cell module

Similar Documents

Publication Publication Date Title
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4993880B2 (en) Anisotropic conductive adhesive sheet and finely connected structure
TWI394174B (en) Conductive particles, method for producing conductive particles, anisotropic conductive material, and connecting structure
KR101222375B1 (en) Conductive particles with attached insulating particles, method for producing conductive particles with attached insulating particles, anisotropic conductive material, and connection structure
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP6333552B2 (en) Conductive particles, conductive materials, and connection structures
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
KR20130122730A (en) Conductive particles, anisotropic conductive material and connection structure
JP5476221B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP6453032B2 (en) Conductive particles, conductive materials, and connection structures
WO2007099965A1 (en) Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
JP5530571B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP2006066163A (en) Conductive particles for anisotropic conductive film and anisotropic conductive film using them
JP5032961B2 (en) Anisotropic conductive film and bonded body using the same
JP2011108446A (en) Conductive particle, and method of manufacturing the same
JP5209778B2 (en) Anisotropic conductive film and bonded body using the same
JP2014062184A (en) Anisotropic conductive film, connection method, and joined body
JP6507551B2 (en) Conductive particles
JP4347974B2 (en) Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP5698080B2 (en) Anisotropic conductive film, connection method, and joined body
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
JP5169512B2 (en) Planar antenna and manufacturing method thereof
JP6411194B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP6355474B2 (en) Conductive particles, conductive materials, and connection structures
JP2011066015A (en) Conductive particle, anisotropic conductive material, and connection structure

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A621 Written request for application examination

Effective date: 20070319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091125

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427