JP5160854B2 - Method for producing dye-sensitized solar cell element - Google Patents

Method for producing dye-sensitized solar cell element

Info

Publication number
JP5160854B2
JP5160854B2 JP2007269003A JP2007269003A JP5160854B2 JP 5160854 B2 JP5160854 B2 JP 5160854B2 JP 2007269003 A JP2007269003 A JP 2007269003A JP 2007269003 A JP2007269003 A JP 2007269003A JP 5160854 B2 JP5160854 B2 JP 5160854B2
Authority
JP
Japan
Prior art keywords
electrode
layer
resin layer
dye
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007269003A
Other languages
Japanese (ja)
Other versions
JP2009099353A (en
Inventor
幸子 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2007269003A priority Critical patent/JP5160854B2/en
Publication of JP2009099353A publication Critical patent/JP2009099353A/en
Application granted granted Critical
Publication of JP5160854B2 publication Critical patent/JP5160854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、色素増感太陽電池素子の製造方法に関し、特に主電極および対向電極の集電極を露出させない色素増感太陽電池素子の製造方法に関する。   The present invention relates to a method for producing a dye-sensitized solar cell element, and more particularly, to a method for producing a dye-sensitized solar cell element that does not expose a collector electrode of a main electrode and a counter electrode.

化石燃料に代るエネルギー源として、太陽光を電力に変換できる太陽電池が注目され、種々の研究が行われてきた。現在、結晶系シリコン基板を用いた太陽電池および薄膜シリコン太陽電池が実用化され始めている。しかし、前者はシリコン基板の製造コストが高いという問題があり、後者は多種の半導体製造用ガスや装置および複雑なプロセスを用いる必要があるために製造コストが高くなるという問題がある。このため、いずれの太陽電池においても光電変換の高効率化による発電出力当たりのコストを低減する努力が続けられているが、上記の問題を解決するには至っていない。   As an energy source to replace fossil fuel, solar cells capable of converting sunlight into electric power have attracted attention and various studies have been conducted. At present, solar cells using a crystalline silicon substrate and thin film silicon solar cells are beginning to be put into practical use. However, the former has a problem that the manufacturing cost of the silicon substrate is high, and the latter has a problem that the manufacturing cost becomes high because it is necessary to use various semiconductor manufacturing gases and apparatuses and complicated processes. For this reason, although efforts have been made to reduce the cost per power generation output by increasing the efficiency of photoelectric conversion in any solar cell, the above problem has not been solved.

色素増感型太陽電池は、1991年にスイスのローザンヌ大学のグレッツェルらによって開発されたものであり、グレッツェルセルとも呼ばれている。これは、表面に透明導電性膜を有する透明なガラスなどの基板に、受光に伴い電子を放出する色素を担持した半導体層が形成された主電極と、電極に対して所定の間隔を隔てて対面する酸化還元触媒層をもつ対向電極と、主電極と対向電極との間に充填された電解質と、電解質を封止する樹脂層で主に構成されている。一般的には、半導体層には酸化チタン、酸化亜鉛などが使用され、対向電極には白金電極、カーボン電極などが使用されている。色素としては主にルテニウム錯体が使用され、電解質層としてはヨウ素を含む電解液が使用されている。上記の色素増感型太陽電池においては、増感色素が太陽光を吸収して励起されると電子を放出する現象、電子が外部回路を通り、電解質のヨウ素が対向電極から電子を受け取る現象、電子を放出した色素が電解質層のヨウ素イオンから電子を受け取り再生される現象を利用している。この素子は、酸化チタン等の安価な酸化物半導体を用い、シンプルなプロセスで作製できるため、安価な色素増感型太陽電池素子を提供でき、しかも色素が可視光を効率よく吸収するため、可視光線のほぼ全波長領域の光を電気に変換できるという利点があり、注目を集めている。   The dye-sensitized solar cell was developed in 1991 by Gretzer et al. At the University of Lausanne in Switzerland and is also called a Gretzell cell. This is because a main electrode in which a semiconductor layer carrying a dye that emits electrons upon reception of light is formed on a substrate such as a transparent glass having a transparent conductive film on the surface, and a predetermined distance from the electrode. It is mainly composed of a counter electrode having a redox catalyst layer facing each other, an electrolyte filled between the main electrode and the counter electrode, and a resin layer for sealing the electrolyte. In general, titanium oxide, zinc oxide, or the like is used for the semiconductor layer, and a platinum electrode, a carbon electrode, or the like is used for the counter electrode. A ruthenium complex is mainly used as the dye, and an electrolytic solution containing iodine is used as the electrolyte layer. In the above dye-sensitized solar cell, a phenomenon in which electrons are emitted when the sensitizing dye absorbs sunlight and is excited, a phenomenon in which electrons pass through an external circuit, and iodine in the electrolyte receives electrons from the counter electrode, It utilizes the phenomenon in which the dye that has emitted electrons receives and regenerates electrons from iodine ions in the electrolyte layer. Since this element can be manufactured by a simple process using an inexpensive oxide semiconductor such as titanium oxide, an inexpensive dye-sensitized solar cell element can be provided, and the dye absorbs visible light efficiently. It has the advantage of being able to convert light in almost all wavelength regions of light into electricity, and has attracted attention.

また、セルサイズが大型化した場合には透明導電膜の抵抗を下げる必要があるため、透明導電膜上に銀ペーストなど低抵抗の導電性塗料を半導体層の周辺に配置されるようなパターンで印刷し集電極を形成し抵抗を下げるようにしている。
このような色素増感太陽電池素子の従来の製造方法は、封止材としての熱可塑性合成樹脂を主電極と対向電極との間に配置した後、過熱して主電極と対向電極を張り合わせるようにしている(例えば、特許文献1参照)。
特開2005−243557号公報(段落「0062」〜段落「0071」、図1)
In addition, when the cell size is increased, it is necessary to lower the resistance of the transparent conductive film. Therefore, a low resistance conductive paint such as silver paste is placed on the periphery of the semiconductor layer on the transparent conductive film. Printing is performed to form a collecting electrode to reduce the resistance.
In the conventional method of manufacturing such a dye-sensitized solar cell element, a thermoplastic synthetic resin as a sealing material is disposed between the main electrode and the counter electrode, and then heated to bond the main electrode and the counter electrode together. (For example, refer to Patent Document 1).
Japanese Patent Laying-Open No. 2005-243557 (paragraph “0062” to paragraph “0071”, FIG. 1)

しかしながら、上述した従来の技術においては、主電極と対向電極を貼り合わせた際に封止剤がつぶれて主電極および対向電極の集電極が露出しショートするという問題がある。特に、スクリーン印刷で印刷された銀ペーストの膜厚はパターン中央部に比べてパターン端部が厚くなるため、封止剤がつぶれるとパターン端部が露出しやすいという問題がある。   However, in the above-described conventional technique, there is a problem that when the main electrode and the counter electrode are bonded together, the sealant is crushed and the collector electrodes of the main electrode and the counter electrode are exposed and short-circuited. In particular, the film thickness of the silver paste printed by screen printing is thicker at the pattern edge than at the center of the pattern, so that the pattern edge is easily exposed when the sealant is crushed.

本発明は、このような問題を解決することを目的とする。   The present invention aims to solve such problems.

そのため、本発明は、透明導電性膜を有する基板に、受光に伴い電子を放出する色素を担持した半導体層およびその半導体層の周辺に集電極層が形成された主電極と、透明導電性膜を有する基板に酸化還元触媒層が形成された対向電極と、所定の間隔を隔てて対面する主電極と対向電極との間に充填された電解質を封止する第1および第2の樹脂層とを備えた色素増感太陽電池素子の製造方法において、主電極に形成された集電極層の側面および上面に第1の樹脂層を形成し、硬化させる工程と、硬化した第1の樹脂層に第2の樹脂層を積層する工程と、硬化した第1の樹脂層と、これに積層された第2の樹脂層とを介して主電極と対向電極とを貼り合せた後に、第2の樹脂層を硬化させる工程とを有することを特徴とする。   Therefore, the present invention provides a semiconductor layer carrying a dye that emits electrons upon receiving light on a substrate having a transparent conductive film, a main electrode in which a collector electrode layer is formed around the semiconductor layer, and a transparent conductive film A counter electrode in which a redox catalyst layer is formed on a substrate having a first and second resin layers for sealing an electrolyte filled between the main electrode and the counter electrode facing each other at a predetermined interval; In the method for producing a dye-sensitized solar cell element comprising: a step of forming a first resin layer on the side surface and the upper surface of the collector electrode layer formed on the main electrode, and curing the first resin layer; After bonding the main electrode and the counter electrode through the step of laminating the second resin layer, the cured first resin layer, and the second resin layer laminated thereon, the second resin And a step of curing the layer.

このようにした本発明は、主電極と対向電極を貼り合わせた際に、集電極を露出させることがなく、主電極と対向電極とのショートを防止することができるという効果が得られる。   According to the present invention as described above, when the main electrode and the counter electrode are bonded together, the collector electrode is not exposed, and an effect that a short circuit between the main electrode and the counter electrode can be prevented is obtained.

以下、図面を参照して本発明による色素増感太陽電池素子の製造方法の実施例を説明する。   Examples of the method for producing a dye-sensitized solar cell element according to the present invention will be described below with reference to the drawings.

まず、色素増感太陽電池素子を図1の実施例における色素増感太陽電池素子の要部断面図に基づいて説明する。
図1において、色素増感太陽電池素子1は、表面に電極としての透明導電性膜3を有する透明なガラスなどの基板2と、その基板2に受光に伴い電子を放出する色素を担持した半導体層5と、その半導体層5の周辺に配置され、銀ペーストなどの集電極層6が形成された主電極と、その主電極に対して所定の間隔を隔てて対面する酸化還元触媒層4をもつ対向電極と、主電極と対向電極との間に充填された電解質9と、その電解質9を封止するとともに集電極層6の電解液中のヨウ素による腐食を防ぐための樹脂層(第1の樹脂層7および第2の樹脂層8)で構成される。
First, the dye-sensitized solar cell element will be described based on the cross-sectional view of the main part of the dye-sensitized solar cell element in the embodiment of FIG.
In FIG. 1, a dye-sensitized solar cell element 1 includes a substrate 2 such as transparent glass having a transparent conductive film 3 as an electrode on the surface, and a semiconductor carrying a dye that emits electrons upon receiving light on the substrate 2. A main electrode on which a collector electrode layer 6 such as a silver paste is formed, and a redox catalyst layer 4 facing the main electrode with a predetermined distance therebetween. A counter electrode, an electrolyte 9 filled between the main electrode and the counter electrode, and a resin layer for sealing the electrolyte 9 and preventing corrosion of the collector electrode layer 6 due to iodine in the electrolytic solution (first Resin layer 7 and second resin layer 8).

次に、この色素増感太陽電池素子1の製造方法を図2の実施例における色素増感太陽電池素子の製造方法を示す要部断面図に基づいて説明する。
図2(a)に示すように、表面に透明導電性膜3を有する透明なガラスなどの基板2上の中央部の近傍に、受光に伴い電子を放出する色素を担持するための半導体層5とその半導体層5の周辺に配置された銀ペーストなどの集電極層6を焼成して主電極とする。なお、色素の半導体層5への沈着は半導体層5および集電極層6の焼成後に行うものとする。
Next, the manufacturing method of this dye-sensitized solar cell element 1 is demonstrated based on principal part sectional drawing which shows the manufacturing method of the dye-sensitized solar cell element in the Example of FIG.
As shown in FIG. 2 (a), a semiconductor layer 5 for carrying a dye that emits electrons upon receiving light in the vicinity of a central portion on a substrate 2 such as transparent glass having a transparent conductive film 3 on the surface. And the collector electrode layer 6 such as a silver paste disposed around the semiconductor layer 5 is fired to form a main electrode. The dye is deposited on the semiconductor layer 5 after the semiconductor layer 5 and the collector electrode layer 6 are fired.

また、表面に透明導電性膜3を有する透明なガラスなどの基板2上に酸化還元触媒層4を形成し、さらにその酸化還元触媒層4上に主電極と同様の集電極層6を焼成して対向電極とする。
基板2は太陽光を受光する受光面に配置されるものであり、太陽光に対する透過性を備えたものであり、透明導電性膜3は太陽光に対する透過性を有するとともに電導性に優れた金属酸化膜(例えば、フッ素ドープ酸化錫や錫ドープ酸化インジウム)である。
Further, a redox catalyst layer 4 is formed on a transparent glass substrate 2 having a transparent conductive film 3 on the surface, and a collector electrode layer 6 similar to the main electrode is baked on the redox catalyst layer 4. Counter electrode.
The substrate 2 is disposed on a light-receiving surface that receives sunlight, has transparency to sunlight, and the transparent conductive film 3 is a metal having transparency to sunlight and excellent conductivity. It is an oxide film (for example, fluorine-doped tin oxide or tin-doped indium oxide).

また、酸化還元触媒層4は、例えば白金であり、半導体層5は、例えば酸化チタンであり、色素は、例えばルテニウム錯体色素であるが、それらに限定されるものでない。
次に、図2(b)に示すように集電極層6を電解質中のヨウ素による腐食から保護するとともに主電極−対向電極間からの電気的なリークを防ぐために、第1の樹脂層7を主電極および対向電極の集電極層6の上面および側面を覆うように形成し、硬化させる。
The redox catalyst layer 4 is, for example, platinum, the semiconductor layer 5 is, for example, titanium oxide, and the dye is, for example, a ruthenium complex dye, but is not limited thereto.
Next, as shown in FIG. 2B, in order to protect the collector electrode layer 6 from corrosion by iodine in the electrolyte and to prevent electrical leakage from between the main electrode and the counter electrode, the first resin layer 7 is formed. It forms so that the upper surface and side surface of the collector electrode layer 6 of a main electrode and a counter electrode may be covered, and it makes it harden | cure.

ここで、集電極層6の上面とは、主電極と対向電極とを貼り合わせた時に対向電極に向かい合う部位を示すものであり、対向電極の集電極層6の上面とは、主電極と対向電極とを貼り合わせた時に主電極に向かい合う部位を示すものである。そして、第1の樹脂層7は、集電極層6の上面の一部に形成されているものであってもよく、必ずしも上面全体に形成されるものではない。また、集電極層6の側面とは、主電極と対向電極を貼り合わせた時に形成される、電解質9が封入される空間側の面である。   Here, the upper surface of the collector electrode layer 6 indicates a portion facing the counter electrode when the main electrode and the counter electrode are bonded together, and the upper surface of the collector electrode layer 6 of the counter electrode is opposed to the main electrode. It shows a portion facing the main electrode when the electrode is bonded. And the 1st resin layer 7 may be formed in a part of upper surface of the current collection electrode layer 6, and is not necessarily formed in the whole upper surface. Further, the side surface of the collector electrode layer 6 is a surface on the space side in which the electrolyte 9 is enclosed, which is formed when the main electrode and the counter electrode are bonded together.

この第1の樹脂層7のシール材は熱硬化タイプ、紫外線硬化タイプなどがあり、またエポキシ系、シリコン系、ポリイソブチレン系などの樹脂があるが、電解質9を封止する機能を有するものであればこれらに限定しない。熱硬化タイプならば所要温度で所要時間加熱し、紫外線硬化タイプならば紫外線を所要量照射して硬化させる。
次に、図2(c)に示すように硬化させた主電極の第1の樹脂層7の上面に第2の樹脂層8を積層して形成する。この第2の樹脂層8においても電解質9を封止する機能および主電極と対向電極を所望の接着力で接着する機能を有するものであれば硬化タイプおよび樹脂の種類を選ばない。
The sealing material for the first resin layer 7 includes a thermosetting type, an ultraviolet curing type, and the like, and there are resins such as an epoxy type, a silicon type, and a polyisobutylene type, which have a function of sealing the electrolyte 9. If there is, it is not limited to these. If it is a thermosetting type, it is heated for a required time at a required temperature, and if it is an ultraviolet curing type, it is cured by irradiating a required amount of ultraviolet rays.
Next, as shown in FIG. 2C, a second resin layer 8 is formed on the upper surface of the cured first resin layer 7 of the main electrode. Even if the second resin layer 8 has a function of sealing the electrolyte 9 and a function of adhering the main electrode and the counter electrode with a desired adhesive force, any type of curing type or resin can be used.

なお、本実施例では主電極の第1の樹脂層7の上面に第2の樹脂層8を形成したが、硬化させた対向電極の第1の樹脂層7の上面に形成するようにしてもよい。また、硬化させた両方の電極の第1の樹脂層7の上面に形成するようにしてもよい。
次に、図2(d)に示すように主電極と対向電極とを第1の樹脂層7および第2の樹脂層8を介して貼り合わせ、第2の樹脂層8を硬化させてセルを形成する。ここで、第2の樹脂層8も第1の樹脂層7と同様に熱硬化タイプならば所要温度で所要時間加熱し、紫外線硬化タイプならば紫外線を所要量照射して硬化させる。
In the present embodiment, the second resin layer 8 is formed on the upper surface of the first resin layer 7 of the main electrode. However, the second resin layer 8 may be formed on the upper surface of the cured first electrode layer 7 of the counter electrode. Good. Moreover, you may make it form in the upper surface of the 1st resin layer 7 of both the hardened electrodes.
Next, as shown in FIG. 2 (d), the main electrode and the counter electrode are bonded together via the first resin layer 7 and the second resin layer 8, and the second resin layer 8 is cured to form a cell. Form. Here, similarly to the first resin layer 7, the second resin layer 8 is also heated at a required temperature for a required time if it is a thermosetting type, and is cured by irradiating a required amount of ultraviolet light if it is an ultraviolet curable type.

このように硬化させた第1の樹脂層7の上面に第2の樹脂層8を形成し、その第2の樹脂層8を介して主電極と対向電極とを貼り合わせるようにしたことにより、第1の樹脂層7をつぶすことなく貼り合わせることができるようになる。
第2の樹脂層8を硬化させた後、主電極と対向電極の間の図示しない注入孔より電解質9を充填する。電解質9はヨウ素を含む他は溶質、溶媒、およびその状態を限定しない。
By forming the second resin layer 8 on the upper surface of the first resin layer 7 cured in this way, and bonding the main electrode and the counter electrode through the second resin layer 8, The first resin layer 7 can be bonded without being crushed.
After the second resin layer 8 is cured, the electrolyte 9 is filled through an injection hole (not shown) between the main electrode and the counter electrode. The electrolyte 9 does not limit the solute, the solvent, and its state except that it contains iodine.

本実施例における図2(d)では、対向電極が表面に透明導電性膜3を有する透明なガラスなどの基板2からなる構成の例であるため、集電極層6が主電極層と対向するパターンで形成されているが、対向電極が白金板など、十分に抵抗が低い場合は、集電極6が不要であるため対向電極には集電極6および第1の樹脂層7は不要である。
このようにして各基板の集電極6の上面に封止剤である第1の樹脂層7を塗布して硬化させた上に更に封止剤である第2の樹脂層8を塗布して両基板を貼り合わせ、その第2の樹脂層8を硬化させて集電極層6の露出なく太陽電池セルである色素増感太陽電池素子1を組み立てる。
In FIG. 2D in the present embodiment, the counter electrode is an example of a configuration made of a substrate 2 such as transparent glass having a transparent conductive film 3 on the surface, and therefore the collector electrode layer 6 faces the main electrode layer. Although the electrode is formed in a pattern, when the resistance of the counter electrode is sufficiently low, such as a platinum plate, the collector electrode 6 is unnecessary, and therefore the collector electrode 6 and the first resin layer 7 are not required for the counter electrode.
In this way, the first resin layer 7 as a sealant is applied and cured on the upper surface of the collector electrode 6 of each substrate, and then the second resin layer 8 as a sealant is further applied to both. The substrates are bonded together, the second resin layer 8 is cured, and the dye-sensitized solar cell element 1 that is a solar cell is assembled without exposing the collector electrode layer 6.

以上説明したように、本実施例では、主電極と対向電極とを貼り合わせる前に第1の樹脂層7を硬化させるようにしたため、両電極を貼り合わせる時は、第2の樹脂層8のみがつぶれて広がり、第1の樹脂層7はつぶれることがない。したがって、集電極層6を露出させることなく電解質9による集電極6の腐食を防ぎ、また主電極および対向電極の基板間の電気的なリークを防ぐことができるという効果が得られる。   As described above, in this embodiment, since the first resin layer 7 is cured before the main electrode and the counter electrode are bonded together, only the second resin layer 8 is bonded when the two electrodes are bonded together. The first resin layer 7 is not crushed. Therefore, it is possible to prevent the collector electrode 6 from being corroded by the electrolyte 9 without exposing the collector electrode layer 6 and to prevent electrical leakage between the substrate of the main electrode and the counter electrode.

実施例における色素増感太陽電池素子の要部断面図Sectional drawing of the principal part of the dye-sensitized solar cell element in an Example 実施例における色素増感太陽電池素子の製造方法を示す要部断面図Sectional drawing of the principal part which shows the manufacturing method of the dye-sensitized solar cell element in an Example

符号の説明Explanation of symbols

1 色素増感太陽電池素子
2 基板
3 透明導電性膜
4 酸化還元触媒層
5 半導体層
6 集電極層
7 第1の樹脂層
8 第2の樹脂層
9 電解質
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell element 2 Substrate 3 Transparent conductive film 4 Redox catalyst layer 5 Semiconductor layer 6 Current collector layer 7 First resin layer 8 Second resin layer 9 Electrolyte

Claims (3)

透明導電性膜を有する基板に、受光に伴い電子を放出する色素を担持した半導体層およびその半導体層の周辺に集電極層が形成された主電極と、透明導電性膜を有する基板に酸化還元触媒層が形成された対向電極と、所定の間隔を隔てて対面する主電極と対向電極との間に充填された電解質を封止する第1および第2の樹脂層とを備えた色素増感太陽電池素子の製造方法において、
前記主電極に形成された前記集電極層の側面および上面に前記第1の樹脂層を形成し、硬化させる工程と、
前記硬化した第1の樹脂層に前記第2の樹脂層を積層する工程と、
前記硬化した第1の樹脂層および前記第2の樹脂層を介して前記主電極と前記対向電極とを貼り合せた後に、前記第2の樹脂層を硬化させる工程とを有することを特徴とする色素増感太陽電池素子の製造方法。
A substrate having a transparent conductive film, a semiconductor layer carrying a dye that emits electrons upon receiving light, a main electrode having a collector layer formed around the semiconductor layer, and a substrate having a transparent conductive film redox Dye sensitization comprising: a counter electrode on which a catalyst layer is formed; and a first electrode layer and a second resin layer for sealing an electrolyte filled between the main electrode and the counter electrode facing each other at a predetermined interval. In the method for manufacturing a solar cell element,
Forming and curing the first resin layer on a side surface and an upper surface of the collector electrode layer formed on the main electrode;
Laminating the second resin layer on the cured first resin layer;
And a step of curing the second resin layer after bonding the main electrode and the counter electrode through the cured first resin layer and the second resin layer. A method for producing a dye-sensitized solar cell element.
透明導電性膜を有する基板に、受光に伴い電子を放出する色素を担持した半導体層およびその半導体層の周辺に集電極層が形成された主電極と、透明導電性膜を有する基板に形成された酸化還元触媒層に集電極層が形成された対向電極と、所定の間隔を隔てて対面する主電極と対向電極との間に充填された電解質を封止する第1および第2の樹脂層とを備えた色素増感太陽電池素子の製造方法において、
前記主電極に形成された前記集電極層の側面および上面と、前記対向電極に形成された前記集電極層の側面および上面とに前記第1の樹脂層を形成し、硬化させる工程と、
前記主電極の前記硬化した第1の樹脂層に第2の樹脂層を積層する工程と、
前記硬化した第1および前記第2の樹脂層を介して前記主電極と前記対向電極とを貼り合せた後に、前記第2の樹脂層を硬化させる工程とを有することを特徴とする色素増感太陽電池素子の製造方法。
Formed on a substrate having a transparent conductive film, a semiconductor layer carrying a dye that emits electrons upon receiving light, a main electrode having a collector electrode layer formed around the semiconductor layer, and a substrate having a transparent conductive film Counter electrode having a collecting electrode layer formed on the redox catalyst layer, and first and second resin layers for sealing the electrolyte filled between the main electrode and the counter electrode facing each other at a predetermined interval In a method for producing a dye-sensitized solar cell element comprising:
Forming and curing the first resin layer on the side and top surfaces of the collector electrode layer formed on the main electrode and the side and top surfaces of the collector electrode layer formed on the counter electrode;
Laminating a second resin layer on the cured first resin layer of the main electrode;
A step of curing the second resin layer after bonding the main electrode and the counter electrode through the cured first and second resin layers. Manufacturing method of solar cell element.
透明導電性膜を有する基板に、受光に伴い電子を放出する色素を担持した半導体層およびその半導体層の周辺に集電極層が形成された主電極と、透明導電性膜を有する基板に形成された酸化還元触媒層に集電極層が形成された対向電極と、所定の間隔を隔てて対面する主電極と対向電極との間に充填された電解質を封止する第1および第2の樹脂層とを備えた色素増感太陽電池素子の製造方法において、
前記主電極に形成された前記集電極層の側面および上面と、前記対向電極に形成された前記集電極層の側面および上面とに前記第1の樹脂層を形成し、硬化させる工程と、
前記対向電極の前記硬化した第1の樹脂層に前記第2の樹脂層を積層する工程と、
前記硬化した第1および前記第2の樹脂層を介して前記主電極と前記対向電極とを貼り合せた後に、前記第2の樹脂層を硬化させる工程とを有することを特徴とする色素増感太陽電池素子の製造方法。
Formed on a substrate having a transparent conductive film, a semiconductor layer carrying a dye that emits electrons upon receiving light, a main electrode having a collector electrode layer formed around the semiconductor layer, and a substrate having a transparent conductive film Counter electrode having a collecting electrode layer formed on the redox catalyst layer, and first and second resin layers for sealing the electrolyte filled between the main electrode and the counter electrode facing each other at a predetermined interval In a method for producing a dye-sensitized solar cell element comprising:
Forming and curing the first resin layer on the side and top surfaces of the collector electrode layer formed on the main electrode and the side and top surfaces of the collector electrode layer formed on the counter electrode;
Laminating the second resin layer on the cured first resin layer of the counter electrode;
A step of curing the second resin layer after bonding the main electrode and the counter electrode through the cured first and second resin layers. Manufacturing method of solar cell element.
JP2007269003A 2007-10-16 2007-10-16 Method for producing dye-sensitized solar cell element Expired - Fee Related JP5160854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269003A JP5160854B2 (en) 2007-10-16 2007-10-16 Method for producing dye-sensitized solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269003A JP5160854B2 (en) 2007-10-16 2007-10-16 Method for producing dye-sensitized solar cell element

Publications (2)

Publication Number Publication Date
JP2009099353A JP2009099353A (en) 2009-05-07
JP5160854B2 true JP5160854B2 (en) 2013-03-13

Family

ID=40702176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269003A Expired - Fee Related JP5160854B2 (en) 2007-10-16 2007-10-16 Method for producing dye-sensitized solar cell element

Country Status (1)

Country Link
JP (1) JP5160854B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635455B2 (en) * 2004-02-27 2011-02-23 パナソニック電工株式会社 Photoelectric conversion element and photoelectric conversion module
JP4396574B2 (en) * 2005-05-11 2010-01-13 アイシン精機株式会社 Dye-sensitized solar cell and method for producing the same

Also Published As

Publication number Publication date
JP2009099353A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5080018B2 (en) Dye-sensitized solar cell
WO2011096154A1 (en) Dye-sensitized solar cell and method for manufacturing the same
JP2008135652A (en) Solar battery module
EP2109150A1 (en) Solar cell module, wiring member for solar cell, and method for manufacturing solar cell module
JP5165253B2 (en) Dye-sensitized solar cell and method for producing the same
CN117042475A (en) Photovoltaic device and manufacturing method thereof
JP2008147037A (en) Wet type solar cell and its manufacturing method
JP5084170B2 (en) Method for producing transparent electrode substrate for dye-sensitized solar cell
JP2007287480A (en) Dye-sensitized solar cell
US8742248B2 (en) Photoelectric conversion module and method of manufacturing the same
JP2008257991A (en) Dye-sensitized solar cell
JP5253476B2 (en) Photoelectric conversion element
EP2367188A2 (en) Photoelectric conversion module
US20120006377A1 (en) Photoelectric conversion module
US8772631B2 (en) Solar cell
JP5160854B2 (en) Method for producing dye-sensitized solar cell element
JP2007317454A (en) Dye-sensitized solar cell
JP2005251650A (en) Photoelectric conversion element
JP2014013838A (en) Solar battery power collecting sheet and solar battery module
JP5618274B2 (en) Manufacturing method of solar cell module
KR101062700B1 (en) Dye-sensitized solar cell module with double protection of grid
TWI449191B (en) Solar cell package structure with circuit design
KR20130023920A (en) Method for forming grid electrode in dye-sensitized solar cell and dye-sensitized solar cell using thereof
KR20110130040A (en) Dye sensitized solar cell
JP5596479B2 (en) Solar cell module

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees