JP2007317454A - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP2007317454A
JP2007317454A JP2006144661A JP2006144661A JP2007317454A JP 2007317454 A JP2007317454 A JP 2007317454A JP 2006144661 A JP2006144661 A JP 2006144661A JP 2006144661 A JP2006144661 A JP 2006144661A JP 2007317454 A JP2007317454 A JP 2007317454A
Authority
JP
Japan
Prior art keywords
electrode
layer
solar cell
dye
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006144661A
Other languages
Japanese (ja)
Inventor
Keizo Furusaki
圭三 古崎
Ichiro Gonda
一郎 権田
Yasuo Okuyama
康生 奥山
Atsuya Takashima
淳矢 高島
Takuya Fujii
拓也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006144661A priority Critical patent/JP2007317454A/en
Publication of JP2007317454A publication Critical patent/JP2007317454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to secure an enough area where a semiconductor electrode can be formed on a glass plate, for a dye-sensitized solar cell made up by interposing electrolyte solution between a porous semiconductor electrode made to carry sensitizing dyes formed on a translucent conductive layer and a catalyst electrode as a counter electrode. <P>SOLUTION: An anode-side current-collecting electrode layer 91 is formed through an insulating layer 81 at a side of the catalyst electrode 61 opposite to a side facing the semiconductor electrode 31. The anode-side current-collecting electrode layer 91 and the translucent conductive layer 21 are electrically connected using a conductive adhesive 5 at a number of points separated from each other with intervals in plan view. Since the anode-side current-collecting electrode layer 91 is not extended as a line nor expanded as a plane on the glass plate 11 like a conventional one, an area for forming the semiconductor electrode 31 can be secured in a great scale. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光エネルギーを電気エネルギーに変換する色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell that converts light energy into electrical energy.

太陽光発電では、単結晶シリコン、多結晶シリコン、アモルファスシリコン及びこれらを組み合わせたHIT(Heterojunction with Intrinsic Thin−layer)等を用いた太陽電池が広く実用化されている。このようなシリコン系太陽電池では、光電変換効率も優れており、近時においてはそれが20%近くにも達しているものもあるが、シリコン系太陽電池は、その素材の製造にかかるエネルギーコストが高い上に、環境負荷などの面において課題が多い。   In solar power generation, solar cells using single crystal silicon, polycrystalline silicon, amorphous silicon, and a combination of these with the use of HIT (Heterojunction with Intrinsic Thin Layer) or the like are widely put into practical use. Such silicon-based solar cells also have excellent photoelectric conversion efficiency, and recently some of them have reached nearly 20%. However, silicon-based solar cells have an energy cost for manufacturing the material. In addition to high costs, there are many issues in terms of environmental impact.

こうした中で、Gratzel等により提案された、色素増感型太陽電池が安価な太陽電池として、近年、注目を集めている(例えば、特許文献1及び非特許文献1)。このような色素増感型太陽電池の基本的な構成は、増感色素を担持させた多孔質の半導体電極(例えば、チタニア多孔質電極)と、対極をなす触媒電極と、その間に介在させられた電解液(ヨウ素溶液)とから構成されたものであり、その構造がシンプルである。その上に、シリコン半導体を使用しないことから、シリコン系太陽電池に比べると、変換効率は低いものの、低コストの太陽電池として多くの期待を集めている。   In these circumstances, the dye-sensitized solar cell proposed by Gratzel et al. Has recently attracted attention as an inexpensive solar cell (for example, Patent Document 1 and Non-Patent Document 1). The basic structure of such a dye-sensitized solar cell is interposed between a porous semiconductor electrode (for example, a titania porous electrode) carrying a sensitizing dye, and a counter electrode as a counter electrode. The electrolyte solution (iodine solution) is simple and its structure is simple. In addition, since a silicon semiconductor is not used, the conversion efficiency is lower than that of a silicon-based solar cell, but many expectations are given as a low-cost solar cell.

このような色素増感型太陽電池においては、通常、半導体電極及び触媒電極の各々に、それぞれの電極から効率よく集電するために集電電極が設けられる。そして、半導体電極に接続される集電電極は、半導体電極が形成されるガラス板などの透光性基板に、銀ペーストを線状または格子状などに印刷又は塗布して、焼き付けることにより形成されるのが普通である(例えば、特許文献2)。また、このような焼付けに代えて、スパッタ又は蒸着によって、金属膜を形成、堆積させることで集電電極を形成することも知られている。   In such a dye-sensitized solar cell, normally, a collector electrode is provided on each of the semiconductor electrode and the catalyst electrode in order to efficiently collect current from the respective electrodes. The current collecting electrode connected to the semiconductor electrode is formed by printing or applying a silver paste in a linear or lattice shape on a light-transmitting substrate such as a glass plate on which the semiconductor electrode is formed, and baking it. It is normal (for example, patent document 2). In addition, it is also known to form a collecting electrode by forming and depositing a metal film by sputtering or vapor deposition instead of such baking.

ところで、色素増感型太陽電池(以下、単に太陽電池ともいう)に用いられる電解液は腐食性が極めて高い。このため、集電電極を銀ペーストの焼付けで形成したものにおいては、その集電電極が電解液に接触したり、晒されるのを防止する必要がある。したがって、通常は、その集電電極(層)の表面を耐腐食性のある樹脂で被覆(コーティング)してその保護が図られていた。
特開平1−220380号公報 Nature誌紙(第353巻、pp,730−740,1991年) 特開2000−285977号公報
By the way, an electrolytic solution used for a dye-sensitized solar cell (hereinafter also simply referred to as a solar cell) is extremely corrosive. For this reason, in the case where the collecting electrode is formed by baking a silver paste, it is necessary to prevent the collecting electrode from coming into contact with or being exposed to the electrolytic solution. Therefore, the surface of the current collecting electrode (layer) is usually covered (coated) with a corrosion-resistant resin to protect it.
Japanese Patent Laid-Open No. 1-220380 Nature magazine (Vol. 353, pp, 730-740, 1991) JP 2000-285777 A

ところが、半導体電極を形成する透光性基板(通常、ガラス板)に負極側集電電極を格子状などに形成し、その上に、この負極側集電電極を覆うように樹脂層を形成すると、これらの形成面の面積分、その透光性基板のうち、半導体電極を形成することのできる面積が減少することになる。このため、従来の色素増感型太陽電池においては、半導体電極を形成することのできる面積を効率的に確保することができないため、発電効率の低下を招いていたといった問題があった。   However, when a negative electrode side collecting electrode is formed in a lattice shape or the like on a translucent substrate (usually a glass plate) for forming a semiconductor electrode, and a resin layer is formed thereon so as to cover the negative electrode side collecting electrode. Therefore, the area of the translucent substrate in which the semiconductor electrode can be formed is reduced by the area of these formation surfaces. For this reason, in the conventional dye-sensitized solar cell, since the area which can form a semiconductor electrode cannot be ensured efficiently, there existed a problem of causing the fall of power generation efficiency.

そこで、このような銀ペーストの焼付けに代えて、電解液に対する耐食性の高い金属を、スパッタ又は蒸着によって透光性基板に金属配線層(膜)として形成し、これを厚く堆積させることで低抵抗の集電電極を形成する、ということも考えられる。しかし、スパッタや蒸着によって金属膜を形成して集電電極とする場合には、例え透光性基板にガラス板を使用したとしても、それに十分な耐熱性があるとは言えず、したがって、金属膜を厚く形成することは困難である。このため、スパッタリング等による金属膜によって集電電極を形成する場合でも、低抵抗の電極とするためにはその形成面積を大きくせざるを得ず、結果として、銀の焼付けによる場合と同様、半導体電極を形成することのできる面積が減少することになる。   Therefore, instead of baking such a silver paste, a metal having high corrosion resistance to an electrolytic solution is formed as a metal wiring layer (film) on a light-transmitting substrate by sputtering or vapor deposition, and this is deposited thick to reduce the resistance. It is also conceivable to form a current collecting electrode. However, when a metal film is formed by sputtering or vapor deposition to form a current collecting electrode, even if a glass plate is used as the translucent substrate, it cannot be said that it has sufficient heat resistance. It is difficult to form a thick film. For this reason, even when the current collecting electrode is formed by a metal film by sputtering or the like, the formation area has to be increased in order to obtain a low resistance electrode. The area where the electrodes can be formed is reduced.

本発明は、こうした問題点を解消するためになされたもので、その目的は、透光性基板に半導体電極を形成することのできる面積をできるだけ大きく確保できるようにし、もって発電効率の高い色素増感型太陽電池を提供することにある。   The present invention has been made to solve these problems, and an object of the present invention is to make it possible to secure as large an area in which a semiconductor electrode can be formed on a light-transmitting substrate as much as possible, thereby increasing dye generation with high power generation efficiency. It is to provide a sensitive solar cell.

前記の目的を達成するため、請求項1に記載の本発明は、透光性基板の一面側に、増感色素を担持させた半導体電極を表面に形成した透光性導電層を備える一方、前記半導体電極に対向して対極をなす触媒電極を備え、この両電極間に電解液が介在されてなる色素増感型太陽電池において、
前記触媒電極における半導体電極に対向する側と反対側には、絶縁層を介して負極側集電電極層が形成されており、
この負極側集電電極層と前記透光性導電層との間が、平面視、相互に間隔をおいて、多数の箇所で導電性接着剤により前記触媒電極と電気的絶縁を保持して電気的に接続されてなることを特徴とする。
In order to achieve the above object, the present invention according to claim 1 is provided with a light-transmitting conductive layer having a semiconductor electrode carrying a sensitizing dye formed on one surface side of a light-transmitting substrate, In a dye-sensitized solar cell comprising a catalyst electrode facing the semiconductor electrode and forming a counter electrode, and an electrolyte solution interposed between the two electrodes,
On the opposite side of the catalyst electrode from the side facing the semiconductor electrode, a negative current collecting electrode layer is formed via an insulating layer,
The negative current collector electrode layer and the translucent conductive layer are electrically spaced from each other in a plan view and electrically insulated from the catalyst electrode by a conductive adhesive at a number of locations. It is characterized by being connected.

請求項2に記載の本発明は、透光性基板の一面側に、増感色素を担持させた半導体電極を表面に形成した透光性導電層を備える一方、前記半導体電極に対向して対極をなす触媒電極を備え、この両電極間に電解液が介在されてなる色素増感型太陽電池において、
前記触媒電極における半導体電極に対向する側と反対側には、絶縁層を介して負極側集電電極層が形成されていると共に、この負極側集電電極層には、平面視、相互に間隔をおいて、多数の箇所に貫通孔が設けられており、
この負極側集電電極層と前記透光性導電層との間が、多数の前記貫通孔の部位において導電性接着剤により前記触媒電極と電気的絶縁を保持して電気的に接続され、しかも、前記負極側集電電極層における前記触媒電極の形成面側と反対側には、前記電解液が前記貫通孔内を通過して外部に漏出するのを防止する電解液漏出防止層が形成されてなることを特徴とする。
According to a second aspect of the present invention, a translucent conductive layer having a semiconductor electrode carrying a sensitizing dye formed on the surface thereof is provided on one surface side of the translucent substrate, and the counter electrode is opposed to the semiconductor electrode. In a dye-sensitized solar cell comprising a catalyst electrode that comprises: an electrolyte solution interposed between both electrodes,
On the opposite side of the catalyst electrode to the side facing the semiconductor electrode, a negative electrode side collector electrode layer is formed via an insulating layer. The negative electrode side collector electrode layer is spaced apart from each other in plan view. And through holes are provided in many places,
The negative electrode side collecting electrode layer and the translucent conductive layer are electrically connected to the catalyst electrode while being electrically insulated by a conductive adhesive at a plurality of through-hole portions, and An electrolyte leakage prevention layer that prevents the electrolyte from passing through the through hole and leaking outside is formed on the negative electrode side collector electrode layer on the side opposite to the catalyst electrode formation surface. It is characterized by.

請求項3に記載の本発明は、前記電解液漏出防止層が、金属板又はガラス板からなることを特徴とする請求項2に記載の色素増感型太陽電池である。そして、請求項4に記載の本発明は、前記触媒電極と前記絶縁層との間に、その触媒電極に電気的に接続された正極側集電電極層が形成されていることを特徴とする請求項1、2又は3に記載の色素増感型太陽電池である。   The present invention according to claim 3 is the dye-sensitized solar cell according to claim 2, wherein the electrolyte leakage prevention layer is made of a metal plate or a glass plate. The present invention according to claim 4 is characterized in that a positive collector electrode layer electrically connected to the catalyst electrode is formed between the catalyst electrode and the insulating layer. It is a dye-sensitized solar cell of Claim 1, 2, or 3.

本発明では、前記負極側集電電極層と前記透光性導電層との間が、平面視、相互に間隔をおいて、多数の箇所で導電性接着剤により前記触媒電極と電気的絶縁を保持して電気的に接続されてなる構造を有している。すなわち、本発明では負極側集電電極層が、従来のように、透光性基板の面に、線状又は格子状に、線として延びることや面として広がる形態のものではない。したがって、本発明では、従来の色素増感型太陽電池に比べて、透光性基板における負極側集電電極層の形成面積の大幅な低減が図られるため、透光性基板に形成できる半導体電極の形成エリアを大きく確保できることから、発電効率を高めることができる。   In the present invention, the negative electrode side collecting electrode layer and the translucent conductive layer are electrically insulated from the catalyst electrode by a conductive adhesive at a number of locations in a plan view, spaced apart from each other. It has a structure that is held and electrically connected. That is, in the present invention, the negative electrode side collecting electrode layer does not extend in the form of a line or a line in the form of a line or a lattice on the surface of the translucent substrate as in the prior art. Therefore, in the present invention, compared to the conventional dye-sensitized solar cell, the formation area of the negative electrode side collecting electrode layer in the translucent substrate can be greatly reduced, so that the semiconductor electrode that can be formed on the translucent substrate Since a large formation area can be secured, power generation efficiency can be increased.

しかも、本発明においては次のような注目すべき効果も得られる。すなわち、請求項1に記載の本発明は、負極側集電電極層を金属板(金属箔又は金属膜)で形成した場合には、その金属板が電解液を通過させないことから、電解液の外部への漏出を有効に防止することができると共に、外部から電池内への水分等の異物の浸入を有効に防止する。すなわち、樹脂板に比べて金属板は電解液の浸透を防止することができるため、電解液が外部に漏出するのを防止できるので、太陽電池としての耐久性が高められる。   Moreover, the following remarkable effects are also obtained in the present invention. That is, when the negative electrode side collector electrode layer is formed of a metal plate (metal foil or metal film), the metal plate does not allow the electrolyte solution to pass through. Leakage to the outside can be effectively prevented, and entry of foreign matter such as moisture into the battery from the outside is effectively prevented. That is, compared to the resin plate, the metal plate can prevent the electrolyte solution from penetrating, so that the electrolyte solution can be prevented from leaking to the outside, so that the durability as a solar cell is enhanced.

また、請求項2に記載の本発明においても、前記した請求項1に記載の本発明と同様の効果が得られる。そして、上記したいずれの本発明の色素増感型太陽電池においても、両電極間には電解液が充填されているものであることから、その両電極間の周囲には両電極間を封止するための封止用(シール用)の接着剤を介在させて両電極間の空間を封止することになる。この場合、請求項1では、その封止に接着剤を用いる場合は、半導体電極が形成されてなる透光性基板と、触媒電極が形成されてなる対極側の基板とを両電極が対向するようにして重ね合わせて圧着し、接着することになる。この接着において導電性接着剤は封止用の接着剤と同時に接着硬化させることになる。これに対して請求項2の発明では、導電性接着剤は、周囲を封止用の接着剤で接着した後で負極側集電電極層の貫通孔から充填してその接着を行い、その後で、電解液漏出防止層を形成することも可能となる。つまり、請求項2の発明では、その構造上から、周囲の封止用の接着剤により両電極間を封止した後、別工程において導電性接着剤を用い、負極側集電電極層と透光性導電層との間の導通を保持できるため、封止用の接着剤と、導電性接着剤に熱硬化条件など接着条件の異なるものを採択、使用できるため、導電性接着剤及び製造工程の選択性を広げることができる。   In the present invention described in claim 2, the same effect as that of the present invention described in claim 1 can be obtained. In any of the above-described dye-sensitized solar cells of the present invention, since both electrodes are filled with an electrolyte solution, the gap between the electrodes is sealed between the electrodes. The space between both electrodes is sealed by interposing an adhesive for sealing (for sealing). In this case, in the first aspect, when an adhesive is used for the sealing, both electrodes face the translucent substrate on which the semiconductor electrode is formed and the counter electrode side substrate on which the catalyst electrode is formed. In this way, they are superposed, pressure-bonded, and bonded. In this bonding, the conductive adhesive is bonded and cured simultaneously with the sealing adhesive. On the other hand, in the invention of claim 2, the conductive adhesive is bonded from the through-hole of the negative current collecting electrode layer after adhering the periphery with a sealing adhesive, It is also possible to form an electrolyte leakage prevention layer. In other words, in the invention of claim 2, from the structure, after sealing both electrodes with a surrounding sealing adhesive, a conductive adhesive is used in a separate step, and the negative electrode side collector electrode layer and the transparent electrode layer are transparent. Since it can maintain electrical continuity with the photoconductive layer, it is possible to adopt and use sealing adhesives and conductive adhesives with different adhesive conditions such as thermosetting conditions. The selectivity of can be expanded.

請求項2における電解液電解液漏出防止層としては、請求項3に記載のように金属板又はガラス板が例示されるが、その漏出が防止できればよく、したがってこれらに限定されるものではない。そして、請求項4に記載の発明のように、前記触媒電極と前記絶縁層との間に、その触媒電極に電気的に接続された正極側集電電極層が形成されているものでは、触媒電極が薄くても、その正極側集電電極層により電池内の回路の低抵抗化が図られる。   The electrolyte solution leakage preventing layer in claim 2 is exemplified by a metal plate or a glass plate as described in claim 3, but it is only necessary to prevent the leakage, and is not limited thereto. Further, as in the invention described in claim 4, in the case where the positive electrode side collector electrode layer electrically connected to the catalyst electrode is formed between the catalyst electrode and the insulating layer, the catalyst Even if the electrode is thin, the positive electrode side collecting electrode layer can reduce the resistance of the circuit in the battery.

本発明を実施するための最良の形態について、図1〜図5に基いて詳細に説明する。図1は、本実施形態として具体化した単セル構造の色素増感型太陽電池1を模式的(概略的)に示した縦断面図である。図2は、それを積層、圧着して組立てる前の説明用分解縦断面図であり、図3は、図2の半導体電極31側から見た平面図(矢印Aから見た図)、図4は、図2の触媒電極61側から見た平面図(矢印Bから見た図)であり、図5は、図2の触媒電極61側をなす積層体の説明用分解縦断面図である。   The best mode for carrying out the present invention will be described in detail with reference to FIGS. FIG. 1 is a longitudinal sectional view schematically (schematically) showing a dye-sensitized solar cell 1 having a single cell structure embodied as the present embodiment. FIG. 2 is an exploded longitudinal sectional view for explanation prior to assembly by laminating and crimping them, and FIG. 3 is a plan view seen from the semiconductor electrode 31 side in FIG. FIG. 5 is a plan view (viewed from an arrow B) viewed from the catalyst electrode 61 side in FIG. 2, and FIG. 5 is an exploded longitudinal sectional view for explaining the laminated body forming the catalyst electrode 61 side in FIG. 2.

本例の太陽電池1は、全体が一定厚さ(例えば5mm)で、平面視、四角形を呈する板状に形成されている(図3,4参照)。そして、透光性基板としては四角形(例えば正方形)で一定厚さのガラス板(板ガラス)11が用いられており、その一面(図1、図2の下面)の略全体には、透光性及び導電性を有する透光性導電層21として、導電性酸化物(例えば、酸化スズ、フッ素ドープ酸スズ(FTO)、酸化インジウム、スズドープ酸インジウムなど)からなる薄膜が所定の厚さ(例えば200nm)で形成されている。   The solar cell 1 of this example has a constant thickness (for example, 5 mm) as a whole and is formed in a plate shape that exhibits a square shape in plan view (see FIGS. 3 and 4). And as a translucent board | substrate, the square (for example, square) and the glass plate (plate glass) 11 of fixed thickness are used, The translucency is substantially on the whole surface (the lower surface of FIG. 1, FIG. 2). As the light-transmitting conductive layer 21 having conductivity, a thin film made of a conductive oxide (for example, tin oxide, fluorine-doped tin (FTO), indium oxide, tin-doped indium, etc.) has a predetermined thickness (for example, 200 nm). ).

この透光性導電層21の表面(図1、図2の下面)には、増感色素を担持させた多孔質の半導体電極31が一定厚さ(例えば30μm)で略全面に層として形成されている。ただし、この半導体電極31には、縦横(碁盤目状)に所定の間隔(ピッチ)P(例えば、10.0mm)で多数の開口(例えば直径3.0mmの円形の開口。図3参照。)33が設けられている。すなわち、透光性導電層21の表面には、半導体電極31が形成されていない部位(開口33)があり、その開口33内には、ガラス板11に形成した透光性導電層21が透光性導電層部23(開口の円形部分)として多数、露出しており、図3に示したように、ガラス板11を半導体電極31の形成面側から見たときは、透光性導電層部23が多数、群をなして設けられている(図3参照)。なお、図3においてはその開口33は9箇所設けられている状態が図示されているが、この数はガラス板11の大きさによってはもちろん数百、数千、或いは数万となる。また、半導体電極31は、ガラス板11の周縁(辺)に沿って、所定の幅分、設けられておらず、その部位には次に述べる、触媒電極61を含む積層体(基板)を接着剤41で接着する際の接着代(接合代)が設けられている。本形態では、増感色素担持させた半導体電極31は、例えば、チタニア(TiO)からなる多孔質電極基体と、この多孔質電極基体の細孔内及び表面に付着させた増感色素からなっている。 On the surface of the translucent conductive layer 21 (the lower surface in FIGS. 1 and 2), a porous semiconductor electrode 31 carrying a sensitizing dye is formed as a layer on a substantially entire surface with a constant thickness (for example, 30 μm). ing. However, the semiconductor electrode 31 has a large number of openings (for example, a circular opening having a diameter of 3.0 mm, see FIG. 3) at predetermined intervals (pitch) P (for example, 10.0 mm) in the vertical and horizontal directions (a grid pattern). 33 is provided. That is, there is a portion (opening 33) where the semiconductor electrode 31 is not formed on the surface of the translucent conductive layer 21, and the translucent conductive layer 21 formed on the glass plate 11 is transmitted through the opening 33. A large number of photoconductive layer portions 23 (circular portions of the openings) are exposed. As shown in FIG. 3, when the glass plate 11 is viewed from the surface on which the semiconductor electrode 31 is formed, the translucent conductive layer. Many parts 23 are provided in groups (see FIG. 3). In FIG. 3, nine openings 33 are shown, but this number may be hundreds, thousands, or tens of thousands depending on the size of the glass plate 11. Further, the semiconductor electrode 31 is not provided for a predetermined width along the periphery (side) of the glass plate 11, and a laminated body (substrate) including the catalyst electrode 61 described below is bonded to the portion. A bonding margin (bonding margin) for bonding with the agent 41 is provided. In this embodiment, the semiconductor electrode 31 loaded with a sensitizing dye is composed of, for example, a porous electrode base made of titania (TiO 2 ) and a sensitizing dye attached to the inside and the surface of the porous electrode base. ing.

一方、色素増感型太陽電池1を構成する対極をなす触媒電極61は、Pt(白金)からなっており、金属薄板(金属箔又は金属膜)71の表面(図1の上面)に、例えばスパッタリングで所定の厚さ(例えば200nm)に、層として形成されている。本形態では、この金属薄板71が、正極側集電電極層(以下、正極側集電電極層71ともいう)をなすように形成されている。ただし、この正極側集電電極層71は、チタン又はステンレス鋼(SUS)などの金属薄板(厚さ200μm)からなり、一定厚さ(例えば50μm)の電気的絶縁性のある絶縁層81として、本形態では樹脂(例えばエポキシ樹脂、アイオノマー樹脂)からなる接着剤の層(以下、絶縁層81という)における図1の上面に接着されている。なお、正極側集電電極層71は、ガラス板11と同じ大きさ、形状とされているが、その一側部(図1の左側)には外方に突出するように形成された正極側の電極端子75が設けられている。本明細書において、単に「接着剤」又は「樹脂」というとき、これらは電気的絶縁性があるもの(導電性を有しないもの)である。   On the other hand, the catalyst electrode 61 constituting the counter electrode constituting the dye-sensitized solar cell 1 is made of Pt (platinum), and is formed on the surface of the metal thin plate (metal foil or metal film) 71 (upper surface in FIG. 1), for example. A layer having a predetermined thickness (for example, 200 nm) is formed by sputtering. In this embodiment, the thin metal plate 71 is formed to form a positive current collecting electrode layer (hereinafter also referred to as a positive current collecting electrode layer 71). However, the positive-side current collecting electrode layer 71 is made of a thin metal plate (thickness: 200 μm) such as titanium or stainless steel (SUS), and has a constant thickness (for example, 50 μm) as an electrically insulating insulating layer 81. In this embodiment, an adhesive layer (hereinafter referred to as an insulating layer 81) made of a resin (for example, an epoxy resin or an ionomer resin) is bonded to the upper surface of FIG. The positive electrode side collecting electrode layer 71 has the same size and shape as the glass plate 11, but is formed on one side (left side in FIG. 1) so as to protrude outward. The electrode terminal 75 is provided. In this specification, when simply referred to as “adhesive” or “resin”, these are electrically insulating (non-conductive).

正極側集電電極層71の表面(図1上面)に形成された触媒電極61は、前記したガラス板11に形成された半導体電極31の形成面に対応してそれと同じ配置、同じ平面形状及び同じ面積又はそれより広い面積で層として形成されている。なお、触媒電極61は、半導体電極31に対向するように、所定の空隙(空間)Kを保持して配置されており、ガラス板11の外周縁寄り部位に接着剤41で接着されている。このような両電極31,61間である電池の内部は周囲の接着剤41でシールが保持されており、その内部(空間内部)には図示はしないが電解液Yが充填されている。なお、この電解液Yには、電解質の他、プロピレンカーボネート等の溶剤及び添加剤等が含まれている。そして、電解質としては、従来の太陽電池の電解質として使用されているものの中から適宜に選択して使用すればよい。   The catalyst electrode 61 formed on the surface (upper surface in FIG. 1) of the positive electrode side collecting electrode layer 71 has the same arrangement, the same planar shape and the same as the formation surface of the semiconductor electrode 31 formed on the glass plate 11 described above. It is formed as a layer with the same area or a larger area. The catalyst electrode 61 is disposed so as to hold a predetermined gap (space) K so as to face the semiconductor electrode 31, and is bonded to a portion near the outer peripheral edge of the glass plate 11 with an adhesive 41. The inside of the battery between the electrodes 31 and 61 is kept sealed by the surrounding adhesive 41, and the inside (inside the space) is filled with the electrolyte solution Y (not shown). In addition to the electrolyte, the electrolyte solution Y contains a solvent such as propylene carbonate, an additive, and the like. And as electrolyte, what is necessary is just to select suitably from what is used as electrolyte of the conventional solar cell, and to use.

一方、絶縁層81の触媒電極61の形成面側と反対側には、負極側集電電極層91をなす金属層が積層状態で接着されている。この負極側集電電極層91は、正極側集電電極層71と同素材からなる一定厚さ(200μm)の金属薄板(金属箔又は金属膜)とされ、ガラス板11と平面上、同じ外形状、大きさをなしている。ただし、負極側集電電極層91の一側部(図1の右側)には外方に突出するように形成された負極側の電極端子95が設けられている。また、負極側集電電極層91における触媒電極61の形成面側と反対側(図1の下面)には、負極側集電電極層91の全面を被覆するように一定厚さ(50μm)の樹脂層(例えば、アイオノマー樹脂)101が積層状態で接着されており、負極側集電電極層91の保護膜(表皮材)をなしている。なお、触媒電極61から絶縁層81に至る各層のうち、平面視、透光性導電層部23に対応する部位には、それと同寸、同形状で、図4に示したように開口3が設けられており、負極側集電電極層91が負極側集電電極層部93(開口3の円形部分)として多数、露出されている。なお、このような対極をなす触媒電極61側は、正極側集電電極層71をなす開口3付きの金属薄板の表面に触媒電極61を形成したものと、樹脂層101に負極側集電電極層91をなす金属薄板(金属箔又は金属膜)を積層したラミネート材とを絶縁層81を介して接着することで形成される。   On the other hand, on the opposite side of the insulating layer 81 from the surface on which the catalyst electrode 61 is formed, a metal layer that forms the negative current collecting electrode layer 91 is bonded in a laminated state. The negative electrode side collecting electrode layer 91 is a thin metal plate (metal foil or metal film) having the same thickness (200 μm) and made of the same material as the positive electrode side collecting electrode layer 71, and the same outer surface as the glass plate 11. It has a shape and size. However, a negative electrode terminal 95 formed so as to protrude outward is provided on one side (the right side in FIG. 1) of the negative collector electrode layer 91. Further, on the side opposite to the surface on which the catalyst electrode 61 is formed (the lower surface in FIG. 1) in the negative current collecting electrode layer 91, a constant thickness (50 μm) is provided so as to cover the entire surface of the negative current collecting electrode layer 91. A resin layer (for example, ionomer resin) 101 is adhered in a laminated state, and forms a protective film (skin material) for the negative-side current collecting electrode layer 91. Of the layers from the catalyst electrode 61 to the insulating layer 81, the portion corresponding to the translucent conductive layer portion 23 in the plan view has the same size and shape as the opening 3 as shown in FIG. A large number of negative electrode side collector electrode layers 91 are exposed as negative electrode side collector electrode layer portions 93 (circular portions of the openings 3). In addition, the catalyst electrode 61 side which makes such a counter electrode is the one in which the catalyst electrode 61 is formed on the surface of the metal thin plate with the opening 3 forming the positive electrode side collector electrode layer 71 and the negative electrode side collector electrode on the resin layer 101. It is formed by adhering a laminated material in which metal thin plates (metal foil or metal film) forming the layer 91 are laminated via an insulating layer 81.

しかして、負極側集電電極層91と透光性導電層21との間が、平面視、相互に間隔Pをおいて設けられた多数の透光性導電層部23と、これらと対応するように設けられた負極側集電電極層部93とにおいて、例えば横断面が円形で柱状に配置形成された導電性接着剤5により、触媒電極61と電気的絶縁が保持されて電気的に接続されている(図1参照)。すなわち、本形態では、多数の透光性導電層部23(図3参照)と、それらに対向する配置の負極側集電電極層部93(図3参照)とにおいて、導電性接着剤5をインターコネクタとして負極側集電電極層91と透光性導電層21との間が多数の箇所で電気的に接続されている。この導電性接着剤5は、触媒電極61と電気的絶縁が保持されるように、各開口3内において、その内壁面との間に間隔を保持され、中心位置に存在するように配置されている。また、各導電性接着剤5は、図1に示されるように、太陽電池1をなしているとき、両電極31,61間に所定の空隙Kが保持される高さに設定されている。   Thus, a large number of light-transmitting conductive layer portions 23 provided at intervals P between the negative-electrode side collecting electrode layer 91 and the light-transmitting conductive layer 21 in a plan view correspond to these. For example, the conductive electrode 5 is electrically connected to the negative electrode side collecting electrode layer portion 93 so as to be electrically insulated from the catalyst electrode 61 by the conductive adhesive 5 arranged in a columnar shape with a circular cross section. (See FIG. 1). In other words, in the present embodiment, the conductive adhesive 5 is applied to a large number of the light-transmitting conductive layer portions 23 (see FIG. 3) and the negative-side current collecting electrode layer portion 93 (see FIG. 3) arranged to face them. As the interconnector, the negative current collecting electrode layer 91 and the translucent conductive layer 21 are electrically connected at a number of locations. The conductive adhesive 5 is disposed so as to be maintained at a central position in each opening 3 so as to be maintained at a distance from the inner wall surface so that electrical insulation from the catalyst electrode 61 is maintained. Yes. Further, as shown in FIG. 1, each conductive adhesive 5 is set to a height at which a predetermined gap K is held between the electrodes 31 and 61 when the solar battery 1 is formed.

本形態では、図2に示したように、対極をなす触媒電極61から樹脂層101までの各層を含む積層体(図2の下の積層体)200と、半導体電極31の形成されたガラス板11とが、外周縁寄り部位において接着剤41を介して接着されることで形成されるのであるが、この触媒電極61側の積層体200自体は、ガラス板11に接着される前には、可撓性(又は柔軟性)のあるシート状をなしている。   In this embodiment, as shown in FIG. 2, a laminate (lower laminate in FIG. 2) 200 including each layer from the catalyst electrode 61 to the resin layer 101 forming the counter electrode, and a glass plate on which the semiconductor electrode 31 is formed. 11 is bonded to the outer peripheral edge via an adhesive 41, but before the laminated body 200 itself on the catalyst electrode 61 side is bonded to the glass plate 11, It is in the form of a flexible (or soft) sheet.

このような本形態の太陽電池1は、正極側集電電極層71と、負極側集電電極層91の各一側部に突出形成された配線取り出し用の各電極端子75,95間を電線で接続して電気回路を構成し、透光性導電層21側(図1の上側)から光を照射することで両電極31,61間に電気回路を構成する色素増感型太陽電池をなすのであるが、次のような作用ないし効果がある。   The solar cell 1 of this embodiment is configured such that a wire is connected between the electrode terminals 75 and 95 for taking out the wiring formed to protrude from each side portion of the positive electrode side collecting electrode layer 71 and the negative electrode side collecting electrode layer 91. Are connected to each other to form an electric circuit, and light is irradiated from the translucent conductive layer 21 side (upper side in FIG. 1) to form a dye-sensitized solar cell that forms an electric circuit between the electrodes 31 and 61. However, there are the following actions or effects.

すなわち、本形態の色素増感型太陽電池1においては、ガラス板11に形成された透光性導電層21における多数の透光性導電層部23と、半導体電極31に対向する側に形成された負極側集電電極層91における多数の負極側集電電極層部93とが、層間において、多数の箇所で、導電性接着剤5をインターコネクタとして電気的に接続されている。つまり、ガラス板の面に沿って線状又は格子状に形成されていた従来の負極側集電電極層のように、ガラス板の面に沿って線として延びることや面として広がるものではなく、ガラス板11を平面視したとき、いわば散点状に多数配置された導電性接着剤5がインターコネクタをなして、各層間をその厚さ方向に貫き、透光性導電層21と負極側集電電極層91とが接続されている。このため、従来の負極側集電電極のように、ガラス板の面に沿ってその形成面積が大きくなることはない。すなわち、本例では、ガラス板11を平面視したとき、透光性導電層21が露出する開口33の面積分が、ガラス板11における半導体電極31の形成面積の減少を招くだけであるから、半導体電極31の形成面積を大きく損なうことなく確保できる。よって、その分、集電効率の高い太陽電池となすことができる。   That is, in the dye-sensitized solar cell 1 of the present embodiment, the light-transmitting conductive layer portion 23 in the light-transmitting conductive layer 21 formed on the glass plate 11 and the side facing the semiconductor electrode 31 are formed. In addition, a large number of negative electrode-side collecting electrode layer portions 93 in the negative electrode-side collecting electrode layer 91 are electrically connected with the conductive adhesive 5 as an interconnector at a number of locations between the layers. That is, it does not extend as a line or spread along the surface of the glass plate, like a conventional negative electrode current collecting electrode layer formed in a linear or lattice shape along the surface of the glass plate, When the glass plate 11 is viewed in plan, the conductive adhesive 5 arranged in a number of scattered points forms an interconnector, penetrates each layer in the thickness direction, and the transparent conductive layer 21 and the negative electrode side collector. The electrode layer 91 is connected. For this reason, the formation area does not become large along the surface of a glass plate like the conventional negative electrode side collector electrode. That is, in this example, when the glass plate 11 is viewed in plan, the area of the opening 33 from which the translucent conductive layer 21 is exposed only causes a reduction in the formation area of the semiconductor electrode 31 in the glass plate 11. The formation area of the semiconductor electrode 31 can be ensured without greatly deteriorating. Therefore, a solar cell with high current collection efficiency can be obtained accordingly.

そして、本形態においては、対極側の基板をなす負極側集電電極層91をガラス板11に対応してチタン又はステンレス鋼製の金属板(金属箔又は金属膜)で形成している。したがって、この対極側の基板を通過して電解液Yが外部へ漏出することを防止することができると共に、外部から電池内への水分等の異物の浸入を有効に防止することもできるから、太陽電池としての耐久性が高められる。加えて、本形態では、対極をなす触媒電極61側の積層体200自体に可撓性があるため、半導体電極31が形成されるガラス板11が曲面の太陽電池としても具体化できる。つまり、そのようなガラス板11における透光性導電層21における透光性導電層部23と、負極側集電電極層91における負極側集電電極部93との間に導電性接着剤を介在させ、そのガラス板の面になじませるようにして積層体200を接着をすることで、半導体電極が形成されるガラス板が曲面であっても太陽電池として容易に具体化できる。   In this embodiment, the negative electrode side collecting electrode layer 91 forming the counter electrode side substrate is formed of a metal plate (metal foil or metal film) made of titanium or stainless steel corresponding to the glass plate 11. Therefore, it is possible to prevent the electrolyte Y from leaking to the outside through the substrate on the counter electrode side, and to effectively prevent entry of foreign matters such as moisture from the outside into the battery. Durability as a solar cell is enhanced. In addition, in this embodiment, since the laminate 200 itself on the side of the catalyst electrode 61 forming the counter electrode is flexible, the glass plate 11 on which the semiconductor electrode 31 is formed can be embodied as a curved solar cell. That is, a conductive adhesive is interposed between the translucent conductive layer portion 23 in the translucent conductive layer 21 in the glass plate 11 and the negative collector electrode portion 93 in the negative collector electrode layer 91. Then, by adhering the laminated body 200 so as to conform to the surface of the glass plate, even if the glass plate on which the semiconductor electrode is formed is a curved surface, it can be easily embodied as a solar cell.

また、本形態では、負極側集電電極層91をなす金属板に貫通孔を設ける等の格別の加工を要しないことから、それ自体の厚さを加工性を考慮して薄くする必要もないため、負極側集電電極層91は電気的抵抗の増大を招かない十分な厚さに設定できる。なお、この負極側集電電極層91は1枚の金属層(金属箔又は金属膜)でなく、複数層からなる積層構造のものとしてもよい。さらに、本形態では、触媒電極61に加えて正極側集電電極層71を設けたことから、触媒電極61自体の厚さが薄くても、抵抗の小さい回路となすことができる。ただし、触媒電極61は、それ自体に十分な厚さ(1.0μm以上)があれば、それ自体を正極側集電電極としてもよく、したがって、その場合には、触媒電極61は絶縁層81の上に直接形成してもよい。   Further, in the present embodiment, since no special processing such as providing a through hole is provided in the metal plate forming the negative current collecting electrode layer 91, it is not necessary to reduce the thickness of the metal plate in consideration of workability. Therefore, the negative current collecting electrode layer 91 can be set to a sufficient thickness that does not increase the electrical resistance. In addition, this negative electrode side collector electrode layer 91 is not limited to one metal layer (metal foil or metal film), but may have a laminated structure including a plurality of layers. Furthermore, in this embodiment, since the positive electrode side collecting electrode layer 71 is provided in addition to the catalyst electrode 61, a circuit with low resistance can be obtained even if the thickness of the catalyst electrode 61 itself is thin. However, if the catalyst electrode 61 itself has a sufficient thickness (1.0 μm or more), the catalyst electrode 61 may be used as the positive electrode side collector electrode. Therefore, in this case, the catalyst electrode 61 may be the insulating layer 81. You may form directly on.

なお、本実施の形態に係る太陽電池1は、上記もしたように、対極をなす触媒電極61を含む上記した積層体200と、増感色素を担持させた半導体電極31を形成したガラス板11側とを別途に製造し、各透光性導電層部23と各負極側集電電極部93とにそれぞれ適量の導電性接着剤を印刷又は塗布しておき、両電極31,61が対向するようにして、周囲において接着して、両電極31,61間に電解液Yを注入することで製造される。そして、対極をなす積層体200については、上記したようにして製造されるが、増感色素を担持させた半導体電極31を形成したガラス板11側については、次のようにして製造すればよい。   In addition, as described above, the solar cell 1 according to the present embodiment includes the glass plate 11 on which the above-described laminated body 200 including the catalyst electrode 61 serving as the counter electrode and the semiconductor electrode 31 supporting the sensitizing dye are formed. Are separately manufactured, and an appropriate amount of conductive adhesive is printed or applied to each of the translucent conductive layer portions 23 and the respective negative electrode side collecting electrode portions 93, so that the electrodes 31 and 61 face each other. Thus, it is manufactured by injecting the electrolyte solution Y between the electrodes 31 and 61 by bonding at the periphery. The laminate 200 forming the counter electrode is manufactured as described above, but the glass plate 11 side on which the semiconductor electrode 31 supporting the sensitizing dye is formed may be manufactured as follows. .

すなわち、増感色素を担持させた半導体電極31を形成するガラス板11側の製造工程は次のようである。ガラス板11の全面(図2の下側面)にスパッタリングなどによって透光性導電層21を形成する。その後、図3に示したように、透光性導電層部23が相互に所定の間隔Pをおいて所定形状で開口33して露出するように、透光性導電層21の上に、多孔質の半導体電極基体(チタニア)を形成する。なお、多孔質の半導体電極基体の形成は、市販のチタニアペーストを上記した平面形状に透光性導電層21の上に印刷し、その後、公知の条件下で焼成すればよい。そして、例えば、こうして形成された半導体電極基体をガラス板11ごと、増感色素(錯体色素、有機色素)を有機溶媒に溶解させた溶液に浸漬してその溶液を、その多孔質内に含浸させ、その後、有機溶媒を除去することにより増感色素をその細孔内に付着させる。   That is, the manufacturing process on the glass plate 11 side for forming the semiconductor electrode 31 carrying the sensitizing dye is as follows. A translucent conductive layer 21 is formed on the entire surface of the glass plate 11 (the lower surface in FIG. 2) by sputtering or the like. Thereafter, as shown in FIG. 3, the transparent conductive layer portion 23 is porous on the transparent conductive layer 21 so that the transparent conductive layer portions 23 are exposed by opening 33 in a predetermined shape with a predetermined interval P therebetween. A quality semiconductor electrode substrate (titania) is formed. The porous semiconductor electrode substrate may be formed by printing a commercially available titania paste on the light-transmitting conductive layer 21 in the above-described planar shape and then firing it under known conditions. For example, the thus formed semiconductor electrode substrate is immersed in a solution in which a sensitizing dye (complex dye, organic dye) is dissolved in an organic solvent together with the glass plate 11, and the solution is impregnated in the porous body. Thereafter, the organic solvent is removed to attach the sensitizing dye into the pores.

次に、このように形成された半導体電極31付きのガラス板11と、対極をなす積層体200とにおける、各透光性導電層部23と各負極側集電電極部93とにそれぞれ適量の導電性接着剤5を印刷又は塗布すると共に、対向する面(対面)の周囲(接着代)に、それぞれ電解液Yの封止用の接着剤41を印刷(又は塗布)し、各電極31,61が対向するようにして位置決めして両者を重ねて圧着する。こうして、周囲の接着剤41で内部を封止して接着するとともに、多数の透光性導電層部23と負極側集電電極部93とを導電性接着剤5で接着する。なお、導電性接着剤5については、対向する透光性導電層部23と各負極側集電電極部93とのいずれか一方にのみ印刷しておいてもよいが、いずれにしても、適切な面圧で押付けられて接着された後において両電極31,61間に所定の空隙Kが保持されるように印刷すべき導電性接着剤の厚さないし量を設定する。なお、接着剤41については、接着後に、周囲から電解液が漏れ出ないようにその厚さ、幅等を設定する。   Next, an appropriate amount of each of the translucent conductive layer portion 23 and each negative electrode side collecting electrode portion 93 in the glass plate 11 with the semiconductor electrode 31 formed in this way and the laminated body 200 forming the counter electrode is provided. The conductive adhesive 5 is printed or applied, and an adhesive 41 for sealing the electrolytic solution Y is printed (or applied) around the opposing surface (facing surface), respectively, and each electrode 31, Position so that 61 opposes, and both are overlapped and pressure-bonded. In this way, the inside is sealed and adhered with the surrounding adhesive 41, and a large number of the translucent conductive layer portions 23 and the negative-side current collecting electrode portions 93 are adhered with the conductive adhesive 5. In addition, about the conductive adhesive 5, you may print only in any one of the translucent conductive layer part 23 and each negative electrode side current collection electrode part 93 which oppose, but in any case, it is appropriate. The thickness or amount of the conductive adhesive to be printed is set so that a predetermined gap K is maintained between the electrodes 31 and 61 after being pressed and bonded with an appropriate surface pressure. In addition, about the adhesive agent 41, the thickness, the width | variety, etc. are set so that electrolyte solution may not leak from the circumference after adhesion | attachment.

導電性接着剤5および周囲の封止用の接着剤41に、熱硬化性の接着剤を用いた場合には、その接着部位にガラス板11側からレーザー光を照射するなどして加熱して硬化させればよい。そして、例えば、周囲の封止用の接着剤(層)41の適所に設けた、両電極31,61間の空隙Kに連通する貫通孔(図示せず)から、所要の電解液Yを注入して充填し、その充填後において、その貫通孔を閉塞することで、本形態の色素増感型太陽電池(単セル)1が得られる。   When a thermosetting adhesive is used for the conductive adhesive 5 and the surrounding sealing adhesive 41, the adhesive portion is heated by irradiating laser light from the glass plate 11 side. What is necessary is just to harden. Then, for example, a required electrolyte solution Y is injected from a through hole (not shown) that is provided at an appropriate position of the surrounding sealing adhesive (layer) 41 and communicates with the gap K between the electrodes 31 and 61. The dye-sensitized solar cell (single cell) 1 of this embodiment can be obtained by filling and filling the through-holes after the filling.

なお、負極側集電電極層と透光性導電層との間を多数の箇所で接続している導電性接着剤の周囲は、前記形態では両電極間に介在される電解液に直接晒されることになる。しかし、その導電性接着剤の周囲は、このように電解液に直接晒されないように、それぞれの周囲に、その電解液に耐食性のある被覆層(例えば、樹脂、ガラス、酸化物又はセラミックからなる被覆層ないし被覆膜)で、被覆しておくとよい。このようにしておくと、導電性接着剤が電解液に直接触れることがないことから、電解液による導電性接着剤の腐食に起因する電気的性能の低下が防止されるためである。すなわち、導電性接着剤は電解液に晒される(触れる)場合には容易に腐食されてしまうが、このようにしておけば、導電性接着剤の周囲が電解液に耐食性のある被覆層で被覆されていることから、こうした問題も解消できる。さらに、このようにしておけば、電解液に対する耐腐食性を考慮する必要なく導電性接着剤を選択して使用できるから、その選択範囲を拡げることができる。加えて、導電性接着剤が電解液に晒されないため、導電性接着剤から電解液に向けて逆電子移動が起こることも防止されるから、発電効率の低下防止にも寄与できる。   Note that the periphery of the conductive adhesive connecting the negative-electrode side collecting electrode layer and the translucent conductive layer at a number of locations is directly exposed to the electrolytic solution interposed between the two electrodes in the above embodiment. It will be. However, the periphery of the conductive adhesive is made of a coating layer (for example, resin, glass, oxide, or ceramic) that is resistant to the electrolyte so that it is not directly exposed to the electrolyte. It is better to coat with a coating layer or coating film). This is because the conductive adhesive does not directly touch the electrolytic solution, so that a decrease in electrical performance due to the corrosion of the conductive adhesive by the electrolytic solution is prevented. That is, the conductive adhesive is easily corroded when it is exposed (touched) to the electrolytic solution. By doing so, the conductive adhesive is coated with a coating layer that is resistant to the electrolytic solution. This problem can be solved. Furthermore, if it does in this way, since it can select and use a conductive adhesive, without having to consider the corrosion resistance with respect to electrolyte solution, the selection range can be expanded. In addition, since the conductive adhesive is not exposed to the electrolytic solution, it is possible to prevent reverse electron transfer from the conductive adhesive toward the electrolytic solution, thereby contributing to prevention of reduction in power generation efficiency.

さて次に、本発明の別の実施の形態(第2実施例)について、図6及び図7に基づいて説明する。ただし、この形態は、上記した形態の変形例ないし改良とでも言うべきものであるため、その相違点を中心として説明し、同一部位には同一の符号を付すに止める。すなわち、上記した形態では、負極側集電電極層91における触媒電極61の形成面側と反対側(図1の下側)に形成した樹脂層101が保護膜(表皮材)をなしていた。これに対して、本形態では、負極側集電電極層91における各負極側集電電極層部93の中心部位に層間方向に貫通する貫通孔(円形の開口)94が設けられており、この多数の各貫通孔94の部位において、導電性接着剤5により、透光性導電層部23と負極側集電電極層部93とが電気的に接続されている。なお、導電性接着剤5は、触媒電極61と電気的絶縁が保持されている。このような本形態では、負極側集電電極層91における触媒電極61の形成側と反対側に、樹脂層101を接着層として負極側集電電極層91と同素材の金属薄板(厚さ500μm)からなる電解液漏出防止層111が積層状に接着され、貫通孔94及びその内部に充填された導電性接着剤5を封止している。すなわち、電解液漏出防止層111が樹脂層101の全面を被覆する保護膜をなしており、両電極31,61間に充填されている電解液Yが貫通孔94内を通過して外部に漏出するのを防止している。   Now, another embodiment (second example) of the present invention will be described with reference to FIGS. However, since this form should be said to be a modification or improvement of the above-described form, the difference will be mainly described, and the same portions are only given the same reference numerals. That is, in the above-described form, the resin layer 101 formed on the negative electrode side collecting electrode layer 91 on the side opposite to the surface on which the catalyst electrode 61 is formed (the lower side in FIG. 1) forms a protective film (skin material). On the other hand, in the present embodiment, a through hole (circular opening) 94 penetrating in the interlayer direction is provided at the central portion of each negative electrode side collecting electrode layer portion 93 in the negative electrode side collecting electrode layer 91. The translucent conductive layer portion 23 and the negative electrode side collecting electrode layer portion 93 are electrically connected by the conductive adhesive 5 at the portions of the numerous through holes 94. The conductive adhesive 5 is electrically insulated from the catalyst electrode 61. In this embodiment, a metal thin plate (thickness: 500 μm) made of the same material as that of the negative current collector electrode layer 91 with the resin layer 101 as an adhesive layer on the side opposite to the formation side of the catalyst electrode 61 in the negative current collector electrode layer 91. The electrolyte leakage prevention layer 111 made of (1) is adhered in a laminated manner to seal the through hole 94 and the conductive adhesive 5 filled therein. That is, the electrolyte leakage prevention layer 111 forms a protective film covering the entire surface of the resin layer 101, and the electrolyte Y filled between the electrodes 31 and 61 passes through the through hole 94 and leaks to the outside. Is prevented.

このような本形態の太陽電池2においては、上記した形態の太陽電池1の効果と同様の効果が得られる。そして、電解液漏出防止層111が電解液Yの液漏れ、及び外部からの異物の侵入を防止する遮蔽膜をなしている。本形態では、このような効果に加えて、次のような特有の効果も得られる。すなわち、本形態では、負極側集電電極層91における各負極側集電電極層部93に貫通孔94が設けられているため、太陽電池2の製造においては次のように行うことができる。図7−Aに示したように、対極をなす基板として、貫通孔94付きの負極側集電電極層91の上に絶縁層81を介して正極側集電電極層71及び触媒電極61を形成し、この状態のものにおいて、周囲の接着剤41で、半導体電極31を含むガラス板11側の基板に接着して図7−Bに示した仕掛かり品を得る。そして、その段階(図7−B参照)において、負極側集電電極層91における貫通孔94内に外部(図7−Bの下側)から導電性接着剤5を充填することで、透光性導電層部23と負極側集電電極層部93とを接着して電気的に接続する(図7−C参照)。その後で、図7−C中に2点鎖線で示したように、電解液漏出防止層111を樹脂層101を介して積層し、上記した太陽電池1の製造におけるのと同様に内部に電解液を充填することで、図6に示した太陽電池2を得ることができる。   In the solar cell 2 of this embodiment, the same effect as that of the solar cell 1 of the above-described embodiment can be obtained. The electrolyte leakage prevention layer 111 forms a shielding film that prevents leakage of the electrolyte Y and entry of foreign matter from the outside. In this embodiment, in addition to such effects, the following specific effects can also be obtained. That is, in this embodiment, since the through-hole 94 is provided in each negative electrode side collecting electrode layer portion 93 in the negative electrode side collecting electrode layer 91, the solar cell 2 can be manufactured as follows. As shown in FIG. 7A, the positive-side collector electrode layer 71 and the catalyst electrode 61 are formed on the negative-side collector electrode layer 91 with the through-hole 94 via the insulating layer 81 as a counter electrode. Then, in this state, the work piece shown in FIG. 7B is obtained by bonding to the substrate on the glass plate 11 side including the semiconductor electrode 31 with the surrounding adhesive 41. At that stage (see FIG. 7B), the conductive adhesive 5 is filled into the through-hole 94 in the negative current collector electrode layer 91 from the outside (the lower side of FIG. 7-B), thereby transmitting the light. The conductive conductive layer portion 23 and the negative electrode side collecting electrode layer portion 93 are bonded and electrically connected (see FIG. 7C). Thereafter, as shown by a two-dot chain line in FIG. 7-C, an electrolyte leakage prevention layer 111 is laminated via the resin layer 101, and the electrolyte solution is contained in the interior in the same manner as in the production of the solar cell 1 described above. The solar cell 2 shown in FIG. 6 can be obtained.

このように、本形態では導電性接着剤5を周囲の接着剤41とは、別工程で接着できる。すなわち、本形態では、周囲の封止用の接着剤41で接着して両電極31,61間を封止した後、導電性接着剤5で負極側集電電極層91と透光性導電層21との間の導通を保持できるため、封止用の接着剤41と、導電性接着剤5に熱硬化条件など接着条件の異なるものを採択、使用できることから、製造工程の制約を小さくできる。なお、導電性接着剤5についても、ガラス板11の外側からレーザー光を照射するなどして加熱して硬化させることができる。なお、図7−C中に2点鎖線で示したように、電解液漏出防止層111を樹脂層101を介して積層する際には、充填された導電性接着剤5が層間方向に圧縮されるようにするのがよい。   Thus, in this embodiment, the conductive adhesive 5 can be bonded to the surrounding adhesive 41 in a separate process. That is, in this embodiment, the electrodes 31 and 61 are sealed by bonding with the surrounding sealing adhesive 41, and then the negative-electrode side collecting electrode layer 91 and the light-transmitting conductive layer are sealed with the conductive adhesive 5. Therefore, the sealing adhesive 41 and the conductive adhesive 5 can be adopted and used with different adhesive conditions such as thermosetting conditions, so that the restrictions on the manufacturing process can be reduced. The conductive adhesive 5 can also be cured by heating, for example, by irradiating laser light from the outside of the glass plate 11. 7C, when the electrolyte leakage prevention layer 111 is laminated via the resin layer 101, the filled conductive adhesive 5 is compressed in the interlayer direction. It is good to make it.

本形態では電解液漏出防止層111を、負極側集電電極層91と同素材の金属薄板からなるものとしたが、これについてはその他の材質からなる金属板又はガラス板など、電解液が通過しない材質のもので形成すればよい。なお、本形態においても、触媒電極61は、それ自体に十分な厚さ(1.0μm以上)があれば、それ自体を正極側集電電極としてもよく、したがって、その場合には、触媒電極61は絶縁層81の上に直接形成してもよい。   In this embodiment, the electrolyte leakage prevention layer 111 is made of a thin metal plate made of the same material as the negative current collecting electrode layer 91. However, for this, the electrolyte passes through a metal plate or glass plate made of other materials. What is necessary is just to form with the material which does not. Also in this embodiment, if the catalyst electrode 61 has a sufficient thickness (1.0 μm or more) in itself, the catalyst electrode 61 may be used as the positive electrode side current collecting electrode. 61 may be formed directly on the insulating layer 81.

本発明の太陽電池において用いる導電性接着剤は、その基材をなす樹脂が熱硬化樹脂又は光硬化樹脂であるのが好ましい。前記もしたように周囲の封止用の接着剤の接着におけるのと同様に、透光性基板を通してレーザー光などを照射して硬化させることができるためである。なお、本発明に係る太陽電池ではその製造において積層、圧着工程が含まれることから、導電性接着剤には、導電性ないしその信頼性を高めるため、加圧されることで導電性が向上する導電性接着剤(加圧導電性接着剤)を用いるのがよい。   As for the conductive adhesive used in the solar cell of the present invention, the resin forming the base material is preferably a thermosetting resin or a photo-curing resin. This is because, as described above, it can be cured by irradiating a laser beam or the like through a light-transmitting substrate in the same manner as in the adhesion of the surrounding sealing adhesive. In addition, since the solar cell according to the present invention includes lamination and pressure bonding steps in its production, the conductive adhesive is improved in conductivity by being pressurized in order to increase the conductivity or its reliability. A conductive adhesive (pressurized conductive adhesive) may be used.

本発明において、導電性接着剤を設ける間隔(ピッチ)Pは、上記のように、格子状配置とする場合には、縦横においてそれぞれ5.0〜10.0mmの範囲で設定することを例示できる。また、これらの横断面形状(平面形状)は、通常は円であるが、いずれの形状としても具体化できる。ただし、それらの横断面の直径ないし面積は材質(導通抵抗)や厚さを考慮して適宜に設定すればよい。   In this invention, when setting it as a grid | lattice-like arrangement | positioning as above-mentioned, the space | interval (pitch) P which provides a conductive adhesive can illustrate setting in the range of 5.0-10.0 mm respectively in length and width. . In addition, these cross-sectional shapes (planar shapes) are usually circles, but can be embodied as any shape. However, the diameter or area of the cross section thereof may be appropriately set in consideration of the material (conduction resistance) and thickness.

なお、本発明の色素増感型太陽電池をなす透光性基板としては、ガラス板の他、透明樹脂板又は樹脂シート(フイルム)で形成してもよいが、なるべく透光性(可視光透過率)の高いもの(少なくとも10%以上あるもの)を使用するのが好ましい。また、透光性導電層としては、上記もしたように酸化スズなどが例示されるが、その膜厚は、1nm〜100nmの範囲とするのが好ましい。そして、半導体電極は酸化チタンの他、酸化亜鉛、酸化タンタルなどを用いることができるが、その膜厚は、5.0〜30.0μm、好ましくは10.0〜20.0μmである。   In addition, as a translucent board | substrate which makes the dye-sensitized solar cell of this invention, although you may form with a transparent resin board or a resin sheet (film) other than a glass plate, translucency (visible light transmission) is possible as much as possible. It is preferable to use one having a high rate) (at least 10% or more). Moreover, as above-mentioned as a translucent conductive layer, although tin oxide etc. are illustrated, it is preferable to make the film thickness into the range of 1 nm-100 nm. In addition to titanium oxide, zinc oxide, tantalum oxide, or the like can be used for the semiconductor electrode, and the film thickness is 5.0 to 30.0 μm, preferably 10.0 to 20.0 μm.

一方、触媒電極(対極)として用いる金属(金属膜)は、白金が好ましいが、活性炭、導電性高分子など、従来の太陽電池の対極として公知のものを用いることができる。因みに、その膜厚は、1nm〜1μm、好ましくは100nm〜500nmである。さらに、半導体電極と触媒電極の両電極間に介在される電解質の厚さは、200μm以下、好ましくは50μm以下である。   On the other hand, the metal (metal film) used as the catalyst electrode (counter electrode) is preferably platinum, but known materials such as activated carbon and conductive polymer can be used as the counter electrode of the conventional solar cell. Incidentally, the film thickness is 1 nm to 1 μm, preferably 100 nm to 500 nm. Further, the thickness of the electrolyte interposed between both the semiconductor electrode and the catalyst electrode is 200 μm or less, preferably 50 μm or less.

なお、上記した実施の形態では、触媒電極から、半導体電極に対向する側と反対側に形成された各層を含む積層体を可撓性(又は柔軟性)を有するものとしたが、可撓性のないものとしても具体化できる。そして、集電電極層と絶縁樹脂層とが直接積層される(貼り合わされる)ものでは、金属薄板(金属箔)を片面に積層してなる樹脂(シート又は基板)を用いてもよい。すなわち、これらは、絶縁樹脂層(絶縁樹脂フイルム)に、金属層(金属箔)が形成されたラミネート材などのシート材を用いてもよい。   In the above-described embodiment, the laminate including each layer formed on the side opposite to the side facing the semiconductor electrode from the catalyst electrode is flexible (or flexible). It can be embodied even if there is no. In the case where the collector electrode layer and the insulating resin layer are directly laminated (bonded), a resin (sheet or substrate) obtained by laminating a thin metal plate (metal foil) on one side may be used. That is, a sheet material such as a laminate material in which a metal layer (metal foil) is formed on an insulating resin layer (insulating resin film) may be used.

本発明は、上記した内容に限定されるものではなく、その要旨を逸脱しない範囲において、適宜に変更して具体化できる。上記においては単セル構造の太陽電池として説明したが、もちろん、多数の太陽電池セルを直列又は並列で接続したものとしても具体化できるし、必要な外装を施して太陽電池モジュールとしても具体化できる。   The present invention is not limited to the above-described contents, and can be embodied with appropriate modifications within a range not departing from the gist thereof. In the above description, the solar cell has been described as a single cell structure. Of course, the solar cell can be embodied as a solar cell module in which a large number of solar cells are connected in series or in parallel, or a necessary exterior is provided. .

本発明の色素増感型太陽電池を模式的(概略的)に示した縦断面図、及びその要部拡大図。The longitudinal cross-sectional view which showed the dye-sensitized solar cell of this invention typically (schematically), and the principal part enlarged view. 図1の色素増感型太陽電池を積層、圧着して組立てる前の説明用分解縦断面図。FIG. 2 is an exploded longitudinal sectional view for explanation before the dye-sensitized solar cell of FIG. 1 is laminated and pressed and assembled. 図2の半導体電極側から見た平面図(矢印Aから見た図)。The top view seen from the semiconductor electrode side of FIG. 2 (figure seen from arrow A). 図2の触媒電極側から見た平面図(矢印Bから見た図)。The top view seen from the catalyst electrode side of FIG. 2 (figure seen from arrow B). 図2の触媒電極側をなす積層体の説明用分解縦断面図。The exploded longitudinal cross-sectional view for description of the laminated body which makes the catalyst electrode side of FIG. 本発明の色素増感型太陽電池の別例を模式的(概略的)に示した縦断面図、及びその要部拡大図。The longitudinal cross-sectional view which showed the other example of the dye-sensitized solar cell of this invention typically (schematically), and its principal part enlarged view. 図6の色素増感型太陽電池を積層、圧着して組立てる工程を説明する縦断面図。The longitudinal cross-sectional view explaining the process of laminating | stacking and pressure-bonding and assembling the dye-sensitized solar cell of FIG.

符号の説明Explanation of symbols

1、2 色素増感型太陽電池
5 導電性接着剤
11 ガラス板(透光性基板)
21 透光性導電層
31 半導体電極
61 触媒電極
71 正極側集電電極層
73 第1の正極側集電用凸部
75 第1の正極側集電用凸部の先端
81 絶縁層
91 負極側集電電極層
93 負極側集電電極層部
94 負極側集電電極層の貫通孔
101 樹脂層
111 電解液漏出防止層
P 露出する透光性導電層部相互の間隔
Y 電解液
K 空隙
1, 2 Dye-sensitized solar cell 5 Conductive adhesive 11 Glass plate (translucent substrate)
21 translucent conductive layer 31 semiconductor electrode 61 catalyst electrode 71 positive electrode side current collecting electrode layer 73 first positive electrode side current collecting convex portion 75 tip 81 of first positive electrode side current collecting convex portion 81 insulating layer 91 negative electrode side current collecting Electrode electrode layer 93 Negative electrode side collector electrode layer part 94 Negative electrode side collector electrode layer through-hole 101 Resin layer 111 Electrolyte leakage prevention layer P Spacing between exposed transparent conductive layer parts Y Electrolyte solution K Void

Claims (4)

透光性基板の一面側に、増感色素を担持させた半導体電極を表面に形成した透光性導電層を備える一方、前記半導体電極に対向して対極をなす触媒電極を備え、この両電極間に電解液が介在されてなる色素増感型太陽電池において、
前記触媒電極における半導体電極に対向する側と反対側には、絶縁層を介して負極側集電電極層が形成されており、
この負極側集電電極層と前記透光性導電層との間が、平面視、相互に間隔をおいて、多数の箇所で導電性接着剤により前記触媒電極と電気的絶縁を保持して電気的に接続されてなることを特徴とする色素増感型太陽電池。
On one surface side of the translucent substrate, a translucent conductive layer having a semiconductor electrode carrying a sensitizing dye formed on the surface thereof is provided, while a catalyst electrode which is opposed to the semiconductor electrode and forms a counter electrode is provided. In a dye-sensitized solar cell in which an electrolyte is interposed between,
On the opposite side of the catalyst electrode from the side facing the semiconductor electrode, a negative current collecting electrode layer is formed via an insulating layer,
The negative current collector electrode layer and the translucent conductive layer are electrically spaced from each other in a plan view and electrically insulated from the catalyst electrode by a conductive adhesive at a number of locations. A dye-sensitized solar cell, characterized by being connected to each other.
透光性基板の一面側に、増感色素を担持させた半導体電極を表面に形成した透光性導電層を備える一方、前記半導体電極に対向して対極をなす触媒電極を備え、この両電極間に電解液が介在されてなる色素増感型太陽電池において、
前記触媒電極における半導体電極に対向する側と反対側には、絶縁層を介して負極側集電電極層が形成されていると共に、この負極側集電電極層には、平面視、相互に間隔をおいて、多数の箇所に貫通孔が設けられており、
この負極側集電電極層と前記透光性導電層との間が、多数の前記貫通孔の部位において導電性接着剤により前記触媒電極と電気的絶縁を保持して電気的に接続され、しかも、前記負極側集電電極層における前記触媒電極の形成面側と反対側には、前記電解液が前記貫通孔内を通過して外部に漏出するのを防止する電解液漏出防止層が形成されてなることを特徴とする色素増感型太陽電池。
On one surface side of the translucent substrate, a translucent conductive layer having a semiconductor electrode carrying a sensitizing dye formed on the surface thereof is provided, while a catalyst electrode which is opposed to the semiconductor electrode and forms a counter electrode is provided. In a dye-sensitized solar cell in which an electrolyte is interposed between,
On the opposite side of the catalyst electrode to the side facing the semiconductor electrode, a negative electrode side collector electrode layer is formed via an insulating layer. The negative electrode side collector electrode layer is spaced apart from each other in plan view. And through holes are provided in many places,
The negative electrode side collecting electrode layer and the translucent conductive layer are electrically connected to the catalyst electrode while being electrically insulated by a conductive adhesive at a plurality of through-hole portions, and An electrolyte leakage prevention layer that prevents the electrolyte from passing through the through hole and leaking outside is formed on the negative electrode side collector electrode layer on the side opposite to the catalyst electrode formation surface. A dye-sensitized solar cell characterized by comprising:
前記電解液漏出防止層が、金属板又はガラス板からなることを特徴とする請求項2に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 2, wherein the electrolyte leakage prevention layer is made of a metal plate or a glass plate. 前記触媒電極と前記絶縁層との間に、その触媒電極に電気的に接続された正極側集電電極層が形成されていることを特徴とする請求項1、2又は3に記載の色素増感型太陽電池。   4. The dye sensitizing dye according to claim 1, wherein a positive electrode side collector electrode layer electrically connected to the catalyst electrode is formed between the catalyst electrode and the insulating layer. 5. Sensitive solar cell.
JP2006144661A 2006-05-24 2006-05-24 Dye-sensitized solar cell Pending JP2007317454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144661A JP2007317454A (en) 2006-05-24 2006-05-24 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144661A JP2007317454A (en) 2006-05-24 2006-05-24 Dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2007317454A true JP2007317454A (en) 2007-12-06

Family

ID=38851141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144661A Pending JP2007317454A (en) 2006-05-24 2006-05-24 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2007317454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211967A (en) * 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2009218179A (en) * 2008-03-12 2009-09-24 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
WO2011155441A1 (en) * 2010-06-09 2011-12-15 シャープ株式会社 Wet-type solar cell and wet-type solar cell module
JP2012133889A (en) * 2010-12-17 2012-07-12 Fujikura Ltd Dye-sensitized solar battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066874A (en) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2007066875A (en) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2007287480A (en) * 2006-04-17 2007-11-01 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2007305509A (en) * 2006-05-15 2007-11-22 Ngk Spark Plug Co Ltd Dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066874A (en) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2007066875A (en) * 2005-08-02 2007-03-15 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2007287480A (en) * 2006-04-17 2007-11-01 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
JP2007305509A (en) * 2006-05-15 2007-11-22 Ngk Spark Plug Co Ltd Dye-sensitized solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211967A (en) * 2008-03-05 2009-09-17 Ngk Spark Plug Co Ltd Dye-sensitized solar cell and its manufacturing method
JP2009218179A (en) * 2008-03-12 2009-09-24 Ngk Spark Plug Co Ltd Dye-sensitized solar cell
WO2011155441A1 (en) * 2010-06-09 2011-12-15 シャープ株式会社 Wet-type solar cell and wet-type solar cell module
JP5714005B2 (en) * 2010-06-09 2015-05-07 シャープ株式会社 Wet solar cell and wet solar cell module
JP2012133889A (en) * 2010-12-17 2012-07-12 Fujikura Ltd Dye-sensitized solar battery

Similar Documents

Publication Publication Date Title
JP5815509B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP5080018B2 (en) Dye-sensitized solar cell
JP5032051B2 (en) Dye-sensitized solar cell
JP2007066875A (en) Dye-sensitized solar cell
KR20190027835A (en) Solar cell module
JP5230961B2 (en) Dye-sensitized solar cell
JP2010211971A (en) Dye-sensitized solar cell and wrist watch equipped with the same
JP2007317454A (en) Dye-sensitized solar cell
JP4161688B2 (en) Wet solar cell
JP2008262837A (en) Dye-sensitized solar cell and its manufacturing method
JP2008258028A (en) Dye-sensitized solar cell
JP2009218179A (en) Dye-sensitized solar cell
JP5032060B2 (en) Dye-sensitized solar cell
JP2013200958A (en) Solar battery
JP2009199782A (en) Dye-sensitized solar cell and manufacturing method therefor
US8772631B2 (en) Solar cell
JP2012074685A (en) Solar-cell power collection sheet and solar cell module using the same
JP2014013838A (en) Solar battery power collecting sheet and solar battery module
US9190220B2 (en) Dye-sensitized solar cell
KR101530547B1 (en) Large area dye-sensitized solar cell with back contact
JP2021040114A (en) Solar battery module, electrode substrate for solar battery, and manufacturing method of solar battery module
JP5699334B2 (en) Mesh electrode substrate and method of manufacturing mesh electrode substrate
KR20110096783A (en) Z-type dye-sensitized solar cell module
WO2024181516A1 (en) Energy harvester and method for manufacturing same
CN108231421B (en) Dye-sensitized photovoltaic cell, dye-sensitized photovoltaic module, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113